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ABSTRACT Aiming at the problem of large error of channel state prediction caused by channel time-varying
characteristics in wireless communication system, propose a wireless channel state prediction method based
on improved adaptive and parameter-free recurrent neural structure(APF-RNS). The method though Aquila
Optimizer for find the number of hidden layer units and the optimal value of learning rate of the neural
network, using the optimal parameters to construct adaptive without recursive neural network. In this way,
the convergence speed and fitting effect of the objective function of the neural network can be improved, and
the problems of large prediction error and poor generalization ability of the neural network in the prediction
process can be avoided, thereby improving the prediction accuracy of the channel state information.
The simulation results show that compared with Genetic Algorithm, Particle Swarm Optimization and
Sparrow Search Algorithm, the improved APF-RNS has better performance in the optimization ability and
convergence speed. Meanwhile, it also has a significant improvement in prediction accuracy compared to
the APF-RNS.

INDEX TERMS Adaptive and parameter-free recurrent neural structure, channel state information predic-
tion, aquila optimizer, wireless communication.

I. INTRODUCTION
In the propagation environment of wireless communication
system, there are multipath propagation phenomena such as
reflection, diffraction and scattering of signals, and doppler
extension is inevitably generated by the relative movement of
transmitter and receiver, which makes the wireless channel
present frequency selectivity and time-varying characteris-
tics. The above factors make it difficult to obtain accurate
Channel State Information (CSI). However, accurate acqui-
sition of CSI is crucial for high spectral efficiency at the
transmitter and receiver. To solve the above problems, the
initial method periodically uses known pilot symbols to esti-
mate the channel in real time, but incurs pilot overhead.
In addition, after channel estimation at the receiver, in order
to enable the transmitter to obtain channel status informa-
tion, CSI feedback is required in Frequency Division Duplex
(FDD). CSI feedback consumes a large amount of reverse
link resources. More importantly, introduce a feedback delay
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or pilots are sent in the opposite direction to estimate the
CSI of the reverse link [1]. Channel reciprocity needs to be
assumed in Time Division Duplex (TDD). Due to time delays
in channel estimation, signal processing and feedback, the
CSI available at the transmitter may be outdated before it is
actually used [2]. Especially in high mobility environments,
the channel conditions may have changed after the feedback
delay. In this case, accurate CSI is more difficult to obtain.

Aiming at the problem that it is difficult to accurately
obtain channel state information in wireless communica-
tion systems, the modulation technology of filter bank
multi-carrier is proposed in literature [3], which improves the
utilization rate of spectrum, but passively compensates per-
formance loss at the cost of scarce wireless resources. In con-
trast, the channel prediction method can directly improve
the accuracy of CSI without consuming additional wire-
less resources, so it has received extensive attention from
researchers. Literature [4] proposes a method which based
on sinusoidal modeling forecasting. This method is used to
overcome the computational complexity with time-varying
parameters by using a spectral estimation method to
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determine the relevant parameters of each sinusoid. However,
due to the cumbersome estimation process, the estimated
parameters will soon expire with the fluctuation of the fading
channel, so iterative re-estimation is required, and the compu-
tational complexity is high. In literature [5], an autoregressive
(AR) Model was proposed to predict AR Model parame-
ters based on CSI historical observations by using maxi-
mum entropy method, so as to predict channel. However, in
AR channel prediction, large-scale matrix inversion is com-
plex and computationally intensive, and the error generated
by coefficient estimation will reduce the accuracy of channel
prediction.

Most of the propagation channels in the real world are
unstable, it do not conform to the above hypothesized model,
and the errors generated by coefficient estimation bring
great challenges to channel prediction.With the widespread
application of massive Multi-Input Multi-Output (MIMO)
systems, the number of antennas increases, which makes
accurate modeling of large-matrix channels more and more
difficult. Deep learning uses a large amount of training data
to establish the underlying relationship between input and
output.This makes it possible to generate a mathematical
model that is not easily described by mathematical formu-
las but is very efficient. For example, literature [6] has
proposed a channel prediction model based on Recurrent
Neural Network (RNN), which uses the entire vectorized
channel matrix as input to predict channel state through
Neural Network, proving the feasibility of deep learning.
However, since RNN has only short-term memory, there
is the problem of gradient disappearance, which reduces
the speed of prediction. Literature [7] proposed a satellite
channel predictor composed of Long Short-Term Memory
network (LSTM) to eliminate the negative impact of outdated
CSI on low Earth orbit (LEO) satellite system. LSTM net-
work combines short-term memory with long-term memory
through sophisticated gate control. It solves the problem of
gradient disappearing to some extent, but has the disadvan-
tages of low efficiency and not being able to predict in real
time. Literature [10] proposed a small and efficient Adaptive
and Parameter-Free Recurrent Neural Structure (APF-RNS),
which compared the prediction results of APF-RNS with
the AR model. The results showed, APF-RNS has greatly
improved the prediction accuracy. Although the structure has
achieved good results, it is easy to fall into local optimization
and over-fitting problems. In view of the above problems,
this paper proposes an improved adaptive recursive neural
network without parameters, which solves the problems of
large prediction error and poor generalization ability of neural
network in the prediction process, and enables it to have
more accurate and fast prediction results in the real complex
wireless channel prediction. Aquila Optimizer (AO) [9] is
first used to generate a group of candidate solutions within a
certain range, each corresponding to APF-RNS learning rate
and the number of hidden layer units, and use the training
set to select the position with the minimum fitness func-
tion value in the candidate set. Then, the position of each

individual in the eagle population is transformed according to
the fitness function, and the optimal parameters are obtained
to complete the optimization process. Finally, the channel
state information is predicted by constructing APF-RNS net-
work model using optimal parameters.

The main contributions of this paper are as follows: (1) An
improvedAPF-RNSwireless channel state predictionmethod
is proposed to solve the problem of channel state prediction
error caused by channel time-varying characteristics in wire-
less communication system. (2) Use AO algorithm to obtain
the optimal parameters of neural network, and use the optimal
parameters to construct APF-RNS network, so as to solve the
problems of large prediction error and poor generalization
ability of neural network in the prediction process. (3) The
on-line trainingmethod used in channel prediction can reduce
the pilot cost required in the communication link. (4) The
method does not need to know channel knowledge in the
prediction process, such as long-term statistics or channel
parameters, so it can be extended to any propagation envi-
ronment.

This paper is divided into the following parts: Section II
introduces the wireless communication system model and
APF-RNS network structure. In Section III, a prediction
method of channel state information based on AO improved
APF-RNS is proposed. In the IV section, the simulation anal-
ysis is carried out, and compared with GA algorithm, PSO
algorithm, SSA algorithm, verify the proposed algorithm in
the optimization ability and convergence speed superiority.
Then, the feasibility and accuracy of the proposed method are
verified by multiple data sets. Finally, Section V is comprised
of the conclusion.

II. SYSTEM MODEL
A. PROBLEM FORMULATION
For a Single-Input Single-Output (SISO) system, the rela-
tionship between the original signal and the corresponding
received signal is shown in Formula (1).

y [t] = h [t] x [t]+ z [t] (1)

where x [t] and y [t] respectively represent the signal sent at
the transmitter side and the corresponding received signal at
the receiver side, h [t] is the complex channel state informa-
tion, and z [t] is the additive White Gaussian noise at time t .

MIMO systems are similar to single-input single-output
systems. A typical MIMO system model is shown in Fig.1.
As can be seen from the figure, this system is equipped
with Nt transmitting antennas at the transmitting end and
Nr receiving antennas at the receiving end. Suppose the
transmitting signal is x[t] =

[
x1[t], x2[t], · · · , xNt [t]

]T , and
the receiving signal is y[t] =

[
y1[t], y2[t], · · · , yNr [t]

]T , the
channel matrix h[t] is shown in Formula (2).

h[t] =


h11 h12 · · · h1Nt
h21 h22 · · · h2Nt
...

...
. . .

...

hNr1 hNr2 · · · hNrNt


Nr×Nt

(2)
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where h[t]ij (i = 1, 2, . . . ,Nt ; j = 1, 2, . . . ,Nr ) represents
the channel impact response generated by the combination
of the ith root transmitting antenna and the jth root receiving
antenna. The signal transmission requires a medium, and the
channel is this medium in the communication system.

In order to adapt to the input of neural network, the channel
matrix h[t] vector needs to be transformed into the vector of
1× NrNt , as shown in Formula (3).

h[t] = [h11[t], h12[t], . . . , hNrNt [t]] (3)

FIGURE 1. MIMO system model diagram.

In order to obtain the channel state information, sent the
known pilot symbol p[t], and calculate the measured value of
CSI from the received signal, as shown in Formula (4).

ĥ[t] =
y[t]
p[t]
= h[t]+

z[t]
p[t]

(4)

In this paper, channel prediction based on pilot symbol and
data symbol is applied. In a frequency division duplex system,
the receiver estimates the channel state information according
to the pilot symbol and uses the interpolated channel state
information for data detection. The channel state information
estimation at the data location can then be refined from the
decoded data. Finally, the transmitter uses the feedback chan-
nel state information to predict the channel for transmitter
precoding. In a time division duplex system, the receiver can
use the reverse link signal for CSI estimation and predict the
channel used for forward link precoding.

Assuming that the measured CSI is known at the first
P time steps, the system predicts the CSI at the next R time
steps. Better performance can be achieved by predicting CSI
difference between two adjacent symbols instead of directly
predicting CSI. CSI difference between two adjacent symbols
is shown in Formula (5).

ĥd [t + 1] = ĥ[t + 1]− ĥ[t] (5)

Then, the problem becomes to predict the next R differ-
ences h̃d [t], P+ 1 ≤ t ≤ P+ R based on P-1 known differ-
ences ĥd [t], 2 ≤ t ≤ P. The final predicted CSI is calculated
by the system as shown in Formula (6).

h̃[t] =

{
ĥ[t − 1]+ h̃d [t] t = P+ 1
h̃[t − 1]+ h̃d [t] P+ 2≤t≤P+ R

(6)

where h̃d [t] and h̃[t] are the CSI difference predicted at t time
and the final CSI result predicted.

B. APF-RNS NETWORK STRUCTURE
Channel prediction is to predict the future of several channel
state information based on the recent history, where channel
sample sequences are correlated. LSTM is used to construct
an online APF-RNS network structure for wireless channel
prediction, and its structure is shown in Fig.2.

FIGURE 2. APF-RNS network structure diagram.

APF-RNS predicts R unknown CSI differentials in the
future according to the known P-1 CSI differentials. Because
the training process of neural network has a certain time
cost, and the wireless channel is time-varying, the network
designed in this paper is simple and efficient, with only
one hidden layer. The input layer is P-1 known CSI dif-
ference value, namely ĥd [t], 2 ≤ t ≤ P, and then input into
the hidden layer. The hidden layer is K LSTM units. LSTM
extracts useful information through gate structure, and there
are synapses between K LSTM, forming a recursive network,
which enables the neural network to share information in
the training stage. Finally, the output layer is a fully con-
nected layer that uses linear activation functions to generate
2 × R real numbers. The output content is converted into
R complex numbers after data processing, namely h̃d [t],
P+ 1≤t≤P+ R, to obtain the final predicted CSI.
Although APF-RNS can make channel prediction accord-

ing to the nonlinear characteristics of wireless channels, due
to the slow convergence rate of objective function and poor
generalization ability in the prediction process, the prediction
error is large in the case of large CSI variation range. Since
the learning rate of APF-RNS determines whether and when
the objective function converges to the local minimum, the
number of units in the hidden layer will affect the fitting
effect and directly determine the generalization ability of the
obtained prediction model [10]. APF-RNS directly sets the
number of hidden layer units, which greatly increases the
complexity of the network structure if the number of hidden
layer units is too large, and makes the learning speed of the
network slow. If the number of hidden layer units is too small,
the network does not have the necessary learning ability and
information processing ability. The learning rate of APF-RNS
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is the default value when Adam optimizer is used, which
makes the training speed of neural network slow and the
model performance poor. Therefore, in order to improve the
accuracy of APF-RNS prediction, this paper obtained the
optimal values of APF-RNS learning rate R and hidden layer
element number K according to the unique exploration and
development behavior of AO algorithm, and used the optimal
values to construct APF-RNS, which reduced the complexity
of the network and improved the performance of the network.

III. IMPROVED APF-RNS PREDICTION MODEL
BASED ON AO
A. AO IMPROVED APF-RNS ALGORITHM
AO algorithm is a kind of latest swarm intelligence opti-
mization algorithm. Firstly, the decision value X of N is
determined by Equation (7).

Xij = rand×
(
UBj − LBj

)
+ LBj,

i = 1, 2, . . . ,N ; j = 1, 2, . . . ,Dim (7)

where rand is a random number between [0, 1], UBj and LBj
are the upper and lower bounds of the number of hidden layer
units K and the learning rate R respectively, and Dim is 2.
A set of candidate solutions X is generated through the above
formula.

When t ≤
(
2
3

)
× T , it comes to the exploration phase,

there are two approaches in this phase.
The exploration behavior of the first Aquila is shown in

Equation (8).

X1(t + 1) = Xbest(t)×
(
1−

t
T

)
+ (XM (t)− Xbcst(t)× rand) (8)

where X1(t + 1) is the solution of hidden layer unit number
and learning rate in iteration t + 1, Xbest(t) is the optimal
solution in iteration t, 1− t

T is used for search control in the
exploration process, t and T respectively represent the current
iteration number and maximum iteration number, rand is a
random number between [0, 1], and XM (t) represents the
mean value of all solutions in iteration t.

The exploration behavior of the second Aquila is shown in
Equation (9).

X2(t + 1) = Xbest(t)× Levy(D) + XR(t)+ (y− x) ∗ rand

(9)

where X2(t+1) is the solution of the t + 1th iteration obtained
by the second exploration method, Levy(D) is the Levy flight
distribution function, D is the dimensional space, XR(t) is the
solution of random individuals within the range of [1, N] at
the ith iteration. y and x are used to present the spiral shape in
the search. The Levy flight is calculated using Equation (10).

Levy(D) = s×
u× σ

|v|
1
p

(10)

In Equation (10), s is fixed at 0.01, u and v is a random
value between [0,1], σ as shown in Equation (11).

σ =

 0(1+ β)× sin e
( xp
2

)
0
(
1+β
2

)
× β × 2

(
β−1
2

)
 (11)

where β is fixed at 1.5.
When t >

(
2
3

)
× T , it will enter the development stage,

and there are two different methods in the development
stage.

The development behavior of the first Aquila is shown in
Equation (12).

X3(t + 1) = (Xbest (t)− XM (t))× α − rand

+ ((UB− LB)× rand+ LB)× δ (12)

where X3(t+1) is the solution calculated by the development
method in the iteration of t + 1, α and δ are exploration
adjustment parameters, fixed at 0.1.

The development behavior of the second Aquila is shown
in Equation (13).

X4(t + 1) = QF × Xbest (t)− (G1 × X (t)× rand)

−G2 × Levy(D) + rand × G1 (13)

where X4(t + 1) is the solution calculated by using the
second development method in the iteration of t + 1.
QF is the quality function used to equalize the search strategy.
G1 represents the movement of the Aquila to track the prey
during its escape. The value of G2 decreases from 2 to 0.
X (t) is the solution of the t th iteration.

The minimum value Xbest(t) of fitness function is obtained
after T iterations, which represents the optimal value of the
number of hidden layer units and learning rate. The fitness
function value F inessX (t) is calculated by mean square error,
as shown in Equation (14).

F inessX (t) =
1
Na

Na∑
ta=1

(ĥ[ta]− h̃[ta])2 (14)

where Na is the number of training sets, ĥ[ta] is the
CSI measured value, and h̃[ta] is the CSI predicted
value.

The detailed steps of AO to improve APF-RNS algorithm
are shown in Algorithm1.

B. AO IMPROVED APF-RNS ALGORITHM FLOW
The variation range of parameters is determined according
to historical data and prediction requirements. Then use the
AO algorithm to find the optimal number of hidden layer
units K and learning rate R within the given range. The flow
chart of AO improving APF-RNS is shown in Fig.3. The
detailed algorithm steps are as follows:

Step 1: Select an appropriate APF-RNS network structure,
and determine the upper and lower bounds of the number of
hidden layer units and learning rate according to the historical
data.
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Algorithm 1 AO Improved ANF-RNS Algorithm
1: Initialize parameters in the AO algorithm, such as pop-

ulation size N , iteration times T , and upper bounds UBj
and lower bounds LBj of the problem, etc.

2: Initialize population X .
3: while t < T do
4: Calculate the fitness function of population X .
5: The optimal individual was obtained according to the

fitness function value.
6: Calculate x, y, G1, G2, Levy(D), and so on.
7: for i = 1, 2, . . . ,N do
8: Calculate the mean value XM (t) of all individuals in

population X .
9: if t ≤

(
2
3

)
∗ T then

10: if rand ≤ 0.5 then
11: Use Equation (8) to calculate X (t + 1).
12: else
13: Use Equation (9) to calculate X (t + 1).
14: end if
15: else
16: if rand ≤ 0.5 then
17: Use Equation (12) to calculate X (t + 1).
18: else
19: Use Equation (13) to calculate X (t + 1).
20: end if
21: end if
22: if FinessX (t + 1) ≤ FinessX (i) then
23: X (i) = X (t + 1);
24: if FinessX (t + 1) ≤ FinessXbest(t) then
25: Xbest(t) = X (t + 1);
26: end if
27: end if
28: end for
29: end while
30: return Xbest(t);

Step 2: Input the training set data and preprocess the data;
Step 3: The number of initialization hidden layer units and

learning rate were taken as the Aquila individuals, and set
the population N . At the same time, the upper limit T of
iteration times and relevant parameters of AO algorithm are
determined;

Step 4: Take the mean square error of APF-RNS network
training set as the fitness function value of AO algorithm;

Step 5: Calculate the fitness value of each Aquila, and rank
the fitness function value, select the Aquila with the highest
target value Xbest.
Step 6: Perform exploration and development steps for

each individual to update its location, and update the location
of Aquila individual Xbest;

Step 7: Judge whether the AO algorithm reaches the
upper limit of iteration times. If so, retain the final Xbest
Aquila individual, that is the optimal number of hidden

FIGURE 3. Flow chart of APF-RNS algorithm optimized by AO algorithm.

layer units and learning rate; Otherwise, repeat Step 5 to
Step 6.

Step 8: Read and preprocess the test set data, then construct
the APF-RNS network with the number of hidden layer units
and learning rate corresponding to Xbest Aquila.

Step 9: Train the network model and use the trained net-
work model to predict the channel state information;

Step 10: Judge whether reach the end of the training set
data, if so, output all the predicted channel state information;
Otherwise, repeat Step 9.

IV. ANALYSIS OF SIMULATION RESULTS
A. SIMULATION PARAMETER SETTING
The simulation verification of the proposed method uses
channel measurements in two wireless environments. The
first is the measurement data of the wireless system in
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the industrial environment from National Institute of Stan-
dards and Technology(NIST) [11], in which the frequency
is 2.245GHz, the polarization of the receiver and transmitter
antenna is Omni-directional and V Pol, and the antenna gain
of the receiver is−3.8dBi. The antenna gain of the transmitter
is 2.9dBi, the transmit power is 1.5watts, the attenuation
is 50dB, and the sample rate is 80MHz. The second data set
adopts the indoor wireless channel measurements at 2.4GHz
provided by Mohamed AlHajri and Nazar Ali et al in the
Machine Learning library of University of California, Irvine
(UCI) [12]. The measurement system for the dataset consists
of the ZVB14 Vector Network Analyzer (VNA), low loss RF
cables, and omnidirectional antennas at the transmitter and
receiver ends. The parameter Settings of APF-RNS network
model improved by AO of these two data sets are shown
in Table 1.

TABLE 1. Parameter table of AO-APF-RNS.

B. AO IMPROVED APF-RNS ALGORITHM PERFORMANCE
ANALYSIS
In order to verify the convergence speed and optimiza-
tion speed of AO improved APF-RNS algorithm(AO-APF-
RNS), The convergence curve of fitness function was used
to compare the APF-RNS algorithm improved by Genetic
Algorithm (GA-APF-RNS), APF-RNS algorithm improved
by Particle Swarm Optimization (PSO-APF-RNS), and
APF-RNS algorithm improved by Sparrow Search Algorithm
(SSA-APF-RNS). The simulation results are shown in Fig.4
and Fig.5. The optimization results are shown in Table 2 and
Table 3.
It can be seen from Fig.4 that GA-APF-RNS algorithm

has poor overall optimization ability when the four algo-
rithms conduct optimization of APF-RNS network param-
eters. PSO-APF-RNS algorithm can decrease continuously
in the process of optimization, but the convergence speed is
slow. The SSA-APF-RNS algorithm has strong initial opti-
mization ability. Compared with the other three algorithms,
AO-APF-RNS algorithm has better searching ability (lower
mean square error) and faster convergence rate. It can be
seen from Fig.5 that the AO-APF-RNS algorithm is obvi-
ously superior to the other three algorithms, because four
updating ideas are adopted according to the hunting behavior
of the Aquila during position updating, thus increasing the
exploration and development ability of the Aquila in the
solution space and improving the execution efficiency of
the algorithm.

FIGURE 4. Comparison of fitness functions of the four algorithms.

FIGURE 5. Comparison of fitness functions of four algorithms with
SNR = 15dB.

TABLE 2. Optimization results.

It can be seen from Table 2 that the AO-APF-RNS algo-
rithm can obtain a small number of hidden layer units while
obtaining the lowest fitness function value. The learning
rate is higher than that of PSO-APF-RNS algorithm and
SSA-APF-RNS algorithm because there is no additive white
gaussian noise in the data set and the channel state is not
complex. There is no need for too small a learning rate to
increase the convergence complexity of the network. Table 3
shows the optimization results with the additive white gaus-
sian noise and a signal-to-noise ratio of 15dB. It can be
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TABLE 3. Optimization results.

FIGURE 6. Measurement data - Use the first measurement data in NIST
AAPlantD1_2GHz_TX1_hpol_run4.

seen from this that the AO-APF-RNS algorithm can obtain
a smaller number of hidden layer units while obtaining
the lowest fitness function value. The low learning rate is
because the channel state is complex at this time, and a
small learning rate is required to prevent the loss function
from directly crossing the global optimal point, so that the
gradient oscillates back and forth near the minimum value.
In conclusion, AO-APF-RNS can obtain a smaller number of
hidden layer units and a suitable learning rate while obtain-
ing the lowest fitness function value, thereby reducing the
complexity of the APF-RNS network and the time spent on
prediction.

C. ANALYSIS OF CHANNEL PREDICTION RESULTS
In order to analyze the predictive ability of the AO-APF-RNS
algorithm, a piece of data with a length of 40500 timestamps
in NIST is used, where the data exists in the form of complex
numbers. The data is shown in Fig.6. The horizontal axis
is the number of CSI measurement values, and the verti-
cal axis is the result of modulo CSI measurement values.
As can be seen from the figure, the channel data changed
dramatically in the first 4000 timestamps, and then remained
small for a long time (30,000 timestamps), after which the
CSI began to change again, with a change process of about
2000 timestamps. In order to verify the performance of
AO-APF-RNS algorithm in complex and diversified real
channels, set the first 12,000 data sets as the test set,
and the last 28500 data sets are used as the training set.

FIGURE 7. Performance comparison - using the first measurements in
NIST AAPlantD1_2GHz_TX1_hpol_run4.

FIGURE 8. Magnification of prediction results - using the first
measurements from NIST AAPlantD1_2GHz_TX1_hpol_run4.

The comparison of AO-APF-RNS algorithm in predicting
CSI performance is shown in Fig.7.

It can be seen from Fig.7 that AO-APF-RNS is slightly
better than APF-RNS in prediction as the channel state keeps
changing. But details aren’t clear because the numbers are
so volatile. In order to analyze the prediction performance
of the proposed algorithm, the time stamp data from 3600 to
5000 in the prediction results are amplified as shown in Fig.8.
In Fig.8, the predicted results of AO-APF-RNS are more
consistent with the reality in the face of the rapidly declining
channel state. This is because the predicted results between
time stamps 4200 and 4500 use a network of data trained
between time stamps 3600 and 3900, when CSI fluctuates
greatly. When training the network using data from times-
tamps 3900 to 4200, the predicted results improved between
timestamps 4500 and 4800. During the whole period,
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FIGURE 9. Performance comparison - Second measurement
AAPlantD1_2GHz_TX1_vpol_run3 using SNR = 15dB in NIST.

FIGURE 10. Magnified prediction results - using the second measurement
AAPlantD1_2GHz_TX1_vpol_run3 from NIST with SNR = 15dB.

The AO algorithm enhances the convergence ability of the
network by obtaining the optimal learning rate, and the opti-
mal number of hidden layer units can reduce the complexity
of the network and improve the accuracy of prediction.

In order to further verify the performance of AO-APF-
RNS algorithm in more complex channels, additive white
gaussian noise was added to another data with a length of
44400 timestamp to simulate the channel estimation error
in real scenarios, and the signal-to-noise ratio was 15dB.
The first 13,500 data were used as the test set and the last
30900 as the training set. CSI prediction results of AO-APF-
RNS algorithm are shown in Fig.9.

Fig.9 shows that the AO-APF-RNS algorithm still shows
better prediction performance compared with APF-RNS after
adding additive Gaussian white noise. In order to analyze
the details of the predicted results, the data between time
stamps 6200 and 7800 are enlarged, as shown in Fig.10. It can

FIGURE 11. Performance comparison - using the second measurement
Loc_1211_Lab_139 from the UCI machine learning library.

FIGURE 12. Performance comparison - using the fourth measurement
Loc_0209_Lab_139 from the UCI machine learning library SNR = 15dB.

be seen that the prediction effect of APF-RNS is not good
during the period of time stamp 6200 to 7200. After 7200, the
measured value of CSI approaches 0 and APF-RNS begins
to fit. However, certain errors occur during this period and
APF-RNS cannot cope with complex and changeable channel
state information. However, the channel state information
predicted by AO-APF-RNS algorithm is close to the mea-
sured value.

In order to verify the generalization ability of AO-APF-
RNS, data fromUCIMachine Learning Repository were used
to verify the generalization ability. The length of the data is
600, the length of the training set is 220, and the length of the
test set is 380. The comparison of AO-APF-RNS algorithm
in predicting CSI performance is shown in Fig.11, Fig.12
and Fig.13.

As can be seen from Fig.11, the AO-APF-RNS algo-
rithm is slightly superior to APF-RNS on the whole, and
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FIGURE 13. Performance comparison - using the sixth measurement
Loc_0109_Lab_139 with SNR = 15dB in the UCI machine learning
library.

the prediction curve is relatively smooth, which conforms
to the real channel state change trend. Fig.12 and Fig.13
show the data after adding additive White Gaussian noise.
Compared with APF-RNS, AO-APF-RNS algorithm is closer
to the real measured value, which proves that the proposed
algorithm can predict CSI under different channels, has
certain generalization ability, and improves the prediction
accuracy.

V. CONCLUSION
Aiming at the problem of large prediction error of
wireless communication system, this paper proposes a
wireless channel state prediction method based on improved
adaptive and parameter-free recurrent neural structure. The
population of Aquila was set as the learning rate and the num-
ber of hidden layer units of APF-RNS network, and take the
mean square error of APF-RNS network as the optimization
target of AO algorithm. Finally, the optimal hyperparameters
are obtained to construct the network model to predict the
channel state. Channel knowledge, such as long-term statis-
tics or channel parameters, is not required in the prediction
process. Therefore, it can be generalized to any propagation
environment. The on-line training method can also reduce the
pilot cost in the communication link. Simulation results show
that compared with APF-RNS algorithm, the proposed algo-
rithm has higher CSI prediction accuracy, and compared with
PSO-APF-RNS algorithm, GA-APF-RNS algorithm and
SSA-APF-RNS algorithm, AO-APF-RNS algorithm has bet-
ter optimization ability and faster convergence speed. To sum
up, the algorithm proposed in this paper performs well in all
aspects.
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