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ABSTRACT Human detection and activity recognition (HDAR) in videos plays an important role in various
real-life applications. Recently, object detection methods have been used to detect humans in videos for
subsequent decision-making applications. This paper aims to address the problem of human detection in
aerial captured video sequences using a moving camera attached to an aerial platform with dynamical
events such as varied altitudes, illumination changes, camera jitter, and variations in viewpoints, object
sizes and colors. Unlike traditional datasets that have frames captured by a static ground camera with
medium or large regions of humans in these frames, the UCF-ARG aerial dataset is more challenging
because it contains videos with large distances between the humans in the frames and the camera. The
performance of human detection methods that have been described in the literature are often degraded
when input video frames are distorted by noise, blur, illumination changes, and the like. To address these
limitations, the object detection methods used in this study were trained on the COCO dataset and evaluated
on the publicly available UCF-ARG dataset. The comparison between these detectors was done in terms of
detection accuracy. The performance evaluation considers five human actions (digging, waving, throwing,
walking, and running). Experimental results demonstrated that EfficientDetD7 was able to outperform other
detectors with 92.9% average accuracy in detecting all activities and various conditions including blurring,
addition of Gaussian noise, lightening, and darkening. Additionally, deep pre-trained convolutional neural
networks (CNNs) such as ResNet and EfficientNet were used to extract highly informative features from
the detected and cropped human patches. The extracted spatial features were utilized by Long Short-Term
Memory (LSTM) to consider temporal relations between features for human activity recognition (HAR).
Experimental results found that the EfficientNetB7-LSTMwas able to outperform existing HARmethods in
terms of average accuracy (80%), and average F1 score (80%). The outcome is a robust HAR system which
combines EfficientDetD7, EfficientNetB7, and LSTM for human detection and activity classification.

INDEX TERMS Aerial captured video, convolutional neural network, human activity recognition, human
detection, long short-term memory, transfer learning.
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approving it for publication was Juan Liu .

I. INTRODUCTION
Human detection is a computer task that has been in devel-
opment for at least two decades now [1]. This technology
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has had various applications in search and rescue [2]–[8],
law enforcement [9]–[11], pedestrian detection for traffic
management and automated driver assistance [12]–[19], fall
detection [20]–[25], and many other functions, including the
decision-making steps that ensue [26]. And oftentimes, the
technology is deployed through unmanned aerial vehicles
(UAVs) [4], [6]–[8], [27]–[29] given their flexibility, longer
range of tracking, and ability to acquire images and videos
in situations where acquisition is infeasible for cameras at
the ground level [26], [30]–[32]. For this reason, it seems
as though human detection technologies deployed through
UAVs are bound to redefine the future of various functions.

The topic of human activity recognition (HAR) is not
new but the challenges that accompany HAR have not been
addressed completely. Several datasets have been used in
HAR applications, but these datasets have not addressed
challenges that accompany the UCF-ARG aerial dataset
[107], [108] that was used in this paper. Traditional datasets
have frames that were captured by static ground cameras
that show humans in medium-sized or large regions of these
frames. Therefore, existing research works propose solutions
to detect humans only when the size or scale of people in
the frames is medium or large. We still need to study the
robustness of existing human detection methods in aerial
surveillance to localize humans that are small in scale,
i.e., when the distance between the humans and the camera
is large. Furthermore, the frames were captured by a moving
(i.e., not fixed) aerial camera, such as that of a UAV.

Real-time detection of humans in aerial captured video
sequences has certainly not been without challenges. For
instance, the size of a human detected on aerial captured video
can vary with the altitude of the UAV. The natural variation
in the size of humans to be detected also poses a challenge
to the technology [8]. Other problems that arise during the
acquisition of aerial captured video include dynamical events
such as changes in illumination and pronounced degrees of
motion blur that result from camera jitter [33], [34]. All these
problems need to be addressed to develop a highly robust
classification method that is able to distinguish humans from
non-humans [8].

Convolutional neural networks (CNNs) have provided
machines the ability to use deep learning (DL) in order to
detect objects of various sorts. Among the most widely used
algorithms for these tasks are YOLOv5 [35], R-CNN [36],
Fast R-CNN, Faster R-CNN, Mask R-CNN [37], R-FCN,
SqueezeDet [38], EfficientDet [39], MobileNetV2 [40],
RetinaNet [76], ShuffleNet [77], and PeleeNet [78]. It is
essential that a detection algorithm is able to yield favorable
performance metrics at high inference speeds. Several pieces
of literature that describe human detection algorithms report
such levels of performance using a variety of methods, like
body detection [43, 44], head detection [43]–[46], shoul-
der detection [47], [48], and abundant others [8], [49]–[53].
However, in many instances, solely detecting features associ-
ated with human objects do not suffice, as human detection
algorithms need to be able to accurately detect them despite

the existence of obstructions within the field of view of the
camera.

Advances in machine learning (ML) have changed the
course of various domains over the past few decades. The use
of neural networks in ML has led to considerable advance-
ments in many applications, such as computer vision and nat-
ural language processing. As the use of ML for the detection
of static objects has reached near-perfect levels of accuracy
and precision, researchers have begun venturing into devel-
oping relatively newer methods to perform tasks of greater
complexity. For instance, we have gone from the simple task
of detecting humans in aerial captured videos to the objective
of this paper, which is human activity recognition (HAR).
The investigation of DL techniques for HAR enables us to
extract considerably more meaningful information from dig-
itized data that will significantly enhance various real-world
functions, such as those earlier mentioned.

Methods for HAR belong to one of three main categories,
namely (1) vision-based, (2) non-vision or sensor-based,
and (3) multimodal [54]. Vision-based HAR methods make
use of depth cameras to obtain color videos with depth infor-
mation and acquire information on human movements for
recognition [55]. However, these methods are highly suscep-
tible to error that may be caused by variations in illumination
from the environment and short range of detection. Non-
vision or sensor-based HAR methods, on the other hand,
utilize various sensors, such as wearable devices and ambient
sensors, or combinations of these, that enable us to acquire
information on human movements for purposes of recog-
nition. Combining sensor types makes hybrid sensors that
enhance data features to be collected. Doing so enables us
to gather sensory information from the real environment, e.g.
from cyber-physical-social systems [56]. Magnetic sensors
built into smartphones can also readily obtain the position
of their users [57]. However, relying on sensor-derived data
alone may be challenging because hardware may prove to
be costly and privacy concerns prevent large amounts of
data from being made public. Moreover, sensor-derived data
may need significant domain-specific expertise to obtain
appropriate features that an ML model can process and learn
from. A high-dimensional and noisy continuous sequence of
observations are produced from smartphone sensors. A com-
bination of hierarchical and kernel extreme learning machine
(HK-ELM) models were demonstrated to learn features
and classify activities [79]. They utilized a feature fusion
approach to combine hand-crafted features andH-ELMbased
learned features. Finally, multimodal HAR techniques allow
us to make use of both vision-based and sensor-based data
simultaneously to recognize human activity [80]. This is
done so that one modality can provide complementary infor-
mation in order to overcome the limitations of the other
modality.

Raw data acquired from sensors and video data from
cameras can now be automatically processed and learned
by state-of-the art DL techniques, specifically CNNs
and recurrent neural networks (RNNs), which have seen
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tremendous improvements in performance over the years. For
instance, [58] developed a system that considers underlying
force patterns derived from first- and second-order dynamics
in the input data to classify human actions. They employ a
three-layer neural network architecturemodel, which consists
of hierarchical self-organizing maps (SOM) and a supervised
neural network model classifier. The SOM in the first layer
reduces the dimensionality of the input data and activity
patterns in input sequences are extracted to represent posture
frames. Moreover, the second layer also consists of an SOM
which receives superimposed activity features from the first
layer. Because of this, the temporal invariance of the system
is ensured. Finally, the clusters in the second layer SOM
are labelled using a supervised neural network in the last
layer.

Another approach to HAR that is worth discussing is
the discrimination of action by observing the coordinates
of the joints on a three-dimensional (3D) human skeleton
dataset. Over the years, numerous attempts have been made
to overcome the challenges of providing an efficient and
effective approach to recognizing human activity that lever-
ages these 3D datasets [59]–[70], [112]. Hand-crafted feature
techniques entail significant amounts of human interven-
tion in extracting valuable features from skeleton sequences.
Moreover, the extraction of localized spatial and temporal
information from processed raw skeletal joints for the for-
mulation of DL methods is particularly difficult. In fact,
spatio-temporal representations of skeletal sequences, such
as DL approaches, are not capable of substantially preserving
local and global joint information and often suffer from view
dependence, absence of motion, and insufficiency of spatial
and temporal information [70]–[73].

In order to address this, [74] proposed a novel method that
maps the 3D skeleton joint coordinates into a spatio-temporal
image format (STIF). This, in turn, reduces system complex-
ity and provides features that are able to be discriminated
better. A system with four main modules, namely spatio-
temporal image formation, transfer learning, fusion, and clas-
sification was proposed. Here, skeleton joints are converted
into STIF which includes spatial and temporal changes for
three planes of view. Then images are included in the back-
bone model comprising three pre-trained networks, namely
MobileNetV2, DenseNet121, and ResNet18, each connected
to a fully connected layer to extract highly discriminative
features. The features extracted from the three planes of view
are then fused three different ways. Finally, the fused features
are fed into two subsequent fully connected layers to reduce
dimensionality before the action is categorized by a softmax
classifier.

There is limited research that uses the UCF-ARG aerial
dataset [107], [108] because of the following challenges that
it comes with:
• An aerial camera mounted onto a payload platform
of a 13’ KingfisherTM Aerostat helium balloon,

• Small size of people in human patches for object
detection,

• Varying activities, such as raising hands, walking, and
bending bodies, performed by people in the human
patches.

Human detection and activity recognition (HDAR) using
the highly challenging UCF-ARG aerial dataset has been
done using various methods [8], [75], [81], [82], [83].
The combination of ‘‘The Fastest Pedestrian Detector in
the West’’ (FPDW) [111] and moving object detection was
utilized for human detection and tracking in UAV-based
videos [81]. Another approach to HAR based on aerial cap-
tured video sequences that comprises two phases, namely
an offline phase and an inference phase, along with scene
stabilization, has also been proposed [8], [75]. The initial
phase uses an AlexNet CNN to create a model that classifies
between human and nonhuman and another that classifies
human activity [75]. The latter phase detects humans and
identifies their actions based on models created in the prior
phase. Here, HAR is carried out for each frame of the video
and for entire sequences of video frames [75]. Because the
regions that contained humans were small and the back-
grounds contained other objects such as cars, trees, and boxes,
the classification method performed poorly with an accuracy
of 68%. Recognition of human activities in UAV-based videos
from motion features has been explored by using a bag-of-
features approach. Here, visual words were utilized to rep-
resent motion features, which were described as a frequency
count of the words. The SVM classifier served as the activity
detector [82]. Lastly, an automated UAV-based DL algo-
rithm consisted of video stabilization using the surf feature
selection and Lucas-Kanade method, human area detection
using faster R-CNN, and action recognition using a struc-
ture combining a three-dimensional CNN architecture and a
residual network [83]. To address limitations encountered by
methods described in the literature, we propose the use of
EfficientDet-D7 which was the top state-of-the-art detector
for human detection to improve detection accuracy, and thus,
classification accuracy.

This paper has several contributions. Specifically:

• It makes use of a novel HDAR system to detect humans
and recognize their activities from aerial captured video
sequences.

• To the best of our knowledge, this is the first paper that
uses EfficientDet-D7, a state-of-the-art object detector
for human detection in videos with dynamical events
such as varied altitudes, illumination changes, camera
jitter, and variations in viewpoints, object sizes and col-
ors captured from a moving camera attached to an aerial
platform.

• It compares and evaluates the performance of three
human detectors after adding special distortions on the
video frames, such as blur, noise, and illumination
changes.

• It includes a comparison between various human detec-
tors, such as YOLOv4 [86], faster R-CNN [99], and
EfficientDet [39] in terms of detection accuracy.
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• It includes a comparison between various CNN-based
feature extractors in terms of accuracy, precision, recall,
F1 score, false negative rare (FNR), false positive rate
(FPR), and Area Under Curve (AUC).

• It makes use of the highly challenging UCF-ARG
dataset for methods evaluation and comparison.

• It explores the concept of cross-domain learning
to transfer parameters learned from object detectors
and the detection features extracted from the COCO
dataset [104] to aerial captured video sequences.

• It explores the concept of cross-domain learning to trans-
fer the parameters learned from pre-trained CNNs and
the recognition features extracted from the ImageNet
dataset [105] to aerial captured video sequences.

This paper is organized as follows: Section 2 demonstrates
the publicly available COCO dataset [106] used for object
detection, the publicly available ImageNet dataset [105] used
for feature extraction, and the highly challenging UCF-ARG
dataset used for human activity recognition. Additionally,
state-of-the-art object detection methods such as YOLO4
[86], faster R-CNN [99], and EfficientDet [39] are explored
for the purpose of human detection. Furthermore, the use of
various pre-trained CNNs such as ResNet50, EfficientnetB0,
EfficientnetB4, and EfficientnetB7 for transfer learning and
spatial feature extraction is demonstrated. Finally, the use of
LSTM for logging temporal features is explained in detail.
In Section 3, the experimental setup, and results are discussed
to compare between various human detectors and CNN-based
feature extractors. Section 4 summarizes the outcome, signif-
icance, and plans for future improvements of this work.

II. MATERIALS AND METHODS
This section describes the video datasets utilized in this
research work. Furthermore, it discusses various object detec-
tion models. Additionally, various convolutional neural net-
works are demonstrated. Finally, this section explores the
recurrent neural network model for the ultimate objective of
human activity classification.

A. DATASET OVERVIEW
In this paper, the UCF-ARG dataset [107], [108] that was
acquired using three cameras: an Aerial camera, a Rooftop
camera, and a Ground camera (ARG) by the University of
Central Florida (UCF) was uses. Here, we focused only
on the most challenging dataset that contains videos cap-
tured by a high-definition aerial camera mounted on the
payload platform of a helium balloon with a resolution
of 1920 × 1080 pixels at 60 fps. The challenges in this
dataset are summarized as follows: 1) the frames are varied in
terms of viewpoints, color of clothing, positions, orientations,
and human sizes; 2) the camera altitudes are varied when
the airborne platform is moved; 3) the dataset contains ten
human activities performed by twelve different individuals
and captured from several views.

The environments where the aerial videos were captured
include three car parks in various locations. Ten activities,

FIGURE 1. Various human samples detected and cropped from video
frames. The image data are from [108].

namely digging, throwing, waving, walking, running, clap-
ping, boxing, jogging, carrying, and opening/closing a car
trunk were performed four times by each individual. There-
fore, 48 videos were recorded for each activity. This paper
used five of these activities, namely throwing, waving, dig-
ging, walking, and running. Three of these activities were
static, i.e., performed in place (waving, dogging throwing),
while two were dynamic (walking and running). These five
activities were selected to have a fair comparison with other
works which used the same five activities for human activity
classification [75], [82], [83]. The performance of human
detection models and human activity classification models
were evaluated using these five activities.

Figure 1 illustrates various human samples detected and
cropped from video frames. The human images are of various
sizes but were uniformly resized for visualization. The human
image patches in Figure 1 have various backgrounds, colors
of clothing, human sizes, activities, and viewpoints.

The numbers of frames in the videos were varied
between less than ten and a few hundreds. Only ten
frames were selected from each video, yielding a total
of 240 × 10 = 2400 frames for evaluation and comparison
between various human detection models. All video frames
were considered for the human activity classification task.

B. METHODS
This section discusses various object detection models such
as YOLOv4, faster R-CNN, and EfficientDet used for human
detection in videos. Additionally, various CNNs such as
ResNet and EfficientNet used for feature extraction from
video frames are demonstrated. Finally, this section explores
the recurrent neural network model called long short-term
memory (LSTM) to record the history of extracted features
for the ultimate objective of human activity classification.
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FIGURE 2. The block diagram of the proposed HAR system.

Figure 2 shows the block diagram of the proposed HAR
system.

1) HUMAN DETECTION
Various object detectors such as YOLOv4, faster R-CNN,
and EfficientDetD7 pre-trained on the COCO dataset with
91 categories of objects were used in this paper for the
human detection task. We used these human detectors
with learned parameters without finetuning them on the
UCF-ARG dataset. In other words, one of our objectives
was to evaluate and compare the performance of these object
detectors for human detection in challenging aerial videos.

a: YOU ONLY LOOK ONCE (YOLO)
YOLO is a real-time detection model that offers a
good balance between high inference speed and good
accuracy [84]–[86]. Training in YOLO is performed by
applying full images to an end-to-end neural network to
utilize convolutional layers for feature extraction and fully
connected layers for classification and bounding box predic-
tion. The advantage of YOLO is its ability to see the full
images during the training stage which results in a remarkable
reduction in the number of background errors when compared
with fast R-CNN. However, YOLO has more localization
errors. Additionally, YOLO includes 24 convolutional layers
added before two fully connected layers. The architecture of
YOLO was inspired by the GoogleNet CNN used for image
classification. The input image has 224 × 224 pixels that are
fed into convolutional layers for training on the ImageNet
dataset. On the other hand, YOLO has double the resolution
for detection [84], [85].

YOLOv4 is a more recent, faster and more accurate object
detector [86] with many improvements in its architecture and
training strategy. It was designed to run in real time and to be
trained using only one GPU. YOLOv3 has been demonstrated
in various applications and was able to yield high perfor-
mance in detecting nude humans in pornographic videos
[109]. However, it was found that YOLOv4 outperformed
YOLOv3 in terms of detection accuracy [86]. YOLOv4 con-
sists of the following components:

1. Backbone module: CSPDarknet53 [87] for feature
extraction,

2. Neck module: Spatial Attention Module (SAM) [88],
Spatial Pyramid Pooling (SPP) [89], and Path

Aggregation Network (PAN) [90] to enhance the recep-
tive field presented by the Backbone

3. Head module: YOLOv3 [91] to predict the final output
which are the bounding boxes and the classification
scores for each object.

The main improvements in YOLOv4 are in the Neck mod-
ule and in the training strategy. The Neck module consists of
three submodules, namely SPP, modified PAN, and modified
SAM. The SPP submodule was added over CSPDarknet53 to
increase the receptive field; the modified PAN Net submod-
ule was added as a method of parameter aggregation from
different CSPDarknet53 backbone levels; while the modified
SAM submodule is an attention mechanism applied over the
feature maps.

In this paper, we demonstrated YOLOv4 with the
CSPDarknet53 network as a backbone for human detec-
tion in aerial videos. The video frames have a size
of 540 x 960 pixels that were applied directly to YOLO.
YOLOv4 was selected to balance the tradeoff between the
accuracy of detection and the speed. YOLOv4 usually runs
twice as fast as EfficientDet with comparable performance.
In this work, YOLOv4 was tuned to filter and detect only
humans and ignore other classes.

b: FASTER REGION BASED CONVOLUTIONAL NEURAL
NETWORK (R-CNN)
Region-based CNNs are computationally expensive. Faster
R-CNN was found to enhance the detection accuracy and the
run time of fast R-CNN. Furthermore, faster R-CNN also out-
performedYOLOv3 in terms of detection accuracy [86], [91].
A faster R-CNN [99] object detector consists of two mod-
ules. The first module is a region proposal network (RPN)
including a fully convolutional network that uses an attention
mechanism [100] in order to enhance the feature maps. RPN
takes an image of arbitrary size and proposes regions by pro-
ducing a set of rectangles, each with its objectness score. The
feature maps in RPN are shared with the detection network
of a fast R-CNN [101], which is the second module that
utilizes the proposed regions. To generate region proposals,
a small network which has an n×n spatial window as input is
slid over the last shared convolutional feature map and maps
the window to lower dimensional features (256-d for ZF).
Additionally, the features are fed into two fully connected
layers including a box regression layer (reg) and a box clas-
sification layer (cls). At each location of the sliding window,
k region proposals (boxes) are predicted. The classification
layer has 2k scores (object or not object for each box), and
the regression layer has 4k outputs (four coordinates for each
box) [99]. Figure 3 illustrates the regional proposal network
(RPN).

In this paper, we demonstrated a faster R-CNN with
ResNet instead of ZF and VGG for human detection in aerial
videos. The video frames have a size of 540× 960 pixels that
were applied to the detector. The faster R-CNN was tuned to
filter and detect only persons and ignore other classes.
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FIGURE 3. Regional Proposal Network (RPN) [99].

FIGURE 4. The BiFPN features aggregation method [39].

c: EFFICENTDET
EfficientDet is a state-of-the-art object detection method
which can yield higher accuracy with much fewer parame-
ters and FLOPs than prior methods [39]. EfficientDet pro-
posed a bi-directional feature pyramid network (BiFPN)
used for multi-scale feature fusion. It also has a family of
various architectures (D0 . . .D7). Additionally, EfficientDet
proposed a compound scaling method that uniformly scales
the resolution, depth, and width for all backbones, feature
networks, and box/class prediction networks simultaneously.
Figure 4 shows the BiFPN features aggregation method.

In EfficientDet, BiFPN takes features at levels {P3, P4, P5,
P6, P7} from the EfficientNet [101] backbone. Furthermore,
BiFPN is applied repeatedly L times, where L is related to
the EfficientDet version. Finally {P3, P4, P5, P6, P7} are
fed into the class/box network. Figure 5 shows the general
architecture of the EfficientDet detector.

Where ∅ is the compound scaling value that is related to the
EfficientDet version. Table 1 demonstrates various scaling
configurations for EfficientDet (D0 . . .D7).

TABLE 1. Scaling configurations for efficientdet (d0 . . . d7) [39].

Several experiments were conducted to compare various
human detectors including YOLOv4, fast R-CNN, and Effi-
cientDetD7. The outcome of each human detection model
is a human patch or Region of Interest (ROI) detected and
cropped from each video frame. The comparison was done
by selecting ten frames from each of the 240 videos to have
2400 original frames in total. The 2400 selected frames were
modified as follows:

1) Flipping frames horizontally,
2) Blurring frames,
3) Adding Gaussian noise to frames,
4) Lightening the frames,
5) Darkening the frames,
6) Converting from the RGB color space to the grayscale

color space.
The evaluation and comparison between YOLOv4, fast

R-CNN, and EfficientDetD7 was also done on all modified
frames. The performance is measured using the detection
accuracy as follows:

detection accuracy

=
number of frames with correct boxes around humans

number of all frames
(1)

C. PRE-TRAINED CNNS FOR FEATURE EXTRACTION
After the human detection model, a set of human patches or
ROIs that were cropped from the video frames were applied
to CNN-based feature extraction to extract a sequence of
features from a sequence of frame ROIs. The sizes of image
patches are not equal because altitudes are varied, hence vary-
ing the distances between the aerial camera and the human
individuals. Therefore, the patches were resized before being
applied to pre-trained CNNs to extract the spatial features.

In this paper, the technique of transfer learning was demon-
strated to transfer representations from the ImageNet domain
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FIGURE 5. The general architecture of the EfficientDet object Detector [39].

to the aerial imagery domain. The parameters of the CNNpre-
trained on the ImageNet 1K dataset were utilized for feature
extraction without further finetuning of parameters in the first
layers. The top layers of pre-trained CNNs were removed and
were replaced by LSTM [102], which was tuned with a small-
scale UCF-ARG dataset. Various recent architectures of
CNNs such as ResNet [103] and EfficientNet [101], including
EfficientNetB0, EfficientNetB4, and EfficientNetB7, were
pre-trained with natural images of ImageNet to learn high-
level (objects and shapes) and low-level (textures, edges, and
colors) representations from aerial video frames. The exper-
iments were carried out to compare between the previously
mentioned pre-trained CNNs. The image patches or ROIs that
were cropped from the EfficientDet human detection model
were resized to 224 × 224 in ResNet50, EfficientNetB0,
and EfficientNetB4. On the other hand, they were resized to
600× 600 in EfficientNetB7. The features extracted by each
pre-trained CNN have the following dimensions: 2048 in
ResNet50, 1280 in EfficientNetB0, 1792 in EfficientNetB4,
and 2560 in EfficientNetB7.

d: RESNET
The residual learning framework, also called ResNet, is a very
deep network that yields very good generalization without
overfitting [103]. In ResNet, different numbers of layers,
e.g., 50, 101, and 152 may be used. A supervised learning
model feeds a ResNet CNN with large-scale labelled dataset,
such as ImageNet in the training stage. The ResNet layers are
reformulated as learning residual functions with reference to
the layer inputs.

In this paper, the ROIs of humans cropped from aerial
video frames were resized to 224 × 224 pixels and were
applied to ResNet50 to extract 2048 features. The top
layers of ResNet50 were removed. The LSTM was then
added to utilize the sequence of features extracted from
the sequence of ROIs cropped from the sequence of video
frames.

e: EFFICIENTNET
Model scaling is usually done by increasing network depth
or network width or by increasing the resolution of input
images used for training and evaluation. Even the accuracy
is improved through model scaling methods. The drawback,
however, is that it entails more manual tuning. While balanc-
ing depth, width, and resolution of a network, EfficientNet
was found to speed up the inference and outperform the accu-
racy of existing state-of-the-art CNNs on ImageNet [101].
To improve accuracy, various architectures of EfficientNet
are available including B0 as the baseline network; and B1,
B2, B3, B4, B5, B6, and B7 as scaling networks. However,
more FLOPs is the cost of accuracy improvement.

In this paper, the ROIs of humans cropped from aerial
video frames were resized to 224 × 224 pixels in Effi-
cientNetB0 and EfficientNetB4, and to 600 × 600 pixels
in EfficientNetB7. Furthermore, they were applied to Effi-
cientNetB0, EfficientNetB4, and EfficientNetB7 to extract
1280, 1792, and 2560 features, respectively. The top layers
of EfficientNet were removed. The LSTM was then added to
utilize the sequence of features extracted from the sequence
of ROIs cropped from the sequence of video frames.

f: LONG SHORT-TERM MEMORY FOR TIME SERIES
CLASSIFICATION
A Recurrent Neural Network (RNN) was utilized for
sequence modelling to capture temporal correlations [102].
LSTM is a special type of RNN that has been found to
slow down gradient vanishing. LSTM has a memory cell
to accumulate state information supported by control gates
for long-range sequence modelling as shown in Figure 6.
In this work, a sequence of features extracted from ROIs of
frames were applied to the LSTM that was used to replace
the top layers of pre-trained CNNs. Additionally, LSTM was
trained, and its parameters were fine-tuned iteratively to fit
the features extracted from ROIs cropped from UCF-ARG
video frames.
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FIGURE 6. An LSTM cell [104].

Several experiments were conducted to select the optimal
LSTM structure and architecture that can produce the best
performance metrics. The LSTM architecture includes acti-
vation functions, the number of LSTM layers, the number of
nodes in each layer, and the number of fully connected layers.
In this work, the optimal LSTM architecture consists of the
following layers:

1) GlobalMaxPool2D
2) Bidirectional_LSTM with 512 nodes, tanh activation

and sigmoid recurrent activation
3) Fully connected layers with 256 nodes and ReLU acti-

vation function
4) Fully connected layers with five nodes
5) Softmax activation function
Additionally, several experiments were conducted to select

the optimal LSTM hyperparameters that can produce the best
performance metrics. The hyperparameters include the num-
ber of epochs, the optimizer type, the loss function, the learn-
ing rate, and the batch size. In this work, the optimal LSTM
hyperparameters are as follows:

1) The learning rate used to train the LSTMmodel was set
to 0.001

2) The batch size was set to 32.
3) The number of epochs was set to 50.
4) The loss function was Categorical_Crossentropy.
5) The optimizer was Adam.
In summary, an LSTM architecture with hyperparameters

described earlier was used for the classification of a time
series including a sequence of features extracted from ROIs
cropped from UCF-ARG video frames. The video class or
activity class is based on the history of the extracted features.
The output of the LSTM is one of five human activities,
namely digging, throwing, waving, walking, and running.

Several experiments were conducted to compare various
CNN-based feature extraction approaches. The comparison
was done by considering all frames in the 240 videos. The
performance is measured using the following performance
metrics:

1. Accuracy calculates the number of correctly predicted
videos over all videos.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(2)

2. Recall (Sensitivity) calculates the number of correctly
predicted positive videos over all actual positive videos.

Recall =
TP

TP+ FN
(3)

3. Precision calculates the number of correctly predicted
positive videos over all predicted positive videos.

Precision =
TP

TP+ FP
(4)

4. F1 score summarizes recall and precision into one
quantity.

F1score =
2× precision× recall
precision+ recall

(5)

5. False positive rate (FPR) or false alarm calculates the
number of wrongly predicted positive videos over all
actual negative videos

FPR =
FP

FP+ TN
(6)

6. False negative rate (FNR) calculates the number of
wrongly predicted negative videos over all actual posi-
tive videos

FNR =
FN

FN + TP
(7)

In Equations 2 through 7, TP is True Positive, TN is
True Negative, FP is False Positive, and FN is False
Negative.

7. Area Under ROC Curve (AUC) determines the ability
of a classifier to distinguish between classes.

The higher the accuracy, recall, precision, F1 score, and
AUC are, the better is the model performance. Moreover, the
lower the FNR and FPR, the better the model performance is.

III. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
The experiments for human detection and human activity
classification were conducted using Python with TensorFlow
and OpenCV on Google Colaboratory using an NVIDIA
Tesla K80 GPU with 12 GB of memory.

In this work, 48 videos for each of five activities were
used, making 240 videos in total. In the human detection task,
2400 frames were selected from 240 videos. The evaluation
and comparison between human detection models including
YOLOv4, faster R-CNN, and EfficientDet were done to find
the best detector that was able to detect humans in the largest
number of frames out of 2400 frames. The best detector
should also be robust against various effects applied to video
frames such as horizontal flipping, blurring, addition of Gaus-
sian noise, lightening, darkening, and conversion from RGB
to grayscale.

In the human activity classification task, all patches or
ROIs cropped from all video frames were selected from each
of 240 videos. The videos were divided into training data and
testing data. We followed the same protocol used in state-of-
the-art methods that utilized the sameUCF-ARG dataset. The
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TABLE 2. A comparison between various human detectors using original
video frames.

protocol states that one of twelve persons was used for testing
and all other eleven persons were used for training and vali-
dation. In other words, in each of 12 experiments, the videos
were divided into 220 for training and 20 for testing. The
evaluation and comparison between pre-trained CNN-based
feature extractors were done on ResNet50, EfficientNetB0,
EfficientNetB4, and EfficientNetB7. The objective is to find
the best pre-trained CNN that would be able to produce the
best performance metrics in terms of accuracy, recall, pre-
cision, F1 score, False Negative Rate (FNR), False Positive
Rate (FPR), and Area Under Curve (AUC).

B. EXPERIMENTS AND RESULTS
1) HUMAN DETECTION EXPERIMENTS
The first set of experiments were conducted to compare
between various human detectors including YOLOv4, faster
R-CNN, EfficientDetD0, EfficientDetD4, and Efficient-
DetD7 using video frames. In these experiments, 2400 frames
were selected from each set that included original frames and
those augmented by flipping, blurring, addition of Gaussian
noise, darkening, whitening, and conversion to grayscale.

First, a comparison was done using frames of the original
set that contains five activities: digging, waving, throwing,
walking, and running. Table 2 shows the detection accuracy
of each activity and the average of all five activities. Efficient-
DetD7 was found to outperform other human detectors with
an average accuracy of 97.1%. On the other hand, Efficient-
DetD0 produced the lowest average accuracy of 81.7%. It is
obvious that EfficientDetD7 outperformed others in detect-
ing the following activities: digging, throwing, and running.
However, YOLOv4 yielded better accuracies for waving and
walking.

a: ABLATION STUDY
We replaced the model of faster R-CNN that was used by
Peng et al. 2020 [83] to detect and localize humans in
video frames. In our research work, we used EfficientDet
instead of faster R-CNN and compared the detection accuracy
between both models to evaluate their performance when
various challenges are available in frames. We found that our
proposed human detector was able to improve the detection
accuracy significantly and specifically when there are noise,

TABLE 3. A comparison between various human detectors using video
frames with gaussian noise.

blur, and illumination changes in the frames. Tables 2, 3, 4,
5, 6, 7, 8 show the comparisons between faster R-CNN and
EfficientDet.

Second, a comparison was done using frames that con-
tained the five activities with Gaussian noise added. Table 3
shows the detection accuracy of each activity and the aver-
age of all five activities. EfficientDetD4 was found to out-
perform other human detectors with an average accuracy
of 93.8%. It is obvious that EfficientDetD4 outperformed
others in all activities. Additionally, EfficientDetD7 pro-
duced the second highest average accuracy of 92%. On the
other hand, other detectors including YOLOv4 and faster
R-CNN yielded an average accuracy that was lower than
EfficientDetD4 by >10%. Furthermore, the performance of
EfficientDetD0 was the worst at only 34%. In summary, the
results indicate that EfficientDetD0 was not robust against
the Gaussian noise added to the frames. On the contrary, the
accuracies of YOLOv4, and faster R-CNN were degraded
significantly compared with the ones without noise. Finally,
EfficentDetD4 and D7 are highly robust against the addition
of Gaussian noise to the video frames.

Third, a comparison was done using frames that have
five activities after having been blurred. Table 4 shows the
detection accuracy of each activity and the average of all
five activities. Although EfficientDetD7 showed degradation
in accuracy, it yielded superior performance compared with
other human detectors with an average accuracy of 76.3%.
Additionally, EfficientDetD7 outperformed other detectors
in all five activities. However, other architectures of Effi-
cientDet such as D0 and D4 produced lower accuracies.
Furthermore, other detectors including YOLOv4 and faster
R-CNN yielded accuracies that were>20% lower than that of
EfficientDetD7. In summary, the results indicate that blurring
negatively impacts human object detectors in general. How-
ever, EfficientDetD7 was still the most robust human detector
despite blurring.

Fourth, a comparison was done using frames that have five
activities after being flipped horizontally. Table 5 demon-
strates the detection accuracy of each activity and the aver-
age of all five activities. EfficientDetD7 yielded the best
performance with an average accuracy of 97.3%. Although,
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TABLE 4. A comparison between various human detectors using video
frames with blurring.

TABLE 5. A comparison between various human detectors using video
frames flipped horizonatally.

FIGURE 7. Histograms of confidence scores for EfficientDet D0, D4, and
D7 using the original video frames.

EfficientDetD7 outperformed other detectors at detecting
throwing, walking, and running, EfficientDetD4 was better at
detecting digging, and waving. On the other hand, Efficient-
DetD0 produced the lowest average accuracy of 82.7%.

Fifth, to study the performance of human object detectors
in the grayscale color space, a comparison was done using
video frames that contained five activities after being con-
verted from RGB to grayscale. Table 6 presents the detection
accuracy for each activity and the average of all five activities.

TABLE 6. A comparison between various human detectors using the
grayscale version of the video frames.

TABLE 7. A comparison between various human detectors after
darkening the video frames.

EfficientDetD4 outperformed other detectors in all activi-
ties except walking and produced the best average accuracy
of 96.6%. Additionally, EfficientDetD7 yielded the second-
best average accuracy. On the other hand, EfficientDetD0
yielded the worst performance with an average accuracy
of only 61.5%.

Sixth, to study the performance of human object detectors
under various illumination (light) conditions, a comparison
was done after darkening and whitening the video frames
that contained five activities. Table 7 describes the detec-
tion accuracy of each activity and the average of all five
activities after darkening the video frames. EfficientDetD7
outperformed other detectors in throwing and running and
produced the best average accuracy of 97.1%. Additionally,
EfficientDetD7 outperformed other detectors for digging,
waving, and throwing and had the second-best average accu-
racy. Furthermore, YOLOv4 outperformed other detectors for
walking. On the other hand, EfficientDetD0 yielded the worst
performance with an average accuracy of only 69.2 %.

Table 8 describes the detection accuracy of each activity
and the average of all five activities after whitening the
video frames. EfficientDetD4 outperformed other detectors
for throwing and digging and produced the best average accu-
racy of 96.5%. Additionally, EfficientDetD7 outperformed
other detectors for running and yielded the second-best
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FIGURE 8. Histograms of confidence scores for EfficientDet D0, D4, and
D7 using frames A) Gaussian noise, B) blur.

TABLE 8. A comparison between various human detectors after
whitening the video frames.

average accuracy. Furthermore, YOLOv4 outperformed other
detectors for waving and walking. On the other hand, Effi-
cientDetD0 yielded the worst performance with an average
accuracy of 79.4%.

A comparison between three architectures of Efficient-
Det, namely D0, D4, and D7 was demonstrated by plotting
the histograms of confidence scores for each detector for

FIGURE 9. Human detection in the first sample frame with blurring using:
A.) Faster R-CNN, B) YOLOv4, C) EfficientDetD0, D) EfficientDetD4, and
E) EfficientDetD7. The image data are from [108].

2400 frames. A confidence score reports the probability of
prediction of a human category. Figure 7 illustrates the his-
togram comparison for original video frames. EfficientDetD7
in yellow yielded higher scores than EfficientDetD4 in green.
On the other hand, EfficientDetD0 yielded the lowest scores
in purple.

Figure 8 compares the histograms of confidence scores
after blurring or adding Gaussian noise to video frames. Effi-
cientDetD7 in yellow yielded higher scores than Efficient-
DetD4 in green. On the other hand, EfficientDetD0 yielded
the lowest scores in purple. It is obvious that confidence
scores for the original video frames have higher confidence
score values than those with Gaussian noise. On the other
hand, blurring video frames leads to a reduction in confidence
scores for all human detectors. However, EfficientDetD7 was
still the most robust detector despite blurring as confirmed by
the histograms of confidence scores shown in Figure 8.

In summary, it is obvious based on Tables 2 through 8 that
EfficientDetD0 yielded the worst performance with the low-
est accuracies in all scenarios. This may be because of the
variety of activities performed by humans, and their small
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FIGURE 10. Human detection in the second sample frame with blurring
using: A.) Faster R-CNN, B) YOLOv4, C) EfficientDetD0, D) EfficientDetD4,
and E) EfficientDetD7. The image data are from [108].

sizes in aerial videos. On the other hand, the performances of
the YOLOv4 and Faster R-CNN human detectors were good
in all scenarios except in those with blurring and Gaussian
noise.

Tables 2 through 8 also show that EfficientDetD7 outper-
formed other human detectors in many scenarios including
those in original frames and those augmented by flipping
horizontally, by blurring, and by darkening. Similarly, Effi-
ciendDetD7 yielded the second-best performance in other
scenarios such as those that were augmented by adding Gaus-
sian noise, by whitening, and by converting to grayscale. The
comparison between various human detectors was done by
calculating an average accuracy for each human detector for
all activities and all scenarios as shown in Table 9.

As a result, we deduced that EfficientDetD7 would be a
good human detector that can be utilized in aerial captured
video sequences. The power of EfficientDetD7 results from
its robustness against various human size, cloth color, views,
and positions. Moreover, it can detect humans even in the
presence of various factors affecting the video frames such
as noise, blur, light change, and grayscale color. Therefore,
we utilized EfficientDetD7 in human activity classification
experiments to detect and crop ROIs of humans from frames.
The cropped patches or ROIs were then applied to CNN-
based feature extraction models.

Figures 9, 10, and 11 show three frames with blur-
ring for five human detectors including faster R-CNN,

TABLE 9. Average accuracies for all activities and all scenarioys for
various human detectors.

FIGURE 11. Human detection in the third sample frame with blurring,
using: A) Faster RCNN, B) YOLOv4, C) EfficientDetD0, D) EfficientDetD4,
E) EfficientDetD7. The image data are from [108].

YOLOv4, EfficientDet0, EfficientDetD4, and Efficient-
DetD7. While EfficientDetD7 was able to detect humans
in the three frames, EfficientDet4 was able to detect only
two humans in two frames and misclassified one human in
one frame. On the other hand, faster R-CNN, YOLOv4, and
EfficientDetD0were not able to detect any humans in all three
frames.

They detected only objects that were irrelevant in the back-
ground, such as cars.

Figures 12, 13, and 14 show three frames with three scenar-
ios including darkening, converting to grayscale, and whiten-
ing, respectively for five human detectors: Faster R-CNN,
YOLOv4, EfficientDetD0, EfficientDet4D, and Efficient-
DetD7. While EfficientDetD7 was able to detect humans
in the three frames in the three scenarios, EfficientDetD4
was able to detect only two humans in two frames that
were converted to grayscale, and in two frames that were
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FIGURE 12. Human detection in a sample with darkening using: A) Faster
R-CNN, B) YOLOv4, C) EfficientDetD0, D) EfficientDetD4, E) EfficientDetD7.
The image data are from [108].

whitened. EfficientDetD0 was able to detect only one human
in the whitened frames. On the other hand, faster R-CNN
and YOLOv4 failed to detect humans in the three frames and
detected only objects that were irrelevant in the background.

Figures 15 shows one frame with multiple human indi-
viduals detected using five human detectors: Faster R-CNN,
YOLOv4, EfficientDetD0, EfficientDet4D, and Efficient-
DetD7. It is obvious that EfficientDetD7 was able to detect
all seven humans in the frame. Furthermore, EfficientDetD4,
Faster R-CNN and YOLOv4 were able to detect all humans
except one standing behind the white car. On the other hand,
EfficientDetD0 was not able to detect five of the humans.
It detected only two humans and merged them incorrectly in
one box.

Figures 16 shows one frame with multiple humans for
five human detectors: Faster R-CNN, YOLOv4, Efficient-
DetD0, EfficientDet4D, and EfficientDetD7. EfficientDetD7
was able to detect all seven humans in the frame. Further-
more, EfficientDetD4, and Faster R-CNN were able to detect
all humans except one standing behind the white car. Addi-
tionally, YOLOv4 was able to detect all humans in the frame
but also detected irrelevant objects in the background. On the
other hand, EfficientDetD0 was not able to detect six of the
seven humans.

Figure 17 shows one frame with multiple humans for five
human detectors. It is obvious, that EfficientDetD7 was able

FIGURE 13. Human detection in a sample in the grayscale colour space
using: A) Faster R-CNN, B) YOLOv4, C) EfficientDetD0, D) EfficientDetD4,
E) EfficientDetD7. The image data are from [108].

to detect all eight humans in the frame.While EfficientDetD4,
was able to detect seven of the eight humans, it failed to
detect the human bending over to pick something up from
the ground. Faster R-CNN detected the car trunk as a human
and YOLOv4 detected an object on the ground as a human.
On the other hand, EfficientDetD0 failed to detect seven of
the eight humans on the frame.

Figures 18 shows one frame with multiple humans for
five human detectors. It is obvious, that EfficientDetD7 and
YOLOv4 were able to detect all eight humans in the frame.
However, YOLOv4 detected an object on the ground as a
human.While EfficientDetD4, was able to detect seven of the
eight humans, it failed to detect the person only whose upper
body is visible. Moreover, faster R-CNN was able to detect
six of eight humans. On the other hand, EfficientDetD0 failed
to detect seven of the eight humans.

Figures 19 shows one frame with multiple humans for five
human detectors. It is obvious that EfficientDetD7 was able
to detect all seven humans in the frame. On the other hand,
EfficientDetD4, Faster R-CNN, and YOLOv4 were able to
detect six of the seven humans, but failed to detect the human
standing behind the white car. Unfortunately, EfficientDetD0
failed to detect six of the seven humans.

2) HUMAN ACTIVITY CLASSIFICATION EXPERIMENTS
The second set of experiments were conducted to compare
between various CNN-based feature extraction models added
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FIGURE 14. Human detection in a sample with whitening using A) Faster
R-CNN, B) YOLOv4, C) EfficientDetD0, D) EfficientDetD4, E) EfficientDetD7.
The image data are from [108].

TABLE 10. Classification report of resnet50 for each of 12 persons.

before the LSTM architecture for human activity classifi-
cation using human ROIs cropped from the video frames.
In these experiments, all original video frames were selected
from each video. The number of videos for the five activities,
namely digging, waving, throwing, walking, and running is
240 (48 for each activity). Tables 10 through 13 show the
performance metrics for each CNN, namely ResNet50, Effi-
cientNetB0, EfficientNetB4, and EfficientNetB7. The met-
rics were calculated, running eachmodel 12 times. Each time,
we took one person out of 12 for testing and the other 11 for
training and validation. The accuracy, recall, precision, F1
score, FNR, and FPR were calculated for each person for

FIGURE 15. First sample frame with multiple humans, A) Yolov4, B) Faster
R-CNN, C) Efficientdet0, D) Efficientdet4, E) Efficientdet7. The image data
are from [108].

TABLE 11. Classification report of efficientnetb0 for each of 12 persons.

five activities. Additionally, an average for each metric was
calculated to compare the CNNs and to find the best candidate
for the HAR task.

In Table 10, ResNet50 was evaluated for 12 persons with
five activities. An average accuracy of 75% and an average
F1 score of 74% were calculated.

In Table 11, the performance of EfficientNetB0 was evalu-
ated for 12 persons with five activities. An average accuracy
of 65% and an average F1 score of 62% were calculated.
On the other hand, Table 12 demonstrates the performance of
EfficientNetB4 for 12 persons with five activities. The aver-
age accuracy of EfficientNetB4 was 71% which outperforms
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FIGURE 16. Second sample frame with multiple humans, A) Yolov4,
B) Faster R-CNN, C) Efficientdet0, D) Efficientdet4, E) Efficientdet7. The
image data are from [108].

TABLE 12. Classification report of efficientnetb4 for each of 12 persons.

the accuracy of EfficientNetB0 by 6%. Additionally, the aver-
age F1 score of EfficientNetB4 was 68%, which outperforms
F1 score of EfficientNetB0 by 6%. Neither EfficientNetB0
nor EfficentNetB4 was able to outperform ResNet50, which
was better by 4% in terms of accuracy and 6% in terms of F1
score.

Table 13 demonstrates the performance of EfficientNetB7
for 12 persons with five activities. An average accuracy of
80% and an average F1 score of 79.5% were calculated.
Table 13 shows that EfficientNetB7 outperformed ResNet50
by 5% in terms of accuracy and 5.5% in terms of F1 score.

FIGURE 17. Third sample frame with multiple humans, A) Yolov4,
B) Faster R-CNN, C) Efficientdet0, D) Efficientdet4, E) Efficientdet7. The
image data are from [108].

TABLE 13. Classification report of efficientnetb7 for each of 12 persons.

In summary, EfficientNetB7 was found to outperform all
other CNN-based feature extraction models that were used
before the LSTM architecture to extract spatial features from
ROIs cropped from the video frames. The superior perfor-
mance of EfficientNetB7 was obvious because it achieved
the highest values for the following metrics: accuracy (80%),
recall (80.4%), precision (82.8%), and F1 score (79.5%),
and the lowest values of FNR (20%), and FPR (4.8%).
These results proved that EfficientNetB7 was the best of
the candidate CNN-based feature extractors for the HAR
task. Figure 20 shows the average for each metric: accuracy,
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FIGURE 18. Fourth sample frame with multiple humans, A) Yolov4,
B) Faster R-CNN, C) Efficientdet0, D) Efficientdet4, E) Efficientdet7. The
image data are from [108].

recall, precision, F1 score, FNR, and FPR for the four CNNs
combined with the LSTM architecture.

Figure 21 shows twelve confusion matrices. Each matrix
was found for each of 12 persons using a combination of
EfficientNetB7 and the LSTM architecture. The numbers
in the main diagonal are greater than surrounding values.
Figure 21 demonstrates the problem of recognizing digging
as throwing and throwing as digging in some cases. Addition-
ally, another recognition error appeared between throwing
and waving in a few cases. While digging was recognized
correctly in nine of 12 cases, throwing and walking were
recognized correctly in only five cases. On the other hand,
running was the most correctly recognized activity, as it was
recognized correctly in most (11 of 12) cases.

The performance of CNN-based feature extraction mod-
els was also evaluated in terms of area under curve
(AUC). EfficientNetB7+LSTM was found to outperform
other CNNs, as it yielded an AUC of 94%. The second top
AUC of 93% was achieved by ResNet50. Additionally, Effi-
cientNetB4 obtained the third top AUC of 92%. On the other
hand, theworst AUCof 90%was obtained by EfficientNetB0.

Finally, the proposed method that includes EfficientDetD7
for detection, EfficientNetB7 for feature extraction, and
LSTM for classification was compared with state-of-the-art
methods that used the UCF-ARG dataset for human activ-
ity recognition as shown in Table 14. The comparison was

FIGURE 19. Fifth sample frame with multiple humans, A) Yolov4,
B) Faster R-CNN, C) Efficientdet0, D) Efficientdet4, E) Efficientdet7. The
image data are from [108].

FIGURE 20. Performance metrics of various CNN-based feature extractors
combined with LSTM.

done in terms of activity classification accuracy. Burghouts et
al [82] proposed the first HAR method that extracted motion
features from videos and utilized these features for activ-
ity classification. This method yielded an accuracy of 57%.
Additionally, Burghouts et al [82] proposed a second method
that utilized tracking and focus attention for classification.
This method yielded an accuracy of 75%. Furthermore, Hazar
et al [75] utilized optical flow stabilization to propose ROIs
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FIGURE 21. Confusion matrix for each of twelve human individuals using EfficientNet7.

that can detect humans using AlexNet and classify activity
using GoogleNet. The method yielded an accuracy of 68%.
Peng et al [83] also targeted this dataset using speeded-
up robust features (SURF) for stabilization, faster R-CNN
for detection, and Inception-ResNet-3D for classification.
This method yielded an accuracy of 73.72 %. The proposed

method was found to outperform other methods by producing
an accuracy of 80%.

In summary, deep CNNs pre-trained on ImageNet 1K were
used to transfer representations and features from ImageNet
to aerial video frames. It was found that EfficientNetB7
representations are more informative when distinguishing
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TABLE 14. Average accuracies for all activities and all 12 human
individuals for various human activity classification models.

FIGURE 22. Confusion matrix for each of twelve human individuals using
EfficientNet7.

between various human activities than other CNNs such as
EfficientNetB0, EfficientNetB4, and ResNet50.

The advantages of the proposed HDAR system are as
follows:

1. First, the task is formulated as an object detection
task. It focuses the attention of the model on human
regions inside the video frames and ignores irrelevant
objects in the background, such as cars. The outcomes
are image patches that include humans detected by
EfficientDetD7 and cropped from the frames.

2. Second, the task is formulated as a human activity clas-
sification task. Deep CNNs were used to extract spatial
features from the cropped human patches. Additionally,
an LSTM architecture was utilized to classify a time
series of activities into five classes, namely digging,
waving, throwing, walking, and running.

3. The proposed system, which combines EfficieneDetD7
for human detection, EfficieneNetB7 for feature extrac-
tion, and LSTM for time series classification, is robust
against:

a. various viewpoints, human sizes, and clothing
colors.

b. varied altitudes, illumination changes, and cam-
era jitter.

c. various conditions, such as blurring, addition of
Gaussian noise, lightening, darkening, and con-
version from the RGB color space to the grayscale
color space.

IV. CONCLUSION AND FUTURE WORK
The work presented in this paper targeted two tasks: human
detection (HD) and human activity recognition (HAR). The
publicly available UCF-ARG aerial dataset was used to eval-
uate the performance of the proposed HDAR system. In this
video dataset, a moving camera attached to an aerial platform
was utilized to capture aerial video sequences. This dataset
has highly challenging content with dynamical events such as
varied altitudes, illumination changes, camera jitter, and vari-
ations in viewpoints, object sizes and colors. Various human
object detectors pre-trained on the COCO dataset, such as
YOLO, faster R-CNN, and EfficientDet were evaluated to
select the best detector that can detect humans and local-
ize them inside the video frames. Several experiments were
conducted to compare previously mentioned human detec-
tors. Additionally, various versions of EfficientDet including
D0, D4, and D7 were compared. Furthermore, we demon-
strated the capability of object detectors to detect humans
performing various actions, such as digging, waving, throw-
ing, walking, and running. Second, we added various effects
on video frames by flipping horizontally, blurring, adding
Gaussian noise, lightening, darkening, and converting RGB
to grayscale in order to validate the robustness of the object
detectors. The objective of human detection was to detect
and crop human patches (ROIs) from video frames. It was
found that EfficientDetD7 outperformed other detectors with
an average detection accuracy of 92.9%.

This research proposed new challenges to the UCF-ARG
aerial dataset by adding various distortions such as blur, noise,
and illumination changes. The performance of three human
detectors in these poor frame conditions was evaluated. Our
evaluation showed that the performance of a faster R-CNN
human detector is degraded when these distortions are added.
On the other hand, it showed that EfficientDet was robust
against these distortions and can detect humans in all con-
ditions included in the evaluation.

Furthermore, several experiments were carried out to com-
pare various deep pre-trained CNNs, such as ResNet50, Effi-
cientNetB0, EfficientNetB4, and EfficientNetB7, which were
used to extract spatial features. The extracted features were
utilized by LSTM to consider temporal relations between fea-
tures for human activity classification. Experimental results
found that EfficientNetB7-LSTM was able to outperform
other CNNs in terms of average accuracy (80%), average
precision (83%), average recall of (80%), average F1 score
(80%), average false negative rate (FNR) (20%), average
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false positive rate (FPR) (4.8%), and average Area Under
Curve (AUC) (94%).

The proposed system can be utilized in drones in various
industrial applications including surveillance and security,
delivery, healthcare and telemedicine, COVID-19 pandemic,
and disaster management for human actions surveillance and
human behavior understanding.

In summary, a combination of EfficientDetD7 for human
detection, EfficientNetB7 for feature extraction, and LSTM
for time series classification was proposed to develop a novel
HAR system with good performance. The limitation in the
proposed HAR system was its poor ability to distinguish
between throwing and digging. Moreover, the dataset was
small with only 240 videos for five activities. Furthermore,
current HAR systems utilize only features extracted from
video frames using parameters learned on the ImageNet
dataset. In other words, all layers of the CNNs were frozen
except the top layers, which were replaced with LSTM.
Hence, in the future, we plan to improve the performance of
our proposed method by fine-tuning all layers of the CNNs
with aerial video frames to enhance accuracy. Lastly, more
recently developed deep learning models, such as the vision
transformer [110], may be good candidates for the enhance-
ment of recognition performance.
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