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ABSTRACT Automatic detection of pulmonary nodules is critical for the early diagnosis and prevention
of lung cancer. Computed tomography (CT) is an effective and economical lung cancer detection method.
In CT images, the size and shape of pulmonary nodules appear different, and some nodules appear similar
to the surrounding tissues. Therefore, the automatic localization of pulmonary nodules in CT images is a
challenging task. An attention-embedded three-dimensional convolutional neural network is proposed for
pulmonary nodule detection in the current study. Specifically, 1) channel-spatial attention guides 3D ResNet
to down sample the input 3D CT patch. The channel pays attention to important features and the space to the
region of interest. The two form a complementary feature extraction mechanism to effectively help the global
flow of information in the network and refine the feature mapping to extract the nodule context features.
2) The channel-spatial attention module changes the fusion model of the feature pyramid, adaptively adjusts
the pixel-level weight between features and extracts multi-scale representative node features. 3) The deep
separable convolution is used to replace the standard convolution of ResNet, reducing the time cost and
improving the efficiency of model training on the premise of ensuring the model’s performance. 4) To adapt
the distribution of nodule scale, different characteristic layers correspond to two sizes of anchors. Under the
condition of ensuring the detection rate of nodules, the number of anchor frames is reduced, and the network
sensitivity is improved. Finally, several ablation experiments are carried out using the LUNA16 dataset. The
results revealed that the attention-guided network could extract the multi-scale representative features of
nodules, and the average sensitivity was 97.7%. Additionally, the CMP score reached 0.912. The extensive
experiments demonstrate that the proposed approach can effectively improve the detection sensitivity and
control the number of false positive nodules, which has clinical application value and a certain reference
value.

INDEX TERMS Channel-spatial attention mechanism, multi-scale features, pulmonary nodule, computed
tomography scan, medical computer vision.

I. INTRODUCTION
Globally, cancer is the leading cause of death and a major
obstacle to improving life expectancy [1]. Lung cancer is
particularly deadly and is the leading cause of cancer deaths
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in men. Lung cancer ranks first among countries with high
HDI (39 per 100,000 people). According to 2020 global can-
cer incidence and mortality estimates compiled by the Inter-
national Agency for Research on Cancer, nearly 10 million
people will die from cancer, of which lung cancer would
account for 11.4% [2], [3]. Early lung cancer symptoms are
not evident, and once a person starts to exhibit uncomfortable
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symptoms, the cancer is at an incurable stage. Therefore,
early diagnosis of lung cancer could effectively prolong the
survival rate. Lung cancer might appear as pulmonary nod-
ules in the early stage. In CT images, pulmonary nodules refer
to round or oval lung tissue masses with a diameter between
3 and 30 mm, and those with a diameter of less than 3 mm
are called micronodules. Clinically, pulmonary nodules can
be identified according to the morphology, location, density,
intensity, calcification, and changes in surrounding tissues.
Therefore, detecting pulmonary nodules is vital for the early
diagnosis of lung cancer.

In general, pulmonary nodules can be effectively detected
with computed tomography (CT), MRI, and positron emis-
sion tomography (PET-CT), among which low-dose CT of
the chest is recognized as the most efficient and economical
method of diagnosis [4]. CT scan could intuitively describe
themorphological characteristics of lesions, with a sensitivity
of 98%–100% and specificity of 54%–93%. However, data
from a single scan for each patient consists of 200 to 700 2D
images (2-Dimension, 2D), and the resolution of each image
is 300∗300 or more. Relying entirely on doctors’ subjec-
tive judgment takes time and effort and increases the rate
of misdiagnosis and missed detection due to objective fac-
tors, such as fatigue and lack of professional experience and
attention. Therefore, we must develop an automatic detection
system for pulmonary nodules to help doctors discover poten-
tial abnormalities, reduce workload, and improve pulmonary
nodules diagnosis accuracy.

Deep learning technology has rapidly developed, and deep
convolutional neural network (CNN) has made remarkable
achievements in various problems [5]–[8]. Deep learning
techniques also play an important role in medical image
analysis. CNN’s powerful feature representation and end-to-
end training model can obtain rich target features from image
data, making it a promising method for lung nodule detec-
tion. A series of CNN-based pulmonary nodule detection
methods [9]–[14] have been proposed that achieved excellent
detection performance. We studied the literature on deep
learning-based pulmonary nodule detection methods in the
past 10 years and discovered that the existing pulmonary
nodule detection system has many challenges:

1. The shapes and sizes of pulmonary nodules are diverse.
The location of nodules is specific, such as near vascular
nodules and lung wall nodules. Some nodules have margins
similar to the surrounding lung parenchyma. The size of nod-
ules is mainly distributed between 3 and 40 mm, belonging to
small targets. Due to these peculiarities of nodules [15], their
detection using the existing algorithms is inefficient, resulting
in missed detections and false positives.

2. To improve the network performance of pulmonary
nodules detection, some CNN-basedmethods primarily focus
on broadening or deepening the model structure to learn more
high-resolution features. However, inherent correlation stud-
ies between feature layers are insufficient, which weakens the
characterization ability of CNN.

3. Some algorithms use a feature pyramid network
(FPN) [16] to extract multi-scale features of nodules.
However, the feature pyramid restores multiple down-
sampled features by up-sampling, and the pixel values and
positions of up-sampled features are inconsistent with those
of the original feature images without down-sampling. The
addition of concatenation operations to fuse different levels
of feature maps leads to discrepancies or ambiguities in the
fusion process, making it difficult to match the high-level
semantic information with the underlying structure. As a
result, the detailed representation of features or contextual
information is corrupted, which hinders the flexibility of the
network to extract features.

4. Some nodule detection systems ignore the performance
and efficiency of the model while pursuing high precision.

Inspired by previous studies, we proposed a 3D Faster
R-CNN pulmonary nodules detection model embedded with
attention mechanism and adaptive feature pyramid to address
the problems mentioned above. 3D Faster R-CNN model
structure is the most advanced two-stage target detection
method, with the ability to automatically extract depth fea-
tures and locate targets, and the detection accuracy is better
than the classical algorithm of one-stage target detection.
Unlike natural images, lung nodules’ size, shape, and texture
are arbitrary, and the surrounding tissue might resemble the
nodules. Therefore, accurate identification of their features
is challenging. Using the excellent two-stage model, the
regional proposal of pulmonary nodules in the first stage and
then the secondary correction of the regional proposal can
obtain more accurate detection results. We adopted channel-
space attention to improving the residual blocks of ResNet
and used the improved ResNet as the feature extraction
backbone network. ResNet solves the degradation problem
of the network by short-circuiting the connections and fully
extracting the local spatial contextual information of the nod-
ules. Channel attention adaptively adjusts channel weights to
enhance salient features of nodes, inhibit unimportant fea-
tures, and enhance the flow of shallow features. Spatial atten-
tion adaptively adjusts region of interest weights. It guides the
network to learn abstract semantic features and extract repre-
sentative global contextual structural information of nodules,
forming a complementary mechanism with channel atten-
tion to complement and activate more location information.
In the current study, a channel-space attention (CSA)-based
adaptive feature fusion (AFF) network is proposed for fine-
grained feature extraction. AFF performs pixel-level adap-
tive feature fusion of feature maps from different layers and
channel and space directions, respectively. AFF models the
contextual information of lung nodules by fusing high-level
semantic features and shallow detailed features to extract
multi-scale fine-grained nodule features. The 3D structure is
more complex than the 2D structure, with several parame-
ters and impressive time consumption. In the present paper,
Depth-wise Separable Convolution (DSC) is introduced to
replace the 3D convolutional block of the original residual
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structure and reduce the number of CNNparameters, simplify
the feature encoding and improve the performance of the
model. Only a few images usually contain pulmonary nodules
in a CT image dataset. Therefore, the number of positive
and negative samples in the data set is extremely unbalanced.
The imbalance seriously affects the model’s detection perfor-
mance and even leads to model degradation and convergence
difficulties during the training process. Therefore, in this
paper, focal loss [17] is used to calculate the classification
loss, and the super-parameters in the function were selected
through experiments.

To summarize, our contributions are listed as follows:
1. The proposed attention-embedded pulmonary nodules

detection model based on 3D Faster R-CNN. ResNet is
improved by embedding attention to residual blocks and DSC
instead of the standard 3D convolution in the original resid-
ual blocks. The improved ResNet is used as the backbone
network for feature extraction, which adaptively focuses on
the main channels and regions of interest and guides the
low-level location, contour, edge, texture and shape features
and high-level abstract semantic features to activate each
other to form complementary feature flow and extract more
representative nodular features. DSC ensures the accuracy
and sensitivity of nodule detection, reduces the number of
parameters and calculations of the model, and enhances its
detection performance.

2. An AFF network is proposed based on the atten-
tion mechanism. The attention mechanism adaptively guides
the network to construct pixel-level feature fusion weights
between up-sampled and down-sampled features, effectively
modeling contextual feature information and enhancing net-
work representation capability.

3. Anchors of different scales are assigned to feature maps
of different resolutions for extracting region suggestions,
which efficiently fit the scale distribution of nodules and
improve network detection sensitivity.

4. Focal loss function was used to calculate the classifi-
cation loss, and the optimal hyperparameters were selected
through many experiments to balance positive and negative
samples effectively.

II. RELATION WORK
With the wide application of deep learning technology in
medical image analysis, natural image detection algorithms
based on deep learning demonstrate excellent performance
in medical images. Two primary CNN-based lung nodule
detection models are present, namely, one-stage detection
represented by YOLO series [18] and SSD [7] and two-
stage detection, represented by Faster R-CNN [19] and Mask
R-CNN [20]. Inspired by the classical CNN network detec-
tion model, a series of automatic detection algorithms for pul-
monary nodules based on CNN are proposed. Setio et al. [12]
extracted a set of 2D patches from multiple directions at each
candidate position and then input each patch into the CNN
stream to learn features separately. Finally, all output features
are combined through a dedicated fusion method to calculate

the final score and reduce false positives. Ding et al. [9] used
2D Faster R-CNN [19] combined with the VGG-16 model
to generate suspect candidate nodules, and 3D DCNN was
used to remove false-positive nodules. The model obtained a
high CMP score of 0.891. CT images are composed of several
2D images, and each 2D image is only a cross-section of
the CT image sequence, which cannot completely represent
the nodules with different morphologies and variable sizes.
Therefore, detecting lung nodules using 2D images destroys
the continuity of nodules in 3D space and cannot fully utilize
the information of contextual features of nodule images.

Compared with 2D CNN structures, 3D CNN network
structures are more conducive to identifying nodules by
training 3D samples and extracting more representative nod-
ule features using the spatial information of the nodule’s
context and achieving good results in terms of accuracy.
Zhu et al. [14] adopted 3D Faster R-CNN with DPNs and
encoder-decoder structure similar to U-NET [21] for nod-
ule detection. Then, the gradient Boosting Machine, based
on deep 3D DPN features, original nodule CT pixels, and
nodule size, was designed for nodule classification to reduce
false positives. Finally, the model’s nodule- and patient-level
diagnosis on the LDC-IDRI dataset was comparable with
that of experienced doctors. Dou et al. [10] dopted three
3D CNNS, each encoding a specific level of background
information. Finally, the final classification result is obtained
by integrating the probability prediction results of these net-
works, and the detection result of the proposed model is
better than that of most pulmonary nodules recognition algo-
rithms. Wang et al. [22] proposed an improved 3D Faster
R-CNN structure model. The model used VGG16 as the
backbone network for feature extraction and stitched together
four features from shallow to deep in the backbone network.
Different scale anchors were located using the feature pyra-
mid. The feature maps were sent to ROI for classification as
candidates or non-candidates by feature sharing. Advanced
feature mapping, for the classification of size nodes, has
richer semantic information than single layer features. In the
second stage, a simple 3D classification network is designed
for candidate nodule classification to reduce false positives,
and the detection method can achieve high sensitivity with
few FPs. Fu et al. [23] proposed an improved 3D U-Net deep
learning model for automatic detection of pulmonary nodules
on chest CT images. The model was validated through 89 CT
scans of LUNA16, a public dataset, with a CPM of 0.947 and
450 chest CT scans provided by a City University hospital in
Japan, with a CPM of 0.833. This indicates that the improved
3D U-NET deep learning model has good robustness in the
detection performance of pulmonary nodules. Tang et al. [24]
based on the multi-scale feature of transfer learning, estab-
lished a 3D U-NET CNNwith a multi-scale feature structure,
which can detect pulmonary nodules from the thoracic region
containing background and noise. The accuracy of the model
for detecting small nodules reached 70%.
Attention mechanism: The attention mechanism has

attracted extensive attention in computer vision research.
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Attention simulates sensory features in the human visual
system by selectively focusing on important and evident
information through local observations. The attentional
mechanism adaptively enhances the weight of rich feature
information by suppressing the expression of unimportant
features. The attention module is lightweight and can be
embedded directly into deep convolutional neural networks
or replace components of CNN networks, which adaptively
adjust the feature weights of contextually important regions
to improve the network’s performance effectively. Squeeze-
excitation network (SENet) is frequently used in many target
detection and image classification [25]. SENet is widely used
in medical image analysis. Yuan et al. [26], Zhang et al. [27]
and Zhang et al. [28] introduced SE modules into the feature
extraction network to improve pulmonary nodules’ detection
and classification performance. However, the SE module
compresses the pixel values of each channel into a real num-
ber by using the global average pooling (GAP) layer, which
unilaterally considers channel correlation without consider-
ing location information. However, spatial attention plays
an important role in determining the ‘‘where’’ to focus on.
In addition, the SE module only exploits the average pooling
feature, ignoring the importance of the maximum pooling
feature, which encodes significant features and compensates
for the GAP feature. Pulmonary internal environment is
complex, the size and shape of nodules are diverse, and
the nodules near blood vessels and lung walls are blurred
with surrounding tissues. The SE module inevitably leads
to the loss of nodule structural information, resulting in
missed detection or false-positive. Convolutional block atten-
tion module (CBAM) [29] consists of two parts: channel
attention and spatial attention, where channel attention uses
global maximum pooling and average pooling operations
to adaptively adjust channel weights to focus on important
features, whereas spatial attention adaptively refines spatial
features to focus on key regions, forming a complementary
mechanism that effectively compensates for the shortcomings
of SE. The effectiveness of CBAM on pulmonary nodule
detection has not been extensively explored yet.
Feature Pyramid Network (FPN): FPN [16] has become

an important module of the target detection algorithm. In the
detection network of pulmonary nodules, FPN was estab-
lished on the backbone network, and multi-scale feature
images were fused to obtain multilevel features with dif-
ferent resolutions. Pulmonary nodules with different scales
were assigned to feature images with different resolutions.
It can effectively alleviate the scale change and heterogene-
ity problems of pulmonary nodules detection, effectively
extract fine-grained characteristic context information, and
assist small target detection. Zhang et al. [28] proposed 3D
FPN lung nodule detection network to extract multi-scale
features of small targets. Feature pyramids can be used to
obtain high-resolution features by up-sampling higher-level
low-resolution features and then fusing them with lower-
level high-resolution features through addition or concatena-
tion. However, differences between two feature layers with

different resolutions in the backbone are present to a certain
extent, and direct addition will destroy the representation
of features in both layers. Moreover, direct concatenation is
not conducive to certain region details or the detection of
small targets and accurate target localization. To solve this
problem, in the current paper, we proposed an AFF pyramid
structure, which by embedding the CBAM module, uses the
high- and low-level features to predict the pixel-level fusion
weights and effectively extract the 3D contextual information
of nodules.

III. MATERIALS
Lung nodule detection is a target detection task, and twomain
types of representative methods for current target detection
are One-step detection methods and a two-stage detection
model. One-step detection methods use CNN to extract fea-
tures and then directly classify and regress. The whole pro-
cess only needs one step, so it is relatively fast with low
accuracy. The 3D Faster R-CNN model structure is the state-
of-the-art and two-stage approach to detecting targets. First,
all target suggestions are predicted as much as possible from
CT images, and then features in the target suggestions are
extracted using ROI Align [20] for classification and fine
coordinate regression. Two-stage detection usually combines
the feature pyramid module to propose multi-scale features
and then predicts target suggestions based on each scale fea-
ture, making full use of contextual information to improve the
sensitivity of small nodule detection. The lung environment
is complex, and nodules are not discernible from the sur-
rounding tissues. Often nodules are confused with lung wall,
lymph nodes, blood vessels, bronchi, and other pathologi-
cal tissues on CT images, which requires accurate detection
algorithms to improve the nodule detection performance. 3D
Faster R-CNN’s two-stage detection model is beneficial for
lung nodule detection. We proposed an attention-embedded
lung nodule detection model based on a 3D fast R-CNN
model. The overall process of the automatic detection system
for pulmonary nodules is shown in Fig.1, which aims to
extract contextual feature information of the 3D nodules fully
and accurately detect pulmonary nodules. It mainly consists
of data acquisition, pre-processing feature extraction, fusion,
and nodule detection.

FIGURE 1. Lung nodule detection process with embedded attention
mechanism.

A. DATA COLLECTION AND PRE-PROCESSING
Data collection: The present paper uses the LUNA16 dataset
(Tenchi competition dataset) to evaluate the proposed algo-
rithm. The data can be downloaded at https://luna16.grand-
challenge.org. LUNA16 is a subset of data from The Lung
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Image Database Consortium (LIDC) and Image Database
Resource Initiative (IDRI). The LDC-IDRI [30], [31] data
were collected by the National Cancer Institute, the world’s
largest publicly cited database of lung nodules, with
1018 studies, to analyze early cancer detection in high-risk
populations. In LUNA16 [32] data set, the CT of specimens
with slice thickness greater than 3 mm was removed, and
specimens with inconsistent slice space and missing sections
were also removed. Finally, 888 CT pieces were generated.
A total of 36,378 nodules were identified (labeled in LDC-
IDRI) in 888 CT scans, and 5765 nodules with diameters
>3 mm were screened and used. Nodules whose distance
between the centers of two nodes was less than the sum of the
radii of the two nodes were merged, leaving 2290 nodes after
the merger. These nodules are also the data set used for the
experiments in the current paper. The lung nodule annotations
in the dataset were collected by four professional radiologists
during a two-stage image annotation process. The number
of nodules annotated by at least one, two, three, and four
radiologists was 2290, 1602, 1186, and 777, respectively.
LUNA16 was used for 1186 nodules labeled by at least three
radiologists as positive samples in the reference standard.
We used the diameter of each nodule provided in the LUNA16
match to generate a bounding box as a label for detecting
nodules.
Pre-processing: We refer to the data pre-processing pro-

cess in an article [28], [33]. Data pre-processing mainly
includes resampling, normalization, denoising, and lung
parenchyma segmentation. Original CT image scanning con-
sists of two-dimensional images with different pixel inter-
vals because CT images were collected on different devices.
Different sampling frequencies lead to different CT data sizes
and nodular diameters. All CT scans are resampled at 1mm×
1 mm × 1 mm pixel spacing using linear interpolation and
adjusted to the same orientation to eliminate inconsistent
resolution of different CT scans. A Gaussian kernel with a
size of 3× 3 was used to performGaussian filtering on image
slices to remove the noise during acquisition. According to
the HU (Hounsfield Unit) value of lung CT, the lung areas
with an HU value between [−1000,400] are reserved, and
other irrelevant areas are omitted. The mask of the lung
region was obtained using a lung segmentation image pro-
vided by LUNA16. Lung segments, including all nodules,
were identified using the convex wrap and dilation method.
The final image pixel values were cropped to [−1200,600]
and normalized to [0, 255]. The non-lung region was filled
with pixels at 170, and the cavity was expanded, convexly
packed, and dilated by bifurcated morphological operations
to preserve more boundary information and segment the lung
parenchyma.

B. ATTENTION-GUIDED 3D RESNET AND ADAPTIVE
MULTISCALE FUSION NETWORK
Inspired by previous research results, we proposed a 3D
ResNet based on attention-guided contextual feature extrac-
tion and an FPN with an adaptive fusion of multi-scale

features which can effectively extract representative nodal
features. ResNet achieves feature reuse by adding jump con-
nection channels, making full use of 3D contextual infor-
mation of lung nodules, and solving the network’s gradient
disappearance and gradient explosion problems. ResNet is
widely used in the field of computer vision. CSA is embed-
ded in the ResNet network, which models the correlation
between channels, improves the feature representation of the
region of interest, and extracts more representative nodal
features. DSC is used to replace the ordinary convolution
of the original residual network, which improves the per-
formance and efficiency of model training while ensuring
model detection accuracy. Attention is introduced to develop
a multi-scale feature fusion and extraction network, which
adaptively context models high-level abstract semantic fea-
tures and shallow location structure features and achieves
pixel-level fine-grained feature fusion. The network frame-
work consists of two main components: the 3D residual net-
work with embedded attention and the adaptive multi-scale
feature fusion network. The structure is shown in Fig. 2.

1) GENERAL STRUCTURE OF FEATURE EXTRACTION
AND FUSION
Encoding networks with embedded attention: The network
input is a 3D patch, which first passes through two convo-
lutional layers (kernels = 3 × 3 × 3, channels = 24) and
then passes through five 3D Residue (3D Res-AM) modules
of the embedding Attentional Mechanisms (AM) structure
to extract features. Each 3D Res-AM is followed by a max
pooling (kernel = 2 × 2 × 2, stride = 2) layer to reduce the
size of the feature map, extracting the features of the image
patches from shallow to deep layers, layer by layer. The size
of the 3D feature maps from shallow to deep are obtained
as (1283@24, 643@32, 323@64, 163@64,83@64,43@64).
In the present paper, ResNet has been improved and read-
justed as the backbone network. Each of the five 3D Res-
AMmodules consists of residual cells with the same structure
and the number of iterations of the residual cells, namely 3,
4, 6, 4, and 3. 3D Res-AM enriches the attention graph by
effectively combining spatial attention and channel attention,
utilizing global contextual information to selectively high-
light or weaken features, and guide the network to extract
more representative features and regions of interest.

Decoding networks with AFF Network: In the feature
fusion path, a deconvolution layer (kernel = 2 × 2 × 2,
step = 2) is first used to up-sample the feature map with
the lowest resolution obtained from down-sampling, and a
featuremapwith a size of 83@64 is obtained. The up-sampled
feature map and the down-sampled feature mapwith the same
size are fused using the AFFmodule to obtain the feature map
with the scale of 83@64. Then, four feature images fused
with the corresponding size of down-sampling are obtained
using three sets of deconvolutions, AFF, and 3D RES-AM
operations. As shown in Fig. 2. The predicted feature maps
of the four scales obtained in the feature extraction stage
were (643@64, 323@64, 163@64, 83@64). Next, we fed
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FIGURE 2. Overall framework of general structure of feature extraction and fusion.

each feature layer into the RPN network to extract the region
suggestion box. The feature fusion module with embedded
attention achieves pixel-level AFF by contextual modeling of
high-level features and shallow-level features.

2) CONVOLUTIONAL BLOCK ATTENTION MODULE
The attention mechanism adaptively enhances the weight of
rich feature information while suppressing the expression of
unimportant features, which effectively improves the perfor-
mance of the network in recognizing features. SENet selec-
tively scales the channels to capture the channel dependence
between channels. A lung nodule detection algorithm has
been proposed based on SENet and has achieved excellent
detection performance. However, the SE module only con-
siders channel correlation and does not account for location
information; however, spatial attention plays a major role
in determining the ‘‘where’’ aspect of attention. In complex
pulmonary nodule states, the SE module loses nodule details,
which reduces the detection performance. CBAM [29] guides
the network to focus adaptively on important features and
regions of interest along both channel and spatial direc-
tions, respectively, effectively compensating for the lack of
SE. In the present paper, we used the CBAM module to
improve the residual network and construct the AFF pyramid
to improve the expression of features. An illustration of the
CBAM is shown in Fig. 3.
Channel Attention architecture (CA): For any input inter-

mediate layer feature F∈ RD×H×W@C The average pooling
and the global maximum pooling operations aggregate spatial
feature information to form two different contextual descrip-
tors; a shared network consisting of a two-layer perceptron
and a hidden layer is applied to approximate each descriptor
andmerge the output feature vectors using element-wise sum-
mation. Generate channel attention map CAF ∈ R1×1×1@C .
The channel structure is shown in Fig. 3(a). In short, the
detailed operation is described as follows:

CAF = σ (MLP (AvgPool (F))+MLP (MaxPool (F))) (1)

where σ denotes the sigmoid function, The parameter r of
MLP is eight in the current study. AvgPool and MaxPool
denote the GAP andmax pooling, respectively. Average pool-
ing aggregates spatial features, and max pooling focuses on
essential cues of the target features, which infer fine-grained
channel attention. Both operations are used simultaneously to
improve the representation capability of the network.
Spatial attention architecture (SA): Spatial attention

focuses on the region of interest and plays an effective com-
plementary role in channeling attention. For any input inter-
mediate layer feature F ∈ RD×H×W@C , the average pooling
and the global max pooling operations are used to encode
each pixel at all spatial locations along the channel direc-
tion, generating two feature descriptors. The two concate-
nated descriptors are convolved to generate a spatial feature
map SAF ∈ RD×H×W@1. The spatial structure is shown in
Fig. 3(b), and the detailed operation is described as follows:

SAF = σ (conv
([
AvgPool (F) : MaxPool (F)

])
(2)

where σ denotes the sigmoid function, Conv represents a
convolution operation. The filter size of the convolution oper-
ation in this study is 3 × 3 × 3. In the SA structure, pooling
operations are applied along the channel axes to highlight
regions of information effectively. Convolution layers are
applied to cascade feature descriptors to emphasize or sup-
press spatial locations.
Channel-Spatial Order attention (CSA): Channel and

space focus on representative features and regions of interest
and compute complimentary attention. The two modules can
be inserted into an existing efficient network in parallel or
series. In paper [29], after extensive compatible experimen-
tal studies, the CSA tandem module is superior to other
approaches; namely, the CBAM approach is optimal. For
any input intermediate layer feature F∈ RD×H×W@C . First
feature map F is calculated using channel attention, and the
obtained channel features are multiplied by F to obtain the
middle layer feature map FM ∈ RD×H×W@C . Then, FM
is used as the input of SA to calculating the spatial feature
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FIGURE 3. F Channel-spatial attention structure diagram: (a) Channel
attention (CA), (b) Spatial attention (SA), (c) Channel-Spatial
Attention (C-SA).

map SAF∈RD×H×W@1. Finally, SA is multiplied with the
feature map FM to obtain the CBAM feature map CSAF ∈
RD×H×W@C . The CSA structure is shown in Fig. 3(c), and
the detailed operation is described as follows:

FM = CA (F)⊗ F (3)

CSAF = SA (FM )⊗ FM (4)

3) RESIDUAL NETWORK STRUCTURE BASED ON DSC
AND CSA (RES-DSC-AM)
ResNet exhibited excellent performance in the field of
computer vision, and its core is the introduction of resid-
ual structure, which enables feature reuse by adding
shortcut connection channels, solves the gradient disappear-
ance/explosion problem of deep networks, and enhances the
information flow of feature propagation. However, ResNet
ignores the correlation between channels and the importance
of regions in spatial, therefore, it cannot extract global and
local features simultaneously. To fully utilize the 3D spatial
information of lung nodules, we chose a 3D patch as the
input of the network. Compared with the 2D network model,
the 3D network has several computationally expensive and
complex parameters. We improved the residual structure by
introducing 3D DSC and embedding attention. The structure
is shown in Fig. 4.
Depth-wise separable ResNet (Res-DSC): The convolution

operation is decomposed into two steps, Depth-Wise Convo-
lution (DWC) and Point-Wise Convolution, which can effec-
tively reduce the computation while ensuring the accuracy of
the model. In the present paper, the 3DDSC is used to replace
the original standard convolution, and the improved residual
structure is shown if 4(b).
Embedded-Attention ResNet (ResNet-DSC-AM): Given an

input map, channel and space, two attention modules com-
pute complementary attention, focusing on the ‘‘what’’ and
‘‘where’’, respectively. The two modules can be placed in
a parallel or sequential manner. The attentional convolu-
tion operation extracts information features by mixing cross-
channel and spatial information and emphasizes meaningful

FIGURE 4. Improved residual block structure:(a) Original 3D residual
block. (b) 3D Res-DSC. (C) 3D Res-DSC-AM.

features along the two main dimensions of the channel and
spatial axis. The channel and SA modules are embedded
sequentially in ResNet so that each of the branches can
learn ‘‘representative features’’ and ‘‘important regions’’ on
the channel and spatial axes, respectively. As a result, the
attention module effectively helps information flow globally
in the network by learning which features to emphasize or
suppress and further refines the feature mapping to enhance
the nodule contextual feature extraction. Fig. 4(c).

4) ADAPTIVE FEATURE FUSION (AFF) Network
FPNs fuse the up-sampled feature maps with down-sampled
feature maps with the same structure in the backbone network
and predict targets of different sizes on feature maps, which is
an essential structure in target detection algorithms and effec-
tively solves the small target detection problem. Therefore,
the feature pyramid structure is widely used in target detec-
tion models. However, FPN has some drawbacks. The FPN
recovers the featuremaps of the backbone network after being
down-sampled several times by up-sampling, and the recov-
ered feature maps are prone to misalignment. Therefore, the
feature maps obtained after fusion are discrepant or blurred.
FPNs fuse feature maps from different layers by traditional
summation of corresponding elements or simple splicing
operations. The up-sampled feature maps differ from the
backbone network response structure feature maps, and direct
summation will destroy the feature representation of the fea-
ture maps. If the fusion is directly collocated, the regional
details are easily lost, unfavorable for detecting small target
nodules near lungwalls and blood vessels. An attention-based
adaptive FPN structure is proposed. The structure is shown
in Figure 5. The adaptive fusion process can be summarized
as follow: For any input, high-level low-resolution feature
map FHL ∈ RD×H×W@C , up-sampled two times to obtain the
feature map FHL−UP ∈ RD×H×W@C , then, FHL−UP and the
low-level high-resolution feature map FLH ∈ RD×H×W@C
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from the backbone network are concatenated, and then the
intermediate layer FM is obtained, which achieves coarse-
grained spatial feature fusion. FM ∈ RD×H×W@2C is fed into
the CSAmodule after descending convolution and smoothing
convolution, respectively, to obtain the feature map FCSA ∈
RD×H×W@C . The CSA module adaptively adjusts the pixel
weights from the pixel-level along the channel and spatial
directions, respectively, to capture multi-scale information of
lung nodules. Finally, FHL−UP, FLH and FCSA are summed to
achieve fine-grained feature fusion FAFF ∈ RD×H×W@C . it is
described as:

FM = cat (FHL−UP,FLH ) (5)

FCSA = CSA(conv1 (conv2 (FM ))) (6)

FAFF = FCSA ⊕′ FHL−UP⊕′FLH (7)

where cat represents concatenation operation. conv1,
conv2 represent convolution operations which kernel size is
1× 1 × 1 and 3× 3× 3, respectively.⊕ represents element-
wise add operation.

The adaptive fusion pyramid can dynamically adjust fea-
ture fusion by adjusting the weighting of higher-level low-
resolution features and lower-level high-resolution features at
the pixel-level fine-grained, which preserves more structural
information for regions requiring more detail (e.g., small
target nodules, near lung walls, and vascular nodules).
It can efficiently extract multi-scale spatial information at a
finer granularity level, and form long-range channel depen-
dencies and learning spaces are richer multi-scale feature
representations.

FIGURE 5. Illustration of adaptive feature fusion network (AFF) structure.

C. RPN NETWORK
RPN accepts four feature layers of different scales after adap-
tive feature pyramid fusion, and then the sliding window is
run through the featuremap obtained in the previous step. The
sliding window size is n × n × n (here, it is 3 × 3 × 3). For
each sliding window, a specific set of anchors is generated.
In this study, each voxel of the feature map corresponds to
two scales of anchor boxes. The feature maps are fed into
the anchor boxes classifier and regressor, respectively, after
passing through the FC layer. The classifier is used to learn
the probability value (p) of foreground or background, and
the anchor boxes with nodes are classified as foreground and
others as background. The regressor is used to learn the offset
(x, y, z, d) of the foreground boxes, the first three indicate
the coordinates of the proposed boxes in the region, and d
denotes the diameter. The loss functions for classification
and regression are defined in the loss function section. In the

ROI alignment step, several anchor boxes are generated,
and anchor boxes of different sizes correspond to different
scales of detection target regions because the nodule size
is highly variable and a single layer of feature layers lacks
semantic or structural information, so anchors of different
scales are assigned on multiple layers. To make the size
of the Anchor fit the nodular scale distribution as much as
possible to make anchor size fit nodule scale distribution as
much as possible, we refer to Zhang et al. [28] to calculate
the distribution results of nodule size and, combined with
prior clinical knowledge, assign anchors of different scales
to the four scale feature maps after the fusion of adaptive
feature pyramid. Following the principle that high-level low-
resolution features contain highly abstract linguistic features,
which are beneficial for detecting large scale targets, and
low-level high-resolution features contain more information
on location, boundary, and morphology, which are suitable
for detection of small-scale nodules, each feature map corre-
sponds to two-scale anchors. The results are shown in Table 1.

TABLE 1. Feature map corresponding to anchors size parameters.

The positive and negative samples are classified by cal-
culating Intersection over Union (IoU) for each candidate
region. If the IoU ratio of the candidate region to the labeled
is greater than 0.5, it is classified as a positive sample.
If IoU< 0.02, it is determined that the candidate region does
not contain nodules and is classified as a negative sample, and
regions with IoU between 0.02 and 0.5 are not involved in the
training process.

D. ROI ALIGN CLASSIFICATION NETWORK
The ROI module classifies the proposed region suggestions
while fine-tuning the regression parameters of the nodal
bounding boxes. The proposed region suggestion box is
mapped to feature mapping of the same size by the ROI Align
method. The feature layer is mapped to the feature vector
by two layers of FC. Finally, the proposed region suggestion
box is precisely regressed with offset (x, y, z) and diameter d
using the bounding box regressor, respectively, and whether
the proposed region contains nodules is predicted by the
classifier. The prediction probability p is output according
to the prediction result. The object in the proposed region is
further precisely adjusted, whether it is a pulmonary nodule
or not and the coordinate position of the nodule.

E. LOSS FUNCTION
Candidate nodule detection and nodule classification pre-
diction share a 3D residual network, and the lung nodule
detection model is a multi-task learning model.Our loss func-
tion is composed of classification loss probability score p
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for the anchor box and regression loss for nodule coordinate
(x, y, z), and nodule size d.

The total loss of the model is described as:

Lloss = Lcls + Lreg (8)

Nodule classification is a binary problem, but the positive
and negative samples in lung nodule data are extremely unbal-
anced, and the heterogeneity of nodules leads to different
difficulty of nodule detection. The Focal Loss function [17]
is able to improve the imbalance of the samples better by
introducing the balance factor and modulation coefficient.
Therefore, the algorithm in this paper chooses the Focal Loss
function to calculate the classification loss and avoid the
weakness of positive and negative samples, which is defined
as follows:

Lcls = −α(1− p)γ log2 (p) (9)

where, p is defined as prediction probability for binary classi-
fication, p is the probability of the class with label 1 estimated
by the model, α is a balanced weighting factor, which is used
to balance the loss of positive and negative samples in the
retraining process. γ is a tunable focusing parameter and
(1−p)γ is modulation coefficient, which is used to control
the weights of the difficult samples.

For Lreg, we used smooth L1-norm regression loss func-
tion [34], which is defined as:

Lreg = smoothL1(t, t̂) =

{ ∣∣t − t̂∣∣−0.5 if
∣∣t − t̂∣∣> 1

0.5
(
t − t̂

)2 else
(10)

where t is the offset of the ground truth box relative to the
anchor i, and t̂ is the predicted value of the same position, are
given by:

t =
(
x − xa
da

,
y− ya
da

,
z− za
da

, log
(
d
da

))
(11)

where (x, y, z, d) are the predicted nodule coordinates and
diameter in the original space,

(
xa,ya, za, da

)
are the coordi-

nates and scale for the anchor i.

t̂ =

(
x̂ − xa
da

,
ŷ− ya
da

,
ẑ− za
da

, log

(
d̂
da

))
(12)

where (x̂, ŷ, ẑ, d̂) are nodule ground truth coordinates and
diameter.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENT DESIGN
The experiments were conducted using Ubuntu 20.04. The
network model was developed using PyTorch 3.8, and the
experiments were carried out on an NVIDIA GeForce RTX
3080 graphics card with 24 GB of video memory through
the PyTorch parallel computing framework. The Batch Size
parameter was set to 8, and the number of model itera-
tions was 150. the fit rate of each parameter was adaptively
adjusted using the Adam optimizer. The initial learning rate

is 0.01, which decays to 0.005 at 38 iterations, 0.001 at
80 iterations, 0.0005 at 133 iterations, and 0.0001 at 142 iter-
ations. Due to GPU capacity limitation, 128 × 128 × 128.1
(D×H×W@C) patches were cropped from CT as the input
to the network. To prevent overfitting of the model, a scaling
factor between [0.75, 1.25] and random inversion and rotation
were used to enhance the data. In the testing phase, the lung
CT was cropped to 192 × 192 × 192.1 patch to include
all nodes as much as possible, and the segmentation blocks
were cropped so that 24 pixels were overlapped between
them to eliminate boundary effects during the convolution
calculation. In the whole training and testing, the method of
cross-validation was adopted. Among the ten subsets of the
LUN16 data set, nine groups were randomly selected as the
training set and the remaining one group as the test set. After
ten cycles, the results of all test sets were summarized for
analysis.

B. EVALUATION METRICS
In medical image recognition, three metrics are commonly
used to evaluate the detection performance of a system. They
are sensitivity, free Receiver Operating characteristics and the
competition performance metric. In this study, three metrics
are also selected to evaluate the effectiveness and perfor-
mance of the proposed model.
Sensitivity: the percentage of true positive lung nodules

detected, defined as:

Sen =
TP

TP+ FN
(13)

where TP represents the number of correctly predicted true
nodules, FN is the number of predicted non-nodules that are
true nodules.
Free Receiver Operating Characteristic (FROC): FROC

curve reflects the decreasing trend of false-positive nodules.
The horizontal coordinate is the false positive rate point in
each CT slice, noted as FPs/scan, FPs/scan ∈ (0.125, 0.25,
0.5, 1, 2, 4, 8)
The competition performance metric (CPM): CPM is the

average sensitivity at seven predefined false positive rates.
In this paper, the seven predefined false positive rates are
defined as (0.125, 0.25, 0.5, 1, 2, 4, 8). The higher the CPM
score, the better the system performance.

C. ABLATION STUDY
To verify the performance and effectiveness of the proposed
lung nodule detection model, we design a series of ablation
experiments in terms of embedded attentional feature extrac-
tion, AFF, improved residual structure and loss function,
respectively.

1) COMPARISON OF DIFFERENT ATTENTION MODULES
Channel-SA is a lightweight module embedded in any CNN
network to guide the network to focus on essential features
and regions of interest. The attention module can be split,
and channel and SA can be used individually or in series
in some order of priority. To verify the effect of different
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TABLE 2. CPM scores of different attention mechanisms.

FIGURE 6. FROC of different attention mechanisms.

attention combinations embedded in 3DResNet on detection
performance, different combinations of attention modules
are replaced with substitutions while other hyperparameters
remain unchanged. We designed four comparative experi-
ments in which four attention structures were inserted into
the same position of the residual block, respectively. They
are separate SA, separate CA, spatial-channel sequential
attention, and CSA. At the same time, we embed the same
attention module onto the multi-scale feature fusion path.
We compared the performance of four possible arrangements
using the CMP and FROC metrics. The results are shown in
Table 2, Figure 6. The CSA arrangement is the best. This also
coincides with the validation results of CBAM proposed in
the paper [29]. Channels first adaptively adjust the weights of
each channel, aggregating the space and extracting key fea-
tures. SA focuses on regions of interest and extracts features
at a finer granularity at the pixel-level for the channel results.
Thus, CSA effectively helps information flow globally in the
network and further refines the feature mapping and guides
new work in learning more contextual information about the
nodal feature.

2) ADAPTIVE MULTI-SCALE FEATURE
FUSION PERFORMANCE
To verify the effectiveness of adaptive multi-scale feature
fusion, we compare the attention network embedded in
channel-spatial order (FPN+CSA) with the original fea-
ture fusion network without embedded attention (FPN).
However, other hyperparameters remain unchanged. The fea-
ture extraction network is embedded with channel-space
attributes of attention. The results are shown in Fig. 7, Table 2.
Feature fusion with embedded attention can extract more
fine-grained contextual information about the nodes. The
number of candidate nodules is reduced, which improves the
detection performance of pulmonary nodules. This indicates
that the attention mechanism dynamically adjusts the feature

TABLE 3. CPM scores of AFF and no-AFF.

FIGURE 7. FROC of detection performance of attention-embedded FPNs.

TABLE 4. Comparison of different FL parameters.

fusion, enhances the useful nodule feature representation
and suppresses the useless information so higher detection
sensitivity.

3) EFFECT OF FOCAL LOSS
Focal Loss is applied to solve the positive and negative sam-
ple imbalance and model skewing problems. There are two
hyperparameters of FL in formula (7). Therefore, we let γ and
α take a series of values for cross verification and compare the
experiment with the cross-entropy loss function (i.e., r = 0,
a = 1). The CPM score was utilized to evaluate the differ-
ent combinations of the parameters. Table 5 lists the CPM
scores. Experimental results reveal that after using focal loss
to replace the cross-entropy loss function, CMP performance
is better, indicating that FL effectively reduces the unbalance
between nodules and non-nodules. Specifically, in the multi-
parameter cross experiment, when γ = 2 and α = 0.65, the
model detection effect is best, so this parameter is selected as
the loss function. To further verify the validity of focal loss,
we select a 3D Faster R-CNN model using the cross-entropy
loss function to calculate the loss for comparison experi-
ments. Fig.8 shows that this paper’s module’s convergence
speed and effect are significantly better than the 3D faster.
Therefore, the algorithm proposed effectively improves the
detection accuracy with reduced computational cost.
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FIGURE 8. Convergence of different classification loss functions.

FIGURE 9. Influence of different classification loss functions on detection
performance.

TABLE 5. Effect of different extraction structures on the model.

4) COMPARISON OF DIFFERENT FEATURE
EXTRACTION STRUCTURES
To verify the effectiveness of deeply-separable convolution
in the proposed model, VGG16, ResNet18 and ResNet50
were selected as the backbone feature extraction networks
under the condition that other hyperparameters remained
unchanged. Table 5 shows the average CPM score, sensitiv-
ity (Sen) and inference time. As can be seen from Table 6,
among the three relay networks, ResNet18 has the shortest
inference time, and ResNet50 has the best performance. The
sensitivity and CMP of AFF, CBAM and DSC are increased
by 3% and 1%∼2%, respectively, compared with the original
ResNet50 backbone network. Inference time is second only
to ResNet18. Therefore, the change of residual structure by
depth-separable convolution ensures the sensitivity and accu-
racy of detection and reduces the parameters and computa-
tional effort of the model.

5) NODULE DETECTION PERFORMANCE AT DIFFERENT
SCALES AND TYPES
In this part, we choose a 3D Faster R-CNN (proposed by
zhu et al.) [14] based lung nodule detection algorithm as
a baseline and compare nodule detection performance at
different scales and the detection effect of different types

of nodules for analysis. In the LUN16 dataset, there are
1186 nodes, including 272 nodes for 3 ∼ 5mm, 633 nodes
for 5 ∼ 10mm, 231 nodes for 10 ∼ 20mm, and 50 nodes
for greater than 20mm, and 888 CT scans. The existing
algorithms mainly detect large nodes with high efficiency,
while small nodes are easily ignored. Table 6 compares the
detection results of nodules of different sizes by the model
proposed in this paper and the basic algorithm 3D Faster
R-CNN [14]. The experimental results demonstrate that the
model can effectively improve the efficiency of small nodule
detection. Compared with the traditional base algorithm, this
paper’s proposed method of embedding attention structure
can extract richer global and local features.

Four typical pulmonary nodules are selected to compare
their detection performance. The result is shown in Fig.10.
The first row is the gold standard map of pulmonary nodules.
The second and third-row are the prediction results of differ-
ent types of nodules by the baseline algorithm and the algo-
rithm in this paper, respectively. The confidence of predicted
nodules was compared. Solid nodules are relatively easy to
detect, and the detection results of the two algorithms are
similar. Ground glass nodules are irregular in shape, similar to
surrounding tissues, and nodules near the vascular and lung
wall are located in special locations, so it is challenging to
detect such nodules. The detection accuracy of the algorithm
proposed in this paper is higher than that of the benchmark
algorithm. By comprehensive comparison, it can be seen that
the algorithm in this paper has better detection results for
nodules of different sizes and types and has a high confidence
level.

6) COMPARISON WITH EXISTING MODELS
We compared the proposed network with some advanced
models based on deep learning. The results are listed in
Table 7. Setio et al. [12] and Dou et al. [10] detected pul-
monary nodules on multiple 2D CTs, which did not take
full advantage of the volumetric information of 3D pul-
monary nodules to extract spatial contextual information of
3D pulmonary nodule features. Therefore, the sensitivity of
detection was low. Zhu et al. [14] chose to detect pulmonary
nodules on 3D CT images, which were able to extract rich
contextual information. However, it did not focus on the
extraction of spatial contextual features at multiple scales and
different receptive fields, which would lead to the lack of
representativeness of the extracted features and thus affect
the sensitivity of pulmonary nodule detection, especially for
small nodule detection. Zhang et al. [28] and Yu et al. [26]
adaptively extract nodule-rich contextual features by embed-
ding SE into the 3D CNN, and the SE module selectively
emphasizes salient features while suppressing nonsignificant
features. As a result, representative features of lung nod-
ules can be better captured and utilized. However, The SE
module unilaterally focuses on the correlation of channels
without attaching importance to positional information. How-
ever, SA is vital in determining ‘‘where’’ is the focus. The
internal environment of the lung is complex, with nodules of
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FIGURE 10. Effectiveness of detection of different types of nodules: (a) Isolated Nodule,
(b) Ground glass nodule, (c) Near vascular nodule, (d) Near lung wall nodule.

TABLE 6. Effectiveness of nodule detection at different scale sizes.

various sizes and shapes. The SE module will inevitably lose
information on nodal structure, resulting in missed or false
positives. We propose a 3D-based two-stage CNN model for
lung nodule detection. The 3Dpatch as input makes full use
of the contextual spatial information of the nodules. Embed-
ding CSA to 3D ResNet guides the network to adaptively
adjust the weights along the channel and spatial directions,
respectively, to extract the salient features of nodules. The
attention is embedded in a multi-scale feature fusion net-
work, which guides the network to adaptively, pixel-level,
a fine-grained fusion of features for feature maps of differ-
ent resolutions to extract nodule detail features in complex
spatial locations effectively. AFF achieves multi-scale nodal
target detection performance, facilitating small nodules and
nodules detection into the blood vessels and near the lung
wall. A depth-separable convolution replaces the standard
convolution in the original residual block to improve model
training efficiency and generalization ability while ensuring
model accuracy. Overall, the proposed 3D detection model
can detect multi-scale lung nodules of different shapes, and
its performance is significantly better than some advanced
models based on deep learning.

V. DISCUSSION
In this study, a new 3D CNN network with attention-guided
feature extraction and multi-scale feature fusion is proposed
for lung nodule detection. Lung nodules are variable in
size and morphology, and some nodules are similar to the
surrounding tissues where characteristics are not significant
and are more difficult to detect. Therefore, we chose the
two-stage target detection model 3D Faster R-CNN to detect
lung nodules. Faster R-CNN is the most classical model

for two-stage target detection, and the detection accuracy is
better than that of the one-stage model. Suitable for complex
and variable lung nodule detection. We select 3D ResNet
as the backbone network for feature extraction to achieve
feature reuse, prevent gradient explosion/disappearance in
the deep network, and improve the model’s generalization
ability. ResNet enables local feature reuse. However, it fails
to establish the mapping of global features of nodules. As the
network deepens, the flow of shallow features is hindered,
which results in the loss of a large amount of small target
information. In ResNet, CSA attention is introduced to guide
the network to dynamically adjust feature weights along with
both channel and space directions, respectively, to enhance
useful feature information of nodes, and inhibit the irrelevant
features, which effectively extracts global contextual infor-
mation of nodes. In FPN, CSA is embedded to adaptively fuse
features from different layers, changing the original simple
fusion method to achieve fine-grained fusion of features at
the pixel-level, which retains more structural and detailed
information about nodules, and extracts a feature of rep-
resentative nodules and improves the sensitivity of nodule
detection.

In this study, to evaluate the performance of the proposed
model, many ablation experiments were performed. The
channel-SA module can be embedded in parallel or serially
into the CNN.We selected four arrangements for comparison
experiments, and the results showed that the channel-space
sequential structure has the highest average detection sensi-
tivity. The results in Table 5 show that our model structure
has higher sensitivity and CMP scores than ResNet50 without
the embedded CSA structure, which indicates the effective-
ness of the attention module. FIG. 7 and Table 3 compare
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TABLE 7. Comparison of detection performance of pulmonary nodules.

the influence of attention-guided feature adaptive fusion on
model performance. The results show that the feature fusion
approach with embedded attention improves the model’s per-
formance significantly, with an increase in CMP score close
to 0.025.With attention-guided feature fusion in different lay-
ers, the network can learn more representative nodal features.
The depth-separated convolution significantly improves the
training efficiency of the model due to its fewer parameters
and lower complexity. We use the focal loss function to
calculate the classification loss, balance the positive and neg-
ative samples, and select the ideal hyperparameters through
experiments. According to the experimental results, focal loss
makes the trained model converge faster and better, and the
average sensitivity of detection is also higher than that of the
model with the applied cross-entropy loss function. We com-
pared the detection performance of the baseline lung nodule
detectionmodel for different scales of lung nodules (shown in
Table 7). Based on the evaluation of the experimental results
and theoretical analysis, the proposed model is a valid model
for nodule detection, which is helpful for others’ studies and
obtained a CMP score of 0.912. Satisfactory results were
obtained.

VI. CONCLUSION
After studying and analyzing the available literature refer-
ences, we proposed a 3D Faster R-CNN pulmonary nodules
detection model embedded with attention mechanism and
adaptive feature pyramid. The channel and spatial attention
modules are embedded in ResNet to guide the network to
adaptively adjust the correlation between channels and high-
light important feature regions, both of which form com-
plementary mechanisms for feature extraction and enhance
the flow of shallow features. Deeply separable convolution
replaces the 3D convolutional blocks in ResNet, effectively
reducing the computational effort while ensuring the accu-
racy of the model. The results of a large number of abla-
tion experiments show that the improved 3D ResNet serves
as the backbone network for feature extraction to effec-
tively extract representative global contextual information
of nodules. We develop an attention-guided adaptive feature
fusion pyramid network that refines the pixel-value weights
of feature extraction to improve the fine-grained fusion of

pixel-level feature information, reduce the redundancy of
fused information, and enhance the feature representation
of FPNs. A series of comparative experiments were per-
formed on the LUNA dataset, and the results showed that the
method achieved high sensitivity in each of the first four low
FPs/scans and could outstandingly achieve accurate detection
of lung nodules.

However, the algorithm still has some limitations. The
detection accuracy has improved but still has not reached the
desired height. The sensitivity of a low false-positive rate is
not high. Focal loss can improve data imbalance but cannot
eliminate the effect of the imbalanced data set. Although
appropriate measures are taken to enhance the data, more data
volume is required to generalize the model capability with the
deepening of the network. The next step can be considered
to study how to take the generative adversarial network to
expand the positive sample set or combine the electronic
medical record information to increase the attributes of the
samples, thus improving the nodule detection performance.
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