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ABSTRACT The manuscript represents a comeprehensive and systematic literature review on the machine
learning methods in the emerging applications of the smart cities. Application domains include the essential
aspects of the smart cities including the energy, healthcare, transportation, security, and pollution. The
researchmethodology presents a state-of-the-art taxonomy, evaluation andmodel performancewhere theML
algorithms are classified into one of the following four categories: decision trees, support vector machines,
artificial neural networks, and advanced machine learning methods, i.e., hybrid methods, ensembles, and
Deep Learning. The study found that the hybrid models and ensembles have better performance since they
exhibit both a high accuracy and low overall cost. On the other hand, the deep learning (DL) techniques had
a higher accuracy than the hybrid models and ensembles, but they demanded relatively higher computation
power. Moreover, all these advanced ML methods had a slower processing speed than the single methods.
Likewise, the support vector machine (SVM) and decision tree (DT) generally outperformed the artificial
neural network (ANN) for accuracy and other metrics. However, since the difference was negligible, it can
be concluded that using either of them is appropriate.

INDEX TERMS Smart city, big data, machine learning, ensemble, artificial intelligence, deep learning, data
science, smart grid.

NOMENCLATURE
ABC Artificial Bee Colony.
ACO-RR Ant Colony Optimization Ridge Regression.
AE AutoEncoder.
ANFIS Adaptive Neuro-Fuzzy Inference System.
ANN Artificial Neural Network.
ARIMA Autoregressive Integrated Moving Average.
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BN Bayesian Network.
CART Classification And Regression Tree.
CNN Convolutional Neural Network.
DBN Deep Belief Network.
DT Decision Tree.
DL Deep Learning.
ELM Extreme Learning Machine.
IoT Internet of Things.
KELM Kernel Extreme Learning Machine.
MSE Mean Square Error.
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MAPE Mean Absolute Percentage Error.

RAE Relative Absolute Error.

LR Logistic Regression.

LSTM Long Short-Term Memory.

MAD Median Absolute Deviation.

MAE Mean Absolute Error.

ML Machine Learning.

MLP Multi-Layer Perceptron.

MLR Multi-Linear Regression.

MSE Mean Squared Error.

EFK Extended Kalman Filter.

FFNN Feed-Forward Neural Network.

GA Genetic Algorithm.

GBRT Gradient Boosting Regression Tree.

GI Gini Index.

SA-PSO Self-Adaptive Particle Swarm Optimization.

GPS Global Positioning System.

GT Game Theory.

GWO Grey Wolf Optimizer.

ICA Independent Component Analysis.

IG Information Gain.

INS Inertial Navigation Systems.

NARX Nonlinear AutoRegressive eXogenous.

NRMSE Normalized Root Mean Square Error.

PSO Particle Swarm Optimization.

RBM Restricted Boltzmann Machines.

RF(R) Random Forest (Regressor).

GP Genetic Programming.

SLR Simple Linear Regression.

SMO Sequential Minimal Optimization.

SVM Support Vector Machine.

RMSE Root Mean Square Error.

VAF Variance Account Factor.

WT Wavelet Transform.

I. INTRODUCTION
Due to abundance of resources, facilities, and welfare, half
of the world’s population lives in cities [1]. The lack of
a specific definition of what makes a smart city smart [2]
led to many cities around the world tagging themselves
smart [3]. In this paper, we define the smart city as a city
that utilizes the various Information and Communication
Technologies (ICT) [4], [5] to improve the lives of its citizens,
to solve problems (e.g., pollution, traffic, crime, etc.) [6],
and to preserve its natural resources [7]. Conceptually, smart
cities might be the answer to goals such as improving living
standards, provisioning more services and facilities, and

FIGURE 1. An outlook on smart cities.

attaining social sustainability [4], [6], [8], [9]. Consequently,
numerous technologies, such as the Internet of Things
(IoT) [7], Big Data, and Cloud Computing technologies [10]
have been among the tools used to support smart cities
and the goals behind constructing them [11]. IoT-based
devices help to optimize the decisions to enhance the
performance of the city services to citizens [12]. However,
adopting IoTs in smart cities can have its toll on lifestyles
and undesirable impacts such as the increase in energy
consumption [13], and the increase in the pollution levels
in the air, soil, and water resources [14]. As a result,
several studies emerged to mitigate such cons. For example,
Ghahramani et al. evaluated an intelligent technique for
routing recommendations in an IoT-based waste management
complex [15]. Ghahramani et al. provided a unified topic
modeling technique to disclose urban green space charac-
teristics using artificial intelligence (AI) techniques [16].
Alsamhi et al. [17], in a study, proposed Green IoT as an
environmentally friendly solution for the future use of IoTs.
Almalki et al. [18] also presented a low-cost platform to
monitor environmental parameters by employing flying IoT
of real-time applications. Figure 1 portrays a future smart city
which shows that the concept of smart cities integrates with
all aspects of human life with a variety of ICT technologies.
The adoption of ICT inevitably induces a big volume of
data that a machine can learn and discover latent patterns
from them. Big data is another technology that will help us
analyze smart cities’ data efficiently and at a higher degree of
scalability [19]. Figure 1. represents a holistic representation
of smart cities application [20].

The literature is rich with studies investigating the role
of AI and ML-based techniques in smart city applications.
For example, Ullah et al. [19] reviewed recent trends in the

60986 VOLUME 10, 2022



S. S. Band et al.: When Smart Cities Get Smarter via Machine Learning

TABLE 1. The description of the conducted survey studies.

application of AI techniques in smart cities but limited their
analysis to ML and reinforcement learning and a selected
set of applications (i.e., transportation, cyber-security, smart
grids, unmanned air vehicles, and healthcare). The study
lacks a comparison between the performance of the different
ML techniques. Shafiq et al. [21] presented a survey on
the applications of data mining and single ML techniques
to have sustainable smart cities. The study discussed the
performance of these techniques against complex datasets.
Nosratabadi et al. [22] reviewed the use of ML and deep
learning techniques in smart cities for prediction, planning,

and uncertainty analysis. Din et al. [23] studied IoT-
based ML techniques in some aspects of smart cities such
as healthcare, smart grids, and vehicular communications.
Similarly, Din et al. [23] surveyed single ML and internet-
of-thing-(IoT) techniques used in healthcare, smart grids,
and vehicular communications. Souza et al. [24] surveyed
ML data mining techniques and their role in smart city
applications using the arrangement method [24] and the
e VOS viewer [24]. Its aim and purpose were focused
on statistical perspectives, not comparing performance or
recommending certain techniques for smart city applications.
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Batty [25] discussed the relationship between AI and
smart cities and proposed ML techniques for real-time
city functions. Mohammadi and Al-Fuqaha [26] shed light
on the challenge of big data in smart city applications
from a machine learning point of view. The study focused
on deep reinforcement learning and how it was used
to handle the cognitive aspect of smart city services.
Bhattacharya et al. [27] developed a qualitative study for
discussing the future of DL-based techniques for smart
city applications. Kolomvatsos and Anagnostopoulos [28]
studied the application of deep reinforcement learning and
clustering for query controller application in smart cities
as a comparative analysis. Table 1 presents the study’s
strengths and weaknesses to generate the central research
gap. This table compares the conducted studies with the
criteria of the present study. Despite the abundance of
the conducted studies, they still have shortcomings and
limitations that warrant further investigation and study.
Specifically, they do not provide a classification for the ML
and DL techniques used or do not categorize their roles
and functionality in smart cities. In addition, researchers
in the field may be challenged by the scarcity of reviews
that contrast the performance of ML techniques and analyze
their suitability to solve different problems. Currently the
literature lacks a comprehensive review that categorizes ML
algorithms and their applications to smart cities. Such a
study would guide researchers in the field of smart cities
to use the right tool for a given problem. Managing a
significant amount of data in review articles can help in
the successful implementation of smart cities for future
planning and policy-making [29]. Our analysis in this
study bridges the gap by providing a taxonomy of the
ML algorithms and their contributions to improving smart
cities. Furthermore, we provide a quantitative analysis of
the performance of these ML algorithms to select the most
likely effective one in a given field. We evaluate these
algorithms concerning efficiency, accuracy, and computa-
tional complexity. Our contribution in this paper aims to
introduce a novel taxonomy that focuses on the type of
ML algorithms and approaches rather than the type of
applications in smart cities. The proposed taxonomymay help
researchers, policy makers, and practitioners to enhance the
living standards in smart cities by leveraging the right ML
tools. The rest of the manuscript is organized as follows.
Section II explains the methodology we used to carry out
this literature review. Section III surveys the literature,
describes the role of state-of-the-artML algorithms in solving
problems in smart cities and presents the taxonomy of the
AI and Ml-based techniques for application in smart city
concepts.

Section IV evaluates the surveyed algorithms by com-
paring their performance results throughout applications.
An evaluation of the ML methods and discussion are
presented in Section V. In Section VI, we highlight some
of the open issues and challenges, and in Section VII we
conclude the review.

II. METHODOLOGY
It is challenging to search and identify all studies inwhichML
algorithms have supported smart cities due to the abundance
of such algorithms and their variations. The simple search
queries for ‘‘smart city’’ and ‘‘machine learning’’ may not
provide a comprehensive list of relevant literature. The
search phrase ‘‘smart city’’ is not the only one that we
would solely bank on because other search phrases that
bear close semantics, such as ‘‘intelligent city,’’ ‘‘smart
urban planning,’’ ‘‘smart urban mobility,’’ etc., should not
be neglected. The complexity notably increases when we
compound the query with the names of manyML algorithms.
We relied on the main algorithms discussed in textbooks and
in surveys such as [30] for the names of the ML algorithms.
In this research, the Scopus database has been used as the
primary repository as it indexes the major authenticated
publishers.

Our review ultimately aims to identify, organize, and
classify the ML techniques that have been used to serve
smart cities into one of the four architecture categories:
single models, hybrid models, ensemble models, and DL.
Figure 2 depicts our review methodology which consists
of four stages. In the first stage, an initial set of relevant
articles is identified based on the search queries: ‘‘smart city’’
and ‘‘machine learning methods’’. For each ML method,
we applied a new search query taking into consideration the
specifics of each ML method and its variations. In the second
and third stages of the review methodology, we analyzed and
classified the ML algorithms based on how each algorithm
was applied in smart cities, the datasets used, and the results
attained. Finally, in the fourth stage, the ML models are
classified into the four aforementioned categories. Overall,
our search has generated more than 430 relevant documents.
During the second stage, we have carefully analyzed these
documents to discern the most relevant ones (i.e., those
belonging to the fields depicted in Figure 2) and thus we
narrowed the search pool down to 100 relevant papers. In the
third stage, the papers pool was further refined so that
we ended up with 80 core papers to review. There was a
considerable increase in the number of articles that used ML
methods over the last ten years (2010 to 2020) (Figure 3).

A. LIMITATION
Research work on smart cities dates back to 2010. However,
the research has progressed very rapidly in terms of the
number of papers published after 2016. Additionally, the
popularity of ML applications in smart city technologies
has also been recognized since 2016 with significant growth
of publications in the last years as shown in Figure 3.
Consequently, and for the sake of staying current and relevant,
the focus of this survey has been confined to papers published
in 2016 or after.

III. SMART CITIES AND MACHINE LEARNING
The concept of the smart city has been used in literature since
the early 90s [31]. However, the term ‘‘smart city/cities’’ has

60988 VOLUME 10, 2022



S. S. Band et al.: When Smart Cities Get Smarter via Machine Learning

FIGURE 2. The methodology of our review.

FIGURE 3. The number of studies that used ML in smart cities has doubled annually between
2011 and 2021.

been used only in a limited number of articles until 2011,
when the concept started to be widely popular. Additionally,

the importance of ML methods has exponentially grown over
the past few years (see Figure 3). In reverse chronological
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FIGURE 4. An algorithm to estimate business locations in smart cities.

FIGURE 5. IoT trash collection mechanism.

order, Table 2 provides a summary of the most important
studies in which ML algorithms were used in smart cities.
Next, we discuss these studies in more detail.

Elsaeidy et al. [32] used Restricted Boltzmann
Machines (RBM) as the ML technique to detect distributed
denial of service attacks in smart cities. The use of RBM
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TABLE 2. Notable ML methods used in smart-city studies.

was justified by the high number of features in the datasets.
Evaluation results showed that the approach can cope
with the attack-detection task as it showed high accuracy
and reliability scores. Alrashdi et al. [33] used the IoT-
based Random Forest (RF) technique to intelligently detect
anomalies in a smart city. In comparison with other several
techniques, the authors found that RF gives the most reliable
and accurate results for detecting compromised IoT-based
systems at distributed fog nodes. Similarly, Meenal and
Selvakumar [34] found that the RF technique is promising
for the detection of global solar radiation when compared
with other ML techniques. Bilen et al. [35] tackled the
problem of estimating business locations in smart cities
using the Multi-Layer Perceptron (MLP) and Multi-Linear
Regression (MLR) techniques. They justified the use of these
techniques to the large number of features involved and to the
need for high accuracy. The method was to import London
data to the main algorithm for a Feature set module. The

next step was to develop the regression module followed
by error analysis using Relative Absolute Error (%). If the
calculated error value (%) is higher than the desired value,
the algorithm returns to the regression module to perform
the modeling operation again. Then, the estimated value
was imported by the clustering module in parallel with the
Web Client Feature Input for Hierarchical Clustering. This
module generates district clusters as theWeb client suggested
district. Figure 4 presents the related algorithm reproduced
from Bilen et al. [35].

Bakhshi and Ahmad [36] combined the ML algorithms
with the IoT techniques to manage waste in smart cities.
Figure 5 presents the algorithm of the mechanism. According
to the mechanism represented in the figure reproduced
from [36], there is an IoT-based unit for collecting the
information of all the dustbins. This systemmonitors whether
the Dustbini is full or empty by using sensors implemented.
Then transfers the information to the analyzing server by

VOLUME 10, 2022 60991



S. S. Band et al.: When Smart Cities Get Smarter via Machine Learning

using an internet connection. This unit forms the IoT unit.
The next step is to generate the optimal route for the garbage
truck to collect the wastes. This is a brief description of
the mechanism. To increase safety and security in smart
cities, Lourenço et al. [37] used ML techniques to detect
criminal patterns based on historical data to increase safety
and security in smart cities. The main mechanism can be
found in Figure 6 which is reproduced from [37]. The Citizen
from the client side communicates with the Data Center
Module. Data were imported by the Sci-Cumulus workflow
engine on the server-side. The existing ML-based technique
in this unit employs external sources and communicates
with the knowledge base unit. The next step is to export
the information to the analytical module. This module,
as a decision-making system, communicates with the police.
The ML techniques showed promising prediction results
in comparison with other non-ML tools. Reid et al. [38]
focused on one of the crucial issues in smart cities, namely
traffic jams. The authors found the Support Vector Machine
(SVM) showing high accuracy for classifying vehicular
traffic in their attempt to mitigate air and noise pollution
and optimize fuel consumption. Martínez-España et al. [39]
experimented with RF and compared it with k-NN and
Bagging ML techniques for forecasting air pollution in smart
cities. Results, evaluated using the RMSE and correlation
coefficient values, showed that RF provides the highest
accuracy among the considered ML techniques. In another
study by Chung and Jeng [40], ML techniques were also
used for the prediction of air pollution and to determine
the factors that affect air quality. In another weather-related
problem, Chin et al. [41] developed a proper personalized
service using anML-based IoT system that correlates weather
data (i.e. rainfall and temperature) with short journeys made
by cyclists. Alsamhi et al. [42] provided a classification
of ML-based techniques for enhancing the applications of
IoT-based technologies in a smart city. Carrera et al. [43]
employed a meta-XGBoost model integrated with meta-
regression to generate energy data to enhance the prediction
accuracy of the energy production. Alagumalai et al. [44]
also used ML-based techniques to assess the trends of
using nano generators in smart cities. Ullah et al. [45]
analyzed the different applications of ML-based techniques
employed for enhancing unmanned aerial vehicles’ effi-
ciency. Shahriar et al. [46] discussed supervised and unsu-
pervised ML-based techniques for handling electric vehicles
in a smart city. By analyzing the above studies, we noticed
that two main motives compelled the use of ML techniques
in smart cities. First, most of the tackled problems have
high dimensionality datasets (the number of features is big).
Second, accuracy and reliability were a priority in most of the
studies to have a sustainable ecosystem in smart cities. Next,
we briefly describe each ML technique used in smart cities.

A. MACHINE LEARNING ALGORITHMS
This section describes the commonly used ML algorithms
in the smart-city-related literature, such as Decision Trees

(Sec. 4.1), Support Vector Machines (Sec. 4.2), and Artificial
Neural Networks (Sec. 4.3). Finally, Section 4.4 describes
advanced ML approaches for smart-city applications based
on the hybrid ML techniques, ensembles of ML algorithms,
and the Deep Learning paradigm.

1) DECISION TREES
The first regression tree was initially proposed and imple-
mented in 1963 by Morgan and Sonquist [47]. Then, the first
work on Decision Trees (DTs) was published in 1966 byHunt
in the psychology field [48].

The DT algorithm is a supervised learning method [49]
that can be employed for classification and regression tasks.
More specifically, a DT leverages a tree-based data structure
in which the samples are recursively partitioned based on
the selected feature whose values most effectively split to
maximize a purity measure [51, 52]. Figure 4 presents a
simple DT algorithm schematic diagram with leaf nodes as
attributes.

As seen in Figure 7, a DT algorithm collects the outcome of
each node and decides the final results reproduced from [55].
Attribute selection is one of the most important challenges
in constructing a DT. The value of attributes is measured
by two functions: Information Gain (IG) and Gini Index
(GI) [52]–[54]. IG computes the entropy changes in the whole
mechanism of DT based on Eq. 1:

Gain (S.A) = Entropy (S)−
∑

vεValues (A)

|Sv|
|S|

·Entropy(Sv) (1)

where S, A, and SV , define the set of instances, attributes,
and instances in the V th attribute, respectively, whereas the
entropy characterizes the impurity of an arbitrary collection.

On the other hand, the GI determines the frequency of
incorrect identification for a randomly chosen element, which
leads to favoring an attribute with a lower GI. Eq. 2 shows
GI’s formula:

GI = 1−
∑
j

p2j (2)

where p refers to the probability of the event occurring.
In addition to a single DT, the RF approach is constructed

by considering an ensemble of multiple DTs, constituting a
‘‘forest’’ of simpler estimators. Each tree is built on different
portions of the training set to minimize the error between
the predictions and the actual values. Figure 4 presents a
simple flowchart for a decision-making purpose in smart
city applications by DT. Table 3 presents the most important
studies in smart cities that leveraged theDT-based techniques:

Connected vehicles in a smart city are a hot topic due to
their security [69] and control aspects (e.g., platooning) [70].
DT was used in [56] to estimate the traffic classification in
comparison with other ML-based techniques. Results have
been evaluated using the accuracy metric (99.18% for DT).
In [57], DT was used for pandemic prediction and compared
to other ML-based techniques. According to the findings,
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FIGURE 6. Using ML techniques to detect criminal patterns.

FIGURE 7. Decision trees are among the ML techniques used in smart
cities.

DT provided a good accuracy (about 99%) for the estimation
task. Balta et al. [58] employed DT integrated with a fuzzy

approach for the optimization of the traffic signals in a
smart city. Accordingly, nearly 15% to 17% performance
improvement was obtained using the proposed technique.

The study of Aloqaily et al. [60] deemed transportation
one of the important fields in smart cities when they
investigated how to detect connected vehicles using Deep
Belief Networks (DBN) and DT. The performance of
the proposed technique was evaluated using accuracy and
detection rate.

In the telecommunication field, Manzanilla-
Salazar et al. [61] detected failures in the LTE infrastructures
using the DT and SVM techniques and compared them.
Early detection of failures in the LTE infrastructure can
be a big cost saver. The study showed that the proposed
DT technique can increase the accuracy and detection rate
of failures. To protect smart cities from cyber-security,
Alrashdi et al. [33] developed a system for the detection of
attack points using an IoT-based RF whose accuracy reached
99.34% on real datasets.

Solar radiation is one of the vital issues in smart cities
that captured the attention of Meenal and Selvakumar [34]
when they found that the RT technique outperformed other
ML techniques when tried on empirical data collected in
Tamil Nadu. Furthermore, in the field of electrical cards, the
RF technique showed another success in smart cities when
the authors in [43] tried to predict the charging demands
of electric vehicles. Detecting and locating road anomalies
is a significant aspect of smart cities. To that end, El-
Wakeel et al. [63] used the DT algorithm with great success.
Education and predicting student performance were the focus
of Gomede et al. [64], who relied on an RF-based technique
to do so.

Orlowski et al. [65] presented a DT-based IoT model
for increasing the performance of building business models.
The paper discussed sustainable decision-making processes
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TABLE 3. DT-based studies in smart cities.
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TABLE 3. (Continued.) DT-based studies in smart cities.

in smart cities and highlighted the importance of DTs
and business models for making decisions. Validation was
performed via a case study on air quality. Similarly, in [66],
Mei et al. proposed a Rule-based Incentive Framework
utilizing a DT along with a Game Theory (GT)-based
technique that was evaluated in terms of decision-making
accuracy for handling traveling information of passengers
in a smart city. Simulations showed that the proposal
constitutes an effective way to incentivize travelers to
change travel routes, proving to be an essential smart city
service.

Air pollution in smart cities was also investigated by
Benedict [67] who built a prediction framework based on
RF for estimating air pollution, which is considered one
of the most urgent challenges in smart cities. Using real
validation data, the accuracy ranged between 70% and
90%. Pribadi et al. [68] developed a DT-based decision-
making mechanism for handling CCTV cameras in smart
cities. The performance evaluation showed an accuracy
of 87.96%.

2) SUPPORT VECTOR MACHINES
Support Vector Machine (SVM) algorithm was firstly devel-
oped by Vladimir et al. in 1963 [71], whereas Boser et al.
provided an approach to employ non-linear classifiers using
the kernel trick in 1992 [72]. SVM is one of the most
frequently used supervised ML algorithms and employs
the related learned model to handle both classification and
regression tasks. In detail, the SVM represents the training
samples as points in the feature space to find a set of
hyperplanes that provide the best class separation, whereas
new points are classified or predicted according to the portion
of space they belong.

The input-output formulation of an SVM is formally
described by f (x) given in Eq. 3:

f (x) = wTϕ (x)+ b (3)

where wT denotes the transposed vector related to the output
layer, ϕ(x) represents the kernel function, and b the bias.

Overall, the matrix X has N × n dimensions in which
n and N refer to the number of input parameters and data
points, respectively. The following cost function is optimized

to evaluate wT and b parameters [73]:

cost function =
1
2
wT + C

N∑
k=1

(
ξk − ξ

∗
k
)

(4)

which is constrained by Eq. 5:
yk − wTϕ (xk)− b ≤ ε + ξk, for k = 1, 2, . . . ,N
wTϕ (xk)+ b− yk ≤ ε + ξ∗k , for k = 1, 2, . . . ,N
ξk .ξ

∗
k ≥ 0

(5)

in which Xk and Yk are the k th input and output, respectively,
whereas ε represents the fixed precision of the estimation;
the slack variables (ξk , ξ∗k ) are also in charge to determine
the acceptable error margin.

The following Lagrangian optimization is applied to
minimize the cost function:

L
(
a, a∗

)
= −

1
2

N∑
k.l=1

(
ak − a∗k

) (
al − a∗l

)
K (xk .xl)

− ε

N∑
k=1

(
ak − a∗k

)
+

N∑
k=1

yk
(
ak − a∗k

)
(6)

N∑
k=1

(
ak − a∗k

)
= 0 ak .a∗k ∈ [0.c] (7)

K (xk .xl) = ϕ (xk)T ϕ (xl) , for k = 1, 2, . . . ,N (8)

where ak , a∗k are the Lagrangian multipliers. In the last step,
the f (x) of the SVM is given as follows:

f (x) =
N∑

k.l=1

(
ak − a∗k

)
K (x.xk)+ b (9)

Table 4 presents notable studies that employed SVM-based
techniques in smart cities for different purposes. References
are ordered by year in descending order. More details on each
are given hereinafter.

Recently, Manogaran et al. [74] adopted an approach that
integrates the SVM with the shared Adaptive Computing
Model for a traffic management system that provided an
improved platform by increasing the decision reliability
and reducing the computing time compared to the SVM
alone. In [75], the SVM was compared to other ML-based
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TABLE 4. Some of the researchers that used SVM techniques in smart cities.

techniques for cyber-attack detection in smart cities but the
performance was not promising. Shen et al. [77] devised
a secure and privacy-preserving SVM using blockchain-
based encrypted IoT data. Results reported the accuracy
and confidentiality of the proposed technique showing that
it could successfully cope with the considered task and

ensure the confidentiality of sensitive data. The SVM is
leveraged also by Aymen and Mahmoudi [78] that presented
a methodology for management and optimization of power
status in electrical vehicles for smart cities. The evaluation
used energy consumption and charge state of batteries
and showed that the SVM attains high performance and
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FIGURE 8. The architecture of a multi-layer perceptron.

robustness. Differently, Pujol et al. [79] developed an SVM-
based system to detect and classify violence types in social
media. This system monitors social media space and decides
about observations by using a set of terms and rules.
The accuracy measure of the proposed system exhibited
acceptable performance between 85% and 97%. Le et al. [80]
developed a platform for predicting and estimating building
heating load in smart cities using ML methods, including
SVM and RF, and a hybrid technique based on particle
swarm optimization and extreme gradient boosting machine
(PSO-XGBoost). Evaluations were performed using the Root
Mean Square Error (RMSE) and correlation coefficient
measures. Results demonstrated that the best method (i.e.
SVM) generates predictions with moderate accuracy values
but also emphasized the capability of hybrid techniques able
to outperform single models (cf. later Sec. 4.4). Likewise,
Chui et al. [81] presented a study aimed at the optimization
of energy consumption in smart cities. The proposed method
employed a Genetic Algorithm (GA) to construct a hybrid
GA-SVM technique that was compared with other single ML
techniques in terms of specificity, sensitivity, and accuracy.
The proposed technique improved the performance by more
than 21%, thanks to the presence of the GA optimizer.

Garcia-Font et al. [82] tested an SVMmethod for anomaly
detection in a laboratory that reproduces a real smart city use
case with heterogeneous devices, algorithms, protocols, and
network configurations. Results indicated the high reliability
and accuracy attained by the proposed method for anomaly
detection despite possible technical difficulties in configur-
ing and implementing ML models in such environments.
Belhajem et al. [83] developed an estimation platform for
vehicle position using SVM and Extended Kalman Filter. The
dataset was gathered via the Global Position System (GPS)
and Inertial Navigation System (INS). This technique is
aimed at low-cost detection of vehicle position. Experimental
results showed an improvement of up to 94% in position
prediction in case of GPS failures compared to related
baselines. In another study, Aborokbah et al. [84] devised
and evaluated a platform for a clinical decision support
system based on SVM. The latter was developed with the

RBF kernel function and leveraged to detect heart failures.
Performance has been evaluated using the sensitivity measure
and demonstrated that the SVM could provide a sensitivity of
76.9%.

3) ARTIFICIAL NEURAL NETWORKS
Artificial Neural Networks (ANNs) were first developed by
Warren McCulloch et al. in 1943 [85]. This work simulated
a simple neural network with electrical circuits to investigate
the performance of neurons in learning tasks. The ANN is an
initial and simple way to design an intelligent learning system
inspired by the biological neurons that constitute brains. This
system uses a training stage related to a certain task that
extracts knowledge from a training dataset without the need
to be programmed by task-specific rules [86]. Indeed, the
basic idea of ANNs is performing tasks without any prior
knowledge about the nature of phenomena. Consequently,
ANNs can generate identifying characteristics (i.e., extract-
ing discriminative features) from the data that are given as
input [87]. ANNs can be considered as a comprehensive
modeling framework to process complex datasets. Recently,
ANNs have been employed for forecasting, regression, and
curve-fitting purposes [86]. In an ANN model, neurons
represent the fundamental components that employ transfer
functions for generating the output values. The most impor-
tant advantage of ANNs is that they are simple and cost-
effective methods for handling large datasets [88]. Multilayer
Perceptron (MLP) is one of the simplest and most frequently
used variants of feedforward ANNs. MLP is characterized
by 3-layer, or more, architecture, as shown in Figure 8 [89].
The first layer is the input layer, the intermediate layers are
the hidden layers, and the last layer is the output layer [90].
An MLP can have multiple hidden layers. In that case,
we refer to it as a ‘‘deep’’ MLP (cf. Sec 4.4).

Based on Figure 5, in a simple feedforward ANN, input
layers and hidden layers are linked by the input weightmatrix,
whereas hidden layers and output layers are linked by the
output weight matrix. Both matrices are learned during the
training phase of the model. Hence, the ANN is characterized
by the following equation (Eq. 10) for generating the output
values [86]:

O = f (B+
n∑
i=1

wixi) (10)

where w is referred to as weight values that control the
propagation value x from input to output with n being the
number of layers, whereasO is referred to as the output value
from each node to be modified by the bias B value.

Table V presents notable papers employing ANNs for
smart city applications.Works are ordered by the year starting
from the most recent ones. In the following, we provide
details on each study.

Alsamhi et al. [91] developed a platform using an ANN
to predict the signal strength of a drone. The independent
variables were drone altitude and path loss. Results have been
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TABLE 5. Notable smart-city studies that used ANN-based techniques.

analyzed using a determination coefficient. Findings showed
reasonable validation accuracy determination coefficient
equal to 0.96 and 0.98, respectively, for varying heights and
distances. Singh et al. [92] employed ANN to estimate the
arsenic vulnerable zones with reasonable accuracy.

Le et al. [93] developed different types of ANNs combined
with optimization techniques (e.g., GA, PSO, etc.) to estimate
building heating loads in smart cities and optimize energy
efficiency. Results evaluated the RMSE and determination
coefficient measures. They showed that hybrid ANN-GA

60998 VOLUME 10, 2022



S. S. Band et al.: When Smart Cities Get Smarter via Machine Learning

FIGURE 9. A flow-chart of hybrid methods.

provides the highest determination coefficient and the lowest
RMSE equal to 0.9 and 1.625, respectively. Similarly,
Ullah et al. [94] developed an ANN-based smart system
to detect lighting in smart cities (i.e. a classification task).
The evaluation was performed by employing accuracy and
reported that the proposed ANN provides an accuracy value
of 92.6%. Recently, Keung et al. [95] developed an ANN-
based monitoring system for drainage handling in a smart
city. Monitoring and prediction of urban drainage employed
data of IoT sensors and ANN capability, respectively. Results
showed that the proposed ANN could successfully perform
drainage prediction since it obtained 99% accuracy on the
testing dataset related to Hong Kong. Banach et al. [96]
developed a platform for mapping air pollution in smart
cities using an ANN-based system. Specifically, the ANN
was trained and tested for the required prediction task and
integrated into a laboratory target prototype. The evaluation
was based on using accuracy and showed that the ANN has
acceptable performance and could be implemented and tested
in a real operational scenario.

Sharad et al. [97] devised an ANN-based technique
for solving the time problems in reaching destinations
for bus drivers. The technique managed the urban bus
transportation paths in smart cities and monitored them to
find the shortest path. The authors demonstrated then the
ANN could provide an accurate estimation of the arrival
time effectively reducing the delays. Bennati et al. [98]
employed various data-driven learning algorithms based
on ANNs to investigate and evaluate their application to
social welfare, fairness, and privacy in smart cities. The
algorithms were evaluated through computer simulations
based on real-world data (i.e. smart-meter readings and
participatory sensing) and considering two implementation
scenarios (i.e. smart grid and traffic congestion information

system). The authors identified algorithm trade-offs and
provided a set of guidelines depending on the requirements
and privacy constraints of the specific smart-city scenario and
application. Differently, Sharad et al. [99] developed a real-
time managing console for public transportation systems in
smart cities employing an ANN-based monitoring system.
The latter computed the shortest path to reach a destination
and provided that information to the bus driver. In addition,
the ANN was used to estimate the arrival time for the
commuters accurately. Based on the findings of a real-time
implementation, the authors demonstrated that the proposed
technique could successfully provide a fleet management
console to administrators use as a real-time monitoring
system in buses. Jiang and Claudel [100] implemented an
intelligence platform for wireless technology for traffic/flash
flood monitoring systems. The platform worked in real-time
and provided high reliability and accuracy on complex
problems arising in smart cities (e.g., traffic flow monitoring,
machine-learning-based flash floodmonitoring, and Kalman-
filter-based vehicle trajectory estimation). More specifically,
for flash food monitoring, the authors employed an ANN
that learned the variations of the air temperature profile in
function of the ground and air temperature inputs measured
by passive sensors.

B. ADVANCED MACHINE LEARNING APPROACHES:
HYBRID, ENSEMBLES, AND DEEP LEARNING
This section presents hybrid approaches, ensembles, and DL-
based techniques that we have categorized as advanced ML
methods.

1) HYBRID APPROACHES
Hybrid approaches refer to integrating two or more (ML-
based) methods for jointly exploiting their advantages in
solving learning tasks (e.g., joint prediction and optimiza-
tion) [101]. Figure 9 reports an example flowchart that
illustrates the application of a hybrid method. Hereinafter,
we provide a brief explanation of hybrid method development
and goal. As depicted in Figure 9, input data are fed
to the predictor component which in turn produces the
output values. The latter values are given as input to
the optimizer component that compares them with target
values (i.e. the ground truth) to optimize a compound
cost function. Depending on the specific optimization task,
the cost function can be either minimized or maximized.
In detail, this optimization procedure aims to tune predictor
parameters and the cycle continues until achieving the desired
performance. This is obtained by comparing the output of
the optimized predictor and target values and computing the
related evaluation metrics.

2) ENSEMBLE METHODS
Similarly, ensemble methods jointly employ different ML
techniques (usually called ‘‘weak learners’’) but for different
purposes, such as decreasing variance and bias or increasing
prediction performance. They are based on the assumption
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FIGURE 10. An ensemble model encompassing N ML-based classifiers.

FIGURE 11. A flow-chart of the general ensemble method.

that combining multiple models to solve the same problem
can produce a model with better performance. Figure 10
depicts the general structure of an ensemble model encom-
passing N ML-based ‘‘weak classifiers’’ whose outputs are
combined via a meta-classifier. It should be noted that each
ML-based classifier can be fed with a different set of features
(viz., inputs).

Bagging, stacking, and boosting are common meta-
algorithms for obtaining an ensemble of ML-based algo-
rithms [102]. Bagging employs homogeneous weak learners
trained in parallel and combines their outcomes using
deterministic averaging. Bagging is frequently used to
successfully improve the performance of DTs used as weak
learners in RF [103]. On the other hand, boosting also
uses homogenous weak learners trained sequentially in an
adaptive fashion (i.e., there is a dependence between each

model and the previous one) that are deterministically com-
bined. Finally, stacking considers weak learners trained in
parallel that are combined by training a meta-algorithm (i.e.,
a meta-classifier) that provides a prediction by intelligently
combining the ‘‘base’’ models (see, e.g., Figure 7). Advanced
combination techniques can exploit both hard decisions and
soft outputs of base models [49].

Figure 11 sketches the flowchart of an example application
of an ensemble method. In this workflow, the ensemble
predictor is shown as a black box (‘‘Predictor’’ in the Figure),
and its role is independent of the specific ensemble meta-
algorithm adopted. First, input data enter the pre-processing
component that performs dataset cleaning and normalization.
Then the data are passed to the feature selection unit. In more
detail, the former component makes input values suitable
to feed the ensemble predictor, whereas the latter aims to
select the most informative features to improve ensemble
performance that is assessed by comparing the output values
with the target ones.

3) DEEP LEARNING
Among advanced ML techniques, DL has emerged as a pos-
sible disruptive breakthrough allowing the automatic design
of inference systems that can distill complex dependencies
among input data limiting human-expert need in designing
accurate features. The term ‘‘deep’’ refers to the usage of
multiple transformation steps to create these features, which
is reflected in computations performed by a neural network
encompassing many ‘‘hidden’’ layers placed between the
input layer (passing input data to the first hidden layer) and
the output layer (producing the output variables).

A wide variety of practical and robust methods are
comprised within this subset of ML techniques. The most
common DL architectures that we have found in the literature
fall within the families of Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Auto
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FIGURE 12. Example of a 2D-CNN architecture adopted by.

FIGURE 13. Example workflow of an AE.

Encoders (AEs) [104]. These DL techniques are widely used
for multiple purposes, such as audio and speech processing,
computer vision, network traffic analysis, social network
filtering, pattern recognition, and big data applications. The
parameters of DL networks are learned iteratively via the
stochastic gradient descent optimization algorithm that finds
the minimum of a cost (or loss) function. Specifically,
an estimate of the gradients is calculated from a random
subset of the training data. Also, the backpropagation
algorithm is leveraged to efficiently compute the gradient of
the loss function [79]. We briefly describe the most common
variants of DL networks in the following.

A CNN architecture is inspired by the visual functioning of
living creatures and is one of the most popular DL techniques,
finding applications, especially in computer vision [105].
Figure 12 depicts an example of a bi-dimensional CNN
(briefly a 2D-CNN). From a macroscopic viewpoint, the
CNN architecture encompasses two main parts. The former
is a chain of convolutional layers that employ transition-
invariant filters—whose dimensionality depends on the input
nature (e.g., bi-dimensional in the case of images)—that
extract the features from a given input region within their
receptive field by convolving with the input data. Commonly,
each convolutional layer is followed by a pooling layer (e.g.,
a max-pooling in Figure 12 adapted from [106]) that performs
down sampling of intermediate convolutional representation
to reduce complexity and avoid overfitting.

The latter part consists of a series of fully connected layers
that generate the proper output values depending on the
considered task (e.g., classification vs. regression).

An RNN architecture presents neuron connections forming
direct cycles and is usually employed to recall temporal
information via a state vector. It has as input a vector sequence
and outputs either its final state or its entire time-evolution.
Long Short-TermMemory (LSTM) is one of themost common
variants of RNNs and presents special neurons (called cells)
that can store and model dynamic temporal behaviors with
long-term dependencies. An LSTM cell is made of three main
gates (i.e. internal mechanisms that operate with sigmoid and
hyperbolic-tangent activation functions and sum and product
operations of vector variables), namely input, output, and
forget gates, which control the input and output of the cell,
regulate the information flow, and decide which information
is relevant to recall or forget [107].

The AE is a type of ANN commonly used for (unsu-
pervised) feature learning, whose aim is to (ideally) output
a reconstruction of the input by learning a compressed
data representation. Figure 13 reports the example archi-
tecture of an AE. Specifically, the first AE block adopted
from [108]. (i.e. the encoder) provides a lower-dimensional
data representation (via a hidden layer of neurons), whereas
the second block (i.e., the decoder) tries to reconstruct the
data from the compressed representation [108] . The AE
is commonly trained via fast, optimized backpropagation
algorithms like the conjugate gradient [109]. Several studies
have demonstrated the higher capability of advanced ML
approaches (i.e., hybrid, ensemble, and DL techniques)
in designing accurate models compared to traditional ML
approaches. Ardabili et al. [110] presented a compara-
tive study among single and hybrid Extreme Learning
Machine (ELM) techniques for predicting and optimizing
ethyl and methyl esters production, claiming that hybrid
ELM techniques provided higher accuracy and optimized
efficiency performance compared with that of single ELM.
Jesús Cuenca-Jara et al. [111] proposed a novel data-
driven methodology employing a fuzzy classifier based on
volunteer geographic information to label spatial-temporal
trajectories. Results were evaluated considering real-time
detection of tourists and local citizens’ flows. Comparisons
were performed regarding classification accuracy with a
well-established trajectory classifier used as a baseline,
proving that the proposed solution is suitable for coping with
the task.
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TABLE 6. Notable smart city studies that used advanced ML methods.
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TABLE 6. (Continued.) Notable smart city studies that used advanced ML methods.

Recent research has shown that advanced ML techniques
have become more and more popular due to their appli-
cability in different research fields and higher performance
when compared to traditional ML approaches. Smart city
application is one of the most relevant fields that has found
benefit from the appropriate usage of advanced ML methods.
Table 6 presents notable papers—starting from the most
recent ones—that have leveraged advanced ML methods for
smart city applications.

In [112], an RNN-based LSTM platform was proposed to
detect cyber-attacks in a smart city. The proposed technique
provided an accuracy of more than 90%. In [113], the
RNN-based LSTM technique was employed for preparing
a platform to estimate traffic using noise pollution analyses
in a smart city. The proposed technique provided a higher
accuracy. In [115], Kumar employed Bi-LSTM to recognize
the duplicity within the medical community sites. The
obtained results suggested that the proposed technique
provided an accuracy of 86.375%.

Yin et al. [117] proposed a hybrid Ant Colony Optimiza-
tion Ridge Regression (ACO-RR) algorithm, a smart-city
evaluation method based on ridge regression, exploited to
help construct small and medium-sized smart cities intelli-
gently reusing existing resources and systems. Experimental

evaluation is performed considering real smart-city datasets
spanning over different years and coming from the evaluation
report on the development level of China’s smart cities. The
results showed that the hybrid ACO-RR technique provides
higher accuracy compared to SVM, DT, and ANN, thus
proving to be more reliable than single ML approaches in
the evaluation of smart cities. Kwon et al. [119] developed
a hybrid reasoning model via a combination of crowd
knowledge extracted from open source data and collective
knowledge (CBR) for handling huge amounts of data aimed
at obtaining a healthy environment (i.e. diagnosing wellness
levels in patients suffering from stress or depression) in
smart cities. The empirical evaluation demonstrated that
the proposed approach performs better than traditional ML-
based methods (e.g., SVM, DT, k-NN, Bayesian Network,
Logistic Regression) due to the ability of hybrid CBR to
properly manage big data (and possible class imbalance).
Belhajem et al. [122] presented a study on the real-time
prediction of vehicle positions in a smart city using a hybrid
approach based on ANN and Autoregressive Integrated
Moving Average (ARIMA) techniques. The ANN-ARIMA
model is trained with GPS data to jointly learn both linear
and non-linear dependencies in vehicle positions. Results
showed up to 95% accuracy in predicting vehicle position

VOLUME 10, 2022 61003



S. S. Band et al.: When Smart Cities Get Smarter via Machine Learning

during GPS outages compared to the Extended Kalman
Filter.

Besides, a group of works applied ensemble methods in
smart cities. Hansen et al. [121] presented an ensemble
method of ML-based classifiers exploiting both Logistic
Regression (LR) and RF for forecasting home-care hours
in a smart city. Experimental results are carried out
considering data of Copenhagen citizens receiving home
care from 2013 to 2017 and showed that the proposed
method reaches an Area Under Curve (AUC) value of
0.715. The authors claimed that the proposed methodology
can properly predict large increases in home-care hours,
which is one of the major health expenses in a smart
city. Alajali et al. [123] developed an ensemble technique
based on Gradient Boosting Regression Trees (GBRT) for
the prediction of car parking availability in smart cities.
The method exploited data from multiple sources (i.e., car
parking, pedestrian, and car traffic data) for extracting the
relationship between pedestrian volume and car parking
demand to predict parking availability at fifteen-minute
intervals. The authors compared the proposed ensemble
method with traditional SVM and DT inaccuracy and
error probability. Experimental results demonstrated that the
proposed ensemble technique has higher performance than
single ML-based techniques, presenting an error probability
of 0.029. Finally, DL techniques have also been widely
applied in smart cities, as discussed here. Mujeeb et al. [116]
employed LSTM for developing a prediction platform for
the load and cost of an electricity grid system in the
presence of data generated in smart cities. The proposed
DL-based method was compared with ANN, and ELM
techniques in terms of Mean Absolute Error (MAE) and
Normalized Root Mean Square Error (NRMSE) measures.
The results demonstrated that the LSTM outperformed
compared forecasting methods in terms of accuracy, proving
the efficiency of the proposed method for electricity price
and load prediction. Indeed, the LSTM showed an MAE
of 1.95 and an NRMSE of 0.08 for price forecasting on
the ISO NE (Independent System Operator, New England)
dataset, while an MAE of 2.9 and an NRMSE of 0.087 for
load forecasting, showing better performance than ANN and
ELM. Chackravarthy et al. [118] employed a DL architecture
as a composition of an RNN with a CNN to predict criminal
acts (e.g., assault detection, car theft, etc.) in smart cities. The
proposed system aims to overcome the limitation of singleDL
techniques in analyzing video stream data playing criminal
acts. The results showed higher accuracy compared to single
DL algorithms at the cost of higher training time, thus
allowing the implementation of an effective crime detection
system that can reduce the workload of supervising officials
in smart cities. Obinikpo et al. [120] presented a survey
discussing the application of DL techniques for handling data
generated by connected smart health systems. Specifically,
they considered how these techniques can be exploited to
improve the prediction of data sensed by IoT devices and to
help decision-making in smart health services. The authors

focused on both architectures (e.g., CNN, RNN, DBF, etc.)
and methods for data collection using different sensor types,
studying also challenges and open issues for identifying
future directions for the application of DL techniques in smart
health systems (e.g., medical imaging, bioinformatics, and
predictive analysis).

IV. EVALUATION OF THE ML METHODS
As explained in the previous section, many ML algorithms
tackled various challenges in smart cities. Therefore, we trust
it is useful to augment our study by evaluating each ML
technique (Section 5.2) based on different performance
metrics (Section 5.1).

A. OVERVIEW OF PERFORMANCE EVALUATION METRICS
Several evaluation criteria were used to evaluate the ML
algorithm used throughout the tens of papers that we
reviewed in this study. Figure 14 shows the commonly used
evaluation criteria and the frequency distribution of their use
across nearly 40 case studies that adequately analyzed and
reported on their model’s performance. The figure shows that
accuracy, precision, and recall are the most common metrics,
followed by error-related metrics (i.e., MAE and RMSE) and
the correlation coefficient. Other metrics are less common
since they either complement the above metrics (e.g., MAPE
and MSE) or are simply specific to the case study (e.g.,
sensitivity and specificity related to binary classification
tasks).

B. EXPERIMENTAL RESULTS REPORTED IN THE
SURVEYED CASE STUDIES
Next, we briefly explain the most common metrics (i.e. accu-
racy, precision, recall, RMSE, and correlation coefficient)
and compare the experimental results reported in the studies
we reviewed in this paper using them.

1) ACCURACY
Accuracy has a positive correlation with the performance
of ML methods and a negative correlation with RMSE
(in general with error-related metrics). Per Equation (11),
accuracy is the fraction of correctly classified samples among
the total number of samples:

Accuracy =
Truep + Truen

Truep + Truen + Falsep + Falsen
(11)

where Truep denotes the true positives, Truen the true
negatives, Falsep the false positive, and Falsen the false
negatives.

Figure 15 depicts the accuracy values of different ML
models used in surveyed works. The horizontal axis reports
the methods developed in each research, while the vertical
axis indicates each method’s accuracy values (in percentage).
We can notice that when comparing different techniques
exploited for the same smart-city applications, single ML
models (e.g., ANN, SVN, and Feed Forward Neural
Networks) provided the lowest accuracy values (see e.g.,
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FIGURE 14. The frequency distribution of evaluation metrics in the surveyed literature.

FIGURE 15. Comparison of accuracy values reported in the surveyed studies.

Elsaeidy et al. [32] and Aloqaily et al. [60]). On the other
hand, the highest accuracy values are attained when an
advanced approach such as hybrid, ensemble, and DL are
adopted. The results provided by Manzanilla et al. [61],
Pujol et al. [79], and Kwon et al. [119] support this
conclusion.

This could be justified by the hypothesis that the inference
power increases when we combine multiple predictors or
voters which help optimize the final performance (see
e.g., [124] and [30]).

2) RECALL
Recall (also known as sensitivity, particularly in binary
classification) is a metric that measures the relevance of a
model. Equation (12) shows the formal definition of the recall
metric, defined as the fraction of relevant instances of a

class that are correctly classified (i.e., the class-conditional
accuracy):

Recall =
Truep

Truep + Falsen
(12)

where Truen denotes the true positives and Falsen the
false negatives. Figure 16 compares the results in terms of
recall values as reported in reviewed studies. The horizontal
axis reports the methods employed, while the vertical axis
represents the associated recall values.

Again, single methods (e.g., SMO, NRBNF, LR)
more often provided lower recall values as shown in
Kwon et al. [119], whereas DTs and hybrid meth-
ods reached higher recall values based on the finding
reported, for instance, by Elsaeidy et al. [32] and
Kwon et al. [119].
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FIGURE 16. Comparison of recall values provided in the surveyed studies.

FIGURE 17. Comparison of precision values reported in the surveyed studies.

3) PRECISION
Precision is a metric that measures the overall performance
stability of a model. Equation (13) outlines the formal
definition of the precision metric, defined as the share of
classifier decisions for a certain class that is correct:

Precision =
Truep

Truep + Falsep
(13)

where Truep denotes the true positives and Falsep the
false positives. Figure 17 reports the precision values of
differentML techniques used in surveyed studies. By visually
comparing Figures 16 and 17, we will notice that recall
and precisions are correlated for the same studies they were
reported in.

Like other performance metrics, we notice that DTs
and hybrid methods provided a higher precision value
compared to other methods based on the results reported
in Elsaeidy et al. [32] and Kwon et al. [119]. Ensemble
techniques (e.g., RF used in Alrashdi et al. [25]) also showed
high precision values (i.e. >95%) when applied to smart city
applications.

4) RMSE
RMSE is an error-related metric that measures the difference
between actual and predicted values. In general, increasing
the difference between actual and predicted values reduces
the accuracy and increases the error metrics such as the
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FIGURE 18. Comparison of RMSE values provided in the surveyed studies.

FIGURE 19. Comparison of correlation coefficient values reported in the surveyed studies.

RMSE. Equation 14 defines the RMSE formally as:

RMSE =

√√√√√ 1
N

N∑
i=1

(x i − x̂i)

2

(14)

where N denotes the total number of samples, xi the actual
samples, and x̂i the predicted samples. Figure 18 depicts the
RMSE values obtained in the related studies using different
ML techniques. Single ML techniques, also, provided
the highest RMSE values (i.e. the lowest performance).

Particularly, SVM, DT, and RF are the best performing
ML methods, attaining the lowest RMSE values as reported
in Le et al. [80] and Meenal et al. [34]. Moreover, from
Figure 12 it is evident that the best models reaching the
minimum RMSE are DL-based and hybrid techniques. For
instance, the DLSTM and the hybrid WT+SAPSO+KELM
compared in Mujeeb et al. [85], the hybrid GA-ANN,
PSO-ANN, and ABC-ANN employed in Le et al [66],
and the PSO-XGboost proposed in Le et al. [19] spawned
significantly lower RMSE values compared with the single
method baselines.
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FIGURE 20. Processing time score of ML-based techniques used in smart cities applications.

FIGURE 21. Reliability score of the ML-based techniques used in smart cities
applications.

5) CORRELATION COEFFICIENT
The correlation coefficient measures the (linear) statistical
relationship between actual and predicted values. In par-
ticular, a higher correlation between target and output
values increases the overall accuracy and reduces total error.
Equation (15) shows the formulation for calculating the
correlation coefficient:

Correlation Coefficient =
Cov(x, x̂)
σxσx̂

(15)

where x refers to actual samples, x̂ to predicted samples,
Cov(x, x̂) to the covariance between x and x̂, and σ to
the standard deviation (calculated for both x and x̂). The
correlation coefficient ranges between−1 and+1. A negative
number indicates a negative correlation, whereas a positive
number denotes a direct correlation between target and output
values: the closer the coefficient to 1, the higher the resulting
correlation as well as the accuracy. Figure 19 presents
the comparison of the correlation coefficient obtained by
different ML methods in reviewed studies. First of all,
we can notice that the values of the correlation coefficient
are always positive, indicating a direct correlation and thus
the suitability of all proposed models for applications in
smart cities. Again, Figure 19 demonstrates that single
techniques provided a lower correlation coefficient than

hybrid techniques with the notable exception of DT-based
ones that had comparable performance (e.g., the RF in
Meenal et al. [34]). Specifically, the hybrid techniques
PSO-XGboost proposed in Le et al. [80] and GA-ANN and
PSO-ANN presented in Le et al. [93] confirm this claim.

V. ANALYSIS AND DISCUSSION
In this section, we discuss ML methods used in smart cities
from different perspectives. Based on our survey, we analyze
how these methods compare to each other for efficiency
(processing time), reliability (accuracy of results), and other
performance aspects.

A. EFFICIENCY (PROCESSING TIME) ANALYSIS
For the processing time, Figure 20 sketches the processing
time score, the lower this score the faster theML algorithm is.
As seen, the x-axis of the chart lists the ML algorithms while
the y-axis represents the processing time score. These scores
are normalized using min-max normalization by applying
Equation 16.

XN =
Absolute processing time(s)

# data samples − Xmin

Xmax − Xmin
(16)

where XN denotes the normalized processing time score,
and Xmin and Xmax are the parameters used for the min-max
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normalization and depend on the specific dataset employed.
This ensures having a range of scores between 0 and 1. For
better interpretation, we further categorized this score into
four zones:
(i) Low if 0 ≤ XN < 0.25;
(ii) Moderate if 0.25 ≤ XN < 0.5;
(iii) High if 0.5 ≤ XN < 0.75;
(iv) Very high 0.75 ≤ XN ≤ 1.
The lower the score means that the ML algorithm is faster.
Therefore, we noticed that the ANN is the fastest model,
whereas DL and hybrid/ensemble are slower due to their
complex computational architecture.

1) RELIABILITY ANALYSIS
When it comes to reliability, Figure 21 compares the accuracy
of the output of each ML algorithms used in the smart
city studies that we reviewed. The x-axis lists the ML
algorithms, and the y-axis indicates the reliability score
which is computed based on normalizing the performance
metric (i.e. accuracy, precision, recall, RMSE, and correlation
coefficient) used in the relevant work. To make these
metrics comparable we normalized them using the min-max
normalization as shown in Equation 17 at the bottom of the
page, where YN denotes the normalized reliability score, and
Ymin and Ymax the parameters (depending on the specific
metric reported) used for the min-max normalization. This
ensures having a range of scores between 0 and 1. For better
interpretation, we further categorized this score into four
zones:
(i) Low if 0 ≤ YN < 0.25;
(ii) (ii) Moderate if 0.25 ≤ YN < 0.5;
(iii) (iii) High if 0.5 ≤ YN < 0.75;
(iv) (iv) Very high 0.75 ≤ YN ≤ 1.
Based on the reliability analysis, we conclude that that the
ANN was the least reliable while DL and hybrids/ensemble
methods are the highest. Among the single ML cate-
gory, we noticed that the SVM had shown better perfor-
mance (High) than the DT (Moderate).

2) OVERALL ANALYSIS
To deepen the comparative analysis of the studied ML
methods, Table 12 gives a comprehensive comparison of
the single ML-based, hybrid, ensemble, and DL-based
models. The table describes the complexity, user-friendliness,
accuracy, and processing speed of models used in smart city
applications using the following categories: Low, Reason-
able, Reasonably high, and High.

We can notice that hybrid models and ensembles are the
best performers since they exhibit both high accuracy and not-
costly complexity. On the other hand, and despite that the DL
techniques had higher accuracy than the hybrid models and

ensembles, but they demanded relatively higher computation
power. Moreover, all these advanced ML methods had a
slower processing speed than the single methods. Likewise,
the SVM and DT generally outperformed the ANN for
accuracy and other metrics. However, since the difference is
negligible, we can conclude that using any one of them is
appropriate (cf. Sec. 5).

The summary of Table 7 suggests that the advanced ML
methods are the best candidates to use in mart cities based on
accuracy and efficiency. Nevertheless, it is not uncommon to
use the ANN and SVM as they have a simpler design, faster,
and with acceptable accuracy.

3) PROS AND CONS
Table 8 highlights the pros and cons of each method and
a recap of the discussion presented herein. Based on this
report, wemay claim that advancedMLmodels have superior
performance to the single ML techniques, but given their
higher complexity, they can still be used successfully in
specific applications.

4) APPLICATION SHARE
Figure 22 depicts the relative share of each ML method
under different smart city applications such as vehicles
and transportation, mobile communications, building, energy,
health care, data management, public safety, management
of (IoT) sensors, pollution monitoring, and reduction, etc.

As illustrated in Figure 22, the ANN, DT, and SVM
were predominantly used in smart transportation, mobile
communication, IoT sensors, smart energy, smart education,
smart building, and air pollution monitoring. On the other
hand, the advanced ML models are commonly used in more
complex applications, for instance, with those that have big
data. Consequently, the hybrid, ensemble, and DL methods
are more popular in smart health and transportation systems
applications and manage open big data and resources in smart
environments.

VI. OPEN ISSUES AND CHALLENGES
Smart city applications have been faced with ML-based tech-
niques as a new paradigm in this area. ML-based techniques
are introduced as the vital element of smart cities, but the
developed studies have not sufficiently and comprehensively
considered these techniques. This part of the study discusses
some open issues and challenges that can be targeted for
future studies. For example, smart-city-based datasets are big
and used by time-sensitive applications that demand real-time
or semi-real-time analytics. This highlights the need for a
new analytic platform that supports big data analytics with
fast/streaming data analytics. Furthermore, in applying the
ML-based methods for smart city applications, the system’s

YN =
f (Accuracy, Precision, Recall, RMSE, Correlation Coefficient)− Ymin

Ymax − Ymin
(17)
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TABLE 7. Comparative analysis of ML models applied in smart cities.

TABLE 8. Summary of advantages and disadvantages of ML-based models applied in smart cities.

FIGURE 22. Share of each ML method under different types of smart city applications.

validity is closely related to the accuracy and precision of
the data. On the other hand, data availability is a major

challenge from the point of view of copyright issues and
ethics. Furthermore, due to the nature of the data required for
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smart city applications, many performance domains can be
easily rendered inaccessible if the results with large volumes
of data for simulation are not confirmed. Therefore, the
success of ML-based techniques in smart city applications
depends on overcoming these challenges and excelling over
them. Furthermore, due to the real-time applications of
smart cities, the need for an ML-based technique that can
provide high accuracy while providing a high operating speed
and light platform can improve system reliability, stability,
sustainability and availability.

A. ADVANCED ML AND DL TECHNIQUES
The number of applications in smart cities and their
complexity will keep increasing due to the increase in the
human population, the advent of new technologies every
day, and the complexity of orchestrating all these systems
together. This situation will continually generate big data that
require more computational power and smarter algorithms.
Handling this massive amount of data will remain a constant
challenge for scientists to tackle by introducingmore efficient
and reliable ML algorithms that can be practically used in
smart cities. The current advancements in ML and DL-based
technologies rendered the concept of Smart Cities a reality.
Nevertheless, more improvements will remain in demand if
we aim to have smarter cities in all fields such as health-
care, security, transportation, traffic congestion, parking,
pollution, etc.

B. IoT IN SMART CITY APPLICATIONS
The presence of IoT in smart city applications can be a game-
changer in applications. Many open issues related to security,
healthcare, safety, transportation, waste management, etc.,
can benefit from the IoT sensors. Combining those sensors
and the data they collect with ML algorithms can foster the
development of smart cities and make them more efficient
and sustainable. This alliance between the sufficient datasets
collected by IoT sensors and more powerful ML algorithms
can provide practical solutions for the serious challenges that
smart cities encountering today.

C. ML FOR SECURITY AND PRIVACY
Nowadays, cities are changing to evolve as smart cities
all over the world. Accordingly, they need to collect and
analyze huge volumes of data for different applications like
automating processes, enhancing service quality, improving
marketing services for users, and making better decisions.
One of the main challenges of the creation of smart
cities is to increase the quality of life for humans using
digital interconnectivity, leading to increased efficiency and
accessibility in cities. This leads Smart cities to move towards
the enhancement of privacy and security to ensure the
participation of citizens because the existence of security
and privacy in society guarantees the satisfaction of citizens
and the stability of the society. Therefore, one of the most
important challenges of a smart city is ensuring security and

privacy. Security and privacy challenges in the smart city
include different subsections, which are described as follows:

1) CYBER RISKS
Smart City covers several advantages and benefits. IoT-
based technologies in smart city applications can successfully
enhance critical infrastructures. But there are arrangements
required for preventing cyber risks to smart cities, such as
threats that endanger the safety of citizens and the contin-
uation of operations and services. Also, these arrangements
have to prevent personal privacy reliance on rapid data
sharing and data mining techniques. A smart city is integrated
with a database to store data securely. In the meantime,
employing ML-based techniques can successfully prevent
cyber-attacks and strengthens security infrastructure. In fact,
ML techniques benefit pattern recognition ability, estimation
of behaviors, organizing a huge volume of files, recognizing
potentially dangerous ones, and blocking perceived threats.

2) PUBLIC SAFETY
The requirement for public safety in a smart city is a
growing challenge in general. New digital technologies to
enhance the efficiency of different applications of smart
cities are followed by urban population growth. The 5G
technology, AI and IoT are the basis of smart cities. Progress
in all of these increases the sense of need for public safety.
Increasing public safety in smart cities increases trust and
confidence in the system. The progress in AI and ML-
based techniques for smart city applications can successfully
enhance public safety by concentrating insights into the
IoT networks to be monitored, analyzed, and acted upon
in real-time. Data-based systems are one of the fields in
which ML-based techniques have been successfully tested
and employed to increase the system’s abilities. Public safety
in smart city applications can be considered one of the
data-based systems that can be integrated with ML-based
techniques for enhancing the system’s efficiency. Several
applications of ML-based techniques like Image processing,
speech recognition, and efficient monitoring algorithms can
be considered as elements to enable roaming ML-based
techniques around public safety in smart city applications.
ML-based techniques are considered a collection of intel-
ligence technologies to provide considerable benefits to
the criminal justice, Law Enforcement, Corrections, Courts,
homeland security, and public safety domains such as Fire
and Emergency Management Services.

3) MONITORING AND SENSOR-BASED TECHNOLOGIES
Monitoring in smart city applications is an innovative and
significant open issue that can also be known as an effective
challenge. Monitoring needs to be equipped with powerful
information technology enabling ML-based transformation
of big data into a wide range of custom services to
monitor and control complex urban processes in real-time.
Monitoring provides a holistic vision and transparency of the
complex processes in the urban area as a practical system
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TABLE 9. ML techniques that support the main security and privacy challenges in smart city applications.

in real-time applications. Accordingly, the stakeholders can
enhance the efficiency and quality of Local and Regional
Management and Governance. Accordingly, the quality of
life and community transparency will promote new business
models. Monitoring can be employed for traffic, public
transportation, and natural hazards monitoring systems like
flash floods and air pollution monitoring systems. The
rise of smart city applications toward monitoring systems
causes a considerable growth opportunity for sensor makers.
This growth supports technologies such as 5G, robots,
AI, and edge computing for smart city applications. The
electronic, infrared, thermal, and proximity sensors are sensor
technologies for smart city applications. As it is clear, the
future of smart cities is intertwined with new technologies
in the sensor industry, and we must wait for tremendous
progress in this area. Table 9 summarizes the studies and
ML-based techniques which support the security and privacy
challenges in the smart city applications and identifies
which challenges and ML-based techniques require high-
level studies and experimental work for future perspectives.

VII. CONCLUSION
In this work, we present a comprehensive, systematic review
of machine learning algorithms in smart city applications.
As a result, we can conclude that the ML algorithms can
fall into one of the following four categories: decision trees,
support vector machines, artificial neural networks, and
advanced machine learning methods (i.e., hybrid methods,
ensembles, and Deep Learning techniques).

We give a theoretical description for each ML algorithm
and demonstrate how it was used across many applications in
the smart city context. Furthermore, we evaluate all reviewed
ML algorithms concerning efficiency (computational speed),
reliability (accuracy of the output), and the pros and
cons of each. Among the many important observations we
encountered through our analysis, we found that hybrid
methods, ensembles, and deep learning techniques can
outperform single methods at the cost of higher complexity
and processing time. With this analysis and comparisons,
we hope to guide researchers, practitioners, and policymakers
to select the appropriate ML tool for the right problem.

Many challenges and issues are still open for smart cities.
We believe that coupling IoT with more powerful and
reliable ML algorithms that can process a massive amount
of data collected from the sensors will be the trend in the
coming years. This might result in solutions for important
problems typically associatedwith urban cities such as traffic,
healthcare, pollution, education, etc.
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