
IEEE VEHICULAR TECHNOLOGY SOCIETY SECTION

Received May 11, 2022, accepted June 4, 2022, date of publication June 10, 2022, date of current version June 16, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3182021

Efficient Reinforcement Learning-Based
Transmission Control for Mitigating Channel
Congestion in 5G V2X Sidelink
LAN-HUONG NGUYEN1,2, VAN-LINH NGUYEN 1,2, (Member, IEEE),
AND JIAN-JHIH KUO 1,3, (Member, IEEE)
1Department of Computer Science and Information Engineering, National Chung Cheng University, Minhsiung, Chiayi 62102, Taiwan
2Department of Information Technology, Thai Nguyen University of Information and Communication Technology, Thai Nguyen 25000, Vietnam
3Advanced Institute of Manufacturing With High-Tech Innovations, National Chung Cheng University, Minhsiung, Chiayi 62102, Taiwan

Corresponding author: Jian-Jhih Kuo (lajacky@cs.ccu.edu.tw)

This work was supported in part by the Ministry of Science and Technology of Taiwan under Grant MOST 107-2218-E-194-016-MY3,
Grant MOST 108-2221-E-194-025-MY3, and Grant MOST 110-2811-E-194-501-MY2.

ABSTRACT Channel congestion has been an open challenge for vehicular networks due to the limited
resource of communication channels. Explosion of channel access requests from a massive number of trans-
mitter vehicles can exhaust bandwidth and then degrade transmission quality. The rapid drop of messages
(because of the high bit error rate in the transmission congestion condition) can threaten the safety of
connected vehicles. Maintaining congestion-free communications is then essential to improve the reliability
for vehicular networks, including Cellular-V2X (C-V2X)-based cooperative intelligent transport systems
and road-safety applications. In this work, we present a novel intelligent transmission control model, namely
DEEPCUT, to automatically adjust the message broadcasting rate of a transmitter vehicle. DEEPCUTworks
based on a Double Deep Q-learning Networks with Prioritized Experience Relay framework. DEEPCUT
encourages the transmitter vehicle to (1) reduce its broadcasting rate if the vehicle is maintaining a safe
distance from its neighbors and (2) increase the rate if the vehicle is approaching the others at a high-risk
distance, all done by using reward/punish strategies. The evaluation results show that DEEPCUT can cut up
16% redundant data while increasing 22% packet reception rate compared with baseline models, particularly
in crowd vehicular communications. Our risk-based transmission control can be an excellent complement
to address the congestion when the channel cannot satisfy every vehicle’s resource requests. At best, the
risk assessment-based approach in our congestion control method can provide a novel material to enhance
Decentralized Congestion Control (DCC) for 5G V2X sidelink in the coming specifications.

INDEX TERMS Vehicular network congestion, transmission control, reinforcement learning.

I. INTRODUCTION
Channel congestion is an open challenge in vehicular commu-
nications [1], [2]. The problem is particularly worse in crowd-
ing contexts. For example, channel congestion can prevent
many vehicles from accessing the network and sharing sens-
ing data successfully for cooperative road-safety vehicular
applications. Suppose the vehicles are moving in a crowded
area with less visibility. In that case, the sharing interrup-
tion from the congestion can risk the safety of connected
vehicles, e.g., tailgating, because of tracking loss. There are
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several reasons for the difficulty of addressing the conges-
tion. First, the wireless spectrum and bandwidth are often
limited, even with 5G Vehicle-to-Everything (V2X) [3], [4].
To reflect the latest updates of the vehicle movement, User
Equipment (UE) in V2X-enabled vehicles must broadcast a
large number of beacon messages, e.g., Cooperative Aware-
ness Message (CAM) or Basic Safety Message (BSM) [5]).
In the urban driving condition, the throughput can surpass
1GB per second if video streaming and LIDAR raw data
are shared [6]. With a dozen vehicles sharing simultane-
ously, the network bandwidth can quickly become exhausted.
In the future, the new demands for holographic infotain-
ment applications can worsen the congestion [7]. An efficient
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FIGURE 1. The illustration of assessing the risk of vehicles in the
unsignalized intersection to cut down low-risk vehicles’ sending rate
when the V2V communication channel is already overloaded and
congested. Stopping vehicles do not risk to the safety of the other
vehicles since their fixed locations are noticed by the other vehicles in
prior transmission. In this case, the stopping vehicles in the red zone can
cut down their sending rate. By contrast, the moving vehicle should hold
frequent updates to avoid a potential collision.

congestion control mechanism has been the target of many
studies for years [8]–[11]. Generally, Dedicated Short-Range
Communications (DSRC) IEEE 802.11p uses DCC mecha-
nisms for congestion control [12], [13] while the congestion
control mechanism for C-V2X/5G V2X is still being final-
ized. Besides, many scholars have proposed new approaches
(e.g., Linear Message Rate Integrated Control (LIMERIC) in
DSRC [12], [14], [15]) to enhance the standards. Recently,
the machine learning-based congestion control approach has
also started receiving much attention, e.g., [16], [17].

However, to the best of our knowledge, there is no work
to exploit machine learning to assess the specific contexts of
vehicular communications (e.g., collision risk of vehicles as
illustrated in Figure 1) and then suggest a reasonable data
rate for transmitter vehicles. There are two key challenges
to pursuing this approach. First, there must have an effi-
cient mechanism to determine which vehicles are the ones
to cut down their sending rate. In a vehicular network, all
vehicles should broadcast beacon messages to the neighbors
periodically to maintain up-to-date information about the
surrounding driving environment. By using fixed intervals for
sending messages for every vehicle, the sharing from many
vehicles in crowding areas can create a burst of traffic and
lead to channel congestion.With the limited channel capacity,
satisfying the requests for channel usage from all vehicles is
impossible. Thus, if we can cut down the sending rate of sev-
eral vehicles, the busy channel percentage can remarkably be
reduced. Second, the data sharingmust be adequate for fusing
in the receiver vehicles; otherwise, improper rate cuts or long
intervals can cause the receiver vehicles to fail to get the
latest updates on surrounding movements and thus threaten
safety. Besides, safety requirement must be the priority, i.e.,
the vulnerable-to-collision vehicles should be prioritized to
use the channel. In summary, there is a trade-off between
determining a proper broadcasting rate for improving channel

usage and ensuring fairness/safety among different users.
Maintaining the trade-off and fairness/safety in broadcasting
information rate for different vehicle types in congestion
situations is then a vital issue.

To address the challenges, this paper presents a novel effi-
cient transmission control, namely DEEPCUT. The novelty
of our system is to build intelligent Deep Reinforcement
Learning (DRL)-based agents on the vehicles that can assess
the collision risk during communications (small gap between
the vehicles) and determine a proper sending rate for trans-
mitter vehicles. Through the modeling, we show an important
lesson that increasing of data sharing to reflect the latest
updates of the vehicle movement does not always improve
the overall safety of the driving. By contrast, the increase
of data sharing into V2X networks can cause network con-
gestion even worse and then threaten the safety of the vehi-
cles due to tracking loss. Also, our risk-based intelligent
transmission control model can maintain the vehicles’ safety
while not sacrificing valuable bandwidth for transmitting
redundant data. Our main contributions are summarized as
follows.
• Inspired by the urgency of improving the safety of
V2X technologies for deploying in the coming years,
we propose an efficient risk-based assessment method
to suggest the proper data rate of broadcasting V2X
messages. By measuring the risk of the driving con-
text, the decentralized DRL agents on the vehicles can
automatically adjust their sending rate according to
the environment observation, thus mitigating pouring
redundant data to V2X networks. Vehicles then act as
intelligent machines to broadcast messages with the
awareness of the safety changes in the surrounding
environment.

• Our scheme can enhance channel-based congestion
control – which is essential in vehicular communica-
tions. The evaluation results demonstrate the signifi-
cant effects of the method in reducing the potential
congestion for on-road safety applications, particularly
maintaining fairness among different risk/non-risk
vehicles. Precisely, DEEPCUT can also cut up 16%
redundant data while increasing 22% packet reception
rate compared with baseline models in congested traffic
scenarios.

• The DRL-based risk management in our control can
enhance the accuracy of the self-rate control and prevent
the self-confidence of risk estimations through a multi-
agent learning scheme. To the best of our knowledge,
the safe-distance assessment from signal-based posi-
tioning techniques for transmission control is the first
attempt.

The remainder of this paper is organized as follows.
Section III presents our assumption and problem formulation.
The details of our proposed risk management and rate control
scheme are presented in Section IV. The evaluation results of
the proposal are shown in Section V. Finally, the conclusion
and future work are summarized in Section VI.
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II. RELATED WORK
Mitigating channel congestion in vehicular networks has been
well-studied for years. Our summary of typical congestion
control mechanisms for vehicular networks and their fea-
tures is presented in Table 1. Specifically, in cellular-based
vehicular networks, the problem of congestion minimization
can be resolved by maximizing the number of neighbors
to receive exchange messages or packet reception ratio as
defined in 3rd Generation Partnership Project (3GPP) spec-
ification [18]. The other way is to maximize the number of
vehicles to access the channel through resource allocation and
minimize communication delay/packet error rate (PER) [19],
[20]. Generally, the methods are grouped into conventional
model-based and machine learning-based. In the first type,
in recent specifications, both Society of Automotive Engi-
neers (SAE) and European Telecommunications Standards
Institute (ETSI) organization indicates some baseline models,
e.g., DCC mechanisms for DSRC IEEE 802.11p [12], [13].
DCC probes channel periodically to suggest a proper time
interval for channel access, e.g., 1s.

In the other studies, the authors in [21], [22] propose
to adjust the transmission rate by evaluating the busy
channel percentage. The location and direction of vehicles
can be used as the measurement metric to prioritize the
group with the same characteristics to access the chan-
nel [9]. Choudhury et al. [23] present a self-risk assessment
for improving the safety of 802.11p based V2V Networks.
Similarly, the authors in [24] use a dynamic distance-based
evaluation to decrease the transmission rate of the vehicles
in specific contexts (e.g., the vehicles are stopping or far
from the others), thereby mitigating congestion. A sum-
mary of congestion control mechanisms can be found in
the surveys [15], [25]. However, the lane for 802.11p-based
vehicular communications is significantly narrowed after the
recent decision of US Federal Communications Commission
(FCC) decision [26]. Accordingly, in November 2020, the
FCC unanimously approved to reallocating 45 MHz of the
DSRC5.9GHz spectrum to other unlicensed uses (e.g.,WiFi).
A spectrum of 30MHz is still kept for transportation-related
services but expected to transition to C-V2X eventually.

For C-V2X networks, 3GPP layouts a general framework
for access-layer congestion control for LTE-V2X and 5G
New Radio V2X [8]. The control uses sensing-based semi-
persistent scheduling (SB-SPS) mechanism to manage the
congestion through scheduling resource reservation inter-
val (RRI) [8], [27]. Accordingly, the RRI block can be
{20, 50, 100, 200, . . . , 1000 ms}. The common points of the
conventional-based congestion controls are: they are all or
either to use channel characteristics, e.g., Channel Busy Ratio
(CBR), packet dropping rate, for adjusting the channel access
strategy (increasing RRI [20], [28], [29]). However, the
disadvantage of these conventional-based approaches is the
difficulty of knowing which vehicle should be the one being
prioritized to use the channel. In urban areas, when many
vehicles all move along and demand as much as possible

connection resource for the sake of safety and their personal
infotainment, it is challenging to satisfy such all requests
‘‘mechanically’’. As a result, the channel can quickly over-
load, and no vehicles will get their desire. Close to this
work, the authors in [24] presented an aggressive risk-based
transmission congestion control but the performance largely
relied on the accuracy of the self-tracking engines. If the
receivers cannot get any successful data, which is common
in heavily congested situations, the system performance is
significantly degraded.

Using machine learning for congestion control has
received much attention recently due to its super perfor-
mance [16], [30]. For example, Alperen et al. [19] propose
an adaptive resource allocation for congestion control in 5G
V2X communications by using a Multi-agent Deep Rein-
forcement Learning (MARL) model. In this model, each
agent on the vehicle probes the channel state to adjust
its transmission rate and maximize the packet reception
ratio. However, relying on the channel estimation makes
the method less robust to find the best solution if there is
much noise or vehicles are moving in safe lanes. In another
study, Lu et al. [31] enhance the channel access by tackling
the power allocation problem and maximizing the sum rate
performance by using a DRL framework. Such a central-
ized architecture of the framework is not suitable for V2V
communications since building a consensus on the control
plan is hard and infeasible due to dynamic changes in the
network topology. Unlike prior work, the authors in [32]
present a DRL-based data rate and transmission power con-
trol mechanism but specified for the old standard, i.e., DSRC
V2V. Chen et al. [33] present a DRL-based method for radio
access network information-assisted congestion control in
5G. However, the system is designed for Transmission Con-
trol Protocol (TCP) at the network layer. Similarly, Ma et al.
[34] build a DRL-based method for TCP congestion control
but specified for wired networks. Choi et al. [17] introduce a
Deep Q-learning (DQN)-based congestion control to enhance
DCC for C-V2X. However, using DQN may not be suitable
for highly dynamic networks due to the instability learning
of DQN models. In another work, Roshdi et al. [35] present
a DeepDeterministic Policy Gradient (DDPG)-based conges-
tion control model. However, the enhancement from work is
merely to enhance DCC assessments. None of the existing
works consider the collision risk of vehicles for improving
congestion control.

In summary, to overcome the channel congestion in the
vehicular networks, probing the channel state (e.g., using
multiple factors as in DCC/LIMERIC) is an excellent way
to cut down the sending rate. However, such a strategy is
inadequate if we don’t consider the factor of safety. For
example, an improper cutting on the sending rate for all
vehicles can put vulnerable vehicl‘es (moving at high speed
and near each other) at high risk. In this case, considering
the new assessment factors, e.g., cut down the unnecessary
access requests from low-risk vehicles as in our method, is a

62270 VOLUME 10, 2022



L.-H. Nguyen et al.: Efficient Reinforcement Learning-Based Transmission Control

TABLE 1. Summary of several congestion control mechanisms for vehicular networks.

promising approach. By considering the safety factor (risk
assessment) in the data rate control for congestion resolu-
tion, our proposed scheme can provide a novel material to
enhance DCC/LIMERIC. Our method is also different from
the existingmachine learning-based approaches. Specifically,
our system considers the risk of vehicles in the data rate
adjustment decision while the current methods do not.

III. SYSTEM MODEL & PROBLEM FORMULATION
In this work, we consider a 5G-based vehicular network with
fixed bandwidth B to support a set of N connected and auto-
mated vehicles (CAVs), N = {1, 2, . . . , |N |}. The vehicles
are equipped with a V2X-enabled On-board Unit (OBU) to
communicate with each other. Without loss of generality,
we assume the antenna configuration in the vehicles is a Uni-
form Linear Array (ULA) type. The exchange messages are
CAM [36] that can include the dynamic state of the vehicles,
e.g., position, velocity, and heading. Vehicles communicate
with each other through physical sidelink control channel in
5G NR V2X mode 2. In 5G V2V sidelink communications,
the vehicles need to select a resource block from a set of avail-
able resources R = {1, 2, . . . , |R|}. Intuitively, the network is
at the non-congestion state if |N | < |R|, i.e., every vehicle
can find a unique resource block for their access. However,
in congested situations, |N | ≥ |R| and maintaining a unique
resource block for each vehicle becomes impossible. Table 2
summarizes the notations used in this article.

Generally, according to [8], [27], C-V2X will likely rely
on the congestion control mechanisms as in SAE J2945/1
and SAE J3161/1 if |N | ≥ |R|. Since our method targets
to work at the application layer, it has no impact on the
existing MAC-layer-based congestion control mechanisms.
At best, our work can be an extension to enhance the existing

TABLE 2. Notations used in this paper.

congestion control mechanisms in C-V2X. Finally, we assess
vehicle states and risks from signal strength, which is cheap
and easy to collect, to prioritize access to the channel.

A. V2V CHANNEL MODEL
In V2V, light-of-sight(LOS) and non-light-of-sight (NLOS)
links exist. For example, the vehicles may easily maintain
LOS connections with each other in sparse areas. However,
if the vehicles move into the areas with many obstacles,
NLOS links likely dominate. Suppose that the LOS and
NLOS path losses of a V2V link between the ith vehicle
and the jth vehicle are PLLOSi,j and PLNLOSi,j . The average path
loss PLi,j over the probabilities of LOS path loss PLLOSi,j and
NLOS path loss PLNLOSi,j is estimated as follows:

PLV2Vi,j = pLOS × PLLOSi,j + (1− pLOS )× PLNLOSi,j , (1)
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where pLOS denotes the probability of having a LOS link
between two vehicles. The LOS probability pLOS varies,
depending on the building and traffic density in the com-
munication scenario. The details of pLOS in some cities and
highways can be found in [37].

For V2V LOS communications, according to [18], PLLOSi,j
is estimated in decibels (dB) in urban areas as follows:

PLLOSi,j = 38.77+ 16.7 log10 di,j + 18.2 log10(fv) (2)

where fv is the carrier frequency of V2V (e.g., fv = 5.9GHz),
di,j is the distance between the ith vehicle and the jth vehi-
cle. PLLOSi,j for V2V links on highways can be found in
Section 6.2.1 of the specification [18]. For NLOS links,
we use a standard model as follows:

PLNLOSi,j = 36.85+ 30 log10 di,j + 18.9 log10(fv) (3)

PLNLOSi,j for other scenarios (e.g., open field (flat), suburban,
rural, hills) can be found in 3GPP UMi street [38].

Suppose that vehicle i at the time t has a set of neighbor
vehiclesN t

i ⊆ N . Then, the signal-to-interference-noise-ratio
(SINR) at vehicle i of the packet of vehicle i can be expressed
as follows:

SINRti,j =
|H t

i,j|
2Pt∑

k∈N t
i :k 6=i,j

|H t
k,j|

2Pt

︸ ︷︷ ︸
Inference from all neighbors

+PLV2Vi,j + N0

, (4)

where 1) H t
i,j is the channel gain between the transmitter

vehicle i and the receiver vehicle j and 2) Pt is the transmit
power of the vehicle OBU at the time t . We assume Pt is
fixed for all vehicles and the same during the transmission.
Notation N0 is the additive white Gaussian noise, N0 ∼

CN (0, δ2). When two or more vehicles transmit at the same
resource, we assume that the receiver will select the one with
the highest SINR for decoding.

According to Shannon theory, the data sending rate of the
unicast link between the vehicle i and vehicle j at the time t
can be expressed by:

DRti,j = Bi,j × log2(1+ SINR
t
i,j) (5)

where Bi,j is the V2V channel bandwidth. The sum rate with
|N | vehicles at the time t , namely DRtsum, are then calculated
by:

DRtsum =
∑
i∈Np

∑
j∈N t

i

DRti,j︸ ︷︷ ︸
High-risk vehicles

+

∑
i∈Nv

∑
j∈N t

i

DRti,j︸ ︷︷ ︸
Low-risk vehicles

=

∑
i∈N

∑
j∈N t

i

DRti,j (6)

In beamforming-based systems, due to the difficulty of main-
taining efficient beam scan on a large scope, we assume that
the broadcasting rate of vehicle i at the time t ,DRti , as the data
rate of an arbitrary link in the unicast transmission. Note that,

in 5G mmWave networks, UE antennas support directional
transmission instead of spherical radio wave propagation.
With the limited resources of the V2V channel, to accom-
modate more vehicles for data exchange, we must reduce
the data rate of each vehicle. However, that adjustment can
impact safety negatively. In every case, the broadcasting rate
from high-risk vehicles (defined in Section III-C, collision
risk) should be prioritized to maintain unchanged.

Besides, each vehicle tries to maximize the number of
surrounding vehicles that decode its packet to enhance safety.
According to [18], the packet reception ratio (PRR) can be
used to measure the ratio of the successful receptions among
the total number of neighbors N t

i of the transmitter vehicle i
at the time t . At the time t , vehicle i calculates the average
PRR, PRRti , as follows:

PRRti =
1
|N t

i |

∑
j∈N t

i

(1− BLERti,j), (7)

where BLERti,j is the block error rate for the given SINR
t
i,j and

modulation/coding scheme [19], BLERti,j ∈ [0, 1]. Typically,
the system can decode the received messages successfully if
BLERti,j < 0.1 (10%).

B. MOBILITY MODEL AND RELATIVE
DISTANCE ESTIMATION
For mobility, we assume that the vehicle i ∈ N can move
with an arbitrary velocity vi. The velocity vi is limited by
a threshold vmax (e.g., the maximum allowed speed of the
road or at the intersections). Also, to update the neighbor
vehicles on their presence, vehicle i periodically broadcasts
beacon messages at a time interval 1i. The time interval 1i
can be any value in the given range [1min,1max]. Adjusting
time intervals can help to reduce the data pouring into the
network. Depending on the velocity and the relative dis-
tance of the vehicles, the common value of 1min is often
20 milliseconds (ms) while 1max is 200ms [29].

Besides PRR and SINR, from the physical signals,
one can estimate the relative distance between the trans-
mitter and the receiver during their movements, e.g.,
by using the received signal strength indicator (RSSI)
estimation. On modern OBUs, the transmitter-receiver dis-
tance estimation can be done via signal-based vehicular
positioning methods due to the advance in signal pro-
cessing techniques and the appearance of massive antenna
arrays [39]. The common signal-based positioning techniques
are Angle-of-Arrival (AoA), Angle-of-Departure (AoD),
Time-Difference-of-Arrival (TDoA), and Phase-Difference-
of-Arrival (PDoA)-based [39]. Due to the large errors of the
RSSI-based positioning method in dynamic outdoor environ-
ments like V2X, in this work, we assume that the distance
between the vehicle i and the vehicle j at the time t , namely
d ti,j, is estimated via the signal-based vehicular position-
ing method. Accordingly, when a vehicle moves at 20 m/s
(72km/h) speed and transmits at 10 Hz CAM, the average
positioning error is 2m [39].

62272 VOLUME 10, 2022



L.-H. Nguyen et al.: Efficient Reinforcement Learning-Based Transmission Control

C. PROBLEM FORMULATION
As we defined above, the network is at the non-congestion
state if |N | ≤ |R|, i.e., every vehicle can find a unique
resource block for their access. However, in congested situa-
tions, when the number of requests for resource blocks from
N vehicles is much greater than available resource blocks,
|N | > |R|, maintaining a unique resource block for each
vehicle becomes impossible. Therefore, a congestion control
system is designed to maximize the number of neighbor
vehicles of each vehicle that can receive its broadcasting
messages, i.e., PRRti . This target is equal to the objective of
the following optimization problem function:

maximize
DRti,j

∑
i∈N

PRRti (8a)

subject to DRti,j ≥ DRmin, ∀i 6= j ∈ N , ∀t ∈ T (8b)

DRtsum ≤ DRmax , ∀t ∈ T (8c)

d ti,j ≥ dsafe, ∀i 6= j ∈ N , ∀t ∈ T (8d)

where DRmax is the maximum data rate of the V2V channel.
The constraint (8b) implies that, for safety control and QoS
guarantee, DRti,j must be no less than a threshold DRmin.
The constraint (8c) indicates that, with the limited sharing
resources, the sum rate of the V2V channel at the time t , i.e.,
DRtsum in Eq. (6), is bounded by DRmax . The constraint (8d)
means, under no circumstance, the vehicles can approach
their neighbors at a high-risk distance.

Besides the methods of increasing the reuse ratio of
resources by distance as suggested by 3GPP [18], to increase
the probability of |N | vehicles accessing the channel, in this
work, we propose to reduce the data rate of low-risk vehicles
and grant the portion of saved data rate for other vehicles.
The adjustment is performed at the application layer and
thus makes no impact on the MAC/PHY layer mechanisms.
Notably, the adjustment should not risk the safety of the
vehicles, which is the supreme goal of V2V communications.
In the following paragraph, we introduce a new concept of
collision risk evaluation that is the key metric for a follow-up
adaptive sending rate adjustment mechanism.

We assume vehicle i and vehicle j are at risks of collision
if d ti,j − α < dsafe, where α is an expected error of the
positioning. Note that d ti,j is estimated through signal-based
vehicular positioning methods as presented above. Depend-
ing on the speed of the vehicles, the safe distance gap dsafe
also varies. For example, for the safety purpose (enough time
to react, steering, and brake), two vehicles moving at 20 m/s
(72 km/h) should maintain a minimum distance gap of 40 m.
By contrast, if two vehicles stop, the safe distance may be
only several meters. For simplicity, dsafe can be set by the
distance of the driver can react over the current velocity, e.g.,
dsafe = T × vi, T = 2(s) in default. In summary, the collision
risk between two vehicles i, j at the time t , namely RIS ti,j,
is expressed by:

RIS ti,j =

{
1, if d ti,j − α < dsafe;

0, otherwise.
(9)

Definition 1 (Collision Risk): The collision risk RIS ti,j =
1 means a high-risk case. Otherwise, RIS ti,j = 0 indicates a
low-risk case, i.e., the vehicles still have time to react and
brake if necessary.

In the low-risk case, the value of d ti,j − α − dsafe can be
used to measure the urgency of the data update rate. In short,
a higher positive value of d ti,j − α − dsafe means two vehi-
cles are far from each other, and reducing the broadcasting
rate can be acceptable. Reducing the broadcasting rate can
significantly mitigate the busy channel ratio, and the channel
can accept more vehicles to access. The following section
introduces a deep reinforcement learning formulation for the
packet reception optimization problem. Then, we present our
approach to model, train, and test the DRL model.

IV. MULTI-AGENT DEEP REINFORCEMENT
LEARNING-BASED TRANSMISSION CONTROL
FOR CONGESTION MITIGATION
Unlike conventional optimization solutions, reinforcement
learning considers the problem of a computational agent
learning to make decisions by trial and error. By exploiting
the power of the deep learning model, the DRL model can
assist agents in learning from unstructured input data through
millions of trial training on the state-action space. Deep RL
algorithms can take in substantial inputs (e.g., sending rate
options for all vehicles) and decide what actions to perform to
optimize an objective (e.g., maximizing the packet reception
ratio). The other advantage of DRL is that it can interact
with the environment to adjust learning strategy and does not
require labeled datasets for training. In this section, we first
overview about DRL background and then transfer the prob-
lem (i.e., Eq. (8)) into the DRL problem. Finally, we detail
the state-action-reward space and the training/testing process
algorithm.

A. DEEP REINFORCEMENT LEARNING BACKGROUND
Generally, reinforcement learning (RL) is a machine learning
method to solve the Markov decision process (MDP), which
involves an agent interacting with the environment itera-
tively. Mathematically, an MDP can be specified by 4 tuple
< S,A,P,R >, where 1) S is the state space, 2) A is the
action space, 3) P is the state transition probability, with
P(st+1|st , at ) specifying the probability of transiting to the
next state st+1 ∈ S given the current state st ∈ S after
applying the action at ∈ A, and 4) r t (st , at ) is the immediate
reward received by the agent at the time t , usually denoted
by r(st , at ) to show its general dependency on st and at . The
agent’s actions are governed by its policy π : S×A→ [0, 1],
where π (at |st ) gives the probability of taking action at ∈ A
when in state st ∈ S. The goal of the agent is to improve its
policy π based on its experience, so as to maximize its long-
term expected return E[G] =

∑
∞

k=0 γ
kRt+k the accumulated

discounted reward from time step t onwards with a discount
factor 0 ≤ γ ≤ 1. A key metric of RL is the action-value
function, denoted as Qπ (st , at ), which is the expected return
starting from state st , taking the action at , and following
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policy π thereafter, i.e., Qπ (st , at ) = Eπ [G|st = s,A = a].
Following the Bellman equation, the values and Q-values are
related to each other. The value of the state depends on the
value of the actions possible in that state Vπ (s), modulated by
the probability that an action will be taken (i.e., the policy) as
follows:

Vπ (st ) =
∑
at∈A

π(at |st )Qπ (st , at ) (10)

Qπ (st , at ) = E[r(st , at )+ γVπ (st+1)] (11)

And the optimal action-value function is defined as
follows:

V ∗π (s
t ) = max

at∈A
Q∗π (s

t , at ) (12)

Q∗π (s
t , at ) = E[r(st , at )+ γ max

at+1∈A
Q∗π (s

t+1, at+1)] (13)

An essential task of RL is to obtain the optimal value func-
tions. When the agent has no or incomplete prior knowledge
about the MDP, it may apply the useful idea of temporal
difference learning to improve its value function estimation
by directly interacting with the environment. However, when
the state-action space is large, a conventional RL is no longer
suitable to apply. A common solution is to use deep reinforce-
ment learning (DRL). When the action state space is large,
a deep neural network (DNN) can be used to approximate
the Q(.) function. However, sometimes, a DNN may cause
divergence, that is a negative result. To address this issue,
DRL generally uses two major techniques: (i) experience
replay and (ii) target network. However, in the experience
replay buffer, uniform samples have been selected rather than
importance-weighted samples, which may cause divergence
with large state spaces. To address the issues of DQN, there
are many solutions such as Double DQN, DQN with priori-
tized experience replay, and Rainbow [40].

In this work, we use the Double DQN (DDQN) [41],
[42] as a result of our definition for the action space as a
discrete vector. Firstly, instead of storing and updating the
value functions for all state-action pairs, one only needs to
learn the parameter θ , which typically has a much lower
dimension than the number of state-action pairs. Secondly,
function approximation enables generalization, i.e., the abil-
ity to predict the values even for those state-action pairs that
have never been experienced, since different state-action pairs
are coupled with each other via the function Q(st , at ; θ ) and
parameter θ . The core of the DDQN algorithm is a Bellman
equation as a simple value iteration update as follows:

yDDQN ← r(st , at )

+ γ max
at∈A

Q(st+1, argmax
at+1∈A

Q(st+1, at+1; θ); θ−)

(14)

Therefore, the DDQN parameter θ can be updated by
Eq. (15) to minimize the following loss function (16):

θ ← θ − η︸︷︷︸
Learning rate

∇θLoss(θ ) (15)

Loss(θ ) = E[yDDQN − Q(st , at ; θ )]2 (16)

Given the optimal function Q∗π after a number of episodes,
the i-th vehicles selects an action based on the following
policy:

ati =

 argmax
ati∈(A)

Q∗(sti , a
t
i ; θi) With 1− ε

random(ati ) With ε,
(17)

where ε-greedy is a well-known method in DRL to select
an optimal action by balancing between exploration and
exploitation selection, 0 < ε < 1. The DDQN-based agents
on the vehicles can independently update their transmission
rate to reduce channel congestion. The following subsection
details the basic parameters of the agent’s state, action, and
reward.

B. MULTI-AGENT DEEP REINFORCEMENT
LEARNING-BASED TRANSMISSION CONTROL
Since V2V networks rely on the broadcast communication
architecture, a multi-agent DRL is the best suitable model
to maintain the convergence. In this model, a centralized
training can be done offline after collecting neighbor vehi-
cles’ states through broadcasting messages. In the online
execution, each agent can independently learn from the envi-
ronment and adjust its policy to contribute to gaining the
system’s goal. In short, the state and action space of DRL in
the congestion avoidance optimization problem are defined
as follows:
Definition 2 (State Space): Each vehicle state at the

time t, sti , can be represented by (1) position p
t−1
i ; (2) SINRt−1

patterns; (3) channel busy ratio CBRt−1. The channel busy
ratio CBRt−1 at the time slot t − 1 can be evaluated via
the successful resource selection ratio or the ratio of the
total number of received messages from neighbor vehicles
and the channel capacity of the V2V network. Note that the
parameters of the velocity and the relative distance between
a vehicle and its preceding one can be excluded in the state
space to reduce dimensions since they are already included
in the risk assessment.

The state space for the multi-agent environment can be
formulated as st = {st1, . . . , s

t
N }, S ∈ R3×N .

Definition 3 (Action Space): At time slot t, the agent takes
an action ati to adjust transmission rate DRti . Generally,
we set the discrete values of ati = {−β, 0, β}, where β is the
step change for the transmission rate DRti . The negative value
indicates the agent will decrease DRti while the agent will
increase DRti if selecting the positive value. a

t
i = 0 implies

that the agent keeps the transmission rate unchanged com-
pared to the prior state.

The action space for the multi-agent environment can be
formulated as at = {at1, . . . , a

t
N }, A ∈ R3×N .

The problem in Eq. (8) is transferred into the distributed
optimization problem for each vehicle i ∈ N as follows:

arg max
ati

r ti (18a)
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subject to DRti ≥ DRmin, ∀t ∈ T (18b)

RIS ti < 1, ∀t ∈ T (18c)

The goal of the DRL-based optimization problem in
Eq. (18) is to optimize the policy on each agent π (ati |s

t
i )

for maximizing the total number of all transmitter vehicles’
neighbors that can decode the messages at time t . To achieve
the goal, we need to set the reward for each step of action.
We define the reward function for the action of adjusting the
transmission rate of vehicle i as follows:

r ti =


ψ if CBRt > Cthres and RIS ti,j = 1

δ else if CBRt > Cthres and RIS ti,j = 0

λ else if CBRt < Cthres and RIS ti,j = 1

ρ else if CBRt < Cthres and RIS ti,j = 0,

(19)

where ψ, δ, λ, ρ are the weights of the reward or penalty,
Cthres is the CBR threshold to determine the channel busy. The
weights are used to utilize the cost of adjustment conditions.
The reward also gets a penalty if the vehicles move near
each other at a high-risk distance, i.e., RIS ti,j = 1. For fast
convergence, the penalty is often a negative value and at the
highest value if the vehicle chooses the action that leads to the
congestion and fails to react to the collision risk. The penalty
degrades if the action violates one of the constraints only.
The values of these parameters are configurable. In this work,
we set ψ = −10, δ = −2, λ = −4, ρ = 2.

We consider a DRL system where each reinforcement
learning agent on each vehicle simultaneously learns which
resources to select for its transmission. At each time step
t , each agent observes a state sti locally, selects an action
ati (increase/decrease) from its policy π (ati |s

t
i ), and receives

a reward r ti from the environment. The sum of discounted
rewards for the agent i for episodes of the observation interval
T is SRti =

∑T
k=0 γ

t+kr t+ki . Each vehicle aims to find
a policy to maximize its expected accumulated discounted
reward. Note that the reward of a vehicle i depends not only
on the policy πi(at |st ) but also on the policy of the other
vehicles. The reward space for the multi-agent environment
R = {r t1, . . . , r

t
N }, R ∈ RN .

The goal of the problem in Eq. (18) is the cooperative learn-
ing among multiple agents to maximize their accumulated
reward. Key algorithms of risk assessment and DDQN-based
transmission rate control are presented in Algorithm 1 and
Algorithm 2, respectively. Intuitively, before performing rate
control, at the time t , each agent runs Algorithm 1 to build
the list of neighbor vehicles (line 4) and evaluate risk by
calculating the distance to each vehicle (line 5). The dis-
tance to the nearest neighbor vehicle d ti,j is then selected for
evaluating RIS (line 6-8). If the distance between vehicle
i and the nearest vehicle j is less than a threshold, dsafe,
the risk is identified (RIS tx = 1). Assume that x-axis and
y-axis represent the vehicle driving direction and lane change
direction, respectively. Due to the possibility of a sudden lane
change of the vehicles, if the vehicles travel on the right/left
side or the same lane (|yi− yj| < 5 in line 9), the target is still
considered as ‘‘Risk identified’’.

Algorithm 1: Risk Assessment Algorithm

Data: pti , dsafe
Result: RIS ti

1 Function RiskScore(pti ,dsafe)
2 Initialize RIS ti ← 1; # default setting
3 temp← 0; α← 2;
4 Extract received beacon messages to build the neighbor

list N t
i ;

5 Calculate the distance to each vehicle through
signal-based positioning;

6 Sort to find the nearest vehicle j (by location) in the
neighbor list N t

i ;

7 d ti,j←
√
(pti )

2 − (ptj )
2;

8 temp← d ti,j − α − dsafe;
9 sideMov = |yi − yj| < 5?1 : 0; # Traveling on the

right/left side or the same lane.
10 if (temp < 0&&sideMov) then
11 RIS ti ← 1; # Risk identified
12 else
13 RIS ti ← 0;
14 end
15 Embed RIS ti into i’s beacon messages;
16 return RIS ti ;

After obtaining risk assessment from the state information
(e.g., pti , CBR

t ), the agent runs a training process to find
the best sending rate DRti (line 8-22 in Algorithm 2). For
the training, system parameters such as learning rate η and
memory size � (experience replay buffer) are initially set in
default values, e.g., 0.01 and 10000. The state-action pairs are
combined and stored in memory during the training process.
Then, data are put to the main Q-network (see Figure 2),
and the target network for training by batches. To avoid a
potential delay in the rate control, the DDQN model can
be pre-trained in advance through offline trials over differ-
ent environments (different V2V use cases as illustrated in
Figure 3). Then, in the testing phase, each agent can perform
DRti adjustment by using the trained model without waiting
for a lengthy training process. At each time step t , if the
channel is congested, the agent triggers to select an action
with the maximumQ value by its trained Q network. Figure 2
illustrates our DDQN-based transmission rate control archi-
tecture. Each vehicle is supposed to equip with an agent to
run its transmission rate control independently. The workflow
of the components in the system is illustrated in Figure 4.
Accordingly, the DDQN-based transmission rate control only
activates if the channel is busy (CBRt > Cthres). Based on the
channel sensing and risk assessment, the pre-trained model
can suggest a proper sending rate for the agent.

C. COMPLEXITY OF ALGORITHM AND THE
WORST-CASE ANALYSIS
With a set of vehicles N , the time complexity of Algorithm 1
is O(|N |2) in the worst case, where all vehicles are the
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FIGURE 2. Our DDQN-based transmission rate control architecture.

neighbors of any vehicle in those. In this case, each vehicle
must maintain |N |(|N |−1) V2V links. Besides, in this work,
the DDQN architecture is built based on a fully-connected
structure. The computational complexity of DNN is estimated
as follows. The computational complexity of DNN is esti-
mated as follows. Let Km and kml (or K c and kcl ) denote
the number of hidden layers and the number of the neurons
in the l-th hidden layer of the main network (or the target
network) of the DDQNmodel. Since the main/target network
is fully connected, the computational complexity of training
a DDQN (including the input layer, full-connected layers,
and the output layer) can be written as ODDQN = J (2(3 ×
N ) × km1 +

∑Km
−1

l=1 kml k
m
l+1 +

∑K c
−1

l=1 kcl k
c
l+1 + k

m
Km ), where

J (·) is the time complexity for updating the parameters of the
fully-connected layers. The time complexity of the proposed
scheme in Algorithm 2 for offline training isO(M×N ×T ×
�×ODDQN ). In the online execution, for each agent, the time
complexity is O(T ×�× ODDQN ).
In the worst case, the number of vehicles in the congestion

area is enormous, e.g., 500 vehicles over a short distance
(traffic jam). Generally, the system reduces the low-risk vehi-
cles’ transmission rate for congestion avoidance. However,
if the number of vehicles demanding channel access is still
vast, cutting the transmission rate is likely impossible due to
safety. We argue that, in this case, a novel control is required
to activate for offloading. First, the nearby vehicles can be
split into platoons. Figure 5 illustrates the platoons of vehicles
after the splitting. Each platoon can manage the vehicles with
a given length l (e.g., around 20 vehicles per platoon in the
same lane). Second, the leaders of the platoons exchange the
beacon messages to maintain the state of their regions. This

FIGURE 3. Training DDQN model through offline trials over different
V2V-use cases can significantly help to accelerate the response tim for
adjusting the transmission rate if the vehicle falls into one of the cases.

FIGURE 4. The workflow of DDQN-based transmission rate control.

groupcast communication can significantly mitigate the case
of every vehicle requesting channel access.
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Algorithm 2:DDQN-Based Transmission Control Algo-
rithm for Vehicles
Data: RIS ti , η, DR

t
i ,k , DRmin,N ,β

Result: DRti
1 Function TransControl(RIS ti , η, DR

t
i ,k ,DRmin,N , β)

2 Initialize replay memory � capacity |N |; mini-batch k;
learning rate η,

3 Initialize action value step β, Q-function with random
weights θ

4 Initialize Target-Q̂-function with the same weights
θ−1← θ

5 for i = 1 to N do
6 Observe the state s0i (p

0
i , CBR

0) and action a0i
(DRmin) with policy π (a0i |s

0
i );

7 end
8 for episode = 1 to M do
9 for i = 1 to N do
10 for time step t = 1 to T do
11 Observe sti , a

t
i , r

t
i , γ

t ;
12 Store transition (st−1i , ati , r

t
i , γ

t , sti ) in replay
memory �;

13 Select ati ← argmaxati∈(A)Q
∗(sti , a

t
i ; θi) in

the target-Q̂-network;
14 Send messages at the rate DRti at the guide

of ati and observe reward r ti ;
15 Calculate st+1i ;
16 Store the experience (sti , a

t
i , r

t
i , γ

t , st+1i );
17 Estimate the loss

Loss(θi)← Eπ [yDDQNi − Q(sti , a
t
i ; θi))

2];
18 Update θi← θi − η∇θiLoss(θi);
19 Update the target Q̂-network with θ−1i ← θi;
20 end
21 end
22 end

FIGURE 5. Illustration of splitting a large number of vehicles into
platoons of vehicles and maintaining V2V communications for each group
to reduce the congestion due to controlling channels for all vehicles.

V. PERFORMANCE EVALUATION
This section evaluates DEEPCUT performance in compari-
son with several baseline congestion control models such as
(1) RTC+ [24], (2) DCC [18], (3) LIMERIC in DSRC [14].
The details of the models are summarized in Table 3. In this
work, we use Veins, an open-source simulator with the third-
party models for ETSI ITS-G5 (IEEE 802.11p) and 3GPP
standard C-V2X via INET framework (OpenCV2X) [43] to
validate our system performance and the baseline models.

TABLE 3. List of the congestion control models.

TABLE 4. The training hyperparameters and V2X network configuration.

Veins integrated Simulation of Urban MObility (SUMO) for
traffic engineering and vehicle mobility. Veins can accurately
simulate traffic behavior and vehicular communications close
to the real environment. Similar to [24], the road segment
map of 2km with six lanes for simulation. All six lanes
are available for the vehicles. Since this work is designed
to reduce data flouring into the network, we perform two
major traffic simulation cases which extremely require a
strict transmission control: 1) high density (200 vehicles/km);
and 2) congestion (300 vehicles/km). For low and medium
traffic density, our system can be off if the network channel
is not busy. For realistic mobility modeling, the two traf-
fic simulation cases can be mapped to the traffic behavior
traces at various times in Luxembourg city [44], e.g., high
density (8:00 AM, 6:00 PM), congestion (traffic jam). Since
the safety distance depends on the relative velocity of the
vehicles, dsafe is dynamically set at the host vehicle velocity
vi and the observation period T , i.e., dsafe = T × vi (defined
in Section III-C). CBR starts at 80%. The other parameters
for DEEPCUT training hyperparameters and V2X network
configuration are summarized in Table 4.

Formeasurement evaluation, Packet Reception Rate (PRR)
is the critical metric to measure the ratio of the successful
receptions among the total number of neighbors of a trans-
mitter vehicle. This metric helps assess whether the system
can increase the efficiency of using a network channel for
many vehicles. To measure whether the reduction impacts
safety, we used the Collision Risk (CR) metric. CR denotes
the total times each pair of vehicles exceeds the safe distance
dsafe at their relative speed. For on-road safety assessment, the
maximum distance between the receivers and the transmitters
is 300m. Finally, channel utilization can be assessed by using
CBR metric.

A. TRAINING PERFORMANCE
We have trained our DEEPCUT model on the road seg-
ment map with mixed data of traffic simulation cases in
2500 episodes. As shown in Figure 6(a), the cumulative
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FIGURE 6. The cumulative reward after 2500 training episode and the
reward mean histogram: a) Rewards by episodes; b) Reward mean
histogram. The weights of the reward and penalty for each action (in
Eq. (19)) in default is a = −10, b = −2, c = −4, d = 2.

reward becomes convergence and remains stable after about
2000 episodes. The convergence speed slows if there are
many vehicles and the step change for the transmission rate
is small. This is because the state-action space from the
matrix of all vehicles states and their possible actions is
enormous. Figure 6(b) illustrates the reward histogram after
training DEEPCUT with 2500 episodes. The reward distri-
bution is changed based on the traffic density. In the worst
case, high traffic density or traffic congestion produces many
penalty values (negative) due to the difficulty of satisfying
all channel requests of many risk-based-on-near-by-distance
vehicles.

B. TESTING PERFORMANCE
Figure 7(a) and Figure 7(b) show the PRR performance
results of our DEEPCUT system in comparison with the
baseline methods in two traffic density cases. Accordingly,
our method yields the best PRR performance (22% better) in
all the methods if the distance between the transmitter (Tx)
vehicle and the receiver (Rx) vehicle is no greater than 200m
in Figure 7(a). We argue that, in this case, the risk assessment
contributes significantly to reducing the data traffic. Com-
pared with RTC+, a self-tracking-based approach [24], our
system performs slightly better in the risk assessment and
then improves the number of neighbor vehicles to receive
data sharing (i.e., PRR). This improvement comes from the
advantage of the DDQN training can find the best action
configuration (transmission rate) from testing hundreds of
thousands of configurations for all vehicles. That means the
vehicles cooperate to adjust their sending rate to maximize
the sum reward. By contrast, RTC+ lacks cooperation among
vehicles to measure the risk and then adjust their sending rate
together. Besides, DEEPCUT has a smaller benefit in PRR
than a channel-busy-based approach like DCC or LIMERIC
gains if the traffic is congested in far distances, as shown
in Fig. 7(b). This is because if the Tx vehicles are far from
the Rx vehicles (>200m and 100m in Figures 7(a) and 7(b)),
potential collision risk is less critical. As a result, reducing
the data rate for all transmitter vehicles as in 3GPP DCC or
LIMERIC can be an efficientmethod to reduce the congestion
immediately while having a less negative impact on vehicle
safety (than doing that for near distances).

FIGURE 7. The Packet Reception Rate performance of our DEEPCUT and
three baseline models in two simulation cases: a) 200 vehicles/1km
(heavy traffic); b) 300 vehicles/1km (congested traffic).

FIGURE 8. The Channel Busy Ratio performance of our DEEPCUT and
three baseline models in two simulation cases: a)200 vehicles/1km
(heavy traffic); b) 300 vehicles/1km (congested traffic).

To measure the channel utilization, we used the CBR met-
ric. As mentioned early, CBR can be measured by the number
of successfully granted channel access over the total num-
ber of channel access requests or the ratio of the total
number of received messages from neighbor vehicles and
the channel capacity of the V2V network. The results in
Figure 8(a) indicate that DEEPCUT can significantly reduce
the ratio of channel overload during V2V high-density and
traffic congestion cases compared with the baseline mod-
els. For example, DEEPCUT maintains an average of 20%
better in cutting data pouring into V2V networks than the
channel-busy-based transmission control approaches (DCC,
LIMERIC) do. By exploiting cooperation in decentralized RL
systems, our DEEPCUT system can improve channel usage’s
overall efficiency based on the vehicles’ travel patterns.
Specifically, CBR in Figure 8(b) shows that DEEPCUT can
even maintain a little available channel space (∼4-8%) when
a traffic jam occurs (150-th second). In this case, the risk of
slow-moving vehicles is low. As a result, DEEPCUT-based
agents on the vehicles suggest reducing the vehicle onboard
units’ sending rate without violating the safety or the urgency
of V2V data sharing.

However, the results in Figure 8(a) also indicate the cutting
speed on the sending rate of DEEPCUT is slower than that
of the channel-busy-based congestion control approach (i.e.,
DCC/LIMERIC) is at the initial step. This is because DRL
agents in DEEPCUT often take time to find an optimal con-
figuration. In highly dynamic vehicular networks, the slow
cutting can temporarily lead to a higher CBR than the imme-
diate cutting approach as in LIMERIC. However, the case of
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FIGURE 9. The Collision rate performance of our DEEPCUT and three
baseline models in two simulation cases: a)200 vehicles/1km (heavy
traffic); b) 300 vehicles/1km (congested traffic).

hundreds of vehicles moving at high speed in a short distance
is uncommon in practice (e.g., racing). A solution, in this
case, is to use groupcast transmission for multiple platoons
instead of using a shared channel for all vehicles. And the
leaders of the platoons can share the cutting strategies to
converge quickly. We believe that finding a consensus con-
figuration for many vehicles is a complicated issue with no
perfect solution. In short, there is a trade-off between deter-
mining a proper broadcasting rate immediately and ensuring
fairness among a large number of transmitter vehicles while
maintaining safety.

To measure whether the data rate reduction impacts safety,
we used the CR metric. As mentioned early, CR denotes the
total times each pair of vehicles exceeds the safe distance
dsafe at their relative speed. As shown in Figure 9, DEEPCUT
can reduce the collision risk in all the cases of traffic density
compared with the channel-based congestion control mech-
anisms. Even at high speed of the vehicles and high traffic
density (Figure 9(a)), our system can assist in reducing up to
21% of the collision risk. This is because when our risk-based
transmission model can accurately assess the risk patterns of
nearby vehicles and suggest sending rate reduction for non-
risk vehicles, which the channel-based congestion control
cannot identify. Note that, in congested traffic cases, the
vehicles move near each other, CR is high if there is improper
acceleration. Besides, many obstacles ahead in the congested
area can cause NLOS links that indirectly contribute to a high
CR (as shown in Figure 9(b)).

In the worst case, i.e., the number of vehicles in the conges-
tion area is huge, DEEPCUT-based agents take a slightly high
cost of time to find the best configuration of the broadcasting
rate. This is because the risk assessment for a massive number
of neighbor vehicles is a time-consuming task. As shown in
Figure 10, DEEPCUT’s processing time to suggest a proper
sending rate for the host vehicle is a little longer than the three
baseline models if the traffic is heavy. This is because of the
delay in finding a consensus on the data rate adjustment in
our multi-agent learning model. Nonetheless, we argue that,
since the system’s latency for processing is lower than 50ms
even in the worst case, the system is still applicable for many
road-safety vehicular applications.

C. DISCUSSION
There is no perfect solution to solve all issues of chan-
nel congestion. Suppose the channel cannot satisfy every

FIGURE 10. The processing speed of DEEPCUT in assessing vehicles and
return a suggestion for sending rate, compared with three baseline
models.

vehicle’s resource request (sub-channel access through 5G
default resource allocation functions) in crowd traffic cases.
In that case, our risk-based assessment provides a new
method to reduce redundant data transmission. Accordingly,
the system will prioritize those who need to access the
channel most (high-risk vehicles). By contrast, the channel-
busy-based approach (DCC, LIMERIC) targets to reduce
the transmission rate of all vehicles simultaneously if the
channel is busy, regardless of the high-risk or low-risk state.
This approach is potentially flawed for vehicle safety if the
vehicles are at high-risk distances. In this case, our system
has the advantages of guaranteeing both data transmission
reduction and safety maintenance. For the best configuration,
the two approaches should complement each other to assist
in transmission congestion control, depending on the relative
distance distribution of the vehicles.

Based on our baseline research in this work, several
promising ideas can be conducted further. First, DCC is still
being enhanced to become an official congestion control
standard for C-V2X. At this point, an interesting study can
be: integrating our risk-by-distance factor as an extensive
parameter in DCC tunning parameters (e.g., power, transmis-
sion rate) to enhance the channel congestion in the various
scenarios or for Vehicle-to-Infrastructure communications.
However, a comprehensive evaluation of the positive/negative
impact of the combination is critical. Second, the risk assess-
ment in our method can be enhanced with new assessment
models or factors, e.g., with assists of cameras or period
feedback from neighbor vehicles. Finally, building the groups
of vehicles in large-scale traffic cases and then applying
hierarchy-based congestion control strategies for each group
can be a potential direction for further conduct.

VI. CONCLUSION
In this work, we present an intelligent DDQN-based trans-
mission control scheme, namely DEEPCUT, to dynamically
adjust the broadcasting rate of beacon messages. DEEPCUT
can evaluate the risks of surrounding vehicles and suggest
reducing the transmission rate to the low-risk vehicles while
increasing the channel access opportunities for the high-risk
vehicles. The evaluation results show that our system can help
cut up 16% redundant data while making no negative impact
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on overall packet delivery rate of the vehicles in the network.
Besides, our method increases the packet reception rate up
to 22%, indicating that more neighbor vehicles can receive
data from the transmitter vehicles. In this way, our risk-based
approach contributes a new method to deal with the chan-
nel congestion issue in crowding vehicular communications,
besides using conventional congestion control mechanisms.
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