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ABSTRACT In this paper, we present an energy-efficient Self Organizing Network (SON) architecture
based on a tunable eNodeB (eNB) antenna tilt design for macrocells in a mobile network environment. This
is an imperative element of mobility management in high speed and low latency wireless networks. The
SON architecture follows a fully distributed approach with optional network information exchange with
neighboring cells and core network. Antenna tilt directly affects its radiation pattern thus changes in eNB
antenna tilt can be used to optimize cell coverage and reduce interference in mobile networks. We apply and
compare two reinforcement machine learning techniques for optimizing the eNB antenna tilts, i.e., Deep
Q-learning using Artificial Neural Network (ANN) and a simple Stochastic Cellular Learning Automata
(SCLA). ANN is well known for its ability to learn from a vast number of inputs, while the stochastic learning
technique relies on a simple action based probability vector updated based on system feedback. Neighboring
cells for any one cell in the network environment are selected based on their separation distance and antenna
orientation. We validate the data call performance of the network for edge users as they directly impact the
Quality of Service (QoS) in the mobile environment. Our simulated results show that ANN performs better
for edge users as compared to SCLA. The model also satisfies the SON requirement of scalability and agility.
This work is a follow-up to our earlier work, where we showed that SCLA performs better than Q-learning
in a similar network environment and optimizing strategy due to its low complexity, but within the same
Q-learning algorithm more input learning parameters gave better performance.

INDEX TERMS 5G, antenna tilt, artificial neural networks (ANN), deep Q-learning, energy efficiency,
HetNet, self organizing networks, self optimization, stochastic cellular learning automata (SCLA).

I. INTRODUCTION
The challenge to keep up with high traffic demands and
increasing requirements of High Definition (HD) multime-
dia services, has led the research community to find inno-
vative technologies and ways to boost coverage, capacity,
and energy efficiency (EE) of the 4th Generation (4G) and
upcoming 5th Generation (5G) mobile networks [1]. These
new ideas and innovations further add to the complexity of
the network. Thus, finding some solution for managing the
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limited available network resources becomes a formidable
task. There exists a need to make the network intelligent
enough so that it can autonomously learn and adapt to the
varying network requirements and changing environment
scenarios [2]. To address this requirement, 3GPP introduced
the concept of SON in 4G Networks [3], and it is a core com-
ponent of the 5G networks. The main functionality of SON
comprises self-configuration, self-optimization, and self-
healing in the cellular networks. SON presents an intelligent
network that optimizes its parameters autonomously with the
dynamics of the network such as a change in traffic demand,
congestion, interference, and network entity breakdown.
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Coverage adaptation is one primary use case of
self-optimization in SON and remains an active research
area for future mobile networks [2]. One way to achieve
coverage adaptation is by intelligently changing tilt angles
of eNB antennas according to the network environment
requirements [2], [4], [5]. The tilt angle of an antenna has
a direct bearing on its radiation pattern, and thus for an eNB,
its antenna tilt can be effectively used to optimize its coverage
and improve the overall network capacity [6].

A way to realize antenna tilt optimization is by using
machine learning techniques. These techniques give the sys-
tem the ability to learn from its environment and optimize
it performance by intelligently tuning some defined parame-
ters [2]. The upcoming 5G networks will have the ability and
capacity to store real-time network information due to emerg-
ing technologies and ideas like mobile edge networks [7].
At any time, an eNB cell can get the latest information about
its network environment from either the core network or its
neighboring cells directly linked through the standard X2
inter-cell interface line [8]. Thus, optimization techniques
that can take advantage of more input learning network
information can give better performance compared to ones
that can’t.

In [9], a low complexity quality of experience driven
antenna tilt optimization is proposed for the cellular network.
The presented solution uses steepest descent algorithm for
the clustering of the coverage area to minimize the mutual
interference. In cellular network the capacity and coverage
optimization is a complicated problem. There are diverse
RF parameters and power control requirements for macrocell
and small cells. Wang et al. [10] tackle the self-optimization
problem for RF parameters and power control in heteroge-
neous networks using RL, with BS as an agent that learns the
strategies to control the parameters.

Recent research work shows the trend toward self-
optimization of the antenna tilt to enhance the EE using
various artificial intelligence techniques. The challenging
capacity and coverage optimization problem in a HetNet
is investigated in [11]. This paper uses exploration-based
reinforcement learning to adapt the antenna tilt for optimal
coverage and per-user throughput. The proposed scheme
increases the EE by at least 21% compared to the fixed strate-
gies. Authors in [12] present a 3D electrical antenna tilt in
mmWave massive MIMO homogeneous and heterogeneous
networks. The EE is formulated as a function of antenna
tilt. Due to the high complexity of the optimal solution,
they obtained the low complexity near optimal solution. The
optimal antenna tilt angle is calculated by the bisection algo-
rithm. Parera et al. [13] apply transfer learning to train the
machine learning model for the self optimization of antenna
downtilt in the cellular networks. Extensive preprocessing
has been done on the input data like data augmentation to
improve the prediction performance. Transfer learning mod-
els reduce the training time but neural network design from
scratch for a particular scenario/setup is advantageous and
renders better performance. A reinforcement learning-based

antenna electrical downtilt has been presented in [14]. This
RL-based scheme increases the signal-to-interference and
noise ratio (SINR) for cell-edge users. But the presented
solution is only for the sparse population in the suburban
areas. In [15], the authors present a self-optimization and self-
healing processmodel for the 5G network. The processmodel
consists of optimization, precoding, and big data architec-
ture. The given model only represents the abstraction level
solution without the implementation details. A latest survey
on the coverage enhancement [16] concludes that SON is
becoming popular in the cellular mobile networks due to the
inclusion of artificial intelligence, machine learning, deep
learning, and reinforcement learning (RL) algorithms. SON
for antenna tilt can be used for coverage improvement and
to mitigate the coverage holes. In general, cellular network
self-optimization procedures enhance network flexibility and
scalability. In [17], the authors propose a two-step algorithm
for jointly optimizing antenna tilt angle and vertical and
horizontal half-power beamwidths of the macrocells in a het-
erogeneous cellular network. A multi-agent mean-field RL
algorithm is first utilized in the offline phase to transfer fea-
tures for the second (online) phase single-agent RL algorithm.
The results show that the performance of proposed algorithm
comes close to the multi-agent RL performance, with only
hundreds of online trials. It performsmuch better than a single
agent RL. Furthermore, the proposed algorithm empirically
appears to provide a performance guarantee regardless of
the extent of the environmental dynamics. Authors in [13]
propose a transfer learning method based on Feed-Forward
Neural Networks to predict the strength of the radio signal
in a reference tilt configuration. It then transfers the acquired
information to a new neural network in order to obtain the
best predictions in the target tilt arrangement. It has been
shown [18] that the network output balances the received
signal strength and the interference intensity to achieve the
maximum coverage probability for a given base station den-
sity using the best antenna down tilt. It can also significantly
improve area spectral efficiency, explicitly regarding base
station density. It can delay the area spectral efficiency crash
by almost one order of magnitude. Analytical results showed
that three components are determining the optimal antenna
down tilt, i.e., LOS links, the NLOS links, and the noise.

In our earlier work [19], we showed that a simple RL tech-
nique like Stochastic Cellular Learning Automata (SCLA)
performed better than a more complex Q-learning one. In RL,
a learning agent self-learns from its environment without
requiring explicit training data. SCLA can quickly adapt
because it is based on a small probability vector with a dimen-
sion equal to the number of actions possible and gets updated
based on the feedback from the network with each time
step. On the other hand, Q-learning consists of a large input
state-action matrix that gets updated for every state-action
combination and the feedback from the network. Also, as the
state in the Q-learning matrix is based on the number of input
learning parameters, so the order of the QMatrix grows expo-
nentially with the increase in the number of inputs and actions

VOLUME 10, 2022 61679



M. N. Qureshi et al.: Neural Networks for Energy-Efficient Self Optimization of eNodeB Antenna Tilt

possible. Thus compared to the SCLA, Q-learning required
more time to train its state-action matrix and adapt, resulting
in poor performance. Moreover, we found that within the
same Q-learning technique, if we increase the number of
input learning parameters, we find some slight performance
improvement. Thus a better alternative to matrix learning was
required.

One specific class of machine learning techniques that
can learn from a diverse number of inputs and benefit from
an information-rich environment is ANN [20]. ANNs are
particularly suited for pattern recognition and finding optimal
solutions to complex relationships [20]–[22]. Used in combi-
nation with Q-learning as in deep Q-learning they promise
to address the problem of the state-action matrix in basic
Q-learning technique.

Motivated from the above-mentioned concerns in the cur-
rent research work and the potential of our proposed dynamic
self-optimization downtilt scheme, in this paper, we look
into enhancing the network performance using coverage
adaptation with electronically steerable eNB antennas and
self-optimization with deep Q-learning in a homogeneous
4G/5G environment. A homogeneous cellular network con-
sists of the planned deployment of base stations. All base sta-
tions have same transmit power. They serve roughly the same
number of users, and all users have similar QoS requirements.
In particular, we look at File Transfer Protocol (FTP) call
performance for edge users, especially handovers. We also
compare the results with SCLA to validate our earlier work.

The SON model we present in our work is fully dis-
tributed with an optional neighborhood interaction and is an
enhancement to our earlier model presented in [19]. Each
eNB has a 120◦ antenna and focuses on optimizing its own
edge user data throughput and file transfer time performance.
Additionally, an eNB can also interact with its neighbors to
learn about their network situation and their selected tunable
parameter patterns for further optimization. The selection of
neighborhood cells is based on a simple distance separation
criteria and antenna direction so that only those eNBs are con-
sidered that can have overlapping coverage. In the previous
work, we did not consider antenna orientation as one criterion
for selecting the neighborhood cells. This approach allows
inter-cell information exchange without compromising the
scalability of the network.

The recent distributed SON architectures most pertinent
to our work have been proposed in [8] and [23]. The most
relevant paper compared to our work is presented in [8]. The
authors propose a fuzzy neural network optimization model
based on RL in a distributed architecture. It has an option
of sharing learning experiences from a central management
server to control both the power and tilt of SON entities.
The authors claim that the model meets self-optimization
requirements in a dynamic model, but the application of
fuzzy logic in the learning process weakens its application
for complex environments. In [23] a distributed architecture
with coordination and communication between the Base Sta-
tions (BS) is presented. RL algorithm is used in each BS to

optimize antenna tilt. The approach shows network perfor-
mance improvements but suffers from two issues; (a) Explo-
ration and exploitation steps of the learning process are done
separately, with the exploration step in the order of hours, and
(b) All BS in the network are not optimized simultaneously,
but one after the other making it less scalable. Thus in the
context of SON, the approach fails to achieve desired charac-
teristics of scalability and agility.
Contributions

Themain contributions of our work are summarized as under:
• This paper shows the feasibility of realizing a fully
distributive and cooperative SON network architecture
capable of adapting to complex mobile environments
with rapidly changing network user scenarios and oper-
ator requirements, with desired SON characteristics of
scalability, stability, and agility [2].

• Additionally, we also show that machine learning tech-
niques like ANN that can assimilate more information
from the environment can give better results compared
to learning techniques that are limited in their learning
capacity like SCLA.

The paper is organized as follows. Section II presents the
network system model using tunable eNB antennas and our
objective function. Section III presents the design of SON
elements using either the ANN or SCLA learning technique.
Section IV describes the KPIs used in the paper to evaluate
the system performance for edge users. Section IV describes
the network simulation design and results achieved based on
the simulation. Section V concludes the paper.

TABLE 1. List of abbreviations.

II. SYSTEM MODEL
A. DESIGN OVERVIEW
We consider a homogeneous mobile network in a fully urban
environment with a hybrid SON architecture as shown in
Fig. 1. Each eNB cell has a sectored antenna and acts as
an independent learning entity. A group of three co-located
eNBs covers the complete 360◦ for a particular location.
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FIGURE 1. System model based on SON hybrid architecture.

FIGURE 2. Neighborhood cell selection.

Any eNB can interact with other eNBs through the stan-
dardX2 interface.We assume a central NetworkManagement
Server (NMS) where all cells share their learning experi-
ences, settings, configurations, and locations. Any eNB can
find its interfering neighboring cells by requesting their posi-
tions and antenna orientation data from NMS. Once an eNB
determines its interfering neighboring cells it can directly
interact with them through the X2 interface, thus saving
valuable time coordinating through the central NMS. Thus,
a fully distributed SON architecture is realized with informa-
tion sharing between cells.

B. NEIGHBORHOOD CELLS SELECTION
Neighborhood eNBs selection shown in Fig. 2, is based
on fixed distance separation and eNBs antenna orientation.
In our implemented system model, we consider eNBs neigh-
bourhood separation distance of dnsep = 550 m, and with
sector coverage of 120 ± 5◦. The 550 m distance is selected
to consider neighbours that are just beyond the minimum

inter-site cell distance set to dminsep = 500 m, dnsep =
1.1× dminsep. The extra±5◦ over 120◦ is kept to compensate
for sectoral boundary coverage conditions between adjacent
three eNBs at one point location (Fig. 1). Any eNB more
than 550mwith the reference eNBwill not cause interference
to the users of the reference eNB. For example, consider the
sector (or cell) A of BS01, i,e., BS01A in Fig. 2. The users
in this cell experience interference from BS02A, BS02B,
BS02C, and BS06A, BS06B, BS06C. BS03 will not cause
any interference to BS01A because it is outside the neigh-
bourhood distance dnsep = 550 m.

ANTENNA TILT MODEL
Altering antenna tilt directly impacts the eNB cell coverage
due to changes in the radiation pattern. In our design, we opti-
mize the antenna beam for providing better coverage to edge
users, in a way that the interference with neighboring cells
is brought to a minimum. In this work, we have limited the
changes to antenna tilt angle θ in fixed steps only.

The gain of an antenna at a fixed location is computed using
antenna elevation angleψ and azimuth angle φ (Refer Fig. 3).
Elevation angle ψ is calculated from the antenna height
and ground distance between eNB and that User Equipment
(UE)1 location point. Azimuth angle φ is calculated from the
antenna direction and the UE location point coordinates. For
a trisectorial site, 3GPP defines azimuth, elevation, and the
total radiation patterns at location (ψ , φ) given respectively
by [24]:

AH (φ) = −min
[
12(

φ

φ3dB
)2,Am

]
(1)

AV (ψ) = −min
[
12(

ψ − θ

ψ3dB
)2, SLAv

]
(2)

A(φ,ψ) = −min [−[AH (φ)+ AV (ψ)],Am] (3)

where;
Am : backward attenuation factor in the horizontal plane

and taken as 25 dB
SLAv : backward attenuation factor in the vertical plane and

taken as 20 dB
φ3dB : half power azimuth beamwidth
ψ3dB : half power elevation beamwidth
The total radiation pattern A(φ,ψ) is used to compute the

eNB antenna gain G = ςA for any location, where ς is the
ratio of transmit power at the input of the antenna and the
transmit power of eNB.

C. INTERFERENCE MODEL
We consider OFDMA (Orthogonal Frequency Division Mul-
tiple Access) as access technology on the air interface.
OFDMA subdivides the bandwidth into many subcarri-
ers [25]. The smallest carrier bandwidth allocated to a user
in unit time is in the form of Physical Resource Blocks
(PRBs). Each PRB is exclusively assigned to a single user at a
particular time, eliminating the intra-cell interference. Thus,

1UE and user are used interchangeably
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FIGURE 3. Antenna tilt model.

the interference suffered by a UE is the inter-cell interference
only. Now, assuming UE u is attached to eNB e, the average
interference Iue observed by u per sub-carrier can be given as:

Iue =
k∑

i=1,i6=e

M (i, e)× νi
PiGi
ξiu

(4)

where;
M (i, e) : 1 if eNB i and eNB e use the same frequency

otherwise it is 0
νi : ratio of allocated PRBs to total available PRBs

in eNB i
Pi : transmit power of eNB i
Gi : gain of antenna for eNB i
ξiu : link loss between eNB i and UE u
Note that the link loss includes losses like path loss and fad-

ing. The signal to noise ratio observed by the UE u attached
to eNB e or SINRue can be given as follows, based on the
interference received Iue.

SINRue =
Pe × Ge

ξue(Iue + δ2)
, (5)

where;
Pe : transmit power of eNB e
Ge : gain of antenna for eNB e
ξue : link loss between eNB e and UE u
δ2 : thermal noise power per carrier
The throughput of user e attached to eNB u is given by

THue = Bue × BWeff × log2

(
1+

SINRue
0

)
, (6)

where;
Bue = total bandwidth corresponding to the total number

of PRBs assigned to user u by eNB e
BWeff = Bandwidth Efficiency
0 = SINR efficiency
The throughput of one eNB is given as THe =

∑N
u=1 THue.

The utility functionU for UE u served with a finite number
of PRBs by eNB e can be given as [26]:

Uue =
Bue × BWeff × log2

(
1+ SINRue

0

)
Pe/η + Pc

, (7)

where;
Pc = Power dissipated in all circuit blocks
η = Efficiency of the transmit power amplifier The utility

function is the EE based on the modified Shanon capacity
theorem [27] and power consumption is based on the LTE
model [28]. The value of BWeff (Bandwidth Efficiency) and
0 (SINR efficiency) are set to 0.56 and 2 respectively [27].

We can now define the utility function of one SON entity
or eNB Ue as the sum of EE when it is delivering data to its
associated UEs. The objective of our system is to maximize
this cell utility function, which is also its effective EE.

Ue =
N∑
u=1

Uue (8)

where;
Ue = utility function for eNB e

III. SELF OPTIMIZATION MODEL
SON ENTITY
Each SON entity or eNB in the simulated network runs its
optimization function independently. The functional model
of the SON entity and its interaction with its environment
is shown in Fig. 4. The self-optimization model consists
of: (i) an input block that accepts different system inputs,
(ii) a learning and optimization block that learns and predicts
optimum eNB antenna tilt based on the inputs and past feed-
back, and (iii) an action block that decides either to explore
the neighbourhood environment and select a random antenna
tilt, or exploit the learning done and accept the proposed tilt
angle by the previous block. The system inputs comprise
its own neighborhood antenna tilts, mobile users’ data, and
different selected KPIs. The simulated environment runs for
predetermined time steps to get feedback in the form of
KPIs observed. The details of the algorithms used in the
self-optimization process are explained in the subsequent
subsections.

A. REINFORCEMENT LEARNING
RL is a branch of machine learning, where an agent repeat-
edly interacts with its environment to learn which action
yields the maximum reward in a given state while targetting a
long-term objective function. The task of RL can be described
as a Markov Decision Process (MDP), where the state space,
explicit transition probability, and reward function are not
necessarily defined [29]. Thus, RL can handle scenarios that
mimic real-world complexity, like the LTE environment [30].
We implement the network as a multi-agent RL system,
whereby each eNB has an associated agent. We compare
two RL schemes, i.e., Q-learning using ANN and SCLA.
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FIGURE 4. SON entity.

We maximize the eNB throughput by selecting the optimum
tilt angle for any given input state through the RL agent.

The first scheme, ANN = f (θ, ue(x, y),AvNTHe,Ue), has
three inputs i.e., own antenna tilt position θ , the associated
mobile user positions ue(x, y) and mean of neighborhood
cells throughput AvNTHe (Refer to Eq. 9). The last variable
is the feedback Ue which is the utility of eNB e from Eq. 8.
In the second scheme SCLA = f (θ,Ue), we only consider the
tilt angle θ and the associated user positions ue(x, y). Thus,
ANN is a complex learning scheme as compared to SCLA.

AvNTHe =

∑k
i=1 THi
k

| dintercell ≤ NeNBRange (9)

We consider an eNB e, that interacts with its environ-
ment E. The state space is given as s ∈ S, where S is the
combination of all possible states. For the case of ANN =
f (θ, ue(x, y),AvNTHe,Ue), the state space is made up 6 ×
8 × 5 × 5 = 1200 combinations; First 6 are for the antenna
tilt position θ = 6, 8, 10, 12, 14, 16; Second 8 combinations
of 3 bits represents the three sectors i.e. near, mid and edge
having active UEs or not (Refer Fig. 5) and last two 5 values
represent five throughput ranges of AvNTHe and THe form
0 to 1400 kbit/sec. Each eNB e, selects a particular θ tilt
angle a ∈ A = a1, a2, . . . , an, n ∈ N depending on the
feedback Ue. This interaction of an eNB e with its envi-
ronment E, where outcomes are partly random and partly
based on a decision maker, is formally known as MDP and
is a 5-tuple (S,A,Pra(s, s′),Rea(s, s′), γ ). Here, Pra(s, s′) =
Pr(st+1 = s′|st = s, at = a), is the probability that the action
a in state s at time t will bring agent to state s′ at time t + 1.
Rea(s, s′) is the reward computed after moving to new state
s′. γ ∈ (0, 1] is the discount factor that discounts the rewards
steadily as the system moves into next states. The typical
range of γ is from 0 to 1. The problem of MDP is finding a
decision making policy5 that yields maximum reward while
in a state s.

RL aim is to learn an optimal action-selection policy 5
that maximises the cumulative reward over time. Given E as

FIGURE 5. eNB User Coverage Regions.

expectation, this can be given in the following equation.

V5(s) = E

[
∞∑
t=0

γ trt |s0 = s

]
(10)

Given that theMarkov property defines that any future state
depends only on the current state regardless of the previous
states, we can rewrite Eq.10 as Eq.11, given Rs,a as the mean
of the immediate reward rt .

V5(s) = Rs,a + γ
∑
s′∈S

Pra(s, s′)V5(s′) (11)

Therefore, if the cumulative reward is to be maximized,
a maximum policy5∗ is required which can be found if Rs,a
and Pra(s, s′) are known.

V5
∗

(s) = maxa∈A

[
Rs,a + γ

∑
s′∈S

Pra(s, s′)V5
∗

(s′)

]
(12)

B. Q-LEARNING
Q-learning is a model-free RL technique that can be
used to find an optimal action-selection policy 5 for any
given (finite) MDP, when Rs,a and Pra(s, s′) are not known.
Q-learning typically fits our scenario, where each eNB has
control over its antenna tilt but not over its neighboring eNB’s
antennas. Q-learning works by learning an action-value func-
tion while following an optimal selection policy to achieve
the desired utility in small incremental steps. The Q-function
used in Q-learning is defined as:

Q5(s, a) = Rs,a + γ
∑
s′∈S

Pra(s, s′)V5(s′) (13)

Since Q-function depends on discounted cumulative
rewards, so it will be maximum when the action selection
policy is optimal i.e.

Q5
∗

(s, a) = Rs,a + γ
∑
s′∈S

Pra(s, s′)V5
∗

(s′) (14)
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The discounted cumulative state function is thus:

V5
∗

(s) = maxa∈A
[
Q5

∗

(s, a)
]

(15)

From Eq. 15, if we find the maximum Q-function, we also
find the optimal policy. Usually, Q-function is found recur-
sively using Eq. 16, also known as the Bellman Equation [31].
It is a simple value iteration update that assumes the old
Q value and makes a correction based on the feedback
observed after moving to the next state. In the start, Q returns
an (arbitrary) fixed value for any state-action pair. In our case,
we initialize Q to zero matrix. The correction on any Q(s, a),
is based on the computed reward, learning rate α ∈ (0, 1) and
future rewards discount factor γ ∈ (0, 1].

Q(st , at )← Q(st , at )+ αt [rt+1 + γmaxaQ(st+1, a)

−Q(st , at )] (16)

where;
rt+1 is the reward observed after performing action at in

state st .
The recursive update from the above Eq. 16 will ultimately

achieve the optimal required Q value function i.e. Q(s, a)→
Q∗(s, a) as done in Algorithm 1. For ease of understand-
ing, we define the following two terms in this paper based
on Eq. 16.

qtargett = rt + γmaxaQ(st+1, a) (17)

qpredictiont = Q(st , at ) (18)

The advantages of Q-learning to our system model are;
(i) It can compare the expected utility of the actions available
without requiring a model of the environment. (ii) It can han-
dle problems with stochastic transitions and rewards without
requiring any adaptations. (iii) It is proven that for any finite
MDP, Q-learning eventually finds an optimal policy [32].

1) Q-LEARNING ALGORITHM
The Q-learning algorithm for each eNB entity or learning
agent is given in Algorithm 1. The algorithm is characterized
by states S and a set of actions per state A. The algorithm
calculates quantity Q(s, a) or reward of a state-action pair
combination (s, a) i.e. Q : S × A → R. In our case, the
state is defined by the number of inputs we want the agent
to learn, and the actions are various antenna tilt positions.
By performing an action a ∈ A, the agent moves from one
state to the next. A reward r ∈ R is computed after an
agent takes action and observes the effect on desired system
response.

The reward r is a numerical real value that depends on the
effect an action has on the utility function given in Eq. 8.
We consider r positive for an increase in the utility and
negative in case a decrease in the utility is observed as given
in Eq. 19. Over time, rewards add up for each state-action
element in the Q matrix. The agent learns and can decide
which action is optimal for any given state based on the total
or cumulative reward for any state-action pair. The cumu-
lative reward is a weighted sum of the expected values of

Algorithm 1 Q-Learning Algorithm for eNB Antenna Tilt
Define:
s ∈ S the state space, a ∈ A the action space or tilt angles,
TEpisode = Episode Time Period , alpha = Learning Rate,
reward function R = f (KPIs), γ = Discount Factor
Initialize:
matrix Q(s, a) = 0, time t = 0, Episode = 1, Set s, α, γ to
fix values, Random select a
repeat

if t mod TEpisode == 0
Apply a and observe KPIs, compute reward r from R

and get new state s′

Select a′ based on ε − greedy strategy
if Selection = Random

Random select a′

else
Select a′ from Q(s, a) matrix based on max Q

Update Q Table using Eq. 16
s← s′, a← a′

until t = End Simulation

the rewards of all future steps starting from the current state,
where the weight for a step from state1t steps into the future
is calculated as γ1t .

rt =

{
Positive, if Ue(t) ≥ Ue(t − 1)
Negative, otherwise Ue(t) < Ue(t − 1)

(19)

where;
Ue(t) = utility for eNB e at time step t

2) NEURAL NETWORK AS Q(s,a) FUNCTION
APPROXIMATION
Simple Q-learning using a Q(s, a) matrix for the iterative
update has two main drawbacks; an exponential increase in
dimensionality with the addition of new inputs and a lack
of ability to estimate Q value for states that are not vis-
ited. ANNs are typically used in non-linear statistical data
modeling cases where complex relationships between inputs
and outputs are observed or may have some behavior pat-
terns. They can learn optimum near approximations of these
non-linear input-output relationships given sufficient training
cases or time. In our simple Q-learning case, the training of
a large Q(s, a) matrix through Eq. 16 becomes difficult as
the number of states s and actions a increase. Thus, ANN
as a tool is well suited for implementing Q(s, a) matrix as
a function to select the best action a for any given SON entity
state s [33]. The block level design of Q-learning with ANN
is shown in Fig. 6.

ANNs consist of interconnected layered groups of nodes
that process information in a similar pattern as neurons in
the human nervous system of function [34]. The first layer of
ANN takes in weighted inputs, and the last layer delivers the
outputs required by the learning agent. In between, the input
and output layers, are the middle hidden layers that serve
to provide different linear and non-linear combinations of
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FIGURE 6. Q-learning with ANN Block Diagram.

inputs. Input signals travel from the input to the output layer,
possibly after crisscrossing these hidden layers many times.
In our ANN = f (θ, ue(x, y),AvNTHe,Ue) implementation,
we have considered simple three-layer ANN structure i.e. one
input, one hidden and one output layer with rectified linear
unit as activation function. This basic ANN structure offers
minimum complexity and requires less time for processing
and training. Let Ndi, Ndh and Ndo denote the number of
nodes in the input, hidden and output layer respectively. For
our case Ndi = 6, i.e. one for tilt θ , three for indicating
each near, mid or edge UE active sectors, one for AvNTHe
and one for Ue. Ndo = 6, giving six Q-values for each
possible antenna tilt position θ . No specific rule exists for
selectingNdh, and varies with the problem and system design;
however, the following thumb rule is generally used in choos-
ing Ndh [35].

Ndh =
√
Ndi + Ndo + NDConst (20)

where;
NDConst = constant between 1 and 10

3) ANN BACK PROPAGATION ALGORITHM
In a typical ANN design, the signal at the interconnecting
branch between two artificial neurons is a real number while
the output of each artificial neuron is a non-linear weighted
sum of its inputs (Fig. 7). These weights are updated during
the learning process to reach an optimum output. One of the
ways ANN can learn and update its weights is through the
back-propagation algorithm using gradient descent and sig-
moid function [34]. Unlike for training samples in supervised
learning in RL case, the rewards are used as target errors for
weight updates in the back-propagation algorithm. This can
be expressed by the following equation:

Errort =
(qtargett − qpredictiont )2

2
(21)

We have implemented ANN-based Q-learning the same
way as the Google DeepMind project implemented for its

FIGURE 7. Typical structure of a neural network node.

Atari playing algorithm [33]. Specifically, DeepMind built
a network that accepts a state and outputs separate Q val-
ues for each possible action in its output layer instead of
one specific output. The difference in implementation of our
particular work is depicted in Fig. 8. In a typical imple-
mentation, ANN would be used to learn Q matrix based on
input state s and action a to give one fixed Q(s, a) value.
Thus in this case, while deciding which action to prefer,
we would have to feed forward the ANN for all the pos-
sible actions and then compare their output Q values to
find the best choice. In Google DeepMind the implemen-
tation of ANN is designed to give Q values for all possi-
ble actions, as shown in Fig. 8. Thus, with this improve-
ment, we feed forward the ANN only once and then com-
pare the output Q values to select the best action possible.
This modified ANN design has fewer inputs and reduces
processing time. The update frequency of algorithm is 4
[33, table 1], i.e., after taking 4 actions, this algorithm updates
its weights. Regarding the memory requirement, RL agent
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Algorithm 2 Back-Propagation ANNQ-Learning Algorithm
for eNB
Define:
RL input = <

−→
S ,
−−−−→
QTarget >,

−→
S =

(a,UESecnear ,UESecmid ,UESecedge,AvNTHe,Ue) is
the state vector input to ANN, where UESecnear , UESecmid
and UESecedge indicate presence of UEs in near, mid and
edge sectors respectively.
QTarget is the vector of target network Q output values
corresponding to each action a, α = Learning Rate, Ndi =
Number of ANN inputs, Ndh = Number of nodes in hidden
ANN layer, Ndo = Number of ANN outputs, xji = input from
node j to node i, wji = input weight from node j to node i.
Initialize:
α = small value e.g., (0.05), ANN feed forward network with
Ndi inputs, Ndh hidden layer nodes and Ndo outputs. All
weights wji are set to random small values between -0.05 to
0.05.
repeat until end of simulation

For each RL input <
−→
S ,
−−−−→
QTarget >, do Perform

Feed forward step
Feed input state vector

−→
S and compute the ANN

output Q value
−−−−−−−→
QPrediction

Select the antenna tilt action a corresponding to
max
a
QPrediction
Execute action a and observe reward r
Observe new state

−→
S ′ and compute reward from

Eq. 19
Compute

−−−−→
QTarget using Eq. 21

Compute and back propagate the error in the network
based on sigmoid function derivative

For each ANN output node v, compute error δv
δv← QPredictionv(1−QPredictionv)(QTargetv−

QPredictionv)
For each hidden node h, compute error δh
δh ← QPredictionh(1 −

QPredictionh)
∑

v∈outputs wvhδv
Update each network weight wji
wji← wji + δwji
where;

δwji = αδjSji

randomly chooses mini-batch size experience samples from
the replay buffer and performs the loss calculations to pre-
dict the action, which minimizes this loss. The experience
sample consists of state, action, reward, and next state. Since
there are 1200 possible states (as mentioned in sec. III-A),
6 actions, 2 rewards (positive or negative), therefore 11+3+
1 + 11 = 26 bits are required to store one state transition
experience. The replay buffer size is 1000000; therefore, the
memory size at each node would be 26M bits. The complete
Q-learning with ANN back-propagation algorithm is given
in Algorithm 2.

C. OPTIMIZATION USING STOCHASTIC CELLULAR
LEARNING AUTOMATA METHOD
In order to compare the performance of reinforcement
Q-learning with multiple inputs with technique that takes
fewer inputs, we have used SCLA. In our earlier work [19],
[36], hlwe have applied this technique for selecting orthogo-
nal component carriers for neighboring femtocells in HetNet
environment. We also have successfully optimized antenna
tilt of macrocells in the same environment model as in this
paper. Particularly to HetNet, we have shown that SCLA
approach meets the SON requirements of scalability, stabil-
ity, and agility. SCLA follows a distributed architecture that
allows quick adaptability to changes in the environment.

SCLA stems from the idea of applying stochastic learning
techniques in cellular automata (CAs). CAs are mathematical
models for systems consisting of large numbers of simple
identical components with local interactions. The simple
components act together to produce complex emergent global
behavior. By combining machine learning capability like
stochastic learning automata to the plain CA, the new model
formed is known as SCLA. Stochastic learning automata is
a finite state machine and can learn from both stationary
and non-stationary environment requiring only environment
feedback to achieve better performance [37]. As there are
no predetermined relationships between stochastic learning
automata actions and the responses, so there is no require-
ment for a closed-form system model. Further details on CA,
stochastic learning automata and SCLA can be found in [36].
Similar to our earlier work [19], SCLA picks out one eNB
antenna tilt angle or action a from all possible positions or
actions i.e., 3 =| A |. This selection is done according to the
probability vector pet = [pet (1), p

e
t (2), . . . , p

e
t (j), . . . , p

e
t (3)]

for eNB e at time t. Once the tilt angle has been selected we
update the probability vector by using the Discrete Pursuit
Reward Inaction (DPRI) pursuit algorithm [38]. SCLA learns
on the basis of feedback from the environment. A positive or
negative reinforcement signal r is based on the earlier reward
criteria we have set for the Q-learning algorithm (Refer
to Eq. 19). The eNB probability vector is updated according
to the following equation:

pet+1(j) =

{
pet (j)+ (k − 1)× α , if rt = Positive
pet (j)− α otherwise

(22)

The pseudo-code of the SCLA algorithm is given in
Algorithm 3. As the simulation time step t progresses each
eNB learning entity will continue to learn and improve on its
antenna tilt angle selections and reach an optimal level where
the probability of the best tilt angle will almost reach unity.
Reaching this stable condition is desirable if the neighbor
eNBs do not change their tilt selections. However, the model
maintains its dynamic nature and can respond to any new
change in the neighborhood environment.
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FIGURE 8. Comparison of Simple Q-learning with Q-learning with ANN and our Google Q-learning with ANN Implementation.

Algorithm 3 Stochastic Automata eNB Antenna Tilt
Selection
Define: eNB Antenna tilt vector, A = [a(1), a(2),
. . . , a(j), . . . , a(3)], eNBAntenna probability vector, pt (j) =
1
3
∀j ∈ {1, . . . , 3}, utility Ue, reward r , time t , Episode

TEpisode = 1, Averaging Time Period (AvP),
Initialization: Ue = 0, r = 0, t = 0, TEpisode = 1, TPeriod =
AvP
Random select a from A
repeat

if t mod AvP == 0, andTEpisode > 0
Apply a and observe KPIs using moving averaging filter
Calculate reward r using Eq. 19
Select a based on epsilon− greedy strategy
if Selection = Random

Random select a from A
else
Update probability vector using 22
Select a(j) from A based on max pt (j)

IncrementTEpisode
else
Incrementt

until t = End Simulation

D. EPSILON GREEDY STRATEGY - EXPLORATION VERSUS
EXPLOITATION
RL systems converge to a good optimal action selection
policy if there is a balance between the amount of exploration
and exploitation. This balance also helps in achieving the

required agility in RL agents so that they can quickly follow
developments in their environment. The ability to continually
explore the environment while exploiting the learned data is
an essential factor in determining the reactivity of a system.
However, it is difficult to explore and exploit at the same
time, so a balance has to be made between exploration and
exploitation. In our work, we desire that network elements
should be agile enough to adjust and adapt to changing envi-
ronment scenarios. For this, we select the ε−greedy strategy,
which allows exploration ε times and exploitation (1 − ε)
times. Exploration is done with a uniform selection, without
preference for any particular action. In the exploitation step,
we choose the action corresponding to the best Q value in
Algorithm 1 or probability in Algorithm 2.

E. COMPUTATIONAL COMPLEXITY
In the Q-table based reinforcement learning, an action may
be selected in constant timeO(1). The Q-table update proce-
dure executed after receiving the reward have also constant
time complexity. But due to the drawbacks of the Q-table
in the presence of the non-linear input signal, we replace
the Q-table with an ANN as a function to select the best
a for any given SON entity state s as shown in the Fig. 6.
In general, the matrix multiplication Am×n ∗ Bn×p has the
complexity of O(mnp). Since the activation function is an
element-wise function, with n inputs, it has run-time com-
plexity of O(n). The computational complexity of the feed-
forward propagation in our ANN-based Q-learning model is
O(Ts ∗ (NdiNdh + NdhNdo)). The ANN uses backpropaga-
tion to learn and update its weights with the computation
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FIGURE 9. Flowchart diagram of Q-learning with ANN and Google
Q-learning with ANN.

complexity of the order of O(Ts ∗ N ∗ (NdiNdh + NdhNdo)),
where Ts is the number of training samples and N is the
number of episodes [39].

IV. KPIs USED FOR COMPARING SON TECHNIQUES
For data-carrying multimedia content, it is more desirable to
have a constant downlink data flow to existing users even at
cell boundaries, instead of dropping their calls in between.
Call rejections, and slow data links are more acceptable to a
user instead of call drops [40]–[42]. Based on this assump-
tion, we define the following KPIs to gauge the performance
of a SON technique.

• Average eNB EE for edge users in the system. This
determines the ability of an optimization scheme in an
eNB cell to yield optimum throughput in the face of a
given environmental situation and hence is one measure
of network QoS.

• Average system EE. This shows the ability of a
network to provide an optimum bit rate to a user
under a given environmental situation. Higher user
data rate and cell throughput translate into better net-
work quality experience by users or Quality of Experi-
ence (QoE) as most applications now require HD quality
service.

• Average file transfer time recorded by users in the net-
work. Lower file transfer time is preferred indicating
the capacity of the network for delivering multimedia
content with less buffering time.

• Maintain Rate (MR) is defined as the ratio of the number
of UEs that are able to download the complete data file
(NUDComplete) to the total number of UEs that were
granted access to the network (NUAccept). Note that
not all UEs, that get access to the network will be able
to download the complete data file because in some
cases calls may get dropped when a UE moves from
one cell coverage to the next, i.e. handover case. Call
drops in handover can occur due to lack of coverage or
lack of available resources in the new cell. Thus, higher
MR translates to more satisfied users and hence better
user QoE.

MR =
NUDComplete
NUAccept

(23)

• Call rejection rate due to low coverage in handover case
(RH ), is defined as the ratio of the total number of
UEs rejected in handover due to coverage (NURejHO),
to the total number of accepted UEs for the call by
the network for any given simulation time frame. This
inversely shows the capacity of a network to support a
running call when a UE randomly moves from one cell
area to another given availability of PRBs. Thus, lower
RH means better network performance.

RH =
NURejHO
NUAccept

(24)

• UE rejection rate due to coverage issues in network
access phase denoted as RA. This is defined as the ratio
of the total number of UEs rejected in network access
phase due to coverage issues (NURejAC), to the total
number of UEs accessing the network for any simulation
time frame (NUAccess). This inversely indicates the cov-
erage capacity of the network to accept new UEs given
the availability of PRBs. Thus, lower RA means better
network performance.

RA =
NURejAC
NUAccess

(25)

SIMULATION AND RESULTS
A. SIMULATION ENVIRONMENT
The mobile network simulator described in [43] has been
modified for this work. This is a dynamic link-level sim-
ulator tool developed using Matlab in Orange Labs. The
simulator performs correlated snapshots to account for the
time evolution of the network. At the end of each time step
which can typically vary from a tenth to one second, the
new mobile positions are updated, new users are admitted
and some other users leave the network (end their com-
munications or are dropped) and handover events are pro-
cessed. The complete workflow of KPIs calculations is shown
in Fig. 11.
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FIGURE 10. Simulated network environment with deployed eNB cells,
such that three adjacent eNBs cover complete 360◦ at one location.

FIGURE 11. KPI measurement workflow.

A dense urban environment has been simulated as shown
in Fig. 10. The ratio of mobile users to eNB is kept high so
that all eNBs operate at full capacity and have comparatively
more edge users accessing the network. Downlink FTP traf-
fic is considered. UEs are deployed uniformly with random
velocities. The downlink interference model includes thermal
noise and large scale fading. Uplink traffic is not considered.
The detail of simulation parameters is given in Table 2. The
simulator proceeds in fixed time steps by taking correlated
Monte Carlo snapshots. Users arrive following a Poisson
process. With every time step, new users are added to the
environment. Old users are checked for their FTP downloads,
and if the file has been completely transferred these users
are removed from the environment. A Call Admission Con-
trol (CAC) procedure based on eNBs resource availability
and received signal strength by mobile users has been imple-
mented. A user explores and selects the eNB with the highest
Reference Signal Received Power (RSRP). The selected eNB
then accepts the mobile if it has at least one PRB in spare.
A call is dropped if the mobile enters an area with low cellular

TABLE 2. Network Simulator Parameters.

coverage. KPIs are updated on every time step; however, the
optimization algorithms run after fixed periods to account for
normalization. The resulting KPI graphs and tables are based
on themoving average filter of 500 steps. The initial 200 steps
are excluded to avoid transient effects.

To get the average eNB cell edge throughput perfor-
mance of the network we have divided the coverage area of
a 120 deg sectored eNB into three regions and users in
the range of 400m and beyond are considered edge users
(Fig. 5). The simulation was run for 4000 time steps and
results were collected for traffic arrival rates from 4 to 16.
The mapping of the states to antenna tilt angles is given by
the set S = {6, 8, 10, 12, 14, 16} in which antenna tilt angle
varies from 6 to 16 degrees in six steps.

B. RESULTS
In our earlier work [19], we showed that a simple technique
like SCLA performed better than a more complex Q-learning
one. In RL, a learning agent self-learns from its environment
without requiring explicit training data. SCLA can quickly
adapt because it is based on a small probability vector with
a dimension equal to the number of actions possible and
gets updated based on the feedback from the network with
each time step. On the other hand, Q-learning consists of
a large input state-action matrix that gets updated for every
state-action combination and the feedback from the network.
Also, as the state in the Q-learning matrix is based on the
number of input learning parameters, so the order of the
Q Matrix grows exponentially with the increase in the num-
ber of inputs and actions possible. Thus compared to the
SCLA, Q-learning required more time to train its state-action
matrix and adapt, resulting in poor performance. Moreover,
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FIGURE 12. System average EE comparison.

TABLE 3. Performance comparison of system EE averaged over arrival
rates λ = 4, . . . ,16.

we found that within the same Q-learning technique, if we
increase the number of input learning parameters, we find
performance improvement. Figure 12 shows the average
system EE in the network as a function of traffic arrival
rate, for SCLA, ANN, fuzzy neural network (FNN) [8] and
no-optimization or fixed static antenna tilt position case.
It can be seen that all optimization schemes perform 2 to
4 times better than the non-optimized static case over the
complete range of traffic arrival rate. Our simulation scenario
is highly dynamic with moving users, adding/removing users,
and handover are taking place. The static scheme does not
apply optimization technique for antenna tilt even with the
change of the positions and data transfer requirements of the
users. In dynamic environment, some users are dropped and
some users are added during the simulation time stamps but
there is no electrical tilt in the static scheme. In AAN, SCLA,
and FNN, antenna tilt controlled by the optimization of vari-
ous network parameters through RL. The large improvement
is due to the optimized RF configuration. First, the coverage
of cells is optimized and the antenna beams are focused on
the serving UEs while minimizing the interference to other
cells. Secondly, due to the system-wide optimization transmit
power to cell-edge users is minimized because of the reduced
inter-cell interference.

In ANN case the users record about 25% and 14% better
EE as compared to SCLA and FNN, respectively, for the
range of λ = 7 . . . 14. The extremities of traffic arrival rate λ,
are a region where either the resources are much more than
the users requesting access to the network or the resources
become constrained such that optimization does not give any

FIGURE 13. Average eNB EE for cell-edge users.

FIGURE 14. Average user file transfer time comparison plot.

FIGURE 15. Maintain rate comparison of SCLA with ANN.

benefit. The above observation is also supported by the graph
in Fig. 13, that gives a comparison of network eNBs edge EE
performance as a function of traffic arrival rate for SCLA,
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FIGURE 16. Comparison of users rejected in handover due to coverage issues for SCLA
and ANN.

FIGURE 17. Comparison of users rejected in access phase due to coverage issues for SCLA
and ANN.

ANN, and static cases. The figure shows that in the same
range of λ = 7 . . . 14 the edge performance of eNB cells
in ANN is more as compared to cells in the SCLA case.
Thus a better cell edge performance gives a better data rate
for users in the network. This performance improvement in
ANN is due to the increase in the number of input dataset
features as well as the number of input samples. From the
graphs, it can be seen that both antenna tilt schemes do not
deteriorate the performance with the increasing connection
arrival rate but ANN responds well to the non-linearities of
the system parameters of the cellular system as compared to
the SCLA.

Figure 14, shows the observed file transfer time for net-
work users as a function of traffic arrival rate for different
SON schemes. The results, here again, are consistent with
our previous figures, showing approximately 25% higher file
transfer time for SCLA as compared to ANN for the range
of λ = 7 . . . 14. Thus, gain in cell edge performance also
lowers network file transfer time, which in turn means freeing
up resources to accommodate more users in the network.
This observation is further validated by MR, RH, and RA
comparison graphs shown in Fig. 15, Fig. 16, and Fig. 17,
respectively.

Fig. 15 shows theMR as a function of arrival rate. Maintain
Rate (MR) is defined as the ratio of the number of UEs that are
able to download the complete data file to the total number
of UEs that were granted access to the network. Note that
not all UEs, that get access to the network will be able to
download the complete data file because in some cases calls
may get dropped when a UE moves from one cell coverage
to the next, i.e. hand over case. The MR graph shows an
average 15% advantage of ANN over SCLA for the complete
range of traffic arrival rate. This is because of ANN’s ability
to learn the complex non-linear relationship between a large
number of input features and the output function. We use
a three-layered shallow neural network with an input layer
consisting of six neurons, a hidden layer of ten neurons, and
an output layer of six neurons. This is a one-vs-all logistic
regression where only one output is 1 at a time corresponding
to the predicted antenna tilt (out of possible six tilts). Though
ANN gives MR ≈ 0.5 but with minimal variance over the
entire range of arrival rate.

Similarly, RH graph in Fig. 16 shows a 20% better per-
formance of ANN over SCLA. RH is the call rejection rate
due to low coverage in hand-over case and is defined as the
ratio of the total number of UEs rejected in handover due
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to coverage, to the total number of accepted UEs for the
call by the network for any given simulation time frame.
This inversely shows the capacity of a network to support a
running call when a UE randomlymoves from one cell area to
another. The bar graph at arrival rate 4 shows RH = 150 and
RH = 430 for ANN and SCLA, respectively. This is expected
because of the low arrival rate network dynamics change
slowly and performance is high. Then, it starts increasing up
to an arrival rate of 6 and then decreasing and keeps changing
harmonically. The ANN responds quickly to the change in
the network dynamics and always outperforms the SCLA.
The line graph exhibits that ANN results in RH = 15% as
compared to the SCLA with the RH = 35% over the range
of arrival rate.

Fig. 17 shows the call rejection rate in the network access
phase RA versus arrival rate. This is defined as the ratio of
the total number of UEs rejected in network access phase
due to coverage issues, to the total number of UEs accessing
the network for any simulation time frame. This inversely
indicates the coverage capacity of the network to accept new
UEs. The bar graph shows the number of rejected mobile
users in the access phase due to the lack of PRB availability.
For a constant number of PRB and increasing arrival rate, the
number of call rejection increases for both SON schemes but
ANN performance is better than the SCLA due non-linear
capabilities of ANN. For RA case in the line graph, the
improvement of ANN over SCLA is 1% which although not
much but shows the capacity of ANN to reject less number
of users requesting access to the network due to coverage as
compared to SCLA.

V. CONCLUSION
In this paper, we have addressed the problem of optimizing
eNB antenna tilt by proposing a SON architecture using
tools frommachine learning, i.e. ANNQ-learning and SCLA.
Modern mobile networks collect real-time network statistics
and have a standard mechanism of inter-cell communica-
tion defined by 3GPP. Taking advantage of this information
resource as a source of learning, the SON architecture pre-
sented is fully distributed with optional information exchange
with neighbors having overlapping antenna coverage. SCLA
is a simple technique that learns from its action and the result-
ing feedback, whereas ANN learns from more inputs taken
from its own eNB, network, and neighboring eNBs along
with the feedback from its actions. The network simulation
results show that, while the overall network performance is
better than static or no optimization case, the proposed SON
model based on ANN Q-learning gives better edge perfor-
mance as compared to SCLA for FTP traffic. This shows
that ANN can take advantage of the available neighborhood
network information due to its ability to quickly learn from
more number of input variables. These results offer hope
that machine learning techniques like ANN, can be used for
diverse network optimization tasks that depend onmany input
parameters.
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