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ABSTRACT Parkinson’s Disease (PD) is a neural system disorder that disturbs the mental activities and
physical activities of human beings. Analyzing the symptoms and biosignal data of PD is crucially focused
in medical research fields. The existing PD diagnosis models are limited to real-time issues, insufficient
deep data extraction, and early monitoring problems. On the scope, the proposed Optimal Health Support
and PD Analysis System (OHPAS) analyses the symptoms of PD using a deeply trained biosensors network
environment. The novel system trains the biosensor network using complex Machine Learning (ML) and
Deep Learning (DL) approaches. The environment of OHPAS sets up acoustic sensors (UT-PF), microphones
(MC-1500 unit), and multimodal sensor units (MC-10 sensor). MC-10 is the sensor suite that has an
accelerometer sensor, gyro sensor, and Electro Cardio Gram (ECG) sensor to observe the biosignals. For
establishing the biodata analysis framework, OHPAS initiates the fusion of Variable Auto Encoder (VAER)
and K-Means clustering techniques. This phase comprises dataset feature reduction, data regularization,
and clustering operations to make the dataset effective for the training process. Finally, the Long Short
Term Memory network (LSTM) uses the preprocessed dataset for computing the training dataset. The
proposed OHPAS contributes novel features such as a real-time patient monitoring environment, effective
sensor data reduction, distributed sensor data analysis, day-wise PD symptom prediction, reactive PD alerts,
and accurate early detection solutions. Considering effective medical data analysis with minimal response
time, the proposed model creates reactive body sensor network. Under this sensor platform, sensor modules
contain proposed DL procedures in its internal memory for initiating data analysis practices. Consequently,
the symptoms of PD are commendably detected and predicted with minimal response time. The experimental
results indicate the proposed PD system outperforms the existing systems with 8% to 10% of better results.

INDEX TERMS Parkinson’s Disease, body sensors, neural networks, deep learning, PD symptoms and
healthcare.
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I. INTRODUCTION
Parkinson’s Disease (PD) has many notable and measur-
able symptoms. The common symptoms of PD are shaky
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movements, slowness in body movements, difficulty in walk-
ing, and speech disorders. Other psychological symptoms like
anxiety, stress, depression, behavioral issues, and sleeping
issues are common among many PD patients. Especially,
the PD-affected patients get abnormal facial expressions due
to the loss of control in their facial muscles. Since many
body syndromes rise due to various reasons, determining the
symptoms of PD is a challenging task.

At the same time, the classification of PD symptoms make
a crucial role to identify the growing stages of PD. Body
sensors play a major role in live PD analysis frameworks.
In this case, a detailed study is essential to determine PD’s
severity, symptoms, stages, and therapy solutions. PD is clas-
sified into five stages. During the initial stage, a person feels
mild symptoms without affecting the daily routines. In this
stage, movement irregularities and tremors raise on any one
side of the human body. The initial stage symptoms are not
accurately determined by medical practices. From this stage,
the severity of PD grows gradually and affects the patient’s
activity badly.

Finally, PD creates major disorders in movement char-
acteristics, psychological characteristics, neurobehavioral
characteristics, sensory characteristics, and other biological
characteristics. The growing rate of PD is not predictable
unless we develop a highly trained PD symptom analy-
sis system. Generally, the symptoms of PD are classified
into two categories. They are motor symptoms and nonmotor
symptoms. Motor symptoms specify the actions like tremors,
rigidity, and other muscle disorders. These include movement
irregularities. Nonmotor symptoms contain speech disorders,
eye problems, sleeping issues, and others. Bradykinesia is one
of the main symptoms of PD that leads to sluggish physi-
cal activities. Bradykinesia is initiating movement disorders
gradually throughout the human body. This creates a lack of
muscle-based movement activities and a lack of body part
coordination.

Clinical measurements and computerized techniques are
widely used for the early diagnosis of the symptoms. The
crucial symptoms of PD are muscle rigidity (stiffness),
imbalanced conditions, tiredness, muscle pain (dystonia),
abnormal facial expressions, voice disorders, memory dis-
orders (dementia), sleep disorders, sensation disorders, and
urinary bladder weakness [1], [2]. Based on the symptoms
of PD, risk factors vary according to gender, age, and toxin
exposure. Particularly, age plays a major role in producing
the biggest risks for brain disorders. Clinical experiments and
diagnosis tools help to detect the symptoms of PD. Clinical
practices such as blood testing, Computer Tomography (CT),
Magnetic Resonance Imaging (MRI), and Positron Emission
Tomography (PET) are globally taken against PD. The clini-
cal tests deliver significant results for taking decisions to save
a PD patient’s life.

Usually, the reduction in the dopamine level of the brain
initiates the PD symptoms. In this case, the medicines treat
the regular dopamine levels to induce the necessary bio-
logical actions. Similarly, the dopaminergic drug improves

the muscles’ flexibility and reduces stiffness and tremors.
However, PD is not a completely treatable disease [3]. Under
the given medical solutions, levodopa is the most effective
drug for PD. This drug is available in capsule and liquid
form. This drug induces the brain cells to extract dopamine
levels. Generally, the drugs maintain dopamine levels [4], [5].
Notably, Monoamine-oxidase B inhibitors (MAO-B) are the
substitute drug for levodopa. AsMAO-B abolishes dopamine,
it affects brain activities.

The inhibitors restrict MAO-B to activate the brain for
more time. This drug contains selegiline and rasagiline.
MAO-B inhibitors take the effort by resisting the causes of
MAO-B in the brain. On the other end, surgeries are required
for the particular patient to be recovered. Deep brain stimula-
tion is a surgery to embed the electrodes in the brain. It helps
for solving the neurological disorders caused by the brain dis-
eases. The deep brain stimulation surgery saves PD patients
from severe problems. In this connection, Thalamotomy is
initiated for treating the tremors of PD patients. This therapy
destroys or eliminates the particular part of brain cells called
the thalamus. Similarly, many surgery solutions are recom-
mended based on the patient’ need [6], [7].

Apart from tremor and stiffness symptoms, PD gradually
affects human vocal activities. The quality of speech con-
sists of frequency variations, voice pressure, signal strength,
and noise levels. Human voice characteristics are classified
using the spectral properties of each PD patient. This prac-
tice is used to differentiate PD patients’ voice irregularities.
PD disturbs the speech qualities and clarity of the vocal
system. Many computerized techniques develop vocal diag-
nosis systems. These techniques help to extract the voice
properties and signal factors of PD patients. In speech analy-
sis, voice delay is considered as amajor factor in detecting PD
symptoms. Based on these observations and determinations,
PD patients can be allotted for respective medical treatments.
However, these clinical tests and results are expected to be
improved with intelligent decision-making algorithms.

The recent computational health systems develop body
sensor networks and Internet of Things (IoT) circumstances
to monitor patients’ daily activities [8]–[10]. In this medical
era,ML andDL techniques help to improve decision accuracy
in any platform. Many research works had been developed
for diagnosing the symptoms of PD using medical practices
and computerized techniques. Any computerized PD diagno-
sis technique needs suitable PD dataset features (knowledge
base) and effective samples to train the decision-making sys-
tem. The datasets play a crucial role in PD detections and
predictions. The recent PD diagnosis technologies mainly use
computerized techniques based on various online PD datasets
and clinical datasets.

Grounded on the PD knowledge base, the recent com-
puterized PD diagnosis schemes are developed with ML
techniques such as Support Vector Machine (SVM), Bayes
Classification (BC), Decision Trees (DTs), Self-Organizing
Map (SOM), Random Forest (RF), and others for detect-
ing the symptoms of PD. At the same time, DL practices
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encompass Deep Neural Networks (DNNs), Convolutional
Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), Auto Encoders (AEs), Deep Boltzmann Machines
(DBMs), and Generative Adversarial Networks (GANs) for
classifying the symptoms of PD. Compared to conventional
PD diagnosis models, the recent ML and DL techniques
provide better diagnosis results.

The accuracy of ML and DL-based PD diagnosis models
varies with respect to their learning rates. The learning rate
and the accuracy rate of any ML or DL technique are decided
from the effective utilization of the knowledge base. Under
this circumstance, the integration of IoT-based body sensor
networks and the DL networks ensures live PD monitoring
possibilities. In addition, a properly designed DL network
with a regulated knowledge base accurately analyzes the live
biosensor data to detect the symptoms of PD [11]–[13].

The research works developed a computational PD diag-
nosis system using patient health records. Under the DL
frameworks, PD diagnosis models create well-trained sys-
tems for implementing PD data evaluation procedures. The
results generated from DL reveal the optimal contributions in
PD data analysis platforms. On the other hand, body sensor
networks are used to observe the real-time bio measurements
to alert the patients [14]–[16]. In contrast, the existing PD
diagnosis models are limited to nonlinear data manipula-
tions, dimensionality reductions, and reactive PD analysis
practices. Additionally, the recent PD diagnosis models are
inadequate against optimal dataset management problems,
effective time series data analysis problems, real-time sensor
handling problems, data regularization issues, and home-
based PD monitoring solutions [17]–[19]. These are consid-
ered crucial research problems.

To solve these problems, the proposed work develops an
effective DL-based PD data analysis models with the help
of real-time body sensor networks. The proposed OHPAS
monitors various motor and nonmotor symptoms of PD.
In this regard, the proposed system is motivated to plant body
sensor networks to build independent health monitoring and
analysis model to take an effective decision with minimal
delay. On the scope of the research problems, the proposed
system uses a novel Deep Clustering (DC) technique for
effectively managing the PD dataset and training the PD diag-
nosis system. In this respect, VAER and K-Means techniques
are supporting dimensionality reduction and clustering pro-
cedures respectively.

On the other side, LSTM takes multi-sensor data streams
through various time intervals. The DC mechanism inte-
grates VAER and K-Means approaches with data regular-
ization. In this PD diagnosis environment, LSTM manages
multi-sensor data and evaluation procedures for detecting the
symptoms of PD. This reactive PD diagnosis environment
gets placed in the Raspberry Pi module that is connected
with sensor points. Thus, the proposed OHPAS contributes to
dimensionality reduction, data regularization, LSTM-based
PD symptom detections, and predictions. The contributions
of the proposed system are listed below.

• Establishing a deeply trained PD diagnosis environment
using body sensor networks

• Analysing motor and nonmotor symptoms
• Detecting and predicting the sensor data anomalies
• Developing a reactive PD monitoring and assisting
environment

The article is organized as follows. Section 2 takes notable
research works on PD symptoms, data gatherings, clinical
data analysis, body sensor networks, medical supports for PD
patients, ML and DL-based PD solutions. Section 3 provides
technical details, hardware components, and algorithms for
implementing the proposed OHPAS. Section 4 shows the
real-time experimental setup and performance evaluations.
Finally, section 5 states the conclusion and future impression
of the proposed system.

II. RELATED WORKS
This section investigates the articles related to PD diagnosis
models, ML and DL-based diagnosis models, medical sensor
applications, reactive PD monitoring techniques, and disease
classification mechanisms. Soumaya et al. [1] proposed PD
detection techniques with the help of SVM and Genetic
Algorithm (GA). This work evaluated the speech signal vari-
ations for detecting the symptoms of PD. In this regard, this
work created Discrete Wavelet Transforms (DWTs) of mul-
tiple voice samples collected from PD patients. Additionally,
this system collected frequency samples, voice code samples,
and entropy features of voices. Subsequently, ML-based clas-
sification techniques such as SVM and GA were applied to
the collected datasets. These ML techniques classified the
given voice datasets to observe the voice abnormalities of dif-
ferent PD patients. This technique contributed significantly to
find the voice symptoms of PD patients. However, this was
a conventional technique and it was not producing real-time
monitoring benefits. A few other research works discussed
the evidence of clinical symptoms and medical therapies
given for PD-affected patients [2]–[5].

Bind et al. [6] executed a deep comparative study on var-
ious ML-based PD detection techniques. This study gave an
extensive idea about PD symptoms, PD detection techniques,
PD prediction techniques, and experimental evaluations.
This work identified different computational techniques
such as Artificial Neural Network (ANN), GA, SVM, RF,
Naïve Classification (NC), K-Nearest Neighbour (KNN),
and various probabilistic models. This study produced effec-
tive comparisons between various PD detection techniques.
Particularly, the techniques concentrated on speech analysis
models and body movement analysis models to detect PD
symptoms. Yaman et al. [7] developed a PD detection frame-
work using patients’ acoustic features. This effort contributed
to statistical pooling techniques for classifying and evaluat-
ing voice features. Additionally, this PD recognition scheme
gathered patients’ handwriting samples, gaits samples, and
balance factors. In this work, SVM andKNN techniques were
producing effective feature classification results. Besides,

VOLUME 10, 2022 63405



R. Soundararajan et al.: Deeply Trained Real-Time Body Sensor Networks

this work missed the actual construction of real-time DL
structures for evaluating the biological features. In the same
manner, Mittal et al. [8] and Polat et al. [9] proposed notable
research contributions for enabling dependable solutions to
detect PD symptoms using acoustic measurements.

Under both techniques, voice sampling approaches and
conventional ML techniques were used for extracting the
notable voice data sequences. In this regard, these works
had collected various PD clinical datasets and applied ML
techniques to voice features. Anyway, these works produced
less data complexity yet these were inefficient to produce
more accuracy. Additionally, these techniques are expected
to be improved to meet real-time benefits.

Pfeiffer et al. [10], Schapira et al. [11], and Ba et al.
[12] discussed various motor and nonmotor symptoms of PD
stages. Moreover, these works discussed motor and nonmotor
relationships for extracting PD disorders. Grover et al. [13]
proposed a DL-based PD severity prediction system using
ANNs. This work utilized patients’ speech abilities, moving
abilities, and other natural activities for extracting PD fea-
tures. This work took online clinical datasets, not sensory
datasets. In the same way, Sivaranjini et al. [14] developed
CNN Based PD Diagnosis System (CPDS). CNN is an effec-
tive DL technique for extracting image features with the help
of multi-level filter functions. In this work, CNN functions
worked on MRI features for extracting the PD symptoms.
This work stated that the developed DL technique produced
significant results. Compared to other DL techniques, CNN
takes minimal training time and processing time [15]–[18].
In this regard, this existing system supported for effective
symptoms detection based on MRI data features. At the same
time, CNN-based DL techniques were limited to huge dataset
quantities, uncertain data correlations, and time-series data
extraction.

Nagasubramanian et al. [19] proposed Multi-Variant PD
Diagnosis System (MVPDS) using DL techniques. This sys-
tem established PD vocal data analysis procedures and PD
detection procedures. This work utilized online PD datasets
for training the DL networks such as Recurrent Neural Net-
works (RNN), CNN, and DNN structures. This work stated
that the proposed acoustic-based PD detection techniques
produced optimal results. However, this technique was devel-
oped using standard Unified PD Rating Scale(UPDRS) data
and standard learning models. This approach created learn-
ing complexity in terms of data extraction and processing
time. Additionally, this work was limited to static online
dataset features and it was not developed for real-time sensor
readings.

Balaji et al. [20] proposed Supervised ML-based PD
Diagnosis system (SMPDS) using Decision Tree (DT),
Ensemble Classification (EC), SVM and BC rules. SMPDS
implemented classification techniques for detecting gait fea-
tures of patients. In this regard, this system used UPDRS
gait datasets to train the ML system. Particularly, SMPDS
was developed to analyze vertical ground activities when the
patient walks. This system provided a useful and easy way for

PD data analysis models. In contrast, this technique suffered
from limited accuracy and nonlinear constraints. Diaz et al.
[21] proposed a handwriting analysis model to detect PD
symptoms using one-dimensional convolutions.

This work had a novel idea of using CNN under a single-
dimensional data field. This work analyzed sequentially
generated handwriting data patterns using convolutional
functions. This system gathered various patients’ handwriting
samples to train the network model. Usually, CNN is a suit-
able choice for image analysis models. As the handwriting
data was taken into convolutional layers, this work gave opti-
mal detection results in the PD diagnosis phase. In contrast,
this work handled only limited handwriting samples. In a
similar style, Powers et al. [22] developed a smartwatch-
based PD diagnosis system. This work was implemented
with smartwatch-based inertial sensors to monitor real-time
patient data. The smart watch-based monitoring scheme con-
tributed to an efficient PD analysis model. As this work
used inertial sensors in a smartwatch, the motor symptoms
and other movement fluctuations were recorded to detect the
symptoms of PD. This work was mainly designed for mon-
itoring tremor issues and dyskinesia presence. Anyhow, this
system had limited technical benefits in the training section
and it was not adaptable to DL approaches to improve the
PD detection rate. Similarly, Mirelman et al. [23] proposed
mobility feature detections. This scheme used standard ML
techniques such as feature selection, classification, and clus-
tering approaches. The techniques provided nominal obser-
vations on PD detection. However, this work had no features
of DL-based feature selection and clustering techniques to
improve the quality of the PD data analysis model.

In general, recently developed PD diagnosis systems found
clinical and online datasets for detecting the symptoms of
PD. The existing research contributions are good enough for
finding the symptoms of PD [24]. The existing systems devel-
oped various models for detecting PD stages using different
biosignal measurements. Anyhow,most of the researchworks
collected huge datasets without considering lower dimension
possibilities. Additionally, they lacked to tune and regularise
the dataset which is a necessary step for maintaining optimal
neural network functions. This effort makes a crucial impact
on the PD decision-making system. On the other hand, the
need for building a handheld PD analysis system is inevitable.
In this state, the proposed work is interested to develop a
modest and effective OHPAS for helping PD patients in their
homes. The sensors used in this work collect the biological
data from patients’ body parts and deliver the data to DL com-
putational block. This computational module holds efficient
and lightweight DL techniques to evaluate the sensor data to
ensure the real-time severity level of PD. The technical details
of the proposed OHPAS are given in section 3.

III. PROPOSED SYSTEM
The proposed OHPAS contains the necessary technical com-
ponents and novel DL techniques for detecting the symptoms
of PD at the earlier stages. This system integrates body sensor
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environment and computer diagnosis environment to build
effective PD monitoring and assisting equipment. The pro-
posed system has the following implementation phases.

• Deploying the body sensor computing environment
• Implementing the proposed data handling Techniques
• Building a comparative experimental testbed

A novel PD monitoring and assisting system need a suit-
able computing environment for getting real-time responses.
This computing environment shall comprise a tiny proces-
sor, inbuilt volatile memory or Random Access Memory
(RAM), Read-Only Memory (ROM), General Purpose Input
and Output System (GPIO), interfaces, Wi-Fi (Wireless-
Fidelity) module, Bluetooth module, the rechargeable battery
unit and body sensors. This environment helps to sense the
biological objects related to motor and non-motor activi-
ties. At the processing end, the medical data is evaluated to
detect the symptoms of PD. The processor unit of OHPAS
works with different DL techniques such as VAER, K-Means
clustering technique, and LSTM to classify the symptoms
of PD. This practice aids to build an active and automatic
decision-making system against PD.

A. DEPLOYMENT OF SENSORS AND
COMPUTING ENVIRONMENT
The proposed OHPAS places a body sensor network that
contains the collection of medical sensor patches fixed on
human skin. The externally patched sensors observe the live
biosignals of a particular patient during regular activities. The
proposed system uses various body sensor units to monitor
both motor and nonmotor symptoms of PD. MC-10 is an
inertial multi-sensor unit that contains an accelerometer sen-
sor, gyro sensor, ECG, and EMG modules as a single patch.
This sensor unit monitors the patient’s hand movements,
leg movements, angular movements, and cardiac variations
respectively. Particularly, the accelerometer sensor observes
the data of external body movements. The Gyro sensor reads
the biodata of angular movements and velocity of a particular
activity. Similarly, EMG gets the data of muscle and nerve
activations [25]–[27]. These are called as motor symptoms
related to bodymovements. In the samemanner, ECG records
heart pulse readings.

MC-10 sensor unit has inbuilt Random Access Memory
(RAM) for storing real-time patient data. It has a Bluetooth
module to transfer the data to any nearest Bluetooth-enabled
system or cloud network. Additionally, it is available with a
multi-sensor charger unit. This sensor unit is rechargeable at
any time. MC-10 senses and delivers the bio measurements
to any computer system [28]–[30]. In addition to MC-10
sensor patches, this system uses MC-1500 (30 dB) micro-
phone and UT-PF sensors for observing the patient’s voice
features. These two devices are also patched sensors to be
fixed on the patient’s neck skin (nonmotor symptoms). The
technical details of the sensor units are given in section 4.
Table 1 shows the body sensors and other hardware details.
The proposed PD monitoring system uses multiple MC-10

TABLE 1. Body sensors and computing environment.

units and acoustic sensor units to observe the real-time data
sequences. PD monitoring and decision-making system need
effective data evaluation procedures to detect the symptoms
correctly. Under the data analysis phase, data extraction, data
modelling, data analysis, and decision support are the major
actions. The actions related to data processing and data com-
putation shall be executed by any computing devices. In this
regard, the proposed system deploys Raspberry Pi Version 4
(Model B) for installing and initiating the DL routines over
body sensor data streams.

The deployed microprocessor module has wired network
protocols, wireless network protocols, General Purpose Input
and Output (GPIO)- 40 pins, and power units. Additionally,
this processor unit has 4 Gigabyte (GB) of RAM with a
64-bit processing core (ARM-Advance Reduced Instruction
Set ComputerMachines). Also, this unit has Raspbian-Noobs
operating system, expandable storage card slots, and univer-
sal serial ports. The PD diagnosis and assisting environment
needs additional interfaces (relays), a smartphone with a data
visualizer application, and the deployed DL procedures with
training datasets. This complete environment helps to sense
and analyze the data to generate the PD decision reports
[31], [32]. Usually, DL networks get structured inputs to be
processed for detecting the symptoms of PD. Mostly, the
sensors produce a sequence of unstructured data. This data
sequence shall be regulated using appropriate data models
discussed in the next section.

B. IMPLEMENTING DL TECHNIQUES FOR DETECTING THE
SYMPTOMS OF PD
As discussed, the proposed DL techniques analyze the patient
data sequences collected from different sensors.
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In this work, acoustic sensors and motion sensors play a
major role in the data acquisition phase. Acoustic sensors
create a sequence of raw voice measurements that should
be structured using a suitable phonetic or acoustic model.
At the same time, other sensors generate the biosignal mea-
surements dynamically. An appropriate mathematical model
stabilizes the sensor data under time series circumstances.
An acoustic sensor produces time series values of frequen-
cies and amplitudes. The real-time sensor values need to be
gathered using the proper acoustic data model. In this regard,
Dynamic Phonetic Model (DPM) calculates the resemblance
and difference of speech signals. DPM allows the pro-
posed system to compare two speech signals and detects
the similarities of signals in time domain. The basics of
DPM are formed by calculating the distance matrix between
dual time sequences. In this regard, DPM computes the
spectral distance matrix to differentiate the series of acous-
tic events. Additionally, the model ensures the regulated
flow of sensor data into DL networks. Equation (1) illus-
trates the acoustic time series model. This dual-time series
data pattern shall be integrated into the input layers of DL
architecture. Equation (1) denotes the difference in acoustic
sensor measurements through DPM. S ti(x) and S tj(x) denote
the voice observations of a particular patient at time ti and tj
respectively.

SA =
∑∣∣∣S ti(x) − S tj(x)∣∣∣ ∀n (1)

DSA =
∑∣∣∣S ti(x) − S tj(x)∣∣∣+min(c) (2)

Let, c is the collected acoustic readings at various dura-
tions. Equation (2) gives the optimal forward dynamic
programming models for feeding the time series acoustic
patterns into the DL network. DSA denotes optimal acous-
tic distance measured between two observation points. This
model uses to find the closest distance between various
dual-point measurements. At the same time, this is not a
training model to obtain the optimal decision on PD acoustic
readings [33], [34].

On the other side, MC-10 patches generate data from dif-
ferent sensors (accelerometer sensor, gyro sensors, ECG, and
EMG). As multiple MC-10 units are stamped on the patient’s
skin, the identification of a particular MC-10 unit is a signifi-
cant task [35], [36]. MC-10 sensor units’ data are represented
as given in equations (3), (4), (5), (6), and (7). Additionally,
the recursive optimal function computes forward acoustic
patterns using feed-forward dynamic programming solution.

M (S) = M i(SACC , SGYS , SEMG).
dτ
dt
∀i (3)

SACC = SACCi(m1,m2 . . . .mk ).
dτ
dt
∀i (4)

SGYS = SGYSi(m1,m2 . . . .mk ).
dτ
dt
∀i (5)

SECG = SECGi(m1,m2 . . . .mk ).
dτ
dt
∀i (6)

SEMG = SEMGi(m1,m2 . . . .mk ).
dτ
dt
∀i (7)

Equation (3) gives ithMC-10 sensor data sequence,
M (S)contains accelerometer sensor data, SACC , gyro sensor
data, SGYS , ECG data,SECG and EMGdata, SEMG. The patient
can hold ′n′ MC-10 sensor patches on patient’s body. The
sensor data is collected in time series manner where the
current time is, ′τ ′. Similarly, equation (4), (5), (6) and (7)
show the individual accelerometer, gyro sensor, ECG and
EMG sensor data. The time series sensor measurements are
denoted as mk . In this case, M (S) is considered as primary
data tuple (quadruplet) that has all inertial sensors. Thus, the
sensors collect the data for ensuring patient’s stress, muscle
irregularities, tremor and voice distortions. Particularly, the
patient can do any activities by wearing the sensor patches.
Figure 3 shows the block diagram of OHPAS. Predominantly,
body sensors are connected with Raspberry Pi (Bluetooth
connection). On the other end, Wireless Fidelity (Wi-Fi) or
Global System for Mobile Communication (GSM) proto-
col shall be taken for communication control. The selection
of communication protocols varies based on the distance
between the modules.

Figure 2 illustrates the body sensor stamp points fixed on
human body and the Raspberry Pi belt. MC-10 sensor patches
are fixed at the chest, muscle parts of hands, legs, shoulders,
andwrists. The inertial sensors shall be fixed at different body
parts to detect the movements and muscle distortions. At the
same time, the UT-PF sensor patch and microphones shall be
stacked at the neck portion of the human body. As shown in
Figure 2, a body sensor environment is deployed to collect the
biosignal measurements of PD patients [37], [38]. Similarly,
the acoustic sensor patches record the patient’s voice data.
The data collected from distributed sensor patches are given
in to Raspberry Pi. As mentioned in Figure 2, the Raspberry
Pi module has been fixed with a hip belt to gather and analyze
the multi-sensor data. In this deployment, the Raspberry Pi
unit has data analysis procedures for detecting the symptoms
of PD using multi-sensor data. As the sensor patches transfer
the data into the Raspberry Pi module using Bluetooth pro-
tocol, the following DL procedures and training models are
called by the computing module [39], [40]. In this case, RNN
is a deep neural network used for taking decisions on time
series data analysis models.

RNN is a feed-forward neural network that maintains
internal memory cells. RNN gets the sensor input data and
computes outputs based on previous computations. Gener-
ally, RNN’s output function depends upon previous decisions.
In this regard, the computations of each iteration are delivered
back as the input function of RNN. RNN holds its internal
memory states to keep previous computations for producing
next state outputs.

In RNN, the internal functions are configured with rela-
tive input conditions. This unique quality of RNN helps to
analyze the multi-sensor data for detecting the symptoms of
PD. Unfortunately; the basic RNN has gradient problems
and exploding problems that affect the real-time decision-
making process. In this situation, the LSTM network solves
the problems produced under standard RNN. LSTM has a
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FIGURE 1. OHPAS modules.

back-propagation trainingmodel to train the network to inves-
tigate the PD data. The proposed system constructs the LSTM
training dataset using clinical PD measurements, biosensor
datasets, and UPDRSs.

The proposed system has been modelled with the sensor
data propagation in a structured time series pattern [41].
As discussed, the Raspberry Pi processor module receives
the MC-10 and acoustic sensor data sequences via Bluetooth
interface. The structured input series get placed into DC
enabled Raspberry Pi unit.

The proposed system manages multi-variate sensor data.
The accuracy of any decision-making model depends on
dataset optimization policies and training policies. At this
point, the proposed DC plays a crucial task in regulating the
raw dataset for effective experimental usage. This process
enhances the accuracy rate of the proposed PD diagnosis
system. The proposed technique has three major components
such as VAER architecture, K-Means clustering technique,
and LSTM architecture. VAER and K-Means approach initi-
ate dimensionality reduction and clustering benefits respec-
tively. On the other hand, LSTM initiates recurrent training

FIGURE 2. Body sensors patches.

procedures for detecting the symptoms of PD. In this pro-
posedmodel, both LSTMnetwork andVAER basedK-Means
clustering generate lower dimensional dataset with minimal
loss. The loss rate is classified as network loss (LSTM)
and clustering loss (VAER/K-Means). Equation (8) illustrates
the loss rate that states nonlinear sequence of unsupervised
learning loss rate [42], [43].

DCL
= LLSTM .α + LCL(1− α) (8)

In this equation, cluster loss, LCL , states both VAER loss
and K-Means loss (cluster assignment loss rate and cluster
tuning loss rate). As mentioned, the proposed system uses
LSTMnetwork architecture for PD data evaluation. However,
the LSTM model needs more accurate samples to train the
network [44]. The network loss is defined as LLSTM .
The weight term α is used to adjust the overall network

function. The proposed novel structure helps to train the PD
dataset and evaluate the sensor readings. Generally, AEswork
on huge random datasets and reduce the data dimensions in
to lower range. The nature of AE eliminates data redundancy,
missed data and noise in given complex dataset.

Accordingly, the fusion of VAERs and K-Means proce-
dures executes effective clustering in lower dimensions and
creates clustered data points respectively. This proposed sys-
tem builds VAER for handling dimensionality reduction and
generating new samples from the latent space. The new sam-
pling phase improves the classifier accuracy and clustering
quality. The objective function of VAER is determined as
given in following equations (9), (10) and (11).

EVAER(x) =
n∑
i=1

P(z|x i) (9)

SVAER(z) =
n∑
i=1

z ∼P(z|x i) (10)
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x ∼ =
n∑
i=1

d(z) (11)

EVAER(x) denotes encoding process of VAER at the latent
space,z(initial probability distribution of all x i). SVAER(z)

denotes the sample data point taken from initial distribution in
to latent space z. x ∼ illustrates reconstructed data of decoder
function d(z) from the latent space z. The data samples are
brought in to the latent space to tune the decoder function.
This scheme works for reducing the data dimensionality and
generating new values. In this case, the latent space is defined
as the space where the data is compressed and encoded.
Obviously, VAER produces lossy compression and recon-
struction loss. VAER loss function is expressed as given in
equation (12).

VAERLOSS =‖x−x ∼‖2 + KL[N (mx , cx ,N (0, I )] (12)

VAERLOSS =‖x−d(z)‖2 + KL[N (mx , cx ,N (0, I )] (13)

In equations (12) and (13), x is the original data. KL
denotes data regularization component that is expressed
using Kullback-Leibler Divergence between Gaussian dis-
tribution and return data distribution [45]. This is com-
puted with the help of normally distributed mean matrix and
covariance matrix, mx , cx respectively within the specified
numerical range. Let assume, CP,COP are data continuity
point and data completeness point respectively. As shown in
equation (12), x ∼ is the reconstructed data. KL divergence
has been computed over the mean input components and
variances under the normalized conditions.

In addition,N (0, I ) denotes the range of normalized values
during previous iteration. In this case, I denotes the highest
normalized probability change. The loss function computes
the significant variance during data encoding and reconstruc-
tion phases.

The purpose of VAER computation is to observe the com-
plex data loss rates while VAER executes encoding and recon-
struction procedures. This computation helps to measure and
control the dimensionality reduction rate of VAER network.

VAER regularises the complete encoding and decoding
processes based on data continuity point and data com-
pleteness points. Notably, the closer continuity data points,
CPi,COPj may not produce different generative item at the
reconstruction end. At the same time, the sample data point
from the latent space z gives crucial content at the end of
decoding process to the classifier. The main goal of VAER
is expressed as shown in equation (14).

VAER(e, d) = min(VAERLOSS ) ∀z.dτ (14)

The main use of VAER is to reduce and data dimensions
and produce new contents from the latent space that impacts
decoder generative function to produce less errors comparing
to other AEs. Figure 3 shows the functional blocks of VAER.
The proposed system assumes that the VAER produces min-
imal reconstruction loss with optimal data reduction rate
(compression rate). The reconstructed data features are com-
puted using K-Means clustering algorithm to build relevant

FIGURE 3. Basic blocks of VAER.

feature groups. K-Means associated VAER is determined as
illustrated in equation (15). In equation (15), c, n are number
of clusters and number of cases correspondingly.

The case of VAER data can be denoted as, x ∼ji and the
centroid of cluster is C j.

DC(x) =
c∑
j=1

n∑
i=1

(x ∼ji −C
j)2 (15)

The clustering loss component can be defined as LCL(1−α)
from equation (8). The network loss component is defined as,
LLSTM .α from equation (8). As discussed in equation (8), the
overall loss rate,DCL contains both LSTM loss rate and clus-
tering loss rate. Equation (15) shows deep clustered output,
DC(x) that produces the loss rate ofLCL(1−α). Now, the need
for LSTM principles is mandatory with this deep clustered
output features, DC(x). As discussed earlier, LSTM suits
for analysing time series data coming from different sources
where the dataset is effectively regularised and reduced.
Algorithm 1 shows VAER/K-Means based clustering phase
and LSTM training phase for detecting the symptoms of PD.
This algorithm gets data from MC-10, UT-PF and MC-1500
sensors continuously. As it maintains reduced and clustered
dataset (VAER/K-Means), LSTM trains itself to produce
training dataset and test dataset iteratively to tune the deci-
sion network. LSTM is a recurrent type neural network to
compute the current output from current input data and pre-
vious computations. This practice keeps previous sensor data
in its internal memory and produce recurrent computations.
In this regard, the proposed system detects and predicts the
PD measurement series [46], [47]. This task improves PD
detection accuracy rate and supports early detections of PD.
Algorithm 1 illustrates the proposed OHPAS functions and
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Algorithm 1 DC and Real-Time PD Diagnosis

Input: PD Raw Dataset, SACC , SGYS , SECG, SEMG,DSA

Output: Reports on PD Symptoms
(Smartphone)
1: Initialize DC (K-Means based VAER network)
2: Get PD dataset (Raw contents)
3: VAER Encoding and Sampling

Call VAER(e, d) as EVAER(x), SVAER(z)

4: VAER decoding and reconstruction
Call x ∼ as a collection of reconstructed data
points

5: Do K-Means clustering, Call DC(x) overx ∼
6: Determine both K-Means loss, VAER-Loss

LCL = KLOSS
+ VAERLOSS (16)

7: Generate a clustered dataset items, DC(x)
8: Initiate LSTM training model, T LSTM

Get the data items from DC(x)
Generate sample training dataset, Tr(x)

Generate Test dataset, Tt(x)
Do feature selection

9: Train the LSTM and Tune the LSTM iteratively to
Get minimal, LLSTM

10: Get real-time data sequences from body sensors
11: Test the sensor data with LSTM’s Tr(x) and make

recurrent computations and update LSTM memory
12: Compute iterative results and predict the sensor

readings at dτ .
13: Send reports to smartphone investigation application

outcomes. The construction and working details of LSTM is
given below.

Let assume a trained LSTM has minimum network loss
rate, min(LLSTM ). LSTM has three gates such as input gate,
GI f orget gate, Gf and output gate, GO. It has crucial layers
like, candidate layer, CLCAN and hidden layer, HL . The inter-
nal memory cell or state is denoted asCM . Let assume, LSTM
cell at current time gets input sensor data from any sensor,
S i(τ ). The previous hidden cell state is denoted as τ .H τ−1 and
previous memory cell state is given as Cm(τ−1). The current
LSTM output has two terms such as, current hidden cell state,
H τ and current memory cell state,. Apart from three LSTM
gate units, candidate layer, Cτ . Cct of LSTM plays tangent
function on hidden layers.

Gf = σ (S i(τT ) ∗ I f + H τ−1
∗ ωf ) (17)

Cct
= tanh(S i(τT ) ∗ IC + H τ−1

∗ ωC ) (18)

GI = σ (S i(τT ) ∗ I i + H τ−1
∗ ωi) (19)

GO = σ (S i(τT ) ∗ IO + H τ−1
∗ ωO) (20)

CM (τ )
= Gf ∗ CM (τ−1)

+ GI ∗ Cct (21)

H τ
= GO ∗ tanh(CM (τ )) (22)

Equations (17), (18), (19), (20), (21) and (22) denote the
LSTM’s recurrent computations and memory updates. The
parameter S i(τT ) denotes current input vector and σ states
sigmoid function. The weight vectors of various gates on both
input state and hidden state are denoted as I , ω respectively.
In this regard, the LSTM computes current memory state,
CM (τ ) from following computation, equation (23).

CM (τ )
= Gf ∗ CM (τ−1) (23)

The current memory state shall be calculated from forget
gate or input gate. The forget gate, Gf produces the values
between 0 and 1. Let take, completely forgotten previous
memory state as Gf− > 0 and completely passed previous
memory state as Gf− > 1.
The proposed PD data analysis principles (VAER,

K-Means, and LSTM) effectively utilize the complex PD
dataset. Firstly, K-Means and VAER networks generate an
effectively compressed dataset with lower dimensionality PD
features from the raw dataset. Thus, the proposed OHPAS
ensures both dimensionality reduction and effective clus-
tering using VAER/K-Means procedures. Secondly, LSTM
observes the deeply clustered dataset for initiating the training
process and tuning process. At the end, LSTM develops
an optimally trained recurrent learning model for analyzing
the multi-sensor data [48]–[50]. The proposed body sensor
system works with multiple sensors and in-memory DL pro-
cedures. As the part of decision support phase, the successive
PD reports and alerts assist the patient’s regularly during
their regular activities. A simple report panel delivers the
PD symptoms and early detection support to the patient.
The OHPAS uses reactive DL structures (VAER, K-Means,
and LSTM) that support quick PD detection and PD predic-
tion solutions. The real-time body sensor networks and the
DL-enabled computing environment ensure a patient-friendly
environment. The implementation details and experimental
setup of OHPAS are given in section 4.

IV. EXPERIMENTATION AND PERFORMANCE ANALYSIS
The experiment contains two phases such as input phase and
data processing phase. In the input phase, we collect body
sensors’ (accelerometer sensor, gyro sensor, ECG, EMG,
acoustic sensor and microphone) data in to processing mod-
ule [51], [52]. In the processing phase, we investigate the
datasets and process the sensor data using proposed DL
procedures. At the end, the PD reports are generated for
detecting the early stage symptoms of PD. Table 2 illus-
trates MC-10 accelerometer observations belong to the single
person at various time intervals. The values tabulated show
the input details of respective sensor. In this section, Pταi
denotes the observation time intervals, τ . Table 2 shows
accelerometer data as effective amplitude, ev(volts) and fre-
quency magnitudef . The tabulated values are considered as
mean values during observation time.
Similarly, Table 2 shows accelerometer’s movement coor-

dinates (points) in various dimensions (x axis, y axis and
z axis).
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Figure 4 and 5 show the data sequence of accelerometer
sensor at different time intervals. Figure 4 illustrates the
movement coordinates (x-axis, y-axis and z-axis). Figure 4
justifies the horizontal movements, vertical movements, and
third-dimensional movements are varying heavily due to ran-
domly observed muscle disturbances. The stress in the mus-
cles of the particular patient is compared with other people to
observe the stiffness based on the accelerometer coordinates.
Figure 5 illustrates the effective vibration amplitude (volts)
observed during various time intervals (seconds). At the same
time, it shows minimum and maximum points of biosignal
amplitude generated during the body movements.

In addition, the biosignal amplitude is a vital attribute to
record the muscle stiffness of any person.

Figure 5 shows the variation in effective amplitude due
to regular movements. This observation helps to identify the
minute electronic signal variations that happen during muscle
movements. Figure 6 shows the gyro sensor data sequences
varying over time intervals τ . Gyro sensor data is represented
using either angular velocity (degree/seconds) or vibration
amplitude, v. Gyro sensor values appeared in Figure 6 gives
the angular velocities with respect to axis based rotations
such as pitch, roll, and yaw. This shows the variations of
stress in angular measurements at p, r, y activities. Also,
Figure 6 shows the mean, maximum and minimum angular
velocities observed for a particular person. These values are
not common for person with disability and PD patients.

The angular velocities and the accelerometer coordinates
are crucially distorted when the movement is initiated by
the respective body part (hand, leg, and other parts). Sim-
ilarly, EMG sensor data is illustrated in Figure 7. It has
three pitches of measurement conditions. We have registered
the EMG observations at regular time intervals where the
people’s physical states like relaxation, flexion and semi-
flexion. The observations are represented in volts with respect
to observation time (seconds). EMG sensor data is illustrated
in Figure 7. It has three pitches of measurement conditions.
Compared to person with disability, PD patients are not active
during flexion states and suffered from tremored stress move-
ments. Similarly, the variations of EMG get uncertain fall and
hike for any PD patients. In this observation, EMG recordings
are noted for 2000 seconds against different states of each
people. Figure 7 illustrates the biosignals of a PD patient.
It is normal under relaxation and semi-flexion conditions.
However, EMG data varies abruptly during flexion states.

In this condition, a relaxed state indicates minimal muscle
movement. A semi-flexion state indicates moderate muscle
movements. Finally, the flexion state specifies completely
stretched muscle movements of a respective body part.
Figure 6 shows flexion state generates frequent amplitude
variations with a wide range of values for PD patients.

The collected values are initially classified in order to iden-
tify the similarities and deviations. In this regard, body sensor
values are manipulated with the help of the Kruskal-Wallis
Test. Particularly; MC-10-ECG data sequences of 50 people
are evaluated to construct basic sensor data groups. The

TABLE 2. Accelerometer sensor.

FIGURE 4. Movement observations using accelerometer sensor.

groups of values are manipulated using simple clinical
threshold variations and self-similarities. This practice takes
Heart Rate Variability (HRV) parameters. Table 3 shows
ECG data variations under Kruskal-Wallis testbed. This table
shows four groups of ECG data. They are normal values
(10), premature variations in values (10), predominant vari-
ations in values (15), and controlled values (15). This test
is a non-parametric test works based on standard ranking
strategies.

It compares the data values and computes the outputs
shown in table 3. This gives first-level data impression but
not accurate detection of PD categories.

Figure 8 shows the variations in sound pressure (dB) and
frequency (Hz) for different people. The acoustic parame-
ters illustrate the observations belong to normal, controlled,
premature, and predominant states. Frequency and decibels
are directly related to each other. However, Figure 8 notifies
the PD patients’ incompatible frequency distortions during
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FIGURE 5. Movement stress observations using accelerometer sensor.

higher pressure states. The variation is crucial compared to
normal and controlled states. The data gathered for 50 dif-
ferent people show crucial variations between sound pres-
sure and frequency at regular observation intervals (seconds).
Kruskal-Wallis test uses for baseline data manipulation and
similarity identification tasks. This test takes more time to
manipulate real-time senor values. Anyhow, the details of
sensor data need to be processed under a trained PD diagnosis
environment to ensure the exact symptoms of PD stages.

A. DETECTING AND PREDICTING THE SYMPTOMS OF PD
USING PROPOSED DC PRACTICES
The sensor data get placed inside the volatile memory of
the processor unit and grabbed for DL based PD diagnosis
process. As discussed in section 3, the proposed system
builds sensor data modeling techniques and deep clustering
techniques (VAER, K-Means, and LSTM) for detecting the
symptoms of PD. The data collected from different body
sensor patches need to be processed efficiently with the
help of a trained DL engine. This experiment uses sen-
sory observations to analyze the PD features and stages.
In this regard, this work collects the PD datasets from Uni-
fied Parkinson’s Disease Rating Scale (UPDRS) repositories
and clinical reports. Particularly, the datasets contain sound
recordings, acoustic features (replicated), tele monitoring
features, and other natural speech recordings. The collection
of the PD dataset comprises around 7500 instances with
relevant features.

The features of the dataset givemotor and nonmotor scores,
tremors, signal noise, distortions, people’s age, sex, and
observation classes. The online UPDRS dataset encompasses
the data collected from 425 people through different types of
experiments. This dataset contains both personwith disability
and PD patients (male and female). The dataset holds the
recordings of the age group between 30 and 90 of both
genders. However, the proposed system collects the biosen-
sor data, medical records, and clinical observations of PD
symptoms.

FIGURE 6. Gyro sensor data sequence.

FIGURE 7. Muscle activity observations using EMG sensor.

The clinical records collected from rural and urban gov-
ernment clinics (India) have 6800 instances of motor and
nonmotor data. As same as online dataset, these values cover
normal states and PD states. Additionally, the clinical data
holds 520 people on both states illustrated above. These
clinical data are collected from 21st March 2021 to June 2021
from various neurology centers of clinics. Unlike the UPDRS
dataset, the clinical datasets are restricted to research pur-
poses. These datasets are confidential to this PD analysis
research work. The integrated dataset has experienced col-
lections of various features. The dataset collected from both
UPDRS knowledge base and clinical sectors contain missed
data, noise and replications. Also, the total data instances
reach 14000 with multiple attributes. The huge size and dis-
concerting portions of raw dataset create additional overhead
during system training and learning steps. In this experi-
ment, VAER preprocesses the dataset to remove all data
irregularities and reduce the data dimensionality in to opti-
mal level. The data preprocessing phase include dimension
reduction, integration, cleaning and transformation (encoding
and decoding) tasks. As the loss rates LLSTM ,LCL impact
the outcomes of proposed mechanism, training the model
with minimal loss rate is an important task. Anyhow, the

VOLUME 10, 2022 63413



R. Soundararajan et al.: Deeply Trained Real-Time Body Sensor Networks

TABLE 3. ECG measurements with kruskal-wallis test.

FIGURE 8. UT-PF- acoustic measurements.

proposed VAER works to take deep data preprocessing
outcomes.

As discussed in section 3, VAER and K-Means work
together for building data quality management and data clus-
tering procedures respectively. Additionally, this phase main-
tains data regularization and new latent sample extractions
to increase the accuracy of disease classification procedures
executed by LSTM. Figure 9 and 10 give the benefit of using
VAERmodel over huge PD data collections. Figures 9 and 10
compare the efficiency of VAER based dimensionality reduc-
tion over varying instances of experimental dataset with
respect to nonlinear correlation factor, C . Many recent works
techniques such as Principle Component Analysis (PCA),
RF and Expectation Tree (ET), Missing Data Ratio (MDR)
and Forward Feature Reduction (FFR) etc. use the dimension-
ality reduction policies.

Among these techniques, PCA and RF/ET produce crucial
impact on dimensionality reduction over vast collection
of samples. However, these techniques are limited to data
linearity issues. PCA and RF/ET work notably for the

homogeneous or linear dataset sequences. On the other
hand, they are not effective under nonlinear correlations of
data items. The proposed system uses both online dataset
instances, biosensor datasets and clinical dataset instances
for practicing DL training process. The complex dataset and
the samples with nonlinear correlations affect the conven-
tional dimensionality reduction procedures. Consequently,
PCA and RF/ET perform equally comparing to VAER under
C = 0.1 conditions. Nevertheless they fall underC = 0.4 cir-
cumstance. VAER executes each data preprocessing phases
and data sampling tasks. Notably, VAER network reduces the
huge set of samples in to lower dimensions with the average
reduction rate between 65% to 72%.

On contrast, the VAER reduction rate is slightly oscil-
lated depends on sample nonlinearity issues irrespective to
number of samples. However, the performance of VAER
dominates other dimensionality reduction techniques under
uncertain data conditions. Thus VAER reduces the load of
huge data samples in to optimal rate rather than minimal
rate. The optimal dimensionality reduction rate of VAER is
5% to 10% higher than other systems. This is determined
as optimal reduction state. Particularly, VAER outperforms
other techniques for higher number of samples. Additionally,
this scheme works efficiently against varying sampling rates.
Generally, dimensionality reduction rate impacts clustering
loss and cluster computation time directly. VAER executes
latent space sampling process once the dimensionality reduc-
tion phase is completed.

This sampling process takes runtime samples from the
latent space to generate new values to increase the classifier
accuracy rate.

As given in Figure 11, the optimal range of dimension-
ality reduction rate falls between 0.6 and 0.75 that supports
better classifier performance with minimal time complexity.
This curve justifies the reduction of excessive data from
the knowledge base improves the performance of PD data
classifier. Yet, the required level of dimensionality reduction
rate increases accuracy till the optimal point. The next stage
gives the outcome of clustering process that engages both
VAER and K-Means techniques. The second phase of clus-
tering initiates the separation of data samples that are reduced
by VAER network. The data processed by VAER contains
optimal samples without noises, replications or missed data
point. Additionally, VAER produces regularized data items
as explained in section 3. At the same time, the data are
transformed and reconstructed with limited quantity of sam-
ples. Clustering of this effective dataset is not a complex
task for any standard clustering approach. In this regard, the
proposed system uses K-Means clustering approach. Even
though K-Means clustering technique is a conventional tech-
nique, it gives crucial outcomes with VAER’s deeply reduced
dataset. Similarly, K-Means reduces the time taken to create
clustered data points comparing to other complex clustering
techniques.

Figure 12 and 13 illustrate the clusters of data items such
as Harmony to Noise Ratio (HNR) and angular velocities
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FIGURE 9. VAER and dimensionality reduction C = 0.1.

FIGURE 10. VAER and dimensionality reduction C = 0.4.

obtained at the end of clustering task (VAER and K-Means).
These clustered values are generated from clinical samples
and sensor sample of experimental datasets. In the pro-
posed DC, both VAER and K-Means clustering mechanisms
work together to reduce the dimensionality and implement
the effective clustering respectively. K-Means clustering
approach is very simple to group the given data items. At the
same time, a simple K-Means algorithm is ineffective against
complex nonlinear datasets.

A conventional K-Means algorithm has limitations to
deal with huge datasets. On contrast, this simple cluster-
ing approach supports for new value generations to build
effective clusters. Additionally, K-Means clustering algo-
rithm produces optimal results when the dataset is effectively
reduced and preprocessed. In this situation, VAER takes
bulk nonlinear dataset (both clinical and online features) to
reduce the dimensionality features and transform the same
dataset. Figure 12 shows four clusters (normal, PD-Level 1,
PD-Level 2, PD Level 3) of people data respectively. In this

FIGURE 11. Performance relationship curve.

case, the higher PD level indicates more severity level.
Similarly, Figure 13 indicates five clusters such as normal,
PD-Level 1, PD-Level 2, PD Level 3 and PD-Level 4 orderly.
These are preprocessed data clusters obtained from proposed
VAER enabled K-Means technique. This clustered dataset is
used for training the LSTM layers. In addition, VAER gener-
ates newly taken samples from the latent space. The fusion
between VAER and K-Means works crucially to generate
effective data samples with reduced dimensionality features.
In the proposed work, this practice produces only little loss.
Figures 9, 10, and 11 are showing the impacts of VEAR
based dimensionality reduction process. Figure 12 and 13
provide the optimal clustering solutions. As illustrated in
Figure 12 and 13, HNR data points and gyro sensor data
points are neatly classified as the original dataset has been
effectively reduced.

In the next stage, LSTM helps to build PD evaluation
routines with the help of properly reduced and processed
knowledge base generated by VAER/K-Means techniques.
Consequently, both LSTM network and data clustering tech-
nique create minimal data loss during system training phases.
Figure 14 depicts the average clustering loss rate and network
loss rate with respect to increasing number of epochs.

As mentions in equation (8), (13) and (16), the clustering
loss and LSTM loss impact the system performance. How-
ever, this loss rate decreases gradually to the minimal rate
as the number of epochs attained the satisfaction level. This
states that the system reaches the optimal training phases with
minimal loss rate.

Figure 14 illustrates the reduction in loss rate over increas-
ing number of epoch (training iterations). The loss rate has
been reduced due to iterative recreation of effective samples
at VAER state and refining functions of LSTM engines.
According to the observations, the optimal number of epochs
required to attain minimal loss rate is 250. Thus the PD deci-
sion making system has been iteratively trained. Figure 15
shows the OHPAS training time related to number of epochs.
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FIGURE 12. Acoustic data features-HNR clusters.

As the number of epochs reaches 250, the system training
time falls to low optimal state. This indicates the successful
training completion of PD diagnosis system.

As a part of performance comparison, Figure 16 pro-
vides the precision levels of MVPDS, CPDS, SMPDS and
proposed system. Generally, the change in the number of
epochs directly proportional to system precision rate. The
system needs sufficient number of epochs to minimize the
decision error. In Figure 16, the precision rate of proposed
system varies from 76% to 99.7%. Initially, the precision
rate of all PD diagnosis models stays closely. However, the
continuous training process leads the system performances
in to crucial deviations. The existing systems MVPDS and
CPDS used CNN architectures for analyzing the symp-
toms of PD. Particularly, MVPDS and CPDS analyzed
linear acoustic distortions features effectively. Generally,
these techniques were implemented for diagnosing acous-
tic symptoms and MRI features. As number of epochs
increases, the training complexity increases with crucial
sample quantities. These crucial quantities of PD samples
contain both linear and nonlinear correlations with vast
distortions.

At this point, the proposed system effectively reduces irrel-
evant data points and observes effective samples for LSTM
layers. Thus the proposed OHPAS works with maximum
precision rate (99.7%) at the end (250 epochs). This rate is
approximately 10% higher than MVPDS and CPDS tech-
niques. On the other side, SMPDS provides conventional
data handling techniques and produce minimal precision rate
(74.9%). This comparison justifies the inability of existing
techniques in terms of nonlinear data handling functions, data
reduction functions and sample retuning functions.

Similarly, Figure 17 depicts the performance comparison
of existing systems and proposed OHPAS through PD classi-
fication accuracy (%). In this experiment, feature sampling
rate (0-1) varies from 0.1 to 1.0 to observe the growing
accuracy of PD detection systems.

FIGURE 13. Gyro sensor data features.

In this state, feature sampling rate denotes the fulfillment
of sampling process during various iterative practices. For
example, sampling rate 0.5 indicates the completion of 50%
in sampling process. The proficient sampling process gener-
ates sufficient number of related samples for increasing the
accuracy of classifier. In this regard, the proposed OHPAS
produces more significant sample points using VAER prac-
tices. Additionally, VAER uses newly generated runtime
samples for tuning the LSTM functions to attain better PD
detection accuracy rate.

The existing works were limited to nonlinear issues and
uncertain data point management. Similarly, the existing
systems were not finely implemented for organizing huge
dataset contents. In the absence of deeply trained dimen-
sionality reduction procedures, the existing systems produce
wide range of samples that are not optimal. Consequently,
this affects classifier accuracy rate. Thus the proposed system
attains good accuracy than other systems. Consequently, the
classification accuracy of proposed OHPAS reaches 99.8%
for successful sampling executions. At the same time, CPDS
and MVPDS attain 87.5% to 90% of accuracy which are
lesser than proposed OHPAS (99.8%). The difference in clas-
sification accuracy (10%-12%) is more crucial under real-
time PD diagnosis model.

Figure 18 gives the detailed comparisons related to system
specificity (%). Specificity shows the system performance
on detecting the people those are not having PD symptoms.
The existing systems and the proposed system are competing
closely during the early stages of sampling but deviated at
the end points. The proposed OHPAS maintains 99.8% of
specificity at the completion of sampling process. At the
same time, other systems produce the specificity rate between
77.1% and 87% at the end. Due to the limitations of dimen-
sionality handling procedures and deep clustering practices,
the existing systems lack to attain regulated data features
(samples). Thus the existing systems fall under expected
performance. In the same manner, Figure 19 delivers system
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FIGURE 14. Clustering loss and network loss.

FIGURE 15. Overall system training time.

response time with respect to observation time. Response
time is defined as the time taken between sensor data ini-
tialization moment and output generation moment. As this
proposed system works with real-time body sensor environ-
ment, the response time is considered as the crucial factor
for providing faster early detection solutions against the
symptoms of PD.

As given in Figure 19, the response time of each PD
analysis system is observed in milliseconds (msec) over the
increasing time durations. The observation periods shall be
considered as individual iteration. Each observation period
is changing from 15 seconds to 35 seconds depends on the
required sensor data points.

In this case, the average response time of existing tech-
niques are varying from 300 msec to 720 msec. The higher
response time of existing techniques justifies the overloaded
operations of PD symptom analysis techniques over the
dataset. Thus the techniques SMPDS, CPDS and MVPDS
take more time to create PD response comparing to OHPAS.

FIGURE 16. System precision.

FIGURE 17. Feature classification accuracy.

On contrast, the proposed OHPAS takes only 350 msec of
maximum response time. Comparing the response times of
various PD detection systems, CPDS uses CNN architectures
and OHPAS uses DC (VAER, K-Means, LSTM) architec-
tures for Input/output (IO) management. On the other hand,
SMPDS uses RF and SVM units for detecting the symptoms.
Nevertheless, SMPDS produces limited accuracy, precision,
and specificity rates. The difference between the proposed
OHPAS and other systems is not crucial. Though, the pro-
posed OHPAS gives better accuracy than other systems with
optimal response time.

The integration of LSTM and VAER predicts the sensor
data sequences in a time-series manner. Figure 20 shows the
multi-sensor data prediction during the forthcoming days.
Notably, this shows the coefficient of variation for each sen-
sor data sequence. In this experiment, the proposed system
produces the sensor data predictions for the next 10 days to
help the PD patients. This observation assists the patients to
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FIGURE 18. System specificity.

FIGURE 19. System response time.

know the abrupt variants in each body sensor data during
recent future times. The coefficient of variation for sensor
data prediction shall be defined as given in equation (24).

Cv =
d
m

(24)

Equation (24) denotes standard deviation as d and mean
value as m.

Similarly, finding system error is the best practice to retune
the system performance.

Table 4 gives RootMean Square Error (RMSE) for existing
system and proposed OHPAS. It shows the OHPAS produces
0.03 RMSE under one scale range. Others generate RMSE
in the range between 0.18 to 0.23, which affects the system
quality in PD detection and prediction tests. The detailed
experiment and observations describe the competitive and
reactive performance of proposedOHPAS comparing to other
existing systems.

FIGURE 20. Day wise multi-sensor data predictions.

TABLE 4. RMSE.

TABLE 5. Patient-care experimental solutions.

From the deep analysis of PD symptoms using body sensor
networks, the improved data prediction quality and treatment
quality are assured during the actual practical cases of PD.
In this regard, Figure 20 illustrates the prediction sequence
of body sensor networks. The forecasted sensor data streams
help the patient to get early treatment sessions. At the same
time, the doctors can easily observe either severity or degra-
dation of PD stages from the observed sensor data. Table 5
describes the significance of proposed OHPAS against the
actual PD cases.

As mentioned in Table 5, the actual testbed examines
10 patients at different ages. Each patient’s sensor coefficient
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TABLE 6. Affected body portions.

of variation (CoV) is the major factor for understanding the
current PD severities. In order to monitor the stages of PD
symptoms, each patient is monitored with the help of body
sensor patches for varying time durations. The monitoring
period for each patient vary from 13 days to 32 days according
to the observation of optimal CoV. Consequently, the stages
are classified by doctor panel.

In this experiment, stage 1 denotes early state of PD symp-
toms. To prove the essentials of proposed system, Table 6
shows the affected portions and acoustic distortions of each
patient. As a continuation of stage-wise observations, the
exact affected portions are recognized as either left side
movements or right side movements using MC-10 patches.
At the same time, MC-1500 and UT-PF sensors are used to
observe shaky acoustic cases to ensure the PD symptoms.
In this regard, the lower number represents early stage of
acoustic shaky conditions.

On the basis of actual medical experiments, we justify
the proposed OHPAS optimally detects the symptoms of PD
with better accuracy rate at minimal response time. As given
in Table 6, the OHPAS response time is varying between
200 msec and 346 msec. The live PDS monitoring and assist-
ing framework has been ensured by the proposed OHPAS
comparing to other diagnosis solutions.

V. CONCLUSION
The clinical tests against growing PD need an accurate
computer-based diagnosis system to support the patients’
life. Under this critical stand, ML and DL-based PD diag-
nosis solutions help the patients. Recent research works ini-
tiated the practices of deep PD symptoms analysis, early
PD detection model, body sensor experiments, and artifi-
cial diagnosis techniques. However, the existing techniques
found difficulty in PD data processing phases, irrelevant
data reduction, and effective symptoms monitoring practices.
In this regard, the proposed system developed OHPAS for
implementing effective symptoms monitoring and patient
assisting environment using deeply trained IoT-based body
sensor networks. The proposed system enabled multiple
body sensor patches that communicate with data processing

modules to produce instance responses to the patients. This
system planted multiple body sensor patches on human skin.
These sensor data sequences were collected and processed
with the help of VAER, K-Means clustering, and LSTM
techniques to extract the PD symptoms as early as possi-
ble. Notably, LSTM-assisted PD analysis model was used to
process multi-sensor data streams under live conditions. The
proposed technique detected the current PD symptoms and
predicted the future symptoms using effective multi-sensor
time series analysis models. The deeply trained PD moni-
toring environment assisted the patients against the symp-
toms of PD in real-time. The results shown the proposed
OHPAS performed significantly than other existing systems.
However, this proposed work has platform-level difficulties
and product-level limitations. The hardware components and
deployment difficulties should be improved in the future.
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