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ABSTRACT This paper proposes a relatively new optimization algorithm namely the Turbulent Flow
Water-Based Optimization (TFWO) to find the optimal size of a hybrid isolated microgrid generation.
Moreover, validation of the proposed algorithm is proved through a comprehensive comparison with three
robust performance and fast convergence algorithms which are the Harris Hawks Optimization (HHO),
Whale Optimization Algorithm (WOA) and Jellyfish Search Optimizer (JSO). Two topologies with different
renewable sources were considered in studying which are based on the meteorological data of the Zafarana
area, a site located on the eastern coast of Egypt. The study minimizes the annual system cost (ASC) and
CO2 emissions of the proposed hybrid system while considering the following constraints: Loss of Power
Supply Probability (LPSP), Fraction Renewable (FR) and System Excess Energy Ratio (EER). Violation
of constraints is penalized by including a penalty factor into the objective function that varies according to
the amount of the violation. Moreover, a sensitivity study is presented at the end of the paper through Load
variation, irradiance variation, wind speed variation, and diesel generator efficiency decreasing. Results show
not only the robustness and the fast convergence of the TFWO algorithm but also its ability to minimize the
annual system cost and emission costs to values better than the aforementioned optimization techniques.

INDEX TERMS EER, HHO, hybrid microgrid, optimal sizing, TFWO, hybrid renewable energy system,
LPSP, penalty factor, renewable fraction, JSO, WOA.

I. INTRODUCTION
Most of world’s energy production comes from fossil fuels,
which have many environmental drawbacks such as green-
house gas emissions and global warming [1], [2]. Moreover,
the steady population growth and industrial developments
lead to a continuous increase in energy demand, even in small
cities and rural areas. A Diesel Generator (DG) can be used
as a single source in these rural or isolated areas, however
some problems still exist such as environmental drawbacks,
fuel unavailability, fuel global price fluctuations, and lack of
system controllability and flexibility [3]. Regarding the fact
that fossil fuels are vulnerable to rapid depletion; Renewable
energy systems are the best solution out there. But due to
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the stochastic intermittent nature of renewable energy sources
(solar, wind), energy storage systems (ESS) are incorpo-
rated such as batteries [4]. Such a system with multiple
distributed generators (Photovoltaic cells, Wind turbines, and
DG), energy storage systems (ESS) and a cluster of loads is
defined as a microgrid [5]–[7]. Microgrids can be either grid-
connected or isolated (off-grid).

A proper planning and sizing of Hybrid Renewable Energy
System (HRES) is essential for secure, reliable, and economic
operation of microgrids [8]. This makes the optimal sizing
of the HRES to be a multi-objective optimization problem
which comprises a group of objectives such as minimizing
the cost, CO2 emission, excess energy while maximizing
the system reliability [9]. Two optimization approaches were
widely used to solve the sizing of theHRES problem, the clas-
sical (conventional) approach and meta-heuristic approach.
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Examples of classical optimization methods suggested in
literature are Liner Programing, Dynamic Programing, and
Iterative Optimization. Authors of [10] used the linear pro-
gramming technique for minimizing the energy cost of sys-
tem with different renewable energy sources. Also, authors
of [11] implemented the linear programming approach in
MATLAB software to find the optimal size considering the
initial cost of a Wind/PV/micro-hydro hybrid system. More-
over, results were validated through a comparison with other
numerical iterative methods. While, the dynamic program-
ming method is presented in [12] to optimally manage the
energy of an island microgrid comprising a PV system,
DG and battery energy storage system considering the oper-
ation cost and emissions as objectives.

Furthermore, an iterative optimization method is used
in [13] to optimize the size of a WIND system, photo-
voltaic (PV) system, and a hybrid WIND/PV system. Also,
an enumeration-based iterative optimization algorithm used
a single-objective optimal sizing approach for an islanded
microgrid in [14]. This approach determines the optimal
components size (NPV, NWind, . . . ) for the hybrid microgrid,
such that the total net present cost (TNPC) is minimized,
while ensuring a low loss of power supply probability (LPSP).
Moreover, a new iterative optimization, which is named iter-
ative filter selection approach is introduced in [15] to find the
optimal size of a PV/Wind/Battery hybrid renewable system
while minimizing the total cost and maximizing the system
reliability, then the results are compared to those obtained
by Iterative-Pareto-fuzzy technique proving the superiority of
the proposed approach.

Although the conventional optimization methods are
used to find the optimal size of hybrid microgrids, they
are not always appropriate for complex nonlinear sys-
tems. Therefore, the majority of recent researches consider
Meta-heuristic optimization algorithms. Moreover, the Meta-
heuristic optimization algorithms show better results when
handling both single and multiple objective functions for
optimally sizing a hybrid renewable microgrid. when a mul-
tiple objective function is proposed, multiple solutions can
be found which are tradeoffs between these objectives and
are called Pareto optimal solution. While in single objective
function problems, the optimization technique is aiming to
minimize or maximize a single objective function and a single
optimal solution may be found.

With the rapid development of multi-objective evolution-
ary algorithms, many researches used them in finding the
optimal size of HRES. In [16]–[18] a multi-objective genetic
algorithm (GA) was used for sizing a HRES. The optimiza-
tion aimed to minimize costs of the system (ASC, TNPC,
and COE). While Authors of [19] used the non-dominated
sorting genetic algorithm (NSGA-II) to optimize the HERS
with the goal of minimizing the total system cost and
Greenhouse gas emissions during the life cycle. Moreover,
in [20], [21] NSGA-II was used with two objectives; the eco-
nomic objective that minimizes the system total cost and the
performance objective which maximizes system reliability.

Another evolutionary algorithm; Particle Swarm Optimiza-
tion (PSO) was used in [22], [23] to design a HRES. The
Annual Capital Cost and the Cost of Energy (COE) were
used as a single key objective for HRES sizing optimization.
Furthermore, an improved PSOwas introduced in [24] to find
the optimal size of a hybrid PV-WIND-BATTERY system.
The results of the system optimization were evaluated using
an economic indicator; the levelized cost of electricity (LCE).
Moreover, a hybrid GA-PSO method was proposed in [25]
to find the optimal size of a hybrid microgrid using a single
objective function.

In [26]–[29] cuckoo search algorithm (CSA), which is
based on the brood reproductive strategy of cuckoo birds,
was used to solve a single objective cost function. While,
the reliability constraint Loss of Energy Probability (LOEP)
and Loss of Power Supply Probability (LPSP) were used
as a principle constraint. Also the social spider optimizer
(SSO) was used in [30] to determine the optimal size of a
hybrid renewable energy system (HRES), in which the cost
of energy (COE) was proposed as a fitness function. while
considering the LPSP as a constraint. While [31], [32] stud-
ies the effectiveness of the Grasshopper Optimization Algo-
rithm (GOA) in the microgrid sizing problem against (PSO),
(APSO), cuckoo search algorithm (CSA) and biogeography
based optimization (BBO) algorithms.

In [33] a comparison and evaluation of the performance
of various heuristic algorithms [(PSO), (GA), Salp Swarm
algorithm (SSA) and GreyWolf optimizer algorithm (GWO)]
in sizing of a PV/WT/DG/battery hybrid systems were intro-
duced based on a single objective function, the Total Annual
Cost (TAC). The artificial bee colony (ABC) algorithm was
implemented in [34], [35] to find the optimal configuration
of a HRES, with the main decision variables selected to find
the minimum costs (annual system cost ASC or Net Present
Cost NPC). In [36] four optimization algorithms namely:
BAT Algorithm (BA), Cuckoo Search Algorithm (CSA),
Firefly Algorithm (FA), and Flower Pollination Algorithm
(FP), were proposed to minimize the Life Cycle Cost (LCC)
while considering (LPSP) as a constraint. Furthermore,
authors of [37] minimize the Net Present Cost (NPC) using
the Invasive Weed Optimization (IWO) and Particle Swarm
Optimization (PSO). Also, the intelligent flower pollination
algorithm (FPA) was implemented in MATLAB program
in [38] to optimally size a microgrid considering the total
net present cost (NPC) as the objective function and both
the loss of energy expected (LOEE) and the loss of load
expected (LOLE) as constraints.

While a Firefly Algorithm (FA) was adopted in [39], [40]
to find the optimal sizing and rating of an island hybrid
microgrid minimizing the costs NPC and operational cost
of the suggested system. Also in [41], the dragonfly (DF)
and firefly algorithm (FA) were used to find the minimum
operating cost of micro grid both in grid connected mode
and island mode. Dolphin echolocation algorithm (DEA) was
introduced in [42] for sizing a photovoltaic system with the
system’s NPC correspondingly optimized. The DEA results
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showed better elapsed time and net present value compared
to Firefly Algorithm (FA) and Cuckoo search algorithm
(CA). Moreover, recent algorithms named Chimp Optimiza-
tion Algorithm (ChOA), Tunicate Swarm Algorithm (TSA),
and Oppositional Runner Root Algorithm (ORRA) were used
in [43]–[45], respectively to solve the sizing problem of a
HERS using cost based objective function. In [46] novel
optimization algorithms namely, Whale Optimization Algo-
rithm (WOA), Water Cycle Algorithm (WCA), Moth-Flame
Optimizer (MFO), and Hybrid particle swarm-gravitational
search algorithm (PSOGSA) were applied for sizing hybrid
microgrids.

The main idea of this paper is to propose the state of
art of HERS optimization by applying recent optimiza-
tion algorithms which guarantee the highest reliability, least
environmental impact, and economical costs (capital and
operational). The main contributions of this paper can be
summarized as follows:

1. A recent optimization algorithm called Turbulent Flow
Water-Based Optimization (TFWO) is proposed for
the first time to find the optimal size of an isolated
PV/WIND/DG/Battery hybrid microgrids.

2. A comprehensive comparison between the results of
the proposed TFWO algorithm and three recent opti-
mizations techniques the Harris Hawks Optimization
(HHO), Whale Optimization Algorithm (WOA) and
Jellyfish Search Optimizer (JSO) is introduced and
evaluated.

3. The optimal sizing problem minimizes the annual sys-
tem cost (ASC) of the proposed hybrid microgrid and
CO2 system emissions while considering the following
three constraints: Loss of Power Supply Probability
(LPSP), Fraction Renewable (FR) and Excess Energy
Ratio (EER).

4. LPSP, FR, and EER constraints are incorporated into
the objective function as a penalty factors to ensure all
solutions are within the constraint limits.

5. A case study based on meteorological data of Zafarana
site located on eastern costal of Egypt has been pre-
sented, with a comprehensive sensitivity analysis.

This paper is organized as follows: section I is the intro-
duction and literature review. Section II introduces mathe-
matical model of the microgrid system components. The
problem formulation, optimization objectives and constraints
are presented in section III. The proposed optimization algo-
rithms are discussed in Section IV. Moreover, section V
introduces the two different topology case studies. Optimiza-
tion results, comparisons and discussions are summarized in
Section VI. Sensitivity analysis for bothMicrogrid topologies
are introduced in section VII. Finally, Section VIII is the
conclusion.

II. MATHEMATICAL MODEL OF THE MICROGRID
COMPONENTS
The Proposed micro-grid is composed of solar Photo-
voltaic (PV), wind turbines (WT), diesel generator (DG),

BESS (batteries) and AC loads as shown in FIGURE 1. The
DG and loads are connected to the AC bus, while the PV,
WT, and the BESS are connected to the DC bus. An inverter
is connected between the DC and AC bus. The equations
describing the performance of each source are presented in
the following subsections.

FIGURE 1. The configuration of proposed Microgrid.

A. PHOTOVOLTAIC (PV) SYSTEM
The energy supplied by the proposed PV system can be
calculated as a function of solar irradiance and ambient tem-
perature using equation (1) [3], [36]–[39], [47], [48]:

PPV (t)= NPVηPVPPVrated

G (t)
Gnorm

(1− βT (TC (t)− Tnorm))

(1)

where NPV is the number PV panels in the microgrid,
PPVrated is the rated power of the PV panel at standard oper-
ating conditions (Gnorm = 1000W/m2 and Tnorm = 25◦C),
ηPV is conversion efficiency of the PV panels, G (t)
is the solar radiation intensity at any time t, Gnorm is
the intensity of solar radiation under standard conditions,
βT is the temperature coefficient of power of the selected
PV panel, Tnorm is the cell temperature under standard
conditions of operation, and TC (t) is the cell temperature
which can be mathematically formulated as in equation (2)
[3], [46]–[48]:

Tc (t) = Tamb (t)+
G (t)
800
× (T noc − 20) (2)

where Tnoc is the normal cell operating temperature, and
Tamb (t) is the ambient temperature in ◦C. Eq. (2) can be
simplified as shown in equation (3) [23], [31], [33]:

Tc (t) = Tamb (t)+ 0.0254× G (t) (3)

B. WIND TURBINE SYSTEM
Based on the basics of aerodynamics and wind energy,
the power generated from the wind turbine at a certain
wind speed can be mathematically expressed as the following
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equation [46], [49], [50]:

Pwind (t)

=



0, v (t) < vcut_in, v (t) > vcut_off

NwtηwtPwtrated
v2 (t)− v2cut_in
v2rated − v

2
cut_in

,

vcut_in < v (t) < vrated
NwtηwtPwtrated ,

vrated < v (t) < vcut_off

(4)

where Pwtrated is the wind turbine rated power, Nwt is the
number of wind turbines, ηwt is the efficiency of the wind
system, vcut_inis the wind speed at which the turbine starts
to operate. While, vcut_off is the wind speed after which the
wind turbine must be shut down for safety reasons. Finally,
vrated is the wind speed at rated power. Taking into consid-
erations that wind speed varies with height, so wind speed
at various elevation can be calculated using the expression in
equation (5) [46], [50]:

v = vref (
h
href

)
α

(5)

where vref is wind speed at reference height href and α is the
friction coefficient that usually has a value between 0.14 and
0.25 [1], [38], [39], [46].

C. DIESEL GENERATOR (DG)
The DG is employed in the isolated micro-grid as a secondary
power supply in case of battery depletion and/or peak load.
For acceptable efficiency level, lightly loaded or unloaded
operation of DG should be avoided [46], [51]. Moreover, the
optimum operating range for the individual DG is taken to be
above 30% to 100% of its rated power [11]. The hourly fuel
consumption of DG can be calculated using the formula in
equation (6) [30], [31], [46]:

F (t) = 0.246× PDG (t)+ 0.08415× PDG_rated (6)

where PDG (t) is the DG power at instant t, and PDG_rated is
the rated power of DG.

D. BATTERY ENERGY STORAGE SYSTEM (BESS)
The battery bank, which is a lead-acid type in this study,
is used to store surplus generated energy when production
exceeds consumption and to keep a constant flow of power
to the desired load during shortage periods of renewable
sources. One of the important parameters defining the resid-
ual capacity state of the battery bank is the state of charge
(SOC). The state of charge (SOC) can be calculated as in
equation (7):

SOC (t) =
C(t)
Ctotal

(7)

where, C(t) is the BESS capacity at each instant and Ctotal
is the total capacity. Moreover, at the moment t, the stage
of charge SOC (t) is related to the previous stage of charge
SOC (t − 1) according to equation (8) and (9) [31], [37], [51].

– In case of charging:

SOC (t) = SOC (t − 1)× (1− σ)

+ ηbatt

[
Ppv (t)+ Pwind (t)−

Pload (t)
ηinv

]
×1t

(8)

– In case of discharging:

SOC (t) = SOC (t − 1)× (1− σ)

+ ηbatt

[
Pload (t)
ηinv

− P
pv
(t)− Pwind (t)

]
×1t

(9)

where σ , ηbatt and ηinv are self-discharge rate, battery effi-
ciency and inverter efficiency respectively.

III. CONTROL STRATEGY
In this section control strategy, objective function and the
constraints will be presented in details to achieve economic
supply of energy.

A. CONTROL STRATEGY OF MICROGRID OPERATION
Due to the unpredictable nature of renewable resources, suit-
able control strategy should be considered to supply the load
at different weather conditions and different times of the
day. The control strategy considered in our study can be
summarized as:

1. When the renewable energy is equal or larger than the
load the DG will not operate and the power difference
can be presented as in equation (10):

1P = (Ppv (t)+ Pwind (t))− Pload (t) /ηinv (10)

Moreover, based on the SOC of the battery we have
three situations:
– If 1P equals zero the battery will neither charged

nor discharged.
– If 1P is than zero and the battery is not fully

charged, the surplus energy will charge the battery.
– If 1Pis greater than zero and the battery is fully

charged the system will suffer from excess energy.
2. On the other hand if the renewable energy is less than

the load, then the batteries will discharge and recom-
pense the power difference (1P) as in equation (11).

Ebatt (t) = |1p| ×1t (11)

3. But if the batteries cannot compensate for the whole
power difference, then the DG will operate one of the
following states:
– If the shortage of the energy is less than the min-

imum DG power[PDGmin], then the DG will com-
pensate the whole power difference and charge the
batteries as in equation (12).

EDGmin (t)
ηinv

= |1p| ×1t + Ebatt (t) (12)
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– If the shortage of the energy is more than the
minimumDGpower [PDGmin], then theDG and the
batteries will act together to compensate the whole
power difference according to equations (13),(14)
of batteries as follows:

|1p| ×1t = Ebatt (t)+
EDGmin (t)
ηinv

, where

Ebatt (t)+
EDGmin (t)
ηinv

≥ |1p| ×1t

(13)

|1p| ×1t = Ebatt (t)+
EDG (t)
ηinv

, where

Ebatt (t)+
EDGmin (t)
ηinv

< |1p| ×1t

(14)

Moreover, FIGURE 2 presents the flow chart of the system
under different renewable energy operation modes.

FIGURE 2. Flowchart of the proposed control strategy of Microgrid.

B. OBJECTIVE FUNCTION
The objective function is chosen to minimize the annual cost
of system (ACS) considering the CO2 emission and the fuel
cost. It comprises the initial investment cost and the operating
payments throughout the life time of installation. For this
study, the lifetime of components is taken to be 20 years,
while the BESS life time is taken to be 10 years.

The annual system cost (ASC) is considered as shown in
equation (15) [46], [47]:

ASC = ACC + ARC + AOM + AFC + AEC (15)

where ACC is the annual capital cost, ARC is the annual
replacement cost, (AOM ) is the annual operation and main-
tenance cost, (AFC) is the annual fuel cost, and (AEC) is the
annual emission cost. And each of this costs will be presented
in detail.

1. Annual capital cost (ACC) can be calculated by
equation (16) [46]:

ACC = ACCPV + ACCwind + ACCDG + ACCBatt

+ACC Invert. (16)

where ACCPV , ACCwind , ACCDG, ACCBatt , and
ACC Invert. are the installation annual capital cost of
the PV system, wind system, DG, battery bank, and
inverter, respectively. The annual capital cost for each
component can be calculated using equation (17), (18)
[34], [37], [46], [47].

ACC = CRF (ir , y)× Ccapital
(17)

in which, CRF (ir , y) =
ir× (1+ ir )y

(1+ ir )y − 1
(18)

where Ccapital is the capital cost, CRF is the capital
recovery factor which is a ratio used to calculate the
present value of an annuity (a series of equal annual
cash flows) [47], y is the project lifetime in years and
ir is the real interest rate (or called real discount rate).

2. The ARC annual replacement cost for each component
is the annual preset value of replacement cost of the
hybrid system components within the system lifetime
and can be calculated using equations (19),(20).

ARC = SFF
(
ir , yrep

)
×Creplacement (19)

in which, SFF
(
ir , yrep

)
=

ir
(1+ ir )yrep − 1

(20)

where Creplacement is the component replacement cost,
SFF is the sink fund factor which is a ratio used to
calculate the future value of a series of equal annual
cash flows, yrep is the component lifetime in years and
ir is the real interest rate.

3. The AOM annual operation and maintenance cost can
be calculated as a percentage of the capital cost of the
component divided by the project lifetime y. This value
is specific to each component model.

4. The AFC annual fuel cost of DG can be calculated as
in equation (21) [12], [47].

AFC = CF
8760∑
t=1

F (t) (21)
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where CF is the fuel cost per liters and F (t) is
the hourly fuel consumption of DG presented by
equation (6).

5. The AEC annual CO2 emission cost is calculated as in
equation (22) [12], [47].

AEC =
8760∑
t=1

Ef EfcPDG (t)
1000

(22)

where Ef is the emission factor of DG ( 7.09 × 10−4

tons CO2/kWh [52]), Efc is the emission cost factor and
PDG (t) is the diesel power at instant (t).

C. OPTIMIZATION CONSTRAINTS
1) THE OPERATION CONSTRAINTS
The number of PV panels (NPV), number of wind turbines
(NWIND), BESS capacity (CBatt in Watt), BESS SOC, and
DG rated power (PR_DG in Watt) are constrained by mini-
mum and maximum values as shown in equations (23-27).
Furthermore, the balance between the generation and load
demand power is considered as another operation constraint,
as in equation (28) [12], [47].

NPV = integer, 0 < NPV ≤ NPV_MAX (23)

NWind = integer, 0 < NWind ≤ NWind_MAX (24)

CBatt in watt, 0 < CBatt ≤ CBatt_MAX

(25)

SOCmin. ≤ SOC (t) ≤ SOCmax. (26)

PDG_min. ≤ PDG (t) ≤ PLoad_peak (27)

Pload (t) = Ppv (t)+ Pwind (t)+ Pbatt (t)+ PDG (t)

(28)

2) LOSS OF POWER SUPPLY PROBABILITY (LPSP)
Another constraint considered in our study is the LPSP
defined as the probability of insufficient operation of the
power supply when the isolated hybrid renewable system
fails to satisfy the demand for energy [46]. The value of
LPSP is in range [0, 1] and can be obtained according to
equations (29), (30) [25], [51]:

LPSP =

∑8760
t=1 LPS(t)∑8760
t=1 Pload (t)

(29)

LPS (t) = Pload (t)− [Ppv (t)+ Pwind (t)+ Pbatt (t)

+PDG (t)] (30)

where LPS (t) is the loss of power supply each hour and
Pload (t) is the load demand. The value of LPSP has to be
less than a predefined reliability index βL which is taken to be
zero in our study to ensure a 100% reliable system [46], [49].
If the LPSP exceeds this value a penalty term in the objective
function will force the optimization algorithm to consider this
solution infeasible.

3) EXCESS ENERGY RATIO (EER)
The excess energy ratio can be calculated by dividing the
excess renewable energy by the total energy production as in
equations (31-32)

EER =

∑
Eexcess∑

Epv +
∑
Ewind +

∑
EDG

(31)

Eexcess (t) = [Ppv (t)+ Pwind (t)− Pbatt (t)− Pload (t)]

×1t (32)

In our study the excess energy ratio is forced to be zero by
applying a penalty term in the objective function that will
force the optimization algorithm to consider any solutionwith
an EER value other than zero to be infeasible.

4) RENEWABLE FRACTION (RF)
RF is calculated to indicate the amount of renewable power
generated to DG power generated; the objective is to min-
imize diesel output which in case will minimize opera-
tion cost and CO2 emissions. RF can be calculated using
equation (33) [22], [51], [59]:

RF =
(
1−

∑
PDG∑

(Ppv + Pwind )

)
× 100 (33)

where
∑

(Ppv + Pwind ) represents the annual total generated
renewable power and

∑
PDG is the annual total diesel genera-

tor power. The value of RF has to be greater than a predefined
value which is taken to be 70% in our study. If the RF violates
this constraint, a penalty term in the objective function will
force the optimization algorithm to consider this solution
infeasible.

IV. TURBULENT FLOW OF WATER-BASED
OPTIMIZATION (TFWO)
TFWO is a metaheuristic algorithm inspired from whirlpools
created in water turbulences where the water forms helical
paths due to the force of gravity leading to the formation of
a whirlpool. The center of whirlpool acts as a sucking hole,
and draws the objects around it by effect of centripetal force.
The TFWO main steps are presented in FIGURE 3 and can
be summarized as follows [57]:
• The initialization phase: The initial search agent popula-
tion (XO) is divided equally into NWh whirlpool groups.
Then the search agent with the best fitness function in
each group is identified as the central whirlpool.

• Phase ONE: In this phase the central whirlpool in each
group is trying to unify the position of all the search
agents to its position Zj. Therefore, any ith search agent
make an angle δi with the central whirlpool, this angle
will be changed to simulate plunging into the central
whirlpool. The new value of this angle δnewi can be
calculated according to equation (34).

δnewi = δi + π ∗ rand1 ∗ rand2 (34)

where rand1 and rand2 are random numbers between
[0,1] and δi represents the search agent angle with its
whirlpool group center.
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Moreover, whirlpools in the other groups can also
change the position of the search agents in whirlpool
group j. Therefore, the search agent position under the
influence of these effects will be updated to a new posi-
tion Xnewi according to equation (35).

Xnewi = Zj −1X i (35)

where Zj is the position of whirlpool group j center and
1X i is the search agent position displacement which is
calculated by equation (36).

1X i = (cos
(
δnewi

)
∗ rand (1,D) ∗

(
Zf − Xi

)
− sin

(
δnewi

)
∗ rand (1,D) ∗ (Zw − Xi))

∗
(
1+

∣∣cos (δnewi
)
− sin

(
δnewi

)∣∣) (36)

where δnewi is the new search agent angle with its
whirlpool center, D represents the number of optimiza-
tion variables, Zw and Zf are the most and least weighted
distance (WDt ) for all search agents respectively and
calculated by equation (37).

WDt = f (Zt) ∗

√∣∣∣Zt −∑Xi
∣∣∣) (37)

where Zt and f (Z t ) is the position and fitness function of
search agent t which is tested to find the most and least
weighted distance (WDt ) to the current search agent i.

• Phase TWO (The exploration phase): The centrifugal
force that counteracts the centripetal force of the moving
objects tries to take them away from the whirlpool group
center. If the centrifugal force (CFi) can overcome the
centripetal force, it will randomly move the search agent
to a new position along one randomly chosen direc-
tion. The centrifugal force is calculated according to
equation (38), then it is compared to a random number
which has a uniform distribution in the range [0, 1].
If CFi is greater than this random number, an opti-
mization variable (p) is chosen randomly according to
equation (39). The value of this selected optimization
variable (p) is changed randomly to a new value, and
then, the new position of the search agent in p-dimension
can be calculated according to equation (40).

CF i =
((
cos

(
δnewi

))2
∗
(
sin
(
δnewi

))2)2 (38)

p = round(1+ rand ∗ (D− 1)) (39)

xi,p = xminp + rand ∗ (x
max
p − xminp ) (40)

• Phase THREE: The interactions between the central
whirlpools can also change their position i.e. the central
whirlpool in each group is trying to unify the position
of other central whirlpools to its position Zj. Therefore,
any jth central whirlpool have an angle δj, this angle
will be changed to simulate plunging into other central
whirlpools. The new value of this angle δnewj can be
calculated according to equation (41).

δnewj = δj + π ∗ rand1 ∗ rand2 (41)

where rand1 and rand2 are random numbers between
[0,1] and δj represents the central whirlpool angle.
The central whirlpool j position will be updated to a new
position Znewi according to equation (42).

Znewj = Zf −1Z j (42)

where 1Z i is the central whirlpool position displace-
ment which is calculated by equation (43).

1Z j = rand (1,D) ∗
(
Zf − Zj

)
∗

∣∣∣cos (δnewj

)
+ sin

(
δnewj

)∣∣∣) (43)

where δnewj is the new central whirlpool angle, D rep-
resents the number of optimization variables, and Zf is
the minimum weighted distance (WDt ) to all whirlpools
and is calculated using equation (44).

WDt = f (Zt) ∗
∣∣∣Zt −∑Zj

∣∣∣) (44)

where Zt and f (Z t ) is the position and fitness function
of search agent t which is tested to find the minimum
weighted distance (WDt ) to the current search agent i.

• Phase FOUR: The fitness function for all search agents
and all Central whirlpools are recalculated based on the
new positions. The search agents with the best fitness
function among the whirlpool group is changed to be
the group central whirlpool. A flow chart of TFWO
algorithm is shown in FIGURE 3.

V. CASE STUDY
In order to demonstrate the validity and robustness of the pro-
posed algorithm, results will be compared with other recent
optimization techniques used in previous literature which
are WAO, JSO, HHO. Our study considers two case studies
with the same meteorological data (Zafrana, Egypt) and same
power load profile, but with different generation sources. The
first case Study considers an isolated micro-grid consisting of
PV cells, Diesel generator (DG), and Battery Storage System
(BESS), while the second study adds Wind turbines to the
isolated micro-grid structure given in case study 1.
Zafrana (Lat. 29.115, Long. 32.658) is a coastal area in

Egypt which is located on the western coast of the Red Sea,
it is 200 km to the south east of Cairo city. Zafrana enjoys the
brightness of the sun most days of the year and the average
wind speed throughout the year is 8m/s. Moreover, two power
load profiles are used in this study, one for summer days and
one for winter days as shown in FIGURE 4 (a) and 4 (b)
respectively. The hourly and monthly average solar irradi-
ation is presented in FIGURE 5 [58]. While, FIGURE 6
presents the yearly wind speed average monthly wind speed
for the selected area. Finally, the technical specifications and
costs of the hybrid micro-grid system components are listed
in TABLE 1.

VI. RESULTS AND DISCUSSION
The code of the proposed optimization techniques is imple-
mented in MATLAB software package on PC processor
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FIGURE 3. Flowchart of TFWO optimization algorithm.

Intel Core i5-1035G1 CPU@1.00GHz-1.19 GHz - 8.0 GB
RAM. The optimization techniques are proposed with multi-
ple objective function to minimize the ASC and CO2 emis-
sions based on the hourly available data. Furthermore, the
Environmental constraint RF and the reliability constraints
LPSP and EER are imposed on the objective function as
a penalty term. The maximum number of iterations was
set to 50 iterations and the optimization will be executed
20 times, for each run the best objective function (min. ASC)
and the time of optimization per run will be stored. The
average objective function, the standard deviation, and the
average running time are calculated for the proposed TFWO
and will be compared with HHO, JSO, andWOA techniques.

TABLE 1. Case technical specifications and costs of the hybrid micro-grid
system components agents.

FIGURE 4. Hourly load demand (a) Summer day (b) Winter day.

FIGURE 5. (a) Hourly solar irradiation data random day. (b) Average
monthly irradiation data.

A. RESULTS OF CASE STUDY 1
In this case PV/DG/BESS hybrid microgrid is consid-
ered. TABLE 2 shows the optimization results of the pre-
sented algorithms (HHO, JSO, WOA, and TFWO) based on
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FIGURE 6. (a) Hourly Wind Speed in random day. (b) Average monthly
Wind Speed (at 10 m).

TABLE 2. Case study 1 optimization results based on 50 search agents.

FIGURE 7. Convergence curves of optimization of proposed algorithms.

50 iteration and 50 search agents. Results show that minimum
ASC (best fitness) is obtained by TFWO algorithm and is
equal to 82789.1$ with the best standard deviation of 108.4$.
Moreover, the convergence curves presented in FIGURE 7
confirm that TFWO has the fastest convergence among all
optimization techniques, followed by the rest algorithms.

Moreover, results of size optimization of PV/DG/BESS
hybrid microgrid system show that the optimum number of
photovoltaic cells NPV is 510 cells, the DG rated power PDG
is 50 kW, and Battery Capacity is 679.5 KWh. Furthermore,
PV, DG, BESS, and load power balance for one summer week
and one winter week are presented in FIGURE 8 (a) and 9 (a)

FIGURE 8. Variation of PV power, DG power and Battery Power along the
summer day hours under optimal sizing results of Case Study 1,
(a) 1 Summer Week Power, (b) Excess Energy for 7 summer days.

respectively and FIGURE 8 (b) and 9 (b) show that there is
no excess energy in our case study results (i.e. EER% = 0).

B. RESULTS OF CASE STUDY 2
In case study 2 the wind power is incorporated into the
microgrid system discussed in part A. Again each optimiza-
tion technique is run for 20 times with 50 search agents
and 50 iterations per run. Results show that minimum ASC
(best fitness) is obtained by TFWO optimization it is equal
to 79561.5$ which is better than ASC obtained in previous
case.

TABLE 3 shows the optimal sizing results for the
PV/WIND/DG/Battery hybrid isolated microgrid system
using the following implemented algorithms (HHO, JSO,
WOA, and TFWO).

The best obtained Annual cost of system (ASC)
for PV/WIND/DG/BESS isolated micro-grid equals to
79561.5$, with photovoltaic cell number NPV equals to
437 cells, wind turbine number NWIND equals to 16 tur-
bines, DG rated power (PDG) equals to 46.205 kW, and
Battery Capacity equals to 601.228 KWh. FIGURE 10 shows
PV, WIND, DG, BESS, and load power flow balance for
one summer week (168 hours) and another winter week
(168 hours). As noticed for the entire year, no power defi-
ciency is found and the energy from renewable resources
(PV cells and Wind turbines) is totally used (EER=0%).

In TABLE 4 a detailed annual costs comparison between
the DG only, Case Study 1, and Case Study 2 are introduced.
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FIGURE 9. Variation of PV power, DG power and Battery Power along the
winter day hours under optimal sizing results of Case Study One,
(a) 1 Winter Week Power, (b) Excess Energy for 7 winter days.

TABLE 3. Case study 2 optimization results based on 50 search agents.

In case that only the DGwas used to supply the load, the ASC
equals to 135249.8$ and annual fuel cost equals to 119380.7$.
In case study 1 (PV/DG/Battery) the ASC equals to 82789.1$
(reduced by 38.8% compared to DG only operation). In case
study 2 (PV/WIND/DG/Battery) ASC equals to 79561.5$
with a bigger reduction equals to 41.2% compared to DG
only operation. Also annual fuel cost reduced dramatically
from 119380.7$ when DG only operation to 33949.7$ and
34741.8$with case study one and case study two respectively.

VII. SENSITIVITY ANALYSIS
Here we study the effect of change of some input variables on
the ASC. Because of intermittent nature of renewable energy

FIGURE 10. Variation of PV power, WIND Turbine, DG power and Batteries
along the day hours under optimal sizing of Case Study Two, (a) Summer
Day, (b) Winter Day, (c) Excess Energy for all year days.

sources, the irradiance and the wind speeds will be changed
to test how the obtained optimal sizing method is robust and
reliable. Moreover, the effect of DG efficiency deterioration
and load change will be discussed as well.

A. SENSITIVITY ANALYSIS FOR CASE STUDY 1
(PV/DG/BATTERIES) ISOLATED MICRO-GRID
The effects of increasing the load on system costs, system
reliability, and also system power balance are studied while
keeping the photovoltaic cells N PV, DG rated power P DG,
and Battery Capacity at their optimized values. TABLE 5
shows the PV/DG/Battery system costs and reliability while
increasing load demand to 125% in 5% steps. As observed
from the results that the Fuel cost, Emissions cost, and
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TABLE 4. Case study 1, case study 2, and DG operating only results.

TABLE 5. Case study 1 (PV/DG/Battery) sensitivity analysis on load
demand (increase to 125% in steps of 5%).

TABLE 6. Case study 1 (PV/DG/Battery) sensitivity analysis on PV Power
(decrease irradiation by 20% in steps of 5%).

consequently the ASC increase when the load increases,
which means that power deficiency is compensated mainly
by DG operation to guarantee a high system reliability. For
example, when the load increased to 105% from normal load
values the increase in the ASC was about 7.5% while the
LPSP value was kept at 0.0%, and when the load increased to
125% the LPSP increased to only 1.1%. Moreover, the RF%
decreased from 73.77% to 59.69% when increasing the load
from 100% to 125% due to DG operation.

The effect of the solar irradiation variation on the system
costs can be studied by reducing the irradiation by 20% in 5%
steps while fixing NPV, PDG, and Battery Capacity at their
optimized values and not changing the load. In TABLE 6 the
system costs and reliability when reducing the irradiation
are shown. As observed the ASC increases proportional to
the irradiation decrease while the LPSP value is fixed at 0%
for all cases, i.e. when irradiation decreased by 5%, the
ASC increased by about 5.3%, and so on. The fuel cost and
emissions cost increase when the irradiation decreases, which
means that the irradiation deficiency is compensated mainly
by DG.

If the DG efficiency drops down, the DG rated power
will drop down also while the fuel consumption increased.

TABLE 7. Case study 1 (PV/DG/Battery) sensitivity analysis of DG
efficiency (efficiency drops down by 20% in steps of 5%).

TABLE 8. Case study 2 (PV/WIND/DG/Battery) sensitivity analysis on load
demand (increase to 125% in steps of 5%).

TABLE 7 shows the (PV/DG/Battery) system costs and reli-
ability when the DG efficiency drops down by 20% in 5%
steps. The microgrid components size will be fixed at its
optimized size. The results show that DG efficiency degra-
dation effect on ASC is less significant compared to that of
irradiation reduction i.e. the ASC increased by 1.6% when
the efficiency decreased by 5%. Also the system reliability
LPSP decreased to only 0.19% if the DG efficiency decreased
by 20% from its nominal value. Moreover, it can be noticed
that fuel cost and emissions cost increased with the reduction
of DG efficiency.

B. SENSITIVITY ANALYSIS FOR CASE STUDY 2
(PV/WIND/DG/BATTERIES) ISOLATED MICRO-GRID
To study the effect of increasing the load on the optimized
case study 2, only the load will be increased while fixing
the photovoltaic cells NPV, wind turbines NWIND, DG rated
power PDG, and Battery Capacity at their optimized values.
TABLE 8 shows the Case Study 2 (PV/WIND/DG/Batteries)
system costs and reliability while increasing the load to
125% in 5% steps. It is noted from the results that the
ASC increases when load increases, i.e. if load increases
by 5% the ASC increases by 7.66% and reaches 35.1%
when the load increased by 25%. The emission cost and
fuel cost also increase with the increase of the load, which
means that the DG operation is increased to compensate
for the increased load which results in decrease the RF%.
It was observed that effect of load increase on LPSP% was
not large even with increasing the load to 125% where
LPSP% reaches a value of 1.32%. This means that high
reliability of the system is maintained while increasing the
load.

Table 9 shows the Case Study 2 (PV/WIND/DG/Batteries)
system costs and reliability when the irradiation decreased
by 20% in 5% steps. We can notice that the power
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TABLE 9. Case study 2 (PV/WIND/DG/Battery) sensitivity analysis on PV
Power (decrease irradiation by 40% in steps of 10%).

TABLE 10. Case study 2 (PV/WIND/DG/Battery) sensitivity analysis on
wind power (decrease Ava. wind speed by 20% in steps of 5%).

TABLE 11. Case study 2 (PV/WIND/DG/Battery) sensitivity analysis of DG
efficiency (efficiency drops down by 20% in steps of 5%).

deficiency is compensated again mainly by DG opera-
tion which is confirmed by significant increase in fuel
cost and consequently the emissions cost. ASC increased
by approximately the same percentage as the irradiation
decreased, which is 5%. Also FR% decreased from 73.09%
to 61.8% when irradiation decreased by 20%. LPSP is
maintained at value of 0.0% when irradiation decreased
by 20%.

Moreover, TABLE 10 shows the Case Study 2 (PV/WIND/
DG/Batteries) system costs and reliability when the average
wind speeds decreased by 20% in 5% steps. We can notice
that the effect of the average wind speed decrease on ASC
is not as severe as that of the irradiation decrease. The ASC
increases by 1.8% if the average wind speed decreases by 5%
and The increase of ASC due to 20% average wind speed
decrease is 6.6%. TheWind power deficiency is compensated
by both PV and DG, so the fuel cost and emission cost
increasing ratio is not large like the previous case (irradiation
decrease). Also, FR% decreased by a small rate with wind
speed decreasing while LPSP is maintained at a 0.0% value
even with max. wind speed reduction.

DG efficiency variation effects on the system costs can
be studied on the optimized case study 2 by considering
the normal load while decreasing the DG efficiency by
20% in 5% steps. TABLE 11 shows the Case Study 2
(PV/WIND/DG/Batteries) system costs and reliability when
the DG efficiency drops down by 20% in 5% steps.

The ASC, fuel cost and emission cost increase with DG effi-
ciency decreasing, for example if DG efficiency drops down
by 5% from its nominal efficiency the ASC increases by 1.7%
and if DG efficiency drops down by 20% the ASC increases
by 7.8%, and that is because the decrease of the DG effi-
ciency is compensated by increasing the fuel consumption.
The LPSP% dropped to 0.3% if the DG efficiency dropped
to 20% while the RF% can be considered fixed (very small
increase).

VIII. CONCLUSION
This paper presented an optimization model for sizing an
isolated microgrid based on Energy control strategy which
guarantees continuous power to the load at different cli-
mate conditions. The Loss of Power Supply Probability
(LPSP), Renewable Fraction (RF), and Excess Energy Ratio
(EER) are considered as a measure of the hybrid micro-
grid reliability. The optimization objective function is to
minimize Annual system cost (ASC), Fuel cost, and Emis-
sion cost while maintaining the reliability constraints at the
desired values by incorporating it as a penalty factor in the
objective function. TWFO technique is implemented and its
results are compared to HHO, JSO, and WOA optimization
techniques.

The meteorological data for Zafrana, Egypt has been con-
sideredwith two case studies; Case Study 1which composites
PV/DG/Battery systems, and Case Study 2 which composites
PV/Wind/DG/Battery systems. Optimization results obtained
by TFWO give the lowest ASC when compared with other
optimization techniques. In case study 1 (PV/DG/Battery),
the minimum ASC is 82789.1$ with NPV = 510 cells, rated
PDG = 50 kW, Battery Capacity = 679.5 kWh, LPSP =
0.0%, EER = 0.0%, and finally RF = 73.77%. While,
Case Study 2 (PV/WIND/ DG/Battery) the minimum ASC
is 79561.5$ with NPV = 510 cells, NWIND = 16 turbines,
DG rated power= 46.2 kW,Battery Capacity= 579.66KWh,
LPSP = 0.0%, EER = 0.0%, and finally RF = 73.09%.
Moreover, the sensitivity analysis has been carried out

on both the two case studies to test the system durabil-
ity and reliability with the Load variation, Irradiation vari-
ation, Wind variation, or DG efficiency dropping down.
The results show that LPSP is maintained low for all
studied cases, however, the ASC, Fuel Cost, and Emis-
sion Costs may slightly increase with load increase, solar
irradiation decrease, or DG efficiency dropping down.
Finally, optimal sizing of grid-connected microgrid tak-
ing into consideration the Egyptian electricity tariff and
more types of renewable energy resources (such as biomass,
hydro-electrical, and fuel cells) is recommended for future
work.
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