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ABSTRACT The origin of the COVID-19 pandemic has given overture to redirection, as well as innovation to
many digital technologies. Even after the progression of vaccination efforts across the globe, total eradication
of this pandemic is still a distant future due to the evolution of new variants. To proactively deal with
the pandemic, the health care service providers and the caretaker organizations require new technologies,
alongside improvements in existing related technologies, Internet of Things (IoT), Artificial Intelligence
(AI), and Machine Learning in terms of infrastructure, efficiency, privacy, and security. This paper provides
an overview of current theoretical and application prospects of IoT, Al, cloud computing, edge computing,
deep learning techniques, blockchain technologies, social networks, robots, machines, privacy, and security
techniques. In consideration of these prospects in intersection with the COVID-19 pandemic, we reviewed
the technologies within the broad umbrella of AI-IoT technologies in the most concise classification scheme.
In this review, we illustrated that AI-IoT technological applications and innovations have most impacted
the field of healthcare. The essential AI-IoT technologies found for healthcare were fog computing in IoT,
deep learning, and blockchain. Furthermore, we highlighted several aspects of these technologies and their
future impact with a novel methodology of using techniques from image processing, machine learning, and
differential system modeling.

INDEX TERMS Artificial intelligence, compartment model, COVID-19, internet of things, image

processing.

I. INTRODUCTION

Internet of things (IoT) technologies can be defined as an
amalgam of software and hardware products that can gener-
ate, gather and compute data, fundamentally in the form of
binary digits. On the other hand, artificial intelligence (Al)
is the underlying automation mechanism behind these IoT
technologies driving its applications and can be regarded as
a distinguished field from IoT due to its intrinsic impor-
tance. The union of these two technologies is referred to as
AI-IoT. Since the overture of the COVID-19 pandemic, the
top priority ever has been to control and contain the pandemic
through principles like social distancing and quarantine
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enforcement [1]. Failure to take action may lead to surges of
infectious cases, causing overburden of hospitals [2]. While
the efforts in vaccination development have been fruitful, the
rate of transmission of the virus is the same as before, and so
are the efforts to control its spread.

Identification of a COVID-19 patient is an important strate-
gic approach in controlling the pandemic [3], and its signifi-
cance became prominent when countries such as South Korea
and Israel utilized it for tracking people with COVID-19
symptoms right from the beginning, and infection spread was
greatly controlled [4]. The identification approach consists
of diagnostic tests, contact tracing, quarantine, isolation, and
treatment [3], [5].

In this course, the above approaches can be laborious
and perhaps inefficient. Henceforth, the imposition of digital
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FIGURE 1. Percentage distribution of major symptoms associated with
COVID-19.

technologies as an aiding tool is not only the next logical
move but has been consistently verified to be beneficial. For
example, the infected number can be controlled with low
quarantine efforts when accurate tracking technologies like
GPS, Bluetooth, etc., are adopted [6].

Many countries attempted to contain the COVID-19 out-
break through different lines of action with varying degrees of
results, but the guiding examples have been South Korea and
Israel, which took action immediately as the initial infected
cases appeared, followed by the extensive utility of infor-
mation and communication technologies in harmony with
voluntary public participation [4], [7]. Such strategies are a
ramification of lessons learned from previous epidemics. For
example, [8] showed that lack of communication between
regional healthcare agencies, invites variable transmission
rates over the country, as happened in the 2003 SARS out-
break in Canada [7]. Similarly, during the 2009 influenza
pandemic, Switzerland used medical teleconsultations to
manage suspected cases in addition to its existing reporting
system [9].

The distribution of symptoms of patient infected with
COVID-19 [10], [11] is documented in figure 1. Recognizing
these symptoms right from the onset is instrumental in flatten-
ing the infected number curve. Since smartphones are widely
accessible in current times, their embedded sensors have been
studied and implemented to detect the symptoms early and
provide an immediate diagnosis from imaging techniques,
which can take days for final screening.

Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the principal cause of the current pandemic,
is known to be highly prone to mutations [12], [13], and
thus may penetrate the effectiveness of the current vaccines
and antibody drugs [12]. Even most promising vaccines like
mRNA-based Pfizer and Moderna [14] are known to be
95 percent effective, leaving out 5 percent of the vaccinated
population prone to the infection. While the maturation
of broad-spectrum drugs and vaccines is underway [13],
the maximum utility of current digital technological tools
is the need of time. Additionally, it is worth mentioning
how the pandemic is directly affecting the development of
many technological trends as well, with notable examples
being the deep surge of videoconferencing platforms and
the deployment of robots and drones for delivery purposes.
In the context of COVID-19, pertaining to AI-IoT technolo-
gies, most of the reviews or surveys are either standalone
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specific to a particular domain of AI-IoT [15], [16] or
slightly augmented [17] with other fields, but do not span
all associated fields in general. Another problem with such
review articles is the inefficiency in classification schemes
embedded in such reviews, where overlapping classes of
technologies are considered separate, for example, the field of
Al and blockchain or IoT and 5G being dealt with as separate
classifications, while one class engulfs the other [18]. Besides
in prior review articles, conventional techniques of tabulation,
charts, and color maps are used to provide a comparison
between different aspects, limited by author’s knowledge
and understanding. This provides an invitation to systematic
data-driven techniques to draw more profound insights. Fur-
ther, text mining [19] techniques have been applied to pro-
duce areview of COVID-19 references and determine insight
into challenges and future trends, but the proposed method
itself was intended as the primary goal of the article. Even
generally in review and survey articles, an overview of several
classifications associated with a particular domain has been
provided with techniques like SWOT analysis [20], Network
analysis [21], and machine learning methods [22], [23], but
they are more polarized towards application perspective.

In the light of above mentioned drawbacks, the main aim of
this review paper is to provide a concise and comprehensive
review of several AI-IoT technologies from both technical
and application perspectives in a minimum classification
scheme, followed by recommendations by authors for pos-
sible future works. To provide resolution into some aspects
of these technologies and associated comparisons, not only
conventional methods like pie charts, bar charts, color maps,
and tabulations were utilized. We also proposed and utilized
novel interpretable techniques from machine learning, image
processing, and mathematical modeling to aid in the insights
and comparisons.

The key contributions of this review are summarized as
follows:

o The review presents the AI-IoT technologies impact
in the COVID-19 context, under a compact taxonomy,
comprehensive in engulfing key concepts such as
their architecture, availability, theoretical significance,
research interest and practical applications. In this
respect, their trends and challenges are highlighted and
based on them possible future works and trends like
the infrastructure of deployment of these technologies,
as well as research directions are recommended. The
IoT Technologies help to remote monitor the COVID-19
health, Breathing difficulty level, Temperature, and
Geo-fencing. The Al helps to predict various COVID-19
factors such as the Oxygen saturation level in the blood
based on the [oT sensors data, COVID-19 spread estima-
tion, and automation control for non-contact to minimize
the spread.

o To emphasize the significance of several technolo-
gies like sensing devices, cloud and fog computing,
blockchain, deep learning, machines, etc., that are
most inclusive in dealing with the current pandemic
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FIGURE 2. Flow diagram presenting classification of Al-loT technologies entailing the response to COVID-19.

in healthcare, governmental and public sectors. The
non-contact sensors specifically and also wearable sen-
sors help to monitor the patients health and move-
ment and contribute more to reducing the COVID-19
spread.

o To propose and utilize novel techniques from machine
learning, image processing, and differential system
modeling in this review to extract compact and inter-
pretable features from literature data reviewed and
present them into meaningful plots and tables.

In the next section, the novel review methodologies are
described in detail. In later sections, the review is provided
as an expansion of three main classifications of AI-IoT tech-
nologies in the COVID-19 context, i.e. Internet of things
(IoT), AI, and mechatronics, where these methodologies are
applied in different contexts in the review, including the
“Future Works” section.

Il. ANALYSIS METHODOLOGIES

This section introduces three different data driven Al tech-
niques with their associated theoretical backgrounds. While
many aspects of these techniques are novel, they are intended
to provide deeper insight into several classification schemes
and recommendations by the authors. The corresponding
methodologies are described as follows.
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A. GRAPH FEATURES BASED INSIGHT

The site “Connected Papers™ [24] was considered for this
methodology, which can render a graph of an academic
paper, where the focussed paper is connected to several
other papers based on contextual similarity. In this regard,
similar papers are closer (forming clusters) with more bold
edges. The nodes represent individual papers with their size
signifying the number of citations. The strategy to develop an
effective, compact, and interpretable understanding of these
graphs is to transform the node, edge, and cluster information
into features.

On the contrary, this site does not provide parameters of
this graph, which are to be transformed into appropriate inter-
pretable features. To systematically extract information about
nodes, edges, and clusters from the rendered graph image,
an array of image processing techniques are systematically
employed, whose logical flow is represented in figure 3.

Since nodes, edges, and clusters of the graph can be iden-
tified as circular objects, lines, and connected components
in an image respectively, detection of these becomes a col-
lection of standard image processing problems [25]. In this
continuation, the process of node, edge, and cluster number
identification is described below:

* Node number: Although there exist many variants
of Hough Transform [26] for circular object detection,
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FIGURE 3. Flow diagram of employment of image processing techniques to extract nodes, edges and cluster information from a rendered

graph image.

our approach took advantage of the presence of only
circles and edges within the image vicinity with a sharp
variance of pixels between them, and employed Oriented
FAST and rotated BRIEF (ORB) based feature detec-
tion [27] to count the total number of nodes. This is done
after an erosion operation [25] upon a Gaussian blurred
image [25] to nullify the presence of edges. The detected
ORB features are thresholded by the minimum distance
between two feature positions to lead toward the total
count of actual nodes.

x Edge number: Likewise to circular object detection,
an abundant literature is present in line detection con-
text [28], [29]. In this regard, our methodology relies
first on an erosion operation upon a Gaussian blurred
graph image to refine the thickness of lines for later edge
detection by a Canny Edge detector [25] to produce an
edge map. Later Hough line transform [25] is performed
upon this to detect and count the number of original
edges in the graph image.

* Cluster number: Connected component labeling could
be an excellent way to identify the clusters in a graph,
from the image representation, but this would work only
for appropriate binary images [30]. To tackle this, first,
the Gaussian blurred image of the graph is transformed
into an image comprising of several blob-like areas,
through a sequence of operations like erosion, dilation
and flood filling [25]. Later, the clusters are identified
and counted with connected components labeling [25].

A demonstration of the above graph attributes identifi-
cation is represented in figure 4(a), (b), (c) and (d). After
extraction of the above information, features for decision
trees are constructed through table 1. While on the contrary
graph-based techniques have been employed in image pro-
cessing, to the best of the author’s knowledge, this is an
original approach to extract features from graph, based on
image processing of its rendered image. This provides not
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only an effective new way to extract necessary information
from graphs but also more computationally feasible solutions,
where complex networks can be represented by images with
a lesser number of pixels.

Reduced Citation (¢’) is an effective representation of
cumulative citations per year normalized over the year (y) to
show the relevancy of comparison between two papers pub-
lished in different years. Entropy (S) metricizes the different
active research directions within the same literature domain.
Here entropy takes its relevance from the Boltzmann equation
of thermodynamics, where entropy represents the number of
states, in which the gas molecules can arrange themselves
in [31]. Interest index (I) reflects the research interest in terms
of active research contributors within the area, while research
index (r) describes the rigor in the corresponding research.
The associated formulas for the calculation of these features
are described by equations (1), (2), (3) and (4).

cy

d = (1)
2022

S = log(C) (2)

I'=1/0+n) (3)

r=1/(1+E) 4)

In our case, these features (as described in table 1) describe
several characteristics of research trends and their properties
are the range of the feature values.

B. COMPARTMENT MODEL BASED INSIGHT

Compartment models are an abstract representation of the
mathematical model that can be represented as a system of
unique information entities that can exchange information
among themselves. While prior Literature upon them focused
on their applications in modeling biochemical, engineering,
economic and social processes. We intend to utilize com-
partment models to model variation of Literature in specific
interest domains across time. More precisely, the Literature
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FIGURE 4. (a) Rendered graph obtained from https://www.connectedpapers.com/ for a random research paper
(b) Application of proposed algorithm to detect graph nodes (c) Detection of graph edges (d) Detection of graph clusters.

TABLE 1. Tabulation of parameters extracted from graph images and
corresponding feature extracted for decision trees.

Parameter Feature
Cumulative Cita- | Reduced Citation
tions per year (¢), | (c)

year(y)

Clusters (C) Entropy (5)

Nodes (1) Interest Index (/)

Edges(E) Research
Index(r)

in a domain is bound to evolve as a redirection from
another field. This phenomenon has been very prominent in
COVID-19-based Literature, and the prominent example is
the reuse of existing smartphone technology to aid contact
tracing at a national level.

Literature is a dynamic process in which the content
evolves over time but in a specific pattern. Concerning a
redirection approach, the Literature can be divided into the
interest domain, in which the Literature is of interest, and the
new domain, with well-established Literature, whose stud-
ies or results can be redirected towards the interest domain
context. This leads to the creation of a third field, composed
of new Literature in the interest domain, that acts as an
intersection of interest field and new field. In the context of
COVID-19 based Literature, this is depicted in figure 5(a) as
a Venn diagram, where new literature and interest domain as
COVID-19 Literature intersect to produce new Literature in
COVID-19 domain, represented by a yellow area.

We can infer yearly cumulative citations of literature in a
particular domain as a measure of literature in that domain,
since our focus is to model the evolution of new literature
in COVID-19 context. We can proceed with the modeling,
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by assuming that the change of yearly citations in new
literature in the COVID-19 context is proportional simul-
taneously to its current citations as well as year citations
in the new literature in general (depicting how lucrative
this field has been to influence another field). Lastly, this
change in new COVID-19 literature should directly affect
the already present COVID-109 literature. With these consid-
erations, we model the corresponding compartment model,
as shown in figure 5(b). The corresponding differential sys-
tem [32] of the compartment model is defined below.

N(t) = —aN(@)C(1) 3)
C(t) = aN(®)C(t) — BC(t) (6)
R(t) = BC(t) -t (7

In equations (5), (6) and (7), ‘N’, ‘C’ and ‘R’ are the cumula-
tive citation numbers on research papers related to purely new
fields within the COVID-19 context, the intersection of new
Literature and COVID-19 context and established COVID-19
Literature respectively. It is represented as a Venn diagram
in figure 5(a). The associated parameters t, «, and B are
constants (whose description is mentioned in figure 5(b)),
intuitively depicting a qualitative description of the dynam-
ics. Equations (5), (6), and (7) have a high resemblance to
the SIR model of epidemic [32], due to high correlation in
their internal structure and dynamics of how infected people
number and new Literature on interest domain evolves.

Our goal is to estimate the parameters 7, «, and B in
equations (5), (6), and (7), which can provide qualitative
insight into an infusion of new Literature into the COVID-19
domain. We can achieve this by considering the above system
into a convex optimization procedure by transforming the
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N-= Yearly Citation of New Literature without COVID-
19 context

C= Yearly Citation of New Literature with COVID-19
context

R=Yearly Citation of all literature in COVID-19
context, other than one represented by ‘C’

a= rate of increase in new literature as COVID-19
context

B=rate of induction of research towards ‘C’ from
already present COVID-19 literature

7= rejection outflux of not valid COVID-19 related
literature

FIGURE 5. (a) Venn diagram representing relationship between N, C and R as the intersection of new literature and COVID-19
literature (b) Compartment Model based Visualization of Induction of new literature into COVID-19 domain.

equality into finding roots of the equality and finally squaring
that equality into finding minima. Through simple calcula-
tions, we can form the following objective function from
equations (5), (6), and (7).

Ot a.p) =Y ljon@) — NO) + alyc(w)

+ Jjwe(w) — C(0) — alyc(w) — Be(w)*
+ Jjor(w) — RO) — Br(w) + t8(w)|* + A.Z
(8)

In the above, n(w),c(w), r(w) and Iyc(w) stand for Fast
Fourier transform (FFT) of functions N(t), C(t), R(t) and
N(t)C(¢) respectively. The FFT allows the above differential
system to transform into an algebraic equation, as otherwise,
the derivative on real data might not be well-defined, and
techniques of curve fitting would have to be applied which
only would lead to additional computational cost. It can
be noted that while FFT may lead to complex outputs, the
objective function defined by equation (8) is itself real due
to the modulus argument ||’. Addition term ‘A%’ in (8) is
the regularization term, with A as Lagrange multiplier, which
enforces positive definiteness of states represented in equa-
tions (5), (6), and (7) as citations itself cannot be negative.
To this end, .Z can be defined as,

Z =Y (N~ INOI? +(C(1) — |C))?
t

+R(@) — RO (9)
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Henceforth, we can estimate parameters by minimization of
the objective function in (9), as t*, a* and B*.

(", a*, B*, A*) = argmin (0) (10)

The choice convex optimization procedure chosen is
Nelder-Mead Simplex method [33]. The estimation of these
parameters would not only provide quantification of the qual-
itative behavior of citation trends but also allow us to estimate
the future trend by solving the differential system (5), (6) and
(7) by a Runge-Kutta Integrator.

C. Word2Vec BASED 3D VISUALIZATION

Word2Vec [34] is a family of word embedding algorithms
that can translate words and sentences into vectors in the
real domain. These real vectors have a ‘distance’ notion
defined on them, which is not possible for standard words
and sentences. Therefore, this technique can allow systematic
calculation of similarity between two words based on the
distance between their associated vectors.

A pre-trained Google’s Word2Vec model [35] is con-
sidered in our paper, which is already trained on about
100 billion words from the Google News dataset and pro-
duces a 300-dimensional vector representation of words.
The distance between these vectors directly implies how
closely related the two words are. This representation would
allow an interpretable visual demonstration of how closely
related different sub-domain classifications of the digital
trend are. Since 300 dimensions cannot be represented well
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for possible human interpretation, therefore to reduce the
dimensionality of these representations to 2 dimensions, Prin-
cipal Component Analysis (PCA) [36] is performed, followed
by extraction of the first and second principal components as
a two-dimensional vector. To allow a three-dimensional rep-
resentation, more attributes are collected like the frequency
of occurrence of particular classification in the COVID-19
context, and how often the particular topic is considered both
research and implementation-wise. After the collection of this
information, a 3D representation of several topics (in perti-
nence to a specific context) can be constructed, consisting
of balls of a specific radius embedded in a 3-D Cartesian
plane, the parameters of which are provided in table 2. This
visualization can be interpreted as the relative distance of
topics (described by balls) in the x-y plane describing their
relative general contextual similarity. The positing of balls
along the z-axis describes, how frequently the topic has been
used in the COVID-19 context, thus implying its relative
significance. Lastly, the size of balls would conclude the
overall research and implementation contributions imparted
on that particular topic. The size of the balls is determined
by radius, which is calculated as (¢ + exp(i), where ‘c’ is
cumulative citation numbers and implementation and ‘7’ is
cumulative articles number.

Ill. REVIEW OF Al-loT TECHNOLOGIES
After an explanation of analysis methodologies, the review
is organized as an expansion of three main classifications of
AI-IoT technologies, namely IoT, Al, and mechatronics.
While the literature produced on the COVID-19 topic has
been tremendous, a total of 625 references were selected for
this review article, which is in the form of peer-reviewed
or pre-print research, review, and survey papers, as well
as news articles, online tools, and repositories. The distri-
bution of these references in terms of source and year of
the update is provided in figure 6. The sampling criteria
for the corresponding references were based on relevance,
from the viewpoint of theoretical aspects and significance,
practical aspects and applications, alongside research interest
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TABLE 2. Tabulation of attributes of three dimensional Word2Vec based
representation and corresponding description.

Attribute Description

X-axis First PCA component of word em-
bedding

y-axis Second PCA component of word
embedding

Z-axis Frequency of occurence in litera-
ture of COVID-19

radius of balls collective research contribution

of Al-lIoT-related technology in intersection with terms like
“COVID-19” or “Coronavirus”. Furthermore, several chal-
lenges of these technologies were highlighted, as well as
future works were elucidated upon in light of the selected
references. As represented in figure 2, these categories are
expanded and covered in detail in the sequent sections. Later
the review is completed with a conclusion and future works
section. In this course, the analysis methodologies have been
applied to different contexts, including the “‘Future Works”’
section.

IV. INTERNET OF THINGS

IoT is basically a collection of interconnected devices, whose
high-level goal is to provide services through intelligent
means [37]. IoT has been declared as a direct intersec-
tion of three broad visions of technologies: Things oriented
(concerning electronics or mechatronics products), Internet-
oriented (concerning communication and internet protocols)
and Semantic oriented (concerning the utilization of gathered
data) [38]. With the official advent of IoT in 2002 [39], the
concept of connecting devices with computing dates back to
the 1980s [38].

IoT is in itself a very active field, and with the current
pandemic, its value has boomed and is estimated to be val-
ued at around 1.3 trillion dollars by 2026 [40]. In order to
make applications of IoT more accessible globally [41], it is
important that the solutions are cost and energy effective.
Furthermore, open-source solutions are also important as they
might be more available to developing countries, besides the
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FIGURE 7. Stages of loT Solution in controlling the epidemic of COVID 19.

characteristic of total community-driven development and
maintenance.

While IoT has enabled automation, elimination of human
error, and improved cost-effectiveness possible, industrial-
scale 10T systems are known to be complicated and require
sophisticated maintenance. Furthermore, they create risks
to security, privacy, and loss of human jobs. Despite the
significant importance of IoT to the modern era, there is
no agreed-upon standard upon which several characteris-
tics of its structure can be defined [42]. This vagueness
has permitted researchers to impose the IoT architecture to
be compromised of 3 to 7 layers. However, since the IoT
can be visualized as a network of smart things that can
generate, store and exhaust information [43], the follow-
ing features remain invariant characteristics that IoT has to
deliver [43]:

o Network Invariant Functionality — management of
dataflow from sensors as well as integration of different
platform of hardwares and protocols

o Efficieny — maintenance of performance with
increases is the number of devices

o Security — ensuring security regarding flow and data
as well as maintaining privacy of users

While technologies like WoT (Web of Things) [44], WSN
(Wireless Sensor Networks) [45], CPS (Cyber Physical Sys-
tems) [46], M2M (Machine-Machine) [47] and embedded
systems [48], [49] have been utilized in COVID-19 appli-
cation, they somewhat differ from IoT with considerable
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principle similarities to the point that the prior terms are
interchangeably referred to as IoT [38].

1) ARCHITECTURE OF loT SOLUTION IN COVID-19

The application and advantage of IoT in tackling COVID-19
epidemic have been immense with its operational architecture
described by 7 layers. The simplicity [38] of these respec-
tive layers provides versatility in the general description
of COVID-19 related IoT applications. This architecture is
briefly presented in figure 7, and is further briefly layer-wise
explained below:

* Sensing Layer is responsible for collection of data from
different sensors

* Connection Layer aims to deal with wireless networks
and associated protocols for timely transmission of col-
lected data from sensing layer

x Edge Layer transforms the data from several heteroge-
neous sources into standard form feasible for storage,
and includes processes like data formatting, reduction
and decoding. This layer may also allow fog computing,
i.e. limited processing of received data.

* Accumulation Layer converts real time data into
query-based data while accompanying methods like fil-
tering and selective storage.

* Abstraction Layer stores the data in such a way that dif-
ferent types of data can be reused by a single application

x Application Layer basically converts the gathered data
into some lucrative result utilized by consumer market
in the form of smart cities, smart healthcare etc.
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pandemic.

+ Business Layer engulfs single or multiple [oT applica-
tion services at a larger scale to design business logistics
driven IoT system and services, that is delivered by a
business or an organization. This layer involves greater
focus on elements like security and privacy

As shown in figure 2, IoT can be divided into three fun-
damental regimes, i.e. sensor-driven, middleware driven and
utility driven. These regimes are discussed further in the
context of COVID-19 as follows.

V. SENSOR DRIVEN

This classification observes the IoT applications from the
perspective of perception and gives an overview of related
technologies in sequent sections.

A. SMARTPHONE

Smartphones are an improvement over previous concepts
of mobile phones with extensive computing capabilities to
produce functionalities in addition to standard voice calls
and text messaging. While primarily a packaged embedded
systems, today’s smartphones are generally embedded with
an array of sensors like camera, accelerometer, gyroscope,
proximity sensors, compass and microphones, while sup-
porting several wireless communication protocols like GPS,
Bluetooth, Wi-Fi and cellular networks. Smartphone’s influ-
ence upon COVID-19 is discussed further after discussing its
application in previous epidemics, in the following sections.

1) INFLUENCE UPON PRIOR EPIDEMICS

In epidemic control, smartphones provide leverage by pos-
sessing the connectivity, computational power with sensors
and wireless technologies, in combination with ubiquity to
provide extensive data collection and reporting [50]. This
utility has been recognized prior to the current pandemic and
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has been extensively used to deal with previous epidemics.
In fact, [51] termed the pairing of a smartphone with health-
care as ‘mHealth’ providing opportunities like outbreak iden-
tification, diagnosis, treatment, patient management, disease
control and elimination of the disease. In this regard, [52] sur-
veyed 1332 smartphone apps, relevant to the prevention and
treatment of tuberculosis, and identified their functionalities
as falling into as being informative, data gathering, alerting
and reporting.

Smartphone point of diagnostics can be categorized as:
‘colorimetric’, ‘electrochemical’, ‘fluorescence’, and ‘micro-
scopy’ [53]. On the other hand, the development of mobile
phone point-of-care diagnostics is required to be rigor-
ous with its process accompanied by needs and cost-
benefit analysis, development of corresponding technology,
pre-clinical verification, and then field trials [53]. In this
direction, [54] utilized a smartphone application, using
Dimagi’s CommCare platform, known as the Ebola Contact
Tracing application (ECT app), which reported 63% con-
tacts as compared to 39% from paper-based contract trac-
ing. [55] developed an app attending to point-of-care tests
for Ebola diagnosis (100% sensitivity and 98% specificity),
patient management and surveillance. [56] validated the use
of smartphones accompanied by forward-looking infrared
radar (FLIR) for the thermal detection of body temperature.

While this procedural limitation might put constraints upon
whether smartphones should be extensively utilized in deal-
ing with the current pandemic rigorously, we can deduce from
the described literature that the utilization of smartphones in
pandemic dealing is well-established.

2) POST-COVID-19 INFLUENCE
Since the current pandemic, smartphones have been uti-
lized to aid primary care [57]-[60], and have proven to
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be effective in extending towards affairs of health care
like tele-consultations [61], tele-diagnosis [62]-[64], tele-
surgery [65], [66] and tele-counselling [67].

Smartphones are frequently used for contact tracing
through the deployment of dedicated smartphone apps.
Manual tracing of contacts of an infected person may take
up to 24 hours of labor, while automated systems leveraging
smartphones can reduce this duration to 10 minutes [68].
Furthermore, the data from these contact tracing apps can
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be systematically integrated with data from police records,
telecommunication companies, CCTV recordings and banks
to produce more effective contact tracing. In order to
ensure the effectiveness of smartphone-based contact tracing,
an uptake of at least 56 percent [69] by the public is required,
alongside effective detection of less than 15-minute duration
presence in proximity of an infected person [70].

In the COVID-19 context, a smartphone’s computational
and sensor leverage in combination with their ubiquity
has allowed much input to output capabilities, allowing
applications as represented in figure 8. In this scenario, the
sensor availability is most critical, with the most significant
categories being GPS, Bluetooth, accelerometer, gyroscope,
camera, and microphone, with corresponding literature upon
their COVID-19 application considerably exhausted. On the
other hand utilization of ambient light sensors and magne-
tometers in the COVID-19 context has been nearly absent in
the literature. While there exist a few studies on estimation
of the distance between devices based on magnetic measure-
ments, there are only a few utilization of magnetometers in
COVID-19 reference, utilizing smartphones [71].

3) SMARTPHONE APPS
With significant applications realized through the hardware
of a smartphone, the next step is to design of the app to
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interface those functionalities for a general user. In this
respect, many apps have been deployed both at national and
international levels, with their efficacy estimated to be up to
80% [72] upon early adoption by the general public. While
preferences of users may define over adaptability of such
apps, a study [73] revealed that app design and marketing
strategies may also be critical in this respect. On the other
hand, the general public opinion of these apps has generally
been mixed [74] with critical factors as a guarantee of health
and privacy as the main characteristics of these apps.

A study [74] suggested that the majority of the population
demand health and privacy as the main characteristics of
contact tracing apps, with as much early detection as possible,
and its early adoption can lead to the reduction of infection
rates by up to 80% [72].

With the sudden overture of the novel pandemic, the main
strategy ever has been the cooperation between government
and technology-based companies to redirect already present
digital solutions to contain the pandemic. An initial example
of this process in the case of the Chinese government utilizing
platforms of Alipay and WeChat.

This trend quickly became systemized with more
dedicated apps having applications towards contact trac-
ing, geo-fencing, self-diagnosis, hospital appointments and
consultations, routing, and travel control. Even further apps
have been extended towards attending to indirectly affected
areas by pandemic like online videoconferencing, therapy
and assistance to elderly and disabled people. Likewise, some
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apps have specifically been developed for old people to cope
with isolation experienced through lockdown [75].

In order to analyze these smartphone apps from a sub-
jective point of view, a total of 98 apps were identified,
on two major smartphone operating system platforms, i.e.
Android and iOS (having a market share of 73 and 26 percent
respectively [76]), from Google Play Store and Apple Store
respectively. The application stores from these platforms
strictly control the COVID-19 apps and condition them to be
either affiliated with government or health organizations [77].
Therefore, the apps are expected to be majorly unique to a
specific country, and the distribution of our sampled apps
across the globe is presented in figure 9(a). It can be observed
that apps are widespread across the globe, with some coun-
tries implementing more than one app to assist the public and
control the pandemic.

The functionality distribution among these apps is plotted
in figure 10. With contact tracing being the dominant
functionality, the underlying technology can be classi-
fied into Bluetooth, GPS, Wi-Fi, towers and smartphone
sensors [78]. Among the apps, Bluetooth was identified
as the most dominant technology mode for contact trac-
ing, due to its high accuracy, relative greater privacy
preservation [79], cost and energy efficiency [80], with its
distribution represented in figure 9(b) and distribution of
other technologies in figure 9(c). These apps mainly utilize
either GPS or Bluetooth signals to pursue contact tracing.
Bluetooth is the most frequently used mode of contact tracing.
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TABLE 3. Bluetooth based contact tracing protocols.

Name Architecture License Ref
ViraTrace partially Central- | Restrcited Public
ized Source Li- | [82]
cense(VIRATRACE
PUBLIC SOURCE
LICENSE Version
1.0.)
Pan-European partially Central- | Mozilla Public Li-
Privacy ized cense Version 2.0 [83]
Preserving
Proximity
Tracing (PEPP-
PT)
Exposure Notifi- | decentralized Apple  Developer
cation System Program License [84]
Whisper Protocol | decentralized General Public Li-
cense 3 [85]
Decentralized decentralized publicly-developed
Privacy- Apache 2.0, | [86]
Preserving Mozilla Public
Proximity License  Version
Tracing(DP- 2.0
3T)
OpenTrace partially central- | General Public Li-
ized cense 3 [87]
Privacy decentralized MIT License
Automatic [88]
Contact Tracing
(PACT)
Herald Protocol centralized and | Apache-2.0 license
decentralized [89]
Temporary decentralized MIT License
Contact Numbers
(TCN) protocol
OpenCovidTrace decentralized GNU Lesser Gen-
eral Public License | [90]
v3.0
Robust and | centralized- Attribution-
Privacy decentralized ShareAlike 3.0 [91]
Preserving
Proximity
Tracing
(ROBERT)
DESIRE centralized- Attribution-
decentralized ShareAlike 3.0 [92],
[93]
EpiOne centralized- -
decentralized [94]
SpreadMeNot decentralized Creative Commons
Attribution 4.0 [95]
ConTra Corona centralized- -
decentralized [96]

In Bluetooth-based smartphone contact tracing, BLE pack-
ets advertising UUID can be of both static and dynamic
nature [81]. There have been several contact tracing protocols
studied and implemented over this technology, of which some
are mentioned in table 3.

In a typical smartphone-based contact tracing scheme,
a smartphone of a person records traces of its surroundings,
either in the form of contacts coming in the proximity of a
person or location. Later if a person is diagnosed by health
authorities as being infected with the COVID-19 virus, the
contacts from the person’s database are contacted to test them
for possible infection. In the case of a positive result, the
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contacts are isolated and treated, otherwise, they are quaran-
tined for 14 to 21 days, until another check is performed on
them. This scheme is demonstrated in figure 11(a).

The architecture of how smartphones collect data has been
a research focus with consideration of two pillars,i.e. effi-
cient data collection and privacy/ security. In this respect,
the architecture of the contact tracing app operation can be
classified as centralized, decentralized or a combination of
both, depending upon how information is generated at the
client (smartphone) and server-side and what information is
exchanged between them. Centralized architectures shift core
data processing to server-side, in contrast to a decentralized
architecture where the main data generation and processing
are allocated on a smartphone, at the cost of privacy concerns.
On the other hand, decentralized architecture may exhibit
a security risk like personalization attacks [17]. The third
category, namely hybrid architecture, ameliorates the nega-
tive aspects of centralized and decentralized architecture by
asserting data generation and management on the smartphone
side, while the corresponding data processing and notification
generation are managed by the server side. The overview of
these architectures is presented in figure 11(b).

B. WEARABLES

Ultrasound-based technology has shown considerable suc-
cess to provide a safer, cheaper and more convenient
alternative to chest tomography (CT) scan and X-ray scan
counterparts. A report [97] showed sufficient capabilities of
lung ultrasound imaging for fast identification of COVID-19
pneumonia, in parallel with chest radiograph and CT scan
counterparts.

Terahertz sensing (utilizing electromagnetic beams in
the terahertz range), while being a non-contact method
can achieve high resolution and greater penetration [98].
This characteristic has made it suggested for COVID-19
diagnosis [99].

Wearables like smartwatches have been used either
towards diagnosis [100] or monitoring of COVID-19
patients [101], [102]. Usage of existing smartwatch brands
like Apple watch or Fitbit [103] to detect possible COVID-19
possibility from heartbeat or activity patterns has been
performed in literature. In similar direction, products like
WHOOP Strap 3.0 and Biosensor PatchlAX [18] col-
lect physiological signals like respiratory or ECG signals
in real time to infer correlation with having COVID-19
infection [18].

In another direction, Apple’s AirTag and similar technolo-
gies, while being very popular today for tracking purposes
are not considered for purpose of contact tracing. Although,
there exists some literature on tracking of lost things, as well
as pets [104].

C. SMART SENSING TECHNOLOGY

The smart sensing innovations in current technologies, while
primarily targeted at the reduction of contact possibili-
ties, is leading to cost-effective, scalable and fast solutions.
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However, the progress towards robustness and data efficiency
has become rapid due to integration of Al. Smart sensors
are sensors connected with microprocessors or digital signal
processors to perform real-time filtering operations. These
sensors can range from biosensing to ambiance based and
their application in the context of aiding counter COVID-19
efforts are summarized in table 4.

VI. MIDDLEWARE DRIVEN

Within framework of IoT, middleware can thought of as
a black box whose input is raw sensor data and output is
the utility formularized from processed data, as depicted in
figure 2, thus performing as the union of 5 layers between
sensing layer and business layer, as shown in figure 11.

A. COMMUNICATION TECHNOLOGY

The main principle of IoT is to send sensed data to the cloud
through some IoT gateway [105]. The IoT gateway serves
the purpose of edge layer in 7 layered IoT architecture [105]
providing secure [106], efficient and robust transport [107]
of data provided between sensor devices and cloud. Its fun-
damental building blocks consist of hardware (embedded sys-
tems coupled with wireless modules) and software (operating
system) [38].

Radio-based wireless networks can be classified into
four categories: WLANs (Wireless Local Area Networks),
WMANSs (Wireless Metropolitan Area Networks), WPANs
(Wireless Personal Area Networks), and WWANs (Wireless
Wide Area Networks).

WWANS cover larger areas and are further classified as
cellular and satellite networks [108]. Regarding cellular net-
works, 5G is the current state of the art and thus most
important, permitting high data rate (up to 10 Gbps [109]),
capacity and lower delay [110] as compared to it predecessor
4G [111]. This technology is in competition with current
WLAN technologies like Wi-Fi 6 which is relatively cheap
but has a lesser range. However, research is being done on the
next generations Beyond 5G (B5G) [112] and 6G [113], with
applications in the COVID-19 pandemic, to improve security,
energy efficiency, and area traffic capacity. In this scenario,
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TABLE 4. Summarization of applications of Smart Sensing
during COVID-19.

Applications
Sanitization

Approach Ref
Utilization of wireless sensor tech-
nology, like infrared. ultrasonic etc. [48],

to extend functionality of hand san- | [116],
itizers and washers, in order to re- | [117]
duce contact

Non-contact based approach to-
wards sensing of biological charac- | [118]+
teristics like thermometery, cough | [125]

detection, breathing rate, ECG,
EEG, glucose monitoring, oxime-
tery and heartbeat, which may or
may not be IoT focussed

Utilizing of electromagnetic (UWB [?],
and Doppler radar, radio-frequency, | [126]+
terahertz) or acoustic beams (ul- | [128],
trasonic) and X-ray spectrum (X- | [128]+
ray and CT-scans), and ultrasonic | [138]
beams for detection of COVID-19
either at micro-level (blood tests,
hyperspectral imaging) or macro-
level (organ scan or physical man-
ifestation), providing fast, low cost
and non-invasive diagnosis as com-
pared to well established methods
like PCR and RT-PCR

usage of cameras either as CCTV
or robots (in combination with Li- | [139]+
DAR) monitoring social distance, | [142]
followed by estimated air quality
and weather conditions for resource
planning

Biosensors

Screening

Ambience

increasing the traffic capacity of the communication should
be of vital importance, since a pandemic usually leads to a
significant jump in traffic in communication between patients
and healthcare [112].

On the other hand, WPANSs are low-powered and medium
data rate networks, covering lesser areas, and include pop-
ular wireless technologies like ZigBee, Bluetooth, Wi-Fi,
and Ultra-wideband (UWB), in the order of increasing data
rate. Li-Fi, being less popular than WPAN, is character-
ized by higher capacity and security, suitable for hospitals
and public places. Recently Li-Fi technology has recently
been discussed for COVID-19 patient monitoring [114] and
surveillance [115].

Generally IoT gateways use WPANSs to acquire data pack-
ets from sensors augmented with primary computing units
and use WWANS to transmit data to secondary computing
units [105].

B. PRIMARY COMPUTING
Primary computing unit is an abstraction over a compact sized
embedded systems package that performs relatively less com-
puting upon sensor data. This category includes ubiquitous
smart gadgets like smartphones, tablets and smartwatches,
as well as wearables and equipment composed of specialized
embedded systems.

With reference to the current COVID-19 era, popular
operating systems of these primary processing unit include
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Linux or UNIX-like systems e.g. Android, Ubuntu, Core,
Xinu, Linux4Tegra etc. [107] alongside with RTOS (Real-
Time Operating Systems). Within this competition, Python
has been recently gaining fame due to a single-board com-
puter family called Raspberry Pi [143], [144]. Other popular
single-board computer families finding their application dur-
ing pandemic include Arduino [48], [145], Jetson Nano [146]
and Xilinx FPGAs [147].

C. SECONDARY COMPUTING

This abstraction engulfs the large-scale computing function-
ality upon gathering data from individual primary computing
modules. This massive data is separately dealt with the
technology of ‘Big Data’ to systematically analyze manage-
ment, refinement, and security associated with data. This
technology holds immense significance in the COVID-19
context since the data used for systematic outbreak predic-
tion, tracking, and control, as well as diagnosis, treatment,
vaccine, and drug discovery is in the form of big data.
On the other hand, the services produced from this data
are produced through scalable computing systems. Cloud
computing has become a popular trend in this domain through
the virtual allocation of scalable computer resources [148] on
demand [149], excelling previous technologies like network
computing, internet computing, and grid computing [150]
offering services like software, platform, infrastructure, vir-
tualization, and data storage [149]. These attributes have
allowed cloud services to find applications in business,
governmental, education, and health sectors [151]. These
computing services are further developed as Software as a
Service (SaaS), Infrastructure as a Service (IaaS), and Plat-
form as a Service (PaaS).

D. INTELLIGENCE

Artificial intelligence (Al) engulfs the software part of pri-
mary and secondary computing and processes the sensor data
to produce the utility. Majorly this Al has been centric upon
secondary computing units (usually in the form of a cloud)
with major applications being thermal imaging-based early
COVID-19 detection [152] and monitoring [153]. While it
allows versatility in the utility of the [oT system, it is prone
to latency, privacy, and security attacks.

Machine learning (ML) and deep learning (DL) intelli-
gence is generally more robust than conventional Al, and
the research upon it has been exceptionally active in the
context of IoT. However, due to ethical conflicts and lack
of explainability from health care providers leaves them
less credible for stakeholders in the health industry to adopt
them maturely [112]. Furthermore, to resource constraints of
IoT systems, scalability of these ML models is essential to
conform to the speed, size, and complexity of the mission.
However, this is expected to be solvable with the advent of
6G technology that would be readily available by 2030 [113].

With the ubiquity of Ml and DL-driven intelligence, it is the
time of need to bring this intelligence directly to IoT devices
to reduce the latency of processing and security loopholes.
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In this respect, work is being done to deploy compact versions
of large parameter set DL models onto [oT devices’ micropro-
cessors, despite limited computing and memory capabilities.
While quantization of these models [154] and prunning [155]
are common approaches, new research like [156] and [157]
is being done to optimize the architecture of these mod-
els for resource-constrained environments like microcon-
troller’s limited SRAM. Such approaches have reportedly
allowed more than 32 times memory savings, 58 percent
lower latency, and 70 percent accuracy on benchmark deep
learning models. Even further, the limitation of Moore’s
law on semi-conductor has been proposed to pave towards
deployment of these AI models on promising emerging tech-
nologies like photonics [158] and quantum-based embedded
systems [159] to achieve new horizons of computation by
harnessing much more freedom of parallelism, not possible
on semi-conductor based embedded systems. Furthermore,
ML-based intelligence has also paved its way toward IoT
security by providing new solutions for network intrusion
attacks [160], spoofing attacks [161], large scale attacks and
malicious traffic [162] thus reducing additional security cost
in the expansion of IoT systems both at hardware and soft-
ware level.

The intelligence can be considered as an abstraction over
primary and secondary computing in either a centralized or
distributed manner as discussed in following sections.

1) CENTRALIZED APPROACH

In this approach, the AI mainly operates at the secondary
computing level upon the data collected from the sensor. This
approach is also termed as Cloud computing approach, and
its efficacy is dominant when the IoT devices do not have
sufficient computing and/or storage capabilities. In this sce-
nario, the costs associated with data handling and processing
isreduced, thus suitable for healthcare services. However, this
approach has drawbacks in terms of privacy, security, energy
efficiency, bandwidth and latency [163].

2) DISTRIBUTED APPROACH

IoT devices, that can be considered as a composite of sensor
and primary computing unit can produce a large amount of
data in certain real-time applications while having limited
computing capabilities. In this scenario, Cloud computing
is not the best choice due to inclusive inevitable latency in
data transfer and bandwidth saturation [164]. To this extent,
an alternative methodology is to shift the envelope of Al
processing over to primary computing units, which would
improve latency, privacy, and security issues, and reduce
traffic at secondary computing unit side, thus improving reli-
ability in overburden situations as is the case of the initial
phase of COVID-19 pandemic.

Despite its benefits, distributed approach, also termed fog
or edge computing, can be considered as a replacement for
the centralized approach due to the limitation of computa-
tion to primary computing units or edge devices and thus
cannot provoke power computing tasks. To this end, work
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is being done to propose hybridized centralized-distributing
approaches that can lead to scalable Al implementation with
flexible computation resources [165] that would prove mon-
umental in COVID-19 applications with a much larger pool
of stakeholders like monitoring of safety measures in public
places, mass vaccination, etc.

VII. UTILITY DRIVEN

This section classifies the IoT influence upon COVID-19
from application perspective, with inherent characterization
described below.

A. SMART HEALTH CARE

The enforcement of social distancing during the still active
pandemic has allowed the general practice of IoT influenced
health care, termed as telehealth, e-health or smart health
care, thus allowed lesser hospital visits, reduction of burden
on hospital resources, and timely and remote care. Even
before the current pandemic, the global telehealth sector is
estimated to be over 0.3 trillion dollars by 2025 [166]. The use
of smart health care could also be prophylactic in dealing with
COVID-19 asymptomatic patients by early detection with
possible effective treatment. In this regard, a guiding case
could be South Korea [167], where around 2 percent of the
population went into intensive care for COVID-19 infection
when treated for minor symptoms.

The concept of smart health care can be extended into a
generic framework, smart cities, through its main core i.e.
IoT automation. This would allow more versatile applications
beyond health care, like automated COVID-19 guidelines
monitoring and even education system [168]. Due to the
increasing market of IoT and the huge popularity of 5G,
smart cities propose an effective system to not only efficiently
handle the challenges of the current pandemic but also future
national and global disasters as well.

Irrespectively, smart health care has been effective in the
current pandemic situation in the following areas.

1) PRIMARY CARE

Amid the fear of contracting the COVID-19 infection, even
many individuals avoided primary and event urgent medical
care by not going to the hospital, although the chance of
catching the COVID-19 infection is less than 1 percent [169].
With the additional overburden of consumption of hospital
resources upon COVID-19 patients, remote primary care
consultation has come into play as an effective substitute.
UK’s National Health Service (NHS) initially responded to
COVID-19 management with telephonic services, but this
quickly systematically evolved by focusing primarily on tele-
primary care. With versatility of smartphones, they have
proven to be effective from automated diagnosis and mon-
itoring perspective [57]-[60], [170]. Not only IoT systems
are deployed to be dealt with COVID-19 infected patients
but also provide support to another category of patients, like
diabetic [171] who do not have readily accessible primary
healthcare.
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2) AUTOMATED DIAGNOSIS

The infusion of Al and medical equipment has allowed new
and redirection of several medical equipment technologies.
Several new temperature screening solutions, which have
been aided with Al techniques to further enhance automation,
have been developed [172] to detect temperatures related
to COVID-19 infection. Likewise, Al algorithms are being
used in the automated diagnosis of COVID-19 cases from
radiological imaging scans [173], as well respiratory sys-
tems [174]. In this regard, there have been techniques for
synthetic augmentation of data sets produced that not only
prevent over-fitting but also produce superior accuracy [175].
Although the influence of this technique has not been found
in the COVID-19 reference, some efforts have been made to
improve CT-scan-based COVID-19 diagnosis [176]. Further-
more, there has been some work done on the diagnosis of dis-
eases using deep learning, from a pathological point of view,
by the generation of virtual stains [177], [178]. In another
direction, smartphones are being integrated with medical
instruments wirelessly, enabling human-interpretable visual-
ization. For example, otoscopes can be wirelessly linked with
smartphones to provide a view of the internal of the ear.

3) AUTOMATED MONITORING

Likewise to the theme of automated diagnosis,i.e. the reduc-
tion of contact between patients and health care professionals,
monitoring in health care facilities is also being automated
and work has been done to monitor sound levels in intensive
care units [179] and secretion management [180]. Intensive
care units have been complimented with IoT to allow remote
monitoring of patients by taking advantage of the camera,
microphones, and smart alarms to allow communication
between patients and healthcare professionals [103].

B. OPTICAL APPLICATIONS

Many optical fields, pertaining to the visible light spectrum,
have paved their way in processing several aspects of the
global pandemic. With applications spanning contact tracing
and diagnostics fields, the following trends have been the
most imminent.

1) CCTV CAMERAS

Cameras being the most versatile and popular optical
application, came into action as surveillance tools during
the COVID-19 pandemic. Closed-circuit television cam-
eras (CCTV) have been finding direct applications in social
distance monitoring, contact tracing, policy planning, and
safety measure adherence. These applications have been fur-
ther improved by augmenting the RGB data with data from
additional sensors like infrared [181], depth [182] or ultra-
violet sensors [139] to produce more sensitive technologies.
These technologies have been well complemented with state-
of-the-art computer vision and machine learning models like
CNN, RCNN, SSD, and YOLO [183] for crowd monitoring
and violation zone detection.
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2) 3D PRINTING

3D printing has proven to be an extremely versatile and
flexible solution for manufacturing protection equipment for
medical devices [184]. This technology has allowed provid-
ing alternatives to already scarce ventilator machines, and
reusable and efficient masks. testing devices and isolation
wards [184].

3) VIRTUAL REALITY

The field of virtual reality has been greatly affected by
the pandemic due to its utility while enduring lockdown.
Its global market is estimated to be around 62 billion dollars
by 2027. Virtual reality, while affecting the fields of enter-
tainment, gaming, sports, and simulation [185], is also trans-
forming the traditional way of medical training [186]. Not
only this but also virtual reality has proven to increase patient
satisfaction by providing a visual aid for diagnosis reporting,
as well as supplying therapeutic media to patients recovering
from physical [187] or emotional injury [188].

4) HOLOGRAPHY

Holography is a branch of optics that generates a view of
an object in 3D space. While telecommunication software’s
usability has boomed in the lockdown due to COVID-19,
as seen with the case of Zoom, Skype, and Microsoft
Teams, virtual perception of real events has become prone to
acceptability [122]. Furthermore, holography has been com-
bined with digital microscopy [189] and mixed reality [190]
towards rapid screening of COVID-19 and a better under-
standing of the damage caused by COVID-19. Although,
these directions are so far relatively in the initial stages.

5) OPTICAL SENSORS

Optical sensors provide a rapid alternative to time costly
diagnosis tests of COVID-19 like RT-PCR. Recently opti-
cal fiber-based sensors for the screening of COVID-19
[191]. [192] reported work being done on laser nano-

interferometric lasers for non-contact screening of COVID-19.

In this direction, a more simplistic technique, in terms
of apparatus cost, namely self-mixing interferometry
[193]-[195] can allow economical non-contact screening
solutions with sufficient accuracy and resolution, but so
far no work has been reported on this. Utilization of these
techniques might prove fruitful for innovation in future smart
sensing technologies. In a similar fashion, spectroscopic
techniques like Fourier, Raman [196], [197], Fluorescence
and Surface Plasmon Resonance spectroscopy [198] have
found applications in early diagnosis from swab samples.

C. WEB SERVICES

With web browsing as a common necessity and luxury in the
modern era, several web-based services have been developed
and even reshaped, targeting tasks ranging from assisting
and informing the general public to communication between
the public and institutions during lockdown policies, through
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blogging, messaging, video calling, networking, and software
sharing platforms. These trends are further elaborated on in
the following sections.

1) CHAT SERVICES

A study in 2021 [199] analyzed calls that occurred on the
national crisis hotline regarding the topic of suicide, during
the pandemic and deduced that elderly people were most
impacted by the lockdown. Not only this but also related chats
rose to almost 50 percent as compared to the pre-epidemic
routine. Therefore, the availabilty of chat services with either
human personnel or bots could help people face the lockdown
during the pandemic period.

Since controlling the pandemic demands social distancing,
thus minimum interaction between health care professionals
and patients could reduce the possible number of risks. One
such strategy is the utilization of mobile and web-based bots
to assist the patients in their time of need. Furthermore, they
can be monitored through technologies like robots [200] and
smart health care units [179].

2) INFORMATION MEDIA

Many digital solutions, focusing on mobile technology, are
putting efforts to provide the most accurate COVID-19
related and health information to the general public [201].
With massive amounts of information produced and
exchanged on social media and websites, with its intensity
overshot in the current pandemic, the associated demerit,
i.e. false information, has also become significant and its
solutions to tackle this becomes necessary since they may
lead to deviation of political, social and health education
correctness of a large portion of the society, which can
indirectly affect the efforts against containing the pandemic.

In order to detect misinformation online, several datasets
have been developed [202]. Several news mining tools are
available online with the ability to analyze and classify a large
portion of information online as big data.

On the contrary, news and information from credible
information have been made publically available through
interactive dashboards [203]. Some Al-enabled informa-
tion platforms are being proposed that use natural language
processing techniques to translate information media content
into the native language from reliable sources [204], as well
as use social media activity to warn the general public about
pandemic activity [205].

3) CHATBOTS

Al chatbots are gaining popularity due to their effective-
ness both from a business and utility point of view [206].
Al chatbots can not only provide an informative and thera-
peutic resource during lockdown amid COVID-19 but also
help in diagnostic evaluation and recommending measures to
individuals recently identified at-risk [207]. Likewise, some
chatbots are being developed to imitate health care profes-
sionals [208] to meet the supply and demand of medical
consultations.
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4) VIDEO CONFERENCING

While pandemic has generally brought negative impacts on
people’s well-being and their daily schedule, video con-
ferencing has proven an influential factor Videoconferenc-
ing platforms have been used to help common public and
mentally ill patients [209] deal with symptoms of anxiety,
depression and stress during the lockdown. A study [210]
found a positive correlation between less loneliness and
videoconferencing among older people. Furthermore, video-
based primary and specialist care has proven to be effective
to overburdened hospital schedules and has reportedly been
providing a satisfactory substitute for both patients and
doctors [211].

Within the education sector, the shift of physical learning
towards e-learning while producing its challenges, in terms of
proper accountability of students and fairness of the testing,
has allowed accessibility of education to a broader audience
who cannot afford education. In mitigating the challenges
of e-learning, some solutions have been produced [212].
Nevertheless, some studies [213] suggest the potential of
video-based social media platforms to produce engagements,
questioning ability, and collaborative learning capabilities in
education institutions.

D. ADMINISTRATION

Since the global pandemic outreach necessitates spread pre-
vention and disease eradication strategies, the associated
administrative actions are critical to producing sufficient effi-
ciency. This gives room for the inclusion of many Al-based
technologies to not only aid the associate officials in decision
making but also automate the process or policy and resource
planning.

1) POLICY PLANNING

With many stakeholders involved, policy planning is of crit-
ical importance in the COVID-19 era and digital technology
has played a pivotal role in improving the accuracy and
effectiveness of planning. In this regard, work has been
done that utilized AI, parallel computing, and network
science to address planning lines of action in response
to epidemic [214]. Basically, the steps include modeling
of agents representing individuals, followed by generation
of time-varying interaction networks, simulating the corre-
sponding epidemic process, and modeling the evaluation of
several interventions and public policies [215].

Autonomous policy enforcement systems are being pro-
posed, fundamentally based on IoT, that can gather data from
different sources like from public contact-based to hospital-
based data to allow data-driven decisions that can control
the spread of pandemic [216]. One of the important AI’s
considered in these autonomous systems is reinforcement
learning [217], [218], which has proven to be state of the art
in providing effective data-driven policies in cost reduction,
spread minimization, and lockdown optimization.

Satellite imagery-driven machine learning has been gath-
ering recent research attention, particularly due to the fact
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that such data provides a birds-eye view to allow guided
implementation of suitable preventive strategies [219]. But
such literature is mostly about COVID-19 crises like flood
and weather disasters. In this direction, [220] provided a gen-
eralizable and accessible approach towards this direction, and
it certainly shows promise in shedding light on policy making,
resource allocation, and spread prevention of COVID-19.

2) RESOURCE PLANNING

While lockdowns and other preventive measures have greatly
impacted the financial status of society as a whole, the
prior development phase of vaccination programs has become
ripe enough for mass distribution and administration. In this
respect, the mathematical supply chains frameworks [221] are
being developed to minimize the cumulative costs and lost
doses [221] in terms of transportation and capacity.

Even still, the vaccination and drug research and develop-
ment is still at large, due to the introduction of many variants
of the original virus-like Alpha, Beta, Gamma, Delta and even
strong variants like Omicron [222]. On the contrary, the par-
allel efforts in prevention and hospitalizations are still as crit-
ical. In order to deal with the burden over hospital resources
like ventilators and beds, an open-source tool was developed
for optimized planning of needed hospital resources to handle
future load [223]. Machine learning-based targeted testing
has been implemented along the Greek border to allocate lim-
ited tests for traveling across borders (an estimate of 18.4 per-
cent capacity of performing tests on travelers was recorded
during the peak of summer tourism in Greece), by deducing
which travelers are likely to be testing positive [224].

VIil. PRIVACY AND SECURITY

Privacy and security features are an essential demand of IoT,
and this trend has been greatly amplified since the pandemic
due to the involvement of a greater pool of stakeholders like
the governmental organizations, health care, and educational
sectors [225]. Since IoT-based systems are usually resource-
constrained, therefore, the installment of sophisticated secu-
rity and privacy features is itself a challenge and produces a
greater probability of cyberattack targets in this sector. Fur-
thermore with data collection, ensuring privacy and security
in handling of that data becomes mandatory, which may be
guided by regulations like GDPR or data protection impact
assessment (DPIA), in terms of what information can be
stored and shared [79]. Violations of these guidelines can
lead to serious penalties, as happened with the case of a
major platform like Whatsapp for being charged 225 million
euros by the Irish Data Protection Commission, for violation
of privacy regulations, the second-highest fine under EU
domain [226]. However, they might be overwhelmed by an
opaque chain of sub-contracts in the process of outsourcing
to private firms. This lack of transparency may lead to an
invasion of privacy and trust, as happened with the case of
the NHS app, where ID checks of users on this app were
performed by facial recognition on more than 16 million UK
citizens by a private subcontractor [227].
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According to a talk [225] by a cyber security-based com-
pany ‘Tide’, the investment in IoT suffered as much as
2360 percent losses to data breaches in 2021. Likewise, recent
estimates show that costs of malicious cyber attacks would be
over 10 trillion dollars per year by 2025 [228]. In response
to this, they developed a blockchain-based zero-trust protocol
to encrypt sensitive information within IoT-based systems.

In this regard, [229], there are 14 privacy and security
requirements that should be adhered to when implementing
IoT-based systems, which can be further classified into long-
term (LT) and short-term (ST) requirements based on the
duration of their impact. This classification is elaborated
in table 5.

To provide resolution to the classifications of privacy and
security requirements, they are further compared with their
overall graph features, as discussed in ‘Analysis Method-
ologies’ section, by considering their arithmetic mean. It is
evident that while the interest index and research index are
balanced for both short-term and long-term privacy require-
ments, the average reduced citations and entropy of research
in long-term privacy requirements in prevalent.

Based upon these requirements, the security solutions can
be categorized into key management, intrusion detection,
blockchain [229] and anonymization [230]. With anonymiza-
tion and blockchain techniques as standard choices, they
ensure data availability, data unchangeability, data authentic-
ity and data encryption [231] through sophisticated employ-
ment of cryptographic methods like hashing (irreversible
perturbation) and encryption (controlled reversible perturba-
tion) [230]. These solutions are meant to either prevent or deal
with cyberattacks which can be phishing, malware and DDoS
(distributed denial of service) [232] in nature. Among these,
DDoS is considered the most serious to mitigate [232]. On the
other hand, malware types attacks are the most transmissible
that can affect up to four layers of the IoT architecture [233].

With COVID-19 smartphone apps being one of the most
active digital actors during pandemic, they are prone to
likewise privacy and security risks. For example, there has
been work done in extracting geolocation information from
mobile apps [234], [235]. Similarly, a study [236] outlined
transparency and necessity in data collection, retainment and
sharing as the main privacy concern related to contact tracing.
On the contrary, possible security risks associated to contact
tracing related system may include bluesnarfing, playback
attack, wireless device tracking, denial of service, enumer-
ation and carryover attack [236].

Generally, smartphone apps are prone to replay/relay
attacks, device tracking, location tracking, enumeration
attack, denial of service, linkage attacks, carryover attacks
and disclosure of social graph [17]. The essence of these
security threats is to either track user’s location or ID, or per-
turb the functionality of device. These apps are required
to request permission from users to gain access to specific
functionality of smartphones, of which about one third are
known to invade user’s privacy [237] and even starts log-
ging location without formal registration to the app by user.
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According to a study [237], EU based apps are comparatively
privacy preserving, as compared to non-EU based apps due
to conformity of GDPR regulations, yet pertinent to security
vulnerabilities.

With smartphone apps being deployed over Android and
iOS platforms, these platforms are themselves vulnerable to
cyber attacks like Gain information, Bypass, Overflow, Mem-
ory corruption, Denial of Service (DoS), SQL injection, Cross
site scripting, HTTP response splitting [76] and malwares.
While iOS platform’s security is more restrictive and robust,
they are still known to be prone to malware attacks [76].

In order to deal with privacy related issues, the architecture
of flow of information between smartphone app and a global
server comes into play. With such architectures classifiable
into centralized, decentralized or centralized-decentralized,
centralization is often easier to implement as compared to
a decentralized counterpart [238] but at the cost of lesser
privacy, more security risks and additional processing and
storage requirements. Usually privacy risks are invoked due
to control power of health authorities and governments over
user’s personal information from the central server, and by
nefarious entities that may systematically hack into local
device or a back-end server to extract sensitive informa-
tion [239]. Possible security risks to contact tracing systems
may include data leaks from the server and user side [239],
in centralized systems. Other attacks include false positive
claims and relay attacks [239].

Amongst technologies adopted by COVID-19 contact trac-
ing apps, GPS-based contact tracing apps are known to be
less privacy-preserving due to the collection of location data
like longitude-latitude data. Such schemes are prone to secu-
rity risks like spoofing attacks [240], where false detections
are induced by fake GPS signals. Additionally, GPS-based
contact tracing creates trust issues from the user side. On the
other hand, GPS-based contact tracing can allow the capture
of additional information about epidemic like environmental
contamination [79]. It has been advised that utilization of
location data is prone to security risks like differential privacy
attacks [238], [241], even when such data is anonymized.

On the other hand, while BLE-based contact tracing apps
are known to be privacy-preserving, especially in the decen-
tralized scenario, still the data collected from them are
known to be de-anonymized [242]-[244]. Not only this, but
also there have been studies demonstrating the trackability
of device’s fingerprint around the internet [245], [246] or
through, geo-localization [247], eavesdropping attack [248],
trolling attack [249], and identity tracking [250] using
BLE. Even GDPR-certified BLE decentralized protocols like
Exposure Notification and Decentralized Privacy-preserving
Proximity Tracing protocol are known to be prone towards
Linkage attacks where recorded beacon traffic can be inter-
polated towards location estimation. Furthermore, there have
been studies analyzing criticizing the precision and authen-
ticity of the BLE protocols [251], [252].

Other methods like use of surveillance cameras, QR codes,
mobile operator etc can record places-based data. Although
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TABLE 5. Classification of 14 main privacy and security requirements and their comparison based on mean of their graph features: reduced citations (c’),

interest index (/), research index (r) and entropy (S).

patient anonymity, non-repudiation, location privacy,
traceability, data authenticity, unforgeability, identity
privacy, data integrity

Requirements Impact mean(c’) | mean(]) mean(r) mean(S)
Classification

Session key establishment, forward secrecy, session | Short term (ST) 7.48 0.97 0.93 0.38

key security, mutual authentication

conditional privacy preserving, differential privacy, | Long term (LT) 19.86 0.98 0.94 0.41

there have been many privacy preserving solutions pro-
posed [229], [236], [253]-[256], but they are at the expense
of greater computation [257].

IX. ARTIFICIAL INTELLIGENCE
This section discusses research and application directions of
artificial intelligence towards COVID-19 pandemic.

Artificial Intelligence can be characterized into two broad
categories depending upon whether preset rules for computa-
tion are defined or not:

o Algorithm Driven

« Data Driven
The first category of Al has a concrete assignment of its sub-
parts for evaluations of outputs from given inputs, depending
upon the problem. However, the latter category utilizes prior
data of the problem at hand, to design the sub-parts of Al,
which finally is able to consume the input to produce out-
put. These classifications are further described in the below
sections.

A. ALGORITHM DRIVEN Al

Artificial intelligence was originally realized as the formula-
tion of algorithms to solve a particular problem. Development
of data driven techniques came at a later stage when such
technique reportedly gained superior performance against the
state of the art algorithms, as happened with the case of
AlexNet (a data driven Al algorithm) outperforming other
state of the art image processing algorithms [258]. Even still,
due to the longer history of algorithm driven Al, its appli-
cations are still prevalent in COVID-19 context. To this end,
the corresponding Al being deployed is first designed by a
professional engineering team, as a raw algorithm composed
of certain thresholds, which are determined by empirical
evidence gathered and monitored by experts in the field of
the problem at hand. After that, rigorous field testing is per-
formed on that algorithm to make it certifiable for industrial
applications. This is described in figure 13(a).

B. DATA DRIVEN Al

Data-driven AI, more commonly referred to as machine
learning (ML), encompasses an array of techniques that
primarily constitute two fundamental structures, namely lin-
ear and/or non-linear models. A technical combination of
the ramification of these units gives rise to a variety of
techniques of both low and high complexity, in terms of a
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number of free parameters. These free parameters are needed
to be adjusted, based on prior data, through mathemati-
cal optimization techniques, the most employed ones being
the family of gradient descent algorithms (important opti-
mizers being stochastic gradient descent (SGD) and Adap-
tive Moment Estimation (ADAM)), Levenberg—Marquardt
optimizers and nature-inspired algorithms like genetic algo-
rithms, ant colony optimizations, etc. Data-driven Al gained
its reputation by providing excellent performance into many
Al-related problems, previously handled by algorithm driven
Al including problems belonging to Natural Language Pro-
cessing (NLP), image processing [258] and game playing,
to say the least [259], that could not have been possible with
conventional algorithm driven Al

The low complexity classification includes techniques
like linear and LASSO regression, Support vector machines
(SVM), k-nearest neighbors (k-NN), k-means clustering,
Linear discriminant analysis (LDA), and reinforcement learn-
ing (RL). A very important and abstract category of this
category is artificial neural networks, also called feedforward
networks (FNN), which mimic the structure of biological
human brains [260]. Feedforward neural networks are infact
an iteration over fundamental units called perceptron, which
are inherently a linear system followed by a non-linear sys-
tem. The architecture of FNN is described in figure 14(a).
These models can be interpreted as collection of nodes, con-
nected with edges (commonly referred to as weights). These
nodes can be grouped as layers, comprising of input layer,
hidden layer and output layer. The input layer interfaces with
the inputs, and the output layer interfaces with the output.
The hidden layer is sandwitched between input and output
layers and can be of arbitrary number with different number
of nodes. At each node, the data from previous nodes get
multiplied by weights and summed up to produce an output.
This is equivalent to a standard linear model. Moreover,
at nodes after first layer, the output is further passed through
an activation function, which is usually non-linear in nature.
The weights of these models are adjusted by optimizing a
suitable objective function on inputs and final output towards
its minimum. This iteration of the perceptrons increasing
fitting capability of the ML model over prior data.

Moreover, it is to be noted that FNNSs in their most basic
form as perceptrons are equivalent to all low complexity ML
models with proper choice of linear, non-linear models and
objective function. These FNNs, when increased in depth or
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FIGURE 13. (a) and (b) describe functional flow of algorithm driven Al and data driven Al respectively, in application to COVID-19.

number of hidden layers, become an integral part of deep
learning and provide basis for further deep learning mod-
els, which are high complexity data driven Al techniques.
That being said, the topology of several families of these
data driven Al models, impacting COVID-19 efforts, are
presented in figure 14 (b). While there is significant diversity
in such topologies, many topologies have less exhausted but
recently gaining attention in COVID-19 context, forexample,
less explored Kohonen networks have been finding appli-
cations in autonmous unmanned vehicles (UAV) for crowd
sensing and detection of COVID-19 cases [261].

These ML models can also be characterized as supervised,
unsupervised and semi-supervised depending upon whether
the prior dataset contains information of output (commonly
referred to as labels), do not contain, and contains information
only for some inputs. In any classification scheme, the ML
models proceed towards applications as follows: first experts
in their respective field produce reliable datasets, that con-
tains information on inputs and outputs related to the field.
Next, the training phase takes place, where the parameters
of the chosen ML models are optimized with respect to
these datasets. After rigorous testing of the accuracy of these
models on prior data, they are deployed industrially where
they can deal with real-time inputs. This is represented in
figure 13 (b).

1) DATASET AVAILABILITY

The research and utilization of deep learning in COVID-19
situations have been very active and several real-world
datasets from governmental, private, and public organizations
and companies are made open source to aid ML research.
Despite this, there is still a significant restraint on not only
availability but also the credibility of datasets [262], [263],
one main reason being that many organizations generate such
datasets for their own applications. Furthermore, since the
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healthcare professionals, policy and decision-makers do not
have technical access to this Al, therefore the translation of
these materials towards interactive and interpretable web or
platform-based applications is of important value [2]. To this
end, several datasets related to COVID-19 were identified and
are classified, as per how they relate to Al applications. These
categories are computer vision, signal processing, natural
language processing, epidemic statistics, graph theory, and
meta. These datasets can be readily available to train models
upon or requires some additional technical tool to extract the
raw useable data. The associated information of these datasets
and their distribution is tabulated in table 6 and figure 15
respectively.

Al techniques have been previously employed to contain
the previous epidemics, like tuberculosis, in diagnosis [425],
detection [426], prediction [427] and tracking [428]. How-
ever, with further development of several Al fields along
the way, the literature of Al attending to current COVID-19
pandemic has become richer and state of the art.

An overview of several Al applications in COVID-19 topic
are concisely tabulated in table 7 and 8. To add resolution, the
Al field in COVID-19 context is divided into several regimes
and discussed further in the following sections.

2) NATURAL LANGUAGE PROCESSING
Natural language processing has been used in combination
with deep learning [429] to make COVID-19 literature, avail-
able on sites like ArXiv or PubMed [430], more readable and
accessible to scientists, thus boosting research. State of the
art NLP-deep learning models like BERT and its variations
have been applied to perform tasks like question-answering,
semantic search, and summarization of literature [431], [432].
Deep learning-based NLP models have been used to clas-
sify or identify misinformation [433] on social media plat-
forms, which is needed as the spread of false information
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FIGURE 14. (a) Basic architecture of FNN (b) Architectures of several general data driven Al models that have been applied in

COVID-19 related research.

can lead to dangerous false opinions like reluctance towards
vaccination.

Natural Language Processing Tools have been used to
construct knowledge graphs which have been lucrative in
the drug discovery domain [434], [435]. Not only this but
such knowledge graphs are also useful in aiding researchers
and policy makers to analyze through heavy COVID-19
related literature [436]. Such advanced models, including
Transformer based models [437], can be useful to further
perform sentiment analysis upon social media activity, like
on Twitter trending tweets [438], which can provide insight
to policy into general public mental state allowing to make
more informed decision.

3) BLOCKCHAIN

Blockchain refers to a collection of blocks connected through
hashing functions (most notably SHA-256) [439]. Working in
a decentralized peer-to-peer network, two neighboring blocks
mutually verify the information shared between them. This is
contrary to the concept of centralization, which permits the
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gathering of data into a singular spot and prevents distribu-
tion. On the other hand, this trait allows centralization to be
prone to data breaches [440]. In 2017 alone, over 0.14 billion
customer’s data was stolen [441]. [442] reported 2219 data
breaches between 2005 and 2010 in US education and health
care centers. Originally invented as the underlying principle
behind cryptocurrency ‘Bitcoin’ by Satoshi Nakamoto in
2008, blockchain permits the reduction of unconfirmed trans-
actions while increasing the integrity of the system [443].
While invoking attributes of security, trust, and rapidity,
blockchain has found numerous applications in COVID-19
era with the goal of verification, and sharing. These appli-
cations may range from contact tracing, to resource alloca-
tion and record management. For example, there have been
frameworks proposed to allow blockchain-inspired systems
for social distance monitoring and contact tracing [444],
[445], collection of IoT based data, robots, and drones based
surveillance and contactless delivery, as well as sharing of
COVID-19 data [446] locally and globally between hospi-
tals and institutions. In terms of record management, which
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TABLE 6. Categorization of detected COVID-19 datasets according to the
fields of Al with references.

Dataset Cat- | Ease of Availability Nature Ref
egory
Computer yes lung CT and [264]-[278]
Vision X-ray scans,

Facemask

availability
Signal Pro- | yes coughing and [279]-[285]
cessing breathing

sounds,

accelerometer

and gyroscope

data
Natural partial social [275], [286]-
Language media  texts, | [291]
Processing bibiliographic

data
Epidemic yes numbers [292]-[312]
Statistics on states of

epidemic like

vaccinated,

infected,

deceased etc.
Graph The- | partial contact and [313]-[324]
ory mobility

statistics
Meta yes contains more [325]-[328]

than of prior

categories

essentially demands privacy and security, vaccination, diag-
nostics, and immunity certificates are made credible with
blockchain technology [447] which imposes an efficient and
trustable system for registration, distribution, storage, and
reporting of negative side effects of vaccine administra-
tion [448]. The authentication of vaccination reports becomes
important, as, since August 10, 2021 [449], the number of
fake vaccination certificate vendors have approached 10,000
in 29 countries on social media platforms, and this may lead to
information about the pandemic status and expectations from
policies not being credible.

Since blockchain enables seamless, secure, autonomous
and decentralized human-to-machine and machine-to-
machine data exchange, they are a valid solution, in the
form of smart contracts, to aid pandemic affected national
sectors like finance and agriculture [450]. The literature
on blockchain methodology has been rich for COVID-19
applications in different configurations of blockchain infras-
tructure [451]-[453], [453]-[455] and have been summarized
in figure 16.

4) COMPUTER VISION

Due to situation-wise lack of doctor availability and even
false positives from expert diagnosis from medical imag-
ing [456] and RT-PCR tests [457], computer vision is an
essential tool to efficiently compensate for this drawback,
especially when such technique is able to provide well over
99 percent accuracy [276] over diagnosis from CT-scan based
medical imaging. Computer vision influence on medical
imaging can be realized as either classification, segmen-
tation, or reconstruction tasks [458] on images or videos.
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FIGURE 15. Distribution of useful datasets for machine learning
applications in COVID-19 context.

Conventional computer vision has been dominating imaging
diagnostics from a segmentation point of view, where the
main approach lies in segmentation of the processed image,
followed by estimation of the region of interest to estimate
severity [459].

For the case of COVID-19 diagnostics, medical imaging
can be mainly divided into chest X-ray scans or CT scans,
and they have been widely used in this domain [460]. Studies
have suggested CT scans to be more sensitive to detection of
COVID-19 by 20 percent, as compared to RT-PCR test [461],
but this approach may not be economical. This propels
some studies to prefer X-ray scans to be a cheaper and less
radioactive alternative [462]. Furthermore, these scanning
technologies are further automated with Al algorithms that
can determine optimal parameters for the highest resolution
images based on the patient’s pose [463]-[465].

Computer vision has been surpassed through deep learning
models ever since AlexNet (a convolutional neural network)
surpassed established computer vision algorithms, with man-
ually engineered features, in the 2012 ImageNet Large Scale
Visual Recognition Challenge [258].

Computer vision deep learning models are composed of
feature extractors augmented with a function approximator,
and they have been majorly playing the role of classifiers in
COVID-19 imaging diagnostics. What transfer learning does
is that it dissociates the feature extractor of a model trained
on some other dataset, and then uses that feature extractor
as a starting point for training on a new dataset or to use the
same feature extractor and augment it with some other kind of
function approximators like the same connected layer or some
other machine learning model. The lack of datasets for chest
X-rays and CT scans for COVID-19 patients makes transfer
learning a viable option [466].

a: MEDICAL IMAGING

Artificial intelligence has dominantly been researched in the
COVID-19 context in the form deep learning based diagnostic
imaging, and has been previously rigorously studied for gen-
eral diagnostics through clinical trials [467]. This direction
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TABLE 7. Summary of applications of Al in COVID-19 era.

Concept Description Trends Techniques Challenges Ref
Drug Developement of thera- | drug-target interactions | Machine Learning (SVR, | Limited datasets upon
discovery peutic drugs to mitigate | (prediction of binding | SVM, Random Forest, feed | novel virus interactions | [329]-
and repur- | the effect of the disease | tendency between compounds | forward neural  network, | with drugs [333]
posing and COVID-19 infected | Hidden = Markov  Model),
proteins), drug-drug synergy | Deep Learning (MLP, CNN,
(analyzing molecular similarity | LSTM, RNN, GRU, GAN,
between current viral drugs | Autoencoders, Reinforcement
and second generation drugs) | Learning, Natural language
and combination of prior | processing, Baeysian
for discovery of new design | Classifiers, graph attention
of COVID-19 inhibiting | networks, active learning)
molecules
Viral Study of viral struc- | Prediction of antibodies corre- | Supervised Learning (Decision | Bias and imbalance in
Study and | ture and characteristics | sponding to virus.Prediction of | Trees, SVM, recurrent | datasets [334]-
Vaccine of of corresponding dis- | protein structure of virus geometrical network, LSTM, [342]
Discovery ease. Such analysis in- transformers,Random Forests,
clude genomic and phy- MLP, Logistic Regression,
logentic analysis which Reinforcement learning),
may signify virus ori- Digital ~ Signal Processing,
gins and accelerate vac- Molecular Dynamics
cine production. Simulation
Social Me- | deduction of lucrative | infodemic (spread of misinfor- | Supervised learning (linear and | Data available may be
dia Analy- | results from informa- | mation), Sentiment Analysis | logistic regression, naive Bayes | noisy and insufficient, sys- | [343]-
sis tion shared on social | on platform like Youtube, Twit- | classification, decision trees, | tematic scalable deploy- | [354]
media platforms ter, Instagram, Gab and Reddit, | support vector machine, au- | ment of analysis tools, pri-
Distance learning, Characteriz- | toregressive neural networks, | vacy concerns
ing self-reporting of symptoms | LSTM, transformers), unsuper-
into epidemic statistics and di- | vised (Latent Dirichlet Alloca-
agnosis, experiences with test- | tion)
ing, and mentions of recovery
Epidemic Modelling of states of | Model based Curve Fitting, Pa- | Deterministic and Stochastic | limited and incomplete
Modelling real epidemic (usually | rameter Estimation, Forecast- | versions of compartment | datasets with lack of | [355]-
and Fore- | numbers) as differential | ing. Dataset based forecasting models(Logistic, SIR, | geo-spatial, social, | [369]
casting or stochastic system modified SIR), Deep | political and statistical
Learning (LSTM, RNN, GRU, | information, parameters
CNN-RNN,CNN-LSTM, of epidemic model vary
Prophet, Transformers), linear | over time inducing
regression, LASSO, Support | uncertainity, imperfection
vector regression in assumptions underlying
epidemic models,
Quarantine | Validating if susceptible | Smartphone biometric(face im- | Deep Learning models | Privacy preservation
Monitoring | population is properly | age, GPS) identification, uti- | (Facenet),  Utilization  of [370]-
isolating  themselves | lization of social media apps | sensors like ear, blood, [374]
with precautionary | like WeChat, IoT driven quar- | motion sensors etc to monitor
measures like mask | antine monitoring and report- | biosignals (temperature,blood
wearing ing of abnormalities in biosig- | pressure, respiration rate),
nals, Drone based monitoring Computer vision and machine
learning techniques like SVM,
HOG etc
Contact Identification and con- | Both forward (looking for post- | Imposition of centralization, | GPS performs poorly in [17],
Tracing tainment of contacts of | contacts) and bidirectional | decentralization and their com- | heavily built up outdoor | [257],
an infected person (looking  for both  pre- | bination as architectural theme | and indoor areas. Different | [375]-
and post-contacts) contact | for data sharing between client | phones transmit bluetooth | [387]
tracing through digital tools | and server. Hashing and cryp- | at  different  strength,
like Smartphone Apps and | tographic based generation of | as well as orientation
Blockchain Technology. | BT’s ID, Usage of blockchains | variant transmission,
Privacy Preservation on data | with and without combina- | affecting distance
collection like GPS, Bluetooth, | tion with cryptographic proto- | estimation. Different
Wi-Fi, UWB, in either | cols like Diffie-Hellman, zero | app architectures are
centralized or decentralized | knowledge, blind signatures | prone to security risks like
manner. Applying ML and AI | and proxy re-encryption replay/relay attack, device
techniques on collection data, tracking, enumeration
human activity recognition to attack, denial of service,
scrutinize contact tracing de-anonymizing the
users, carryover attack,
disclosure of social graph,
lack of transparency of
data for researchers, false
positives, trust issues,
malicious vulnerability
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TABLE 8. Summary of applications of Al in COVID-19 era (continued).

Concept Description Trends Techniques Challenges Ref
Policy En- | Developing policies | Al based decisions are em- | Integration of IoT with health | Privacy and security in
forcement like assigning hospital | ployed after analysis of so- | and transport sectors, Deep | data collection in shar- | [216],
resources, planned | cial distance monitoring, con- | Learning( reinforcement | ing, data availability, oper- | [388]-
lockdowns etc. that | tact tracing, drug discovery, | learning, transfer learning | ational costs [392],
minimize the spread of | vaccine production, intelligent | techniques), Network [392],
infection transportation. traffic monitor- | Analysis, Epidemic Models, [393]
ing etc. in combination with | Agent based simulations
availability of resources
Patient Monitoring of patient’s | remote monitoring of COVID- | geofencing, time frequency | Operational and energy
Monitoring vital and reception of | 19 infected as well as other ill | analysis, machine learning | costs, availability of sen- | [394]-
corresponding prescrip- | patient’s biosignals via smart- | (logistic regression) sors, acceptability of such | [401]
tions phone apps, web apps, IoT, technology
CCTYV, signal processing, ma-
chine learning models to deter-
mine the need to be hospital-
ized
Automated digital ~diagnosis of | utilization of IoT and deep | utilization of sensors like ac- | While such methods are
Diagnosis COVID-19 based on | learning models to monitor | celerometer, microphone, cam- | fast and convenient they | [152],
symptoms which may | breathing patterns, oxygen sat- | era, WiFi etc. either self- | are less reliable and accu- | [394],
allow timely treatment | uration level, temperature, de- | workable or as a contactless | rate as compared to well | [395],
and prevent spread tection from lung ultrasound, | system , Deep learning models | established methods like | [402]-
CT and X-ray scans like variations of CNN, GRU, | PCR test. [406]
RNN, LSTM, Vision Trans-
formers etc.
Al Automated  software | Screening and rehabilitation of | NLP, deep learning | Public adaptability as peo-
Assistants products  to  assist | COVID-19 patients, accessibil- | techniques(particularly CNN) ple prefer real humans, | [407]-
health care workers and | ity of health related knowl- need of internet connec- | [413]
general public edge, inquiry, update of health tion
records, for general public, ei-
ther through dedicated plat-
forms, already present plat-
forms like Siri and Alexa or as
chatbots on social media plat-
forms like Whatsapp, radiolo-
gist assistants to diagnose from
imaging like CT scans, help
people deal with anxiety during
lockdown
Social Dis- | Detection of people | Utilization of IoT devices, | Machine Learning | Faulty camera calibration
tance Moni- | and relative distance | drones and unmanned aerial | (SVM), Deep Learning | and occlusion in com- | [146],
toring between them beyond | vehicles to ensure social dis- | (CNN,YOLOv3, HOG, SSD, | puter vision models, Pri- [183],
6m threshold tancing, mask wearing, com- | YOLO-tiny, DeepSORT ) vacy concerns, Trust eva- | [414]—
puter vision, human mobil- sion due to lack of trans- | [424]
ity monitoring through activity parency
recognition

provides an alternative route to RT-PCR based diagnostics,
which is prone to high false-negative rates [405]. In some
studies, CT-scan imaging based diagnosis is considered a bet-
ter option than RT-PCR based diagnosis [468], but this is chal-
lenged by its poor specificity due to the lack of differentiation
between pneumonia or adenovirus infections [469]. From
deep learning perspective, despite the challenges of lack of
transparency, explainability, and expert inclusion, significant
work has been to done to overcome these challenges, which
has recently led to the first industrial Al for autonomous
diagnostic imaging in clinical use [470].

In deep learning framework for diagnostic imaging,
datasets from two major imaging technologies: chest CT and
X-ray scans are usually studied upon, while other notable
technologies include lung ultrasound scans, that relatively
more safe and convenient at the cost of reduced sensi-
tivity [406]. A common framework for the application of
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deep learning in this scenario is discussed in figure 17,
where CT-scan based dataset is considered as an example,
however same is the case for X-ray scan-based deep learning
methodology.

It can be noted from figure 17 that another class ‘Other
Disease’ is added as many characteristics of effects of other
lung related diseases like pneumonia is similar to that of
COVID-19, therefore a misdiagnosis is possible from the
lung scans [471], [472]. The purpose of the intermediate
data augmentation step is to increase the classification accu-
racy and reduce the over-fitting capacity of deep learning
models by increasing the size of the original dataset, usu-
ally achieved through GANs [473]. It is followed by the
image pre-processing step whose aim to denoise images and
extract useful features to be fed into a deep learning model,
that does not only improve classification accuracy but also
reduces the training time of the associated deep learning
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TABLE 9. Configuration of common deep computer vision models in
terms of number of parameters in units of million (M), input dimensions
(pixelsxpixels), Number of operations in units of Giga operations per
second (GOPs), inference time per batch (s) and Accuracy density

% ‘_\ Digital Monitoriny SHiATECATaTtS percentage per million parameters (signifies the contribution of
sty Coptticates parameters towards accuracy of model).
[ b 2
Access status i@ﬁ Platform Architecture | Num. of | Input Num. Inf. Acc.
e ® Slockhain Parame- | Dimen- | of time Den-
I a l Ethetelim ters (M) sions Oper- per sity
Lo Consesus Mechanism Hyperledger ations unit (%/M
mbrid  ©E Pon 0AG e _— (GOPs)| batch | par)
DPoOS Majority voting (9)
o - Squeezenet 1.31 224x224 | 0.84 1.53 46
\ o mobileNet 4.19 224x224 | 0.58 3.34 21
E— Resnet-18 11.79 224x224 | 2 1.79 6
Densenet- 20.18 224x224 | 4 17.15 39
201
FIGURE 16. Blockchain applications and configurations in counter Tnception- 7385 770x229 | 6 10.1 35
COVID-19 efforts. V3
Resnet-101 44.5 224x224 | 8 8.9 1.9
Resnet-152 60.3 224x224 11 14.31 1.5
model. Additionally, the last layer in figure 17 is intended égXGNleé ?;80471 ;gzgz (1)‘673 ;%g 825
to represent a ‘softmax’ layer [472], which is a class of VGG-19 1436 354x224 | 20 53 03

activation functions suitable for multi-class classification.

While a multitude of deep learning architectures have been
researched upon for medical imaging-based COVID-19 diag-
nosis, the configuration of common models [474], [475] is
described in table 9. It is empirically evident from attributes
of a number of parameters and accuracy density of these
models that the depth of the models while leading to
overall greater accuracy are negatively correlated with the
individual parameters towards the accuracy of the model.
For case of CT scans, the main trend has been either to
construct architecture of a new model that can appropriately
capture features, or to transfer the features learned from
other well-trained and established models. Notable exam-
ples of dedicated models include spiking neural networks
(SNN) [476], DenseNet-169 [134], VGG-16 [134], VGG-19
[134], ResNet-50 [134], InceptionV3 [134], Ensemble Deep
Classifiers (EDL-COVID) [477] with maximum reported
accuracy of about 99 percent. On the contrary, transfer
learning approaches comprise of ensemble transfer learning
techniques [478] (where as much as 15 pre-trained models
have been reportedly compared), as well as compliment-
ing transfer learning with generative models like CycleGAN
[479], which have pushed the maximum accuracy towards
99.6 percent. Furthermore, works on ResNet-101 and Xcep-
tion deep learning models have report an accuracy around
99.9 percent [456].

Likewise, X-ray scans tend to follow the same trend
with constructed deep learning models like ResNet-50
[480], ResNet50V2 [278], XGBoost [481], VGG [480],
Covid-Net [480], Covidx-Net [482], DarkNet [265],
U-net [483], COVID-caps [484], EfficientNet-B7 [485] and
OptCoNet [486] with accuracy of detecting COVID-19
reportedly maximum 98 percent [265]. On the other hand,
inclusion of transfer learning has known to exceed this
98 percent accuracy barrier where the feature extractor
from previous model like ResNet [487], SqueezeNet [487],
DenseNet [487], VGG [488] is augmented with other
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FIGURE 17. General deep learning based computer vision framework for
COVID-19 diagnosis from medical imaging with CT-scan imaging taken as
example.

machine learning models like SVM [489], MLP [489],
etc. or the same model is trained upon the COVID-19
dataset. Inclusion of ensemble reinforcement learning tech-
niques [490] has provided satisfactory results in X-ray based
COVID-19 detection with accuracy ranging between 98 to
99.1 percent over different datasets. Similarly, some sophis-
ticated models are also being developed to enable COVID-19
diagnosis from lung ultrasound imaging [491], [492].

b: HUMAN ACTIVITY RECOGNITION
Human activity recognition (HAR) is the characterization of
different activities like walking, sitting, standing, etc. In the
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COVID-19 context, human activity recognition may not only
provide an alternative to GPS or Bluetooth-based contact
tracing but also allow efficient surveillance for social dis-
tance monitoring and hospital places during the COVID-19
pandemic.

Computer vision-based human activity recognition for
social distance monitoring may prevail in technologies like
Bluetooth or GPS where their signals are not reliable like
in crowded places, dense cities, etc. This leads the way
toward state-of-the-art variations of CNN to classify human
activities, and thus identify social distancing. [386]. In order
to detect face masks, there is considerable literature from
conventional computer vision algorithms like the Viola-Jones
algorithm and SIFT feature-based detection to ResNet-50,
MobileNetV2, VGG-16, YOLOV2, and FacemaskNet [277].

Other method of human activity recognition include
through accelerometer data and/or gyroscope [387] attained
either through wearables [493] or smartphones [494], fur-
ther procesess through signal processing algorithms like
repetition spikes counter [493], machine learning models
like Generalized Linear Model [387], Random Forest [387],
AdaBoost [387], etc. and deep learning models like deep
CNNss [387], attention based CNNs [495], federated learning
models [496], etc. CNNs are employable after collecting
2D time-frequency representations through techniques like
wavelet transform [497].

Deep learning-based projection of 2-D movement data into
3-D could have an advantageous application on accelerome-
ter data for activity recognition, but currently, such scheme
has been only adapted to animal poses [118].

5) MATHEMATICAL MODELING

Mathematical modeling is the representation of real-life
processes, and corresponding processing upon those repre-
sentations, through mathematical tools from functional anal-
ysis, dynamical systems, and optimization theory. In this
respect, mathematical models dealing with COVID-19 can be
contextualized in the following domains.

a: EPIDEMIC MODELS

Epidemic models, are an important tool to model not only
several states that can be associated with pandemics like the
number of infected and recovered, etc., but also allow assess-
ment of economic outcomes of pandemic and evaluation of
policies to contain the pandemic.

Epidemic models are majorly modelled as differential
equation systems, formally conceptualized through compart-
ment models [498]. In this respect, SIR [355] and logistic
[357] models are one of the simplest models. With the SIR
model being more important, is composed of states like
susceptible number, infected number and recovered num-
ber. The fundamental goal of these models is to monitor
metrics like reproduction numbers and fatality rates, along-
side with parameters of these models (that can possible
be time varying). SIR model has been extended into many
other models like GSIR [499], SEIR [499], SEIRD [500],
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SIQR [33], SIPHERD [501], SIDARTHE [502], 6 —SEIHRD
model [503], SE(Is)(Ih)AR [504] and the list goes on. In the
same direction, fractional order models [505], [506] are gain-
ing popularity. Contrary to differential systems, another trend
in epidemic modeling is stochastic based [507]-[510] mainly
utilizing Markov or Bayesian-based techniques. These mod-
els can be further improved by the imposition of knowledge
of physics associated with the epidemic [511]. In course of
improvement, recently sparse identification-based methods
are gaining popularity for modeling dynamics and prediction
of parameters and states of these models [512]-[514].

In order to make the above models work with real-life
data, they are usually complemented with curve fitting tech-
niques. Furthermore, the accuracy of these models is further
increased by the addition of data driven techniques [515],
or metaheuristic optimization techniques [515] and can be
extended to forecasting context [516]. Another practical
application of these models is towards the determination of
optimal vaccination policies amongst alternatives for mini-
mization of spread, with consideration of demographic and
sociological information like age [517].

b: FORECASTING

Real world data associated with several states associated with
COVID-19 pandemic, which can be realized through epi-
demic models, can be independently forecasting by consid-
ering them as time series [518], [519]. Techniques involved
are standard time series analytic methods like ARIMA [520],
auto-correlative models [521], SVR [522], genetic program-
ming [523], Gaussian process regression [524], wavelet
decomposition [525], logistics regression [526]. Further
approaches include data driven based like LSTM [527],
GRU, Bi-LSTM, Variational Autoencoders [528], nonlinear
autoregressive neural networks [529], Generative Adversarial
Networks (GAN) [530]. Main drawbacks of these models is
lack of interpretability, but encoder [531] and attention [531]
based mechanism based forecasting approach has shown
promise in ramifying this aspect. Forecasting can be use-
ful to keep track of time series associated with other areas
that are directly or indirectly affected by pandemic like
agriculture [532], vaccine efficacy [533] and weather [534]
forecasts.

c: CONTROL THEORY

Control theory is naturally embedded in the concept of
enforcing policies, distribution of critical resources like
ventilators, beds, and vaccines to minimize the spread of
COVID-19,i.e to being the reproduction number within cer-
tain desired bounds [2], which might directly reduce the
exhaustion of precious resources. But at the end of the day,
delivery of the produced results into an intuitive web or
computer application accessible to health or policy maker
might be a challenge [2]. In this regard, control theory has
been primarily complemented with epidemic models [535],
using techniques from linear [536], non-linear [537] and
optimal control theory [538], in order to deduce control
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strategies [539] as well as governmental intervention
paths [540] and public awareness strategies [541] to mini-
mize critical metrics like mortality rate [535], reproduction
number [538].

6) GRAPH THEORY

Many real-life problems can be divided into independent
components, symbolized as nodes, which have some rela-
tionship, symbolized by an edge. These structures are well
known in mathematics as graphs, the theory of which is still
an active area of research today. In the context of COVID-19,
when it comes to modeling of epidemic systems, social net-
works, supply chain, and drug discovery problems, graph
theory comes into play naturally or unexpectedly while also
presenting its solutions to its problems from its repository of
graph analytic techniques.

a: ONLINE SOCIAL NETWORKS

Despite the development of vaccines and effective inocula-
tion progress all over the world, community cooperation in
previous transmission preventive schemes is still very much
important, partly due to mutations of the virus as well as
residue vulnerability after inoculation. Particularly, the first
governmental level lockdowns in the initial phase of the
pandemic lead to an increment of around 70 percent on social
media sites like Facebook, Whatsapp, Instagram [542] and
Twitter [543], thus providing a readily available platform
to users for sharing their personal experiences regarding
physical symptoms, opinion on vaccines and public health
intervention policies [353]. Furthermore, generally, anxiety
and depression levels overshoot after retrieval of Covid-19
news on social media [354].

Popular social network platforms like Twitter and Face-
book’s data can be crawled and the tweets or posts shared
surrounding sensitive topics, as well as related user infor-
mation. The textual datasets are usually dealt with natural
language processing and machine learning techniques and the
resultant sentimental or authenticity of information evaluated
is complimented with its distribution across networks using
standard graph analytic techniques like cluster, partition, cen-
trality, betweenness, connected components, and path-based
analysis [544], [545].

Online social networks are an indirect way of addressing
the status of a pandemic and its possible mitigation strategies,
since social networks, engulf almost every member of a par-
ticular community, producing content regarding the progres-
sion of particular news (authentic or false), vaccination status,
mental health statuses, public opinion, medical supplies, and
employment rates. Utilization of this information would be
helpful in effective health intervention schemes by policy
makers and improve general public sentiment [354], [546].
Furthermore, the lexical [353] analysis of social media con-
tent containing symptoms reported by users, like from Twitter
tweets, forms an effective way to diagnose in comparison
with laboratory tests.
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The inclusion of news can be from various sources like
news outlets or even political and state leaders [543]. The
latency in the spread and exchange of information to the
current situation can be sufficiently low to provide a metric
on the status of the pandemic, by analyzing the sentiment
and emotion associated with exchanged information content
and filtering based on it, in the context of the respective
situation like increased infected numbers of vaccination sta-
tus. While this approach is dominantly studied through data
science means, there is an absence of literature on employing
control theoretical treatment to this theory. For example, if the
vaccinated numbers can be represented by state u(r) as a
function of time ¢, and the status of vaccination as being active
and passive can be classified as determining whether u(t) is
stable or unstable. The determination of the density of data
exchanged, e.g. tweets with positive sentiment to vaccination,
around the time ¢, acts as a positive definite function L(u(t))
on it since the information exchanged with positive senti-
ment is proportional to the number of people with positive
vaccination status. Under the language of Lyapunov control
theory [537], this can act as a Lyapunov function, that can
determine the stability of state u(¢) through the following
conditions.

L)) <=0 (11)
L) > 0 (12)

If equation (11) holds then the overall public opinion on
vaccination is passive, otherwise equation (12) would imply
that the public is actively engaged in the vaccination schemes.
This control theoretical treatment would pave bridge between
online social networks and epidemic statistics, the literature
on which is relatively sparse in COIVD-19 context. For exam-
ple, [351] proposed supervised learning models to determine
confirmed deaths, recovered and suspected categories from
Twitter tweets, which would compensate for the inaccuracies
in epidemic statistic records due to lack of access to testing
facilities or recording constraints. These studies become more
relevant for smart city citizens, who are more adhered to the
latest technology and social media [547], and some studies
have been able to produce a prediction of the outbreak of
confirmed cases seven days prior, with more than 98 percent
certainty [548].

b: EPIDEMIOLOGY

Network analysis comes into usefulness in the application of
contact tracing, where the point of action is following graphs
of contacts. Whilst such graphs can be simple, a study [549]
suggested that tracing contacts of contacts can significantly
reduce transmission rates as compared to the simple tracing of
direct contacts. Therefore, the employment of sophisticated
graph-based analytic techniques is needed. Therefore, the
study of social networks as a whole is crucial to monitor the
spread of an epidemic, where each node-edge pair is formed
when two contacts come in proximity of S5m or less from each
other [549].
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While routine techniques associated with these social net-
works comprise sensitivity, network structure correlation,
degree correlation, degree distribution, clustering coefficient,
betweenness, and eigenvector centrality analysis, these tech-
niques are associated with the static network. Since real-life
networks are temporal-wise dynamic, these networks are sub-
divided into static social networks. An important technique
named null networks that have proven useful in studying
COVID-19 which can demonstrate link between transmission
rate and different network priorities (different geographical
societies) [549] as well as estimate the extent of effectiveness
of imposed policy [550] as well as travel restrictions [551]
upon pandemic.

Furthermore, network-based models can provide addi-
tional insights into trends of the epidemic which cannot
be possible through other mathematical or deep learn-
ing models. For instance, the apparent linear curves of
COVID-19 infected numbers as compared to mathematical
models predicted non-linear curves were explained through
network-based analysis [552].

Stochastic simulation models [553] and epidemic mod-
els augmented graphs [554] have been employed that can
effectively estimate the percentage of contacts traced given
the reproduction number of the COVID-19 epidemic. These
models have been instrumental in the assignment of public
policy like imposition like social distancing, case isolation,
etc. which are predicted to be enough to contain the epidemic.
Additionally, network-based techniques [555] have been used
for determination of effective strategies for distribution of
vaccines.

The data-driven analogue of network analysis techniques
is graph neural networks. Graph-based data, containing
information on location and time, has been utilized using
graph neural networks to forecast the spread of infec-
tion [556]. Traffic revitalization can be important in urban
management and policy-making considerations and has
been tackled through convolutional-recurrent neural network
architectures [557] on graph-based data. Additionally, the
problems of optimization can be converted to graph embed-
dings, complimented with reinforcement learning to identify
the allocation of crucial resources for containment of the
pandemic [392].

¢: SUPPLY CHAIN

The current pandemic has been a source of perturbations
in supply chain networks, primarily due to labor short-
ages [558]. Such labor shortages have been so serious that
even franchises like McDonald’s started hiring 14-year-old
workers to compensate for the shortage. The cause of the
shortage may be linked to deaths from the pandemic, illness,
depression (due to lockdown restrictions), or the risk of
infection. Network analysis becomes a useful tool as the
supply chains are itself networks with edges representing
price and product flow. A promising trend in this regard
has been game-theoretical supply chain networks [558] that
can take into account the competition between businesses
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constraint with labor shortages, which can help identify
profit-maximizing businesses. Furthermore, as vaccination
distribution is as important as its research and development,
many mathematical optimization-based solutions are devel-
oped for effective cost and dose control [221], [559].

d: DRUG DISCOVERY

Drugs in the category of antiviral and immunomodulators
have been targeted against treatment of COVID-19 [560].
In this respect, supervised and supervised ML techniques
have been complimented with graph theory to screen virtual
drugs for their efficacy, sensitivity and toxicity in drug-target
interaction, alongside with biomarker identification. In this
respect, fully connected neural networks [561] and Bayesian
network analysis techniques [21] have been employed for
comparison of effects of different treatments available
for COVID-19 infection. Other popular techniques include
knowledge graphs [562] and graph neural networks [563], the
later of which have proven to be state of the art in drug-target
interaction framework. Likewise, network medicine frame-
work [564], [565] have been adopted for drug repurposing
to treat respiratory symptoms of coronavirus infection with
positive results [565]. Network-based techniques have been
used for the exploitation of disease-gene drug interactions for
the identification of repurposable drugs [566].

7) SIGNAL PROCESSING

Signal processing deals with the extraction of lucrative infor-
mation from arbitrary functions (signals), that can be contin-
uous or discrete, whose domain lies in one dimension. In the
COVID-19 pandemic, these one-dimensional signals may be
dispersed in the environment, in the form of audio, infrared
or bio signals, and the processing of these signals becomes
the matter for creating an application.

Some signal processing fields like compressed sensing
have shown versatility in its techniques and cross boundaries
of many domains like reduction of CT and X-ray scan doses
and minimum scanning points for mobile location estima-
tion [567], but void of COVID-19 context. Although, some
effort has been made in this respect to introduce literature in
COVID-19 context [568], yet the effort is in the early stage.

Irrespectively, the applications of signal processing in
COVID-19 context have been practically significant, and are
described below.

a: HUMAN ACTIVITY RECOGNITION

Whilst both video (4D signal) and 1D signal-based HAR have
been active in COVID-19 related research, 1D signals may be
of practical consideration due to corresponding low cost and
power considerations. The most popular sensor for extracting
these 1D signals are accelerometer and gyroscope, and these
1D signals can be augmented with other biosignals like tem-
perature and heart rate to add resolution and accuracy of the
HAR task. The algorithms considering the morphology of the
signals like repetition spikes counter [493] have been easy to
implement and easy to use for HAR tasks, machine learning
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has been paving way for more accuracy and robustness in this
direction, with popular techniques tackling applications to
COVID-19 include generalized linear regression [387], logis-
tic regression, random forest [387], AdaBoost [387], non-
linear kernel discriminant analysis, Naive Bayes and SVM.

b: MEDICAL EQUIPMENTS

In the current pandemic, not only new equipments have been
explored for dedicated processing of biomedical signals for
diagnosis, but also improvement of current medical equip-
ment to assist COVID-19 patients. An example of this is the
control of oxygen flow from ventilators can be optimized in
relationship with a patient’s health status, and a study [569]
utilized reinforcement learning under the Markov decision
process to accomplish this.

Since coughing and breathing problems are one of the most
eminent symptoms of COVID-19 infection, therefore efforts
are being made to sense the associated signals and perform an
automated diagnosis. In order to make machine learning over
these signals possible, [570] produced a cough, breathing
and voice sound dataset to distinguish between infected and
normal individuals. However, real-world data may not be
enough to make the most accurate model, therefore [404]
proposed respiratory simulation model to compensate for the
sparsity of data, based on the latest clinical research.

Methods in feature extraction from audio signals include
segmentation and normalization [571], harmonic to noise
ratio [571], Variable Markov Oracle Method [572], empir-
ical mode decomposition [573], Mel Spectrograms [574].
On the other hand, classifier methods include state vector
machines [571], XGBoost [572], convolution deep neural
network [573], transfer convolution neural network [574],
LSTM [575], ResNet50 [575] with maximum accuracy
achieved as 99 percent.

Chatbots are being deployed that can employ speech recog-
nition and natural language processing upon speech sig-
nals and diagnose COVID-19 based on symptoms reported.
This technology has removed the burden from the previous
screening of potential cases based on phone hotlines [576].
‘Symptoma’ [576] is an example of such chatbots that can not
only differentiate between 20,000 diseases but also diagnose
COVID-19 with more than 96 percent accuracy. Likewise,
"MedBot’ is an automated health assistant [408], deployed
on Google Cloud Platform (GCP), which provides services
like symptoms-based diagnosis, counseling services, and
guidance, thus compensating for lockdown restrictions and
lengthy doctor appointments. Furthermore, a chatbot named
‘Clara’ was deployed by a collaboration of Microsoft and
CDC with similar functionality.

8) LIMITATIONS OF DATA DRIVEN TECHNIQUES
While the influence of data driven techniques over standard
algorithmic applications has been profound, they are prone to
the following limitations:
« Data Quality: Data available to deep learning models
may be sparse, heterogeneous, or noisy in nature. The
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main reason for data sparsity may include the costs asso-
ciated with data collection [577] and legal complications
in sharing of model [578]. Data collection and labeling,
especially for diagnostics, can be challenging and costly
to achieve. Furthermore, the data used to train the model
may not be gathered from trustable sources [579], lead-
ing to unreliable results.

Transparency: The results produced by deep learn-
ing models may not be objectively coherent with the
theory underlying the problem, thereby making the
results uninterpretable. Their action is fundamentally
the same to that of a black-box model that can approx-
imate any mapping between two objects [580]. This
scenario can be unacceptable in application fields, that
may have many stakeholders, like that of health care
and policy making. Due to this limitation, GDPR reg-
ulates the explainability of algorithms utilized inpatient
screening [581].

Security and Privacy: Wherever there is data involved,
there is the demand for privacy and security. Such con-
cern comes into action in the case of deep learning
models, where the data used to train the models, whether
anonymized or not, can be decoupled either directly or
indirectly to extract sensitive information. Some exam-
ples include the studies where sensitive information like
faces of people [462] or records of subscribers [582]
have been extracted from weights of the trained models
and the data used to train the model respectively. Fur-
thermore, these datasets may become prone to manipu-
lations by attackers to force the learned model to perform
additional malicious tasks.

Model Limitation: There are innate limitations to
the performance of deep learning techniques. It is a
well-known fact deep learning models are known to
be biased [583], [584], as they project what they have
learned from the data provided. Therefore, it is not
expected they would be completely adopted over stan-
dard models and adaptive algorithms [585] leading to
problems of scalability and generalizability. Other lim-
itations include catastrophic forgetting, a phenomenon
associated with transfer learning (a frequently utilized
technique in COVID-19 imaging) that can make the
model forget the model from the previous task. Fur-
thermore, there are limitations to probabilistic and
generative models [586]. A study showed that while
transformers are state-of-the-art deep learning models
with superior performance, their generalizability to con-
ventional statistics was not promising [587].

Another important limitation of data driven models
include adversarial attacks, where small perturbation in
data significantly deviates the predictions of the models,
lead to a lack of trustability in such models for industri-
ous adaption.

Model Size: Machine learning models, especially deep
learning models, when architected and trained to show
superior performance are supposed to be deployed into

62641



IEEE Access

J. 1. Khan et al.: Artificial Intelligence and Internet of Things (Al-loT) Technologies in Response to COVID-19 Pandemic

real time embedded systems, whose specifications and
floating-point precision is going to be much lower than
the systems they were originally designed on. There-
fore, quantization of these models, as well as their
pruning, becomes a requirement for economical deploy-
ment [588] and maintenance of the accuracy becomes a
challenge.

a: SOME SOLUTIONS TO THE LIMITATIONS

o Model Size: Solutions to the problem of model size
have been tackled with deep studies of sparse networks
and various properties are explored like training quan-
tization error, and comparing performance of training
these networks with those of dense models with later
pruning [589], [590]. Furthermore, pruning of large deep
models has been studied where a study [588] reportedly
compressed VGG-16 model by 49 folds with equivalent
accuracy. Furthermore, there is growing evidence that
while state-of-the-art models consume large amount of
power, their computing power may reduce faster than
Moore’s law [591].

+ Model Limitations and Transparency: In order to sys-
tematically deal with bias in machine learning models,
a European Union-driven Al team derived a framework
to define Al risk and bias and introduce general princi-
ples for robustness, privacy, and transparency [592].
Usage of decentralized training strategies like feder-
ated learning has been considered promising to not
only produce scalable models but also generalizable
performance towards unseen data [593]. Another cate-
gory of techniques named parsimonious models may not
only improve generalizability but also ameliorate trans-
parency of such models to predict physical phenomena
by adopting a minimum number of parameters [594].
The explainability of Al models can be further improved
by dedication identification of necessary features as well
as adjustment of weights and activation functions to con-
vert relevant information into the final output. Addition-
ally, since deep learning models are stochastic in nature,
the uncertainty associated with their predictions can be
evaluated, which would induce transparency in medical
diagnostics like X-ray imaging based COVID-19 diag-
nosis [580]. In course of attaining generalizability in
multi-modal inputs and multi-modal tasks, it appears
that transformer architectures are a promising strategy,
without resorting to complementary techniques [595].

« Data Quality: In order to deal with sparse and unbal-
anced datasets, a technique called ‘Active Learning’ has
been developed that considers sample diversity and cor-
responding improves accuracy and decreases bias [596].
Furthermore, bias can be compensated by utilizing mul-
tiple independent datasets. Other methods like ensemble
techniques, transfer learning, contrastive learning [597],
meta-learning and transformers [598] are known to give
sufficient accuracy given limited datasets. From a non-
technical perspective, there have been proposals for
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incentive mechanisms in different sectors involved in
data collection to improve the quality, as well as quantity
of data.

e Security and Privacy: In order to bypass the
data-sharing challenges across different institutions for
model training, federated learning is a primary candi-
date, where a model takes advantage of the edge layer
of IoT and trains a model across different edge devices
with no data sharing among these edge devices [593].
Furthermore, datasets can be dealt with differential
privacy or homomorphic encryption mechanisms that
perturb the data with minimal effect of inferences from
it [458]. In addition, dimensionality reduction of these
datasets can reduce the possibility of reverse engineering
sensitive information from trained Al models.

X. MECHATRONICS

Mechatronics can be considered an interdisciplinary engi-
neering field focussing on both electrical and mechanical
aspects. Mechatronics has developed both life-supporting and
threat-preventing applications in pandemic times. Owing to
their significance, a lot of efforts have been put in reducing
the monetary and energy costs of their production, as well as
embedding them in the IoT framework with current state-of-
the-art 5G communication technology [18]. With reference
to COVID-19, mechatronics applications can be divided into
the following domains.

A. ROBOTS

Robots as being programmable mechatronic systems capable
of interacting with real-world environment, mirror the same
functionality as smart sensing by imitating the same principle
of reducing the possibilities of contact [599]. Robots, along-
side drones, are being used to deliver prescription drugs to
patients at home, in order to reduce contact [600]. In another
direction, robotic versions of imaging technologies are being
deployed that are contactless in nature. Robotic ultrasound
systems [601] can automatically adjust probe position for
optimal resolution, followed by automated diagnosis through
a 3D deep convolution network. These automated equipment
systems can be further extrapolated into robotic carts, with
a built-in camera and display systems complemented with
medical equipment, allowing professional healthcare acces-
sible to any location, especially in quarantined areas to limit
exposure [602].

The field of commerce has been greatly affected by the
pandemic due to social distancing and lockdown policies.
In order to support the local commerce stores, a com-
pany named “Starship Technologies” released delivery
robots [603] to deliver groceries to the consumer’s doorstep.
These autonomous vehicles provide a contactless driving and
delivery option, thus minimizing the spread. Understanding
its efficacy, it has been promoted as a clear choice in Germany
[604]. This contactless trait has allowed studies on the trans-
portation of goods through autonomous vehicles [605].
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FIGURE 18. Word2Vec based visualization of machine based trends
combating COVID-19.

Autonomous robots can be helpful in cleaning and dif-
fusing disinfectants in indoor environments and can reduce
the possibility of spreading infection from family interac-
tions [606]. They have been deployed as human interactable
robots via gesture and speech recognition to make hand
sanitization more accessible to the public passing by [607].
They are being researched to be deployed at UAVs to provide
a mobile IoT framework for crowd sensing and COVID-19
detection amongst crowds.

B. DRONES

Since the advancements in computer vision, drones have
become a popular trend, as they provide a mobile carrier
with inbuilt cameras to proceed the computer vision. They
have found a wide range of applications, including agri-
culture, supply chain, professional photography and surveil-
lance [608]. However, drone technology faces a key challenge
of computation limits, as well as limited datasets for its
computer vision models which are mostly data-driven [608]
for the purpose of object detection and tracking. Edge com-
puting has been thoroughly researched to make it feasi-
ble for drone technology to meet the challenges of onsite
computation [609]

Drones are being used to aid in sectors that have been
indirectly affected by the pandemic. In the agriculture sector,
drones are being used for monitoring water resources, agri-
cultural production, and storage facilities thus compensating
for lockdown and social distancing restrictions [610].

Drones are being deployed in densely populated areas
where wireless connectivity is an issue and this can permit
large aerial cover of places, especially in hospitals, with
thermal imaging, patient identification, and distance monitor-
ing [611]. Furthermore, these wireless devices can be linked
through a drone-based networking system, and thus can elude
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the limitations of standalone Bluetooth or GPS-based tech-
nologies [612] for contact tracing.

Furthermore, drones have been deployed at country
scales for social distance monitoring, public announce-
ments, spraying of disinfectants in public places [613], food
delivery [614], [615], mass screening [616] and vaccine deliv-
ery [617]. Drones have also been studied for the distribu-
tion of viral tests to possible infected people, thus reducing
transmission rate [618]. Since surveillance naturally demands
privacy, work has been done to fuse blockchain with drone’s
data collection methodology [619]. Blockchain applications
to drones have been extended towards contact tracing in
combination with 5G [620] and even 6G technology [621].

C. MACHINES

The role of electrical machines in aiding COVID-19 patients
and health care workers is trending from both engineering and
research points of view. Based on the implementation and
research paper-based results from Google search and Google
scholar, the further sub-domains of machines are visual-
ized by using Word2Vec of keywords and projecting those
sub-domains onto a 2D plane using principal component
analysis (PCA). Thereafter, the side of points is decided by
the cumulative citations and number of unique implementa-
tions. The resultant visualization can be seen in figure 18.
Furthermore, these sub-domains are further discussed below.

« Ventilators: While COVID-19 is a respiratory tract dis-
ease, breathing problems are the most apparent system.
In order to deal with that, several ventilators designed
have been proposed, whose sole purpose is to automati-
cally inject oxygen into lungs [622]. These ventilators
can be classified as invasive and non-invasive [623].
Invasive ones are used for critically ill patients, who can-
not breathe on their own, while non-invasive ventilators
are meant for assisted breathing.

Ever since the beginning of the pandemic, many global
manufacturers have played their part in mass-producing
ventilators to overcome the shortage [624]-[626].

« Dispensers: Work is being done to make soap and san-
itizer dispensers automated [627] and contactless [48],
[116] which would ultimately reduce transmission rates,
as well as reduce clustering in public places.

« Neuro-muscular Electrical Simulators: Some work
is being done to utilize neuro-muscular electrical simu-
lators to improve muscle function of people recovering
from COVID-19 [628], as well as elderly people during
lockdown [629].

o Aerosol Containment Devices: Vacuum based aerosol
containment devices, that can extract clean air from
virally infected air, may reduce the transmission of
droplets from COVID-19 infected patients [630]-[632]

o Smart Beds: Smart beds are being developed that can
not only perform continuous breathing rate monitoring
of COVID-19 patients but also are installed with auto-
matic alarms and user-friendly control and interface to
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assist patients in critical conditions [633]. Furthermore,
ICU beds can be installed with CCTV cameras that allow
better in-depth monitoring of critically ill patients [399].
Additionally, detectors are placed inside patient care
beds to detect sleep disturbances in COVID-19 patients
in order to evaluate their health status [634].

o Breathanalyzers: While breath analyzers are good
candidates for rapid testing, they are not yet glob-
ally available mainly because their technology is in
progress. However, their efficacy has been appreci-
ated and approved in many countries like Singapore,
Malaysia and the Netherlands [635]. Breath analyzers
can be classified into photonics biosensors, electronic
nose, mass spectrometry, terahertz spectrometry, and gas
chromatography based [635], among which photonics
biosensor is a possible industrial application due to its
minimum size and result latency. The inbuilt sensor
responses can be further complemented with machine
and deep learning methods [636] with promising results
and have been reportedly verified for distributions [637].

XI. CONCLUSION
This article presented a systematic overview of an array

of AI-IoT technologies like blockchain, cloud computing,
fog computing, sensing technologies, machine learning, deep
learning techniques, and robots, that have effectively aided
COVID-19 efforts, within the proposed taxonomy. In this
regard, not only conventional review techniques are used
but a novel review methodology is also proposed, where
we utilized techniques from image processing, dynamical
systems, and machine learning to provide insights into some
aspects of particular technologies. Consequently, we pro-
vided theoretical and application advantages, disadvantages,
trends, and comparisons of these technologies, alongside
with proposal of potential future works that have been less
explored currently. We discovered that, by far, the field of
healthcare has captured the utility of all technologies detected
in AI-IoT umbrella. We conclude that the technologies of fog
computing and cloud computing hybridization in IoT, deep
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learning, and blockchain technology will determine the future
of COVID-19 related AI-IoT technologies.

XIl. FUTURE WORKS

Based on the discussion, as expressed from literature consid-
ered in so far review, we highlight the following future trends
that are significant from application and research perspective
to not only deal with current pandemic, but with infectious
diseases in general:

« Development of cost, environment friendly, and energy
effective solutions is the main focus with the encourage-
ment of more open-source solutions. Many companies
are already leading the work in low cost, high battery
life, and global satellite-based connectivity is IoT
solutions.

« Amongst many applications of IoT and mechatronics,
ventilators and health monitoring systems have proven
to be most active in tackling the pandemic, and they are
here to stay till the end of the pandemic. In particular,
the remote versions of these applications would certainly
reduce the burden on hospital resources and allow the
care of more critically ill patients to be taken care of.

e The pandemic has heavily influenced the video-
conferencing trend, especially in education, where video
lectures are recorded contrary to prior real-time lec-
ture trends. Furthermore, these lectures can be in native
languages, other than English, making it difficult for
foreign students to follow. This provides room for
digital solutions towards solving not only this lan-
guage barrier (through video transcription and language
translation-based subtitle embedding), but also improves
comprehension of students by providing summary and
knowledge graphs of different clips of the video.

« While there exist many tools already that provides an
interface to many state-of-the-art COVID-19 related
resources, there is still too much literature left in hiber-
nation and there is a need for systematic open source
collaboration for making the current state of the arts into
interactive user interfaces.
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« Utilization of less explored non-contact technologies
like self-mixing interferometry would prove fruitful
towards innovation into future smart sensing technolo-
gies, due to its cost-effective apparatus with sufficient
accuracy. This is clearly possible since the literature on
the application of radar technology is already in abun-
dance and there is a high degree of correlation in the
working principle of both of these technologies.

« Utilization of ambient light sensors and magnetometers
in COVID-19 should be focused on, as it has been
minimally explored.

o There is a need to consider the tracking devices
like Apple Air tags for contact tracing purposes,
which will not only reduce inaccuracies produced by
smartphone-based contact tracing technologies but can
also be linked with drones to allow broader aerial
coverage.

« The government-affiliated contact tracing apps should
be made open source, which will not only increase the
trust of the general public of these apps but also allow
continuous improvement from a wider pool of engineers.

o Mapping of 2D movement data into a 3-D environment,
using only accelerometer data, while not applied in the
COVID-19 context, could have an advantageous appli-
cation, for increasing robustness of medical imaging,
as well as CCTV-based social distance monitoring.

o Needed utilization of a generalizable and accessible
approach towards satellite imagery has important appli-
cations from both policy design and resource planning
perspectives.

o More rigorous study of compressed sensing in reducing
radiation doses for COVID-19 diagnosis, as well as
imparting efficient minimum sensor scanning location
points for mobile phone tracking is required, as it has
been absent for application in the COVID-19 pandemic.

« Application of control theory in the social media-based
prediction of epidemic statistics is needed to compensate
for deficiencies of epidemic data collection processes.

« With the immense importance of hybridization of fog
computing and cloud computing technology, followed
by anticipation of 6G technology, it is expected that it
will produce virtually infinite computing capability with
desirable security and latency. In this respect, a uni-
fied generalized framework is required to permeate the
corresponding constraints as well as improve its infras-
tructure with deep learning and blockchain technology
to manage applications of COVID-19 like diagnostics,
quarantine, and social distance monitoring, systemized
vaccination, effective policy design, etc.

In fact, in order to show the future inclusion of compressed
sensing in the COVID-19 context, we simulated the NCR
model (as described in ‘Analysis Methodologies’ section) to
analyze the trend of cumulative citations of literature con-
taining pure compressed sensing content, compressed sens-
ing used as an application to COVID-19 (either directly
or indirectly) and COVID-19 literature as a whole without
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containing compressed sensing-based application as ‘N’, ‘C’
and ‘R’ respectively. The results are depicted in figure 19.
It is apparent that while the cumulative citations of general
COVID-19 literature is growing at nearly the same rate as
in previous years, the growth of literature on the application
of compressed sensing techniques, is saturating in later years
while overshooting previous research. Therefore, there is a
need for further exploration of this technique to produce more
beneficial applications in COVID-19 literature.
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