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ABSTRACT The stream data acquired by heterogeneous Internet of Things (IoT) sensors are seldom
perfect. Most of the collected data streams include either missing or abnormal values caused by various
factors such as failure, malfunction, or integrity attacks. Such unreliable data affect the real-time monitoring
and compromise the quality of data analysis. By simply analyzing the sensor data via anomaly detection,
applications may still be unreliable over the incomplete sensor data streams. Therefore, a reliable method
for recovering the missing data and detecting the abnormal ones is indispensable in the IoT environment.
This paper presents FuzHD++, a new method to recover missing sensor data and detect abnormal nodes
jointly rather than independently. Both elements, data recovery and abnormal node detection, rely on the
observed temporal and spatial correlation of sensor data to effectively achieve reliable recovery estimation
and detection performance. In the data recovery process, the system adopts a matrix profile to extract the
top-k repeated patterns from different sensor nodes. Furthermore, it utilizes the k-nearest neighbor estimator
to recover the missing data based on the extracted pattern information of multiple neighbor nodes. During
the abnormal node detection process, the system adopts a refined fuzzy rule-based detection method. The
refined fuzzy rule-based inference system integrates the expert rules and the rules obtained from sensor data
analysis to treat the ambiguity in the decision-making process. We validated the performance of FuzHD++
by comparing it with existing methods using two real-world datasets. Our results showed that the proposed
missing sensor data recovery method achieves more than 20% improved root mean square error results than
most existing methods. Furthermore, FuzHD++ achieved an average accuracy of 92% for analyzing the
sensor readings and detecting the abnormal ones. According to the results, the proposed mechanisms based
on the observed temporal and spatial correlation analysis improve the robustness of IoT against data loss and
integrity attacks.

INDEX TERMS Internet of Things, sensor networks, missing data recovery, abnormal node detection,
repeated pattern, fuzzy logic, sensor correlations, false data injection attacks.

I. INTRODUCTION
Since the emergence of the Fourth Industrial Revolution,
there has been a growing trend in the use of elements of the
Internet of Things (IoT). As a result, IoT environments such
as smart homes and smart cities are becoming increasingly
popular and have permeated various areas of our lives. In this
context, the use of sensors on IoT devices ensures a seam-
less connection between the devices and the physical world.

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

Indeed, modern IoT devices are computer-like devices that
come with a wide range of heterogeneous sensors connected
through a dynamic and distributed wireless sensor network
(WSN). In this context, the primary requirements of such
devices are that they monitor their environmental condi-
tions, report sensor data, and perform appropriate actions in
response to the surrounding circumstances [1].

However, the accuracy of such decision-making depends
upon the reliability and trustworthiness of the collected sensor
data. Unfortunately, the hostile environment of IoT sensors
makes this issue more challenging. Most of the stream data
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obtained from such sensors include either missing or abnor-
mal data caused by various factors such as sensor malfunc-
tion, transmission error, storage errors, or malicious attacks.
Indeed, the growing popularity of IoT, coupled with phys-
ical vulnerability and lack of standardization [1], [2], has
led malicious attackers to take an interest in IoT devices.
As a result, various types of malicious activities already exist
that attempt to compromise the security and privacy of IoT
devices. Specifically, some studies [3]–[9] have shown that
attackers can compromise and manipulate sensor data in real
deployments through false data injection attacks (FDIAs).
Such compromised nodes hamper the system’s functionality,
leading to inappropriate decisions by operators and possibly
catastrophic effects [10]. This is where anomaly detection has
become a necessity.

To guarantee a safe and reliable IoT system, a myriad
of solutions have already emerged that tackle the problem
of anomaly detection in sensor data [11], [12], [33]–[40].
However, most of these works do not take into account the
presence of missing data within the collected sensor streams.
Incomplete sensor data can confuse anomaly detection meth-
ods, as they may create false conclusions that lead to wrong
detection results. To improve our chances of correctly detect-
ing abnormal sensor nodes, we think it is necessary to ensure
the completeness of a sensor data stream before using it in
any anomaly detection system. Therefore, it is essential to
use appropriate techniques to handle missing and anomalous
data with the capability of recovering and detecting them in
an integrated framework.

The problem of abnormal node detection was tackled in
our previous work [11], in which the spatiotemporal (ST) and
multivariate attribute (MVA) correlations of heterogeneous
sensor readings were considered in the detection process.
The collected sensor data were analyzed through a hierar-
chical framework based on fuzzy logic to take advantage of
domain knowledge and treat the ambiguity in the decision of
detecting abnormal nodes. To handle missing data, we carried
forward the last observed value. In this context, two major
issues remain in the methods presented in the original paper
concerning the adopted missing recovering method and the
design choice of the fuzzy inference system (FIS). First, the
adopted missing recovering method can be described as a
hard recovery approach, as we are rigidly forced to pick the
single last observed value as the only recovered value. Such
a naive interpolation method may not be the best way to
handle missing sensor values, and it may affect the abnormal
node detection performance. Second, the adopted abnormal
node detection method considers a FIS based on background
knowledge. However, such a FIS may suffer from a loss of
accuracy, especially when dealing with a crafty FDIA.

In this paper, we refer to our prior work as fuzzy-based
hierarchical detection (FuzHD), and we tackle its limitations
by presenting FuzHD++, a new method to recover miss-
ing sensor data and detect abnormal nodes jointly rather
than independently. Specifically, in FuzHD++, we propose
two new methods, which we refer to as top-k repeated

patterns (TkRP) and fuzzy-based hierarchical detection with
a refined rule base (FuzHD+rRB). These novel methods
were devised to handle the missing sensor data and ensure
higher abnormal node detection accuracy. In TkRP, we adopt
the concept of a matrix profile [13] to extract the top-k
repeated patterns from different sensor nodes. Furthermore,
it utilizes the k-nearest neighbor (k-NN) estimator to recover
the missing data based on the extracted pattern information
of multiple neighbor nodes. In FuzHD+rRB, the system
adopts a refined fuzzy rule-based detection method to take
advantage of domain knowledge and treat ambiguity in the
decision-making process. Specifically, we design a hybrid
FIS to detect abnormal nodes. Along with the background
knowledge-based predefined rules, we also use the so-called
Wang–Mendel (WM) method [14], [15] for generating fuzzy
rules from sensor data, making it a more comprehensive and
flexible FIS.

The main contributions of this paper are as follows.
1) To guarantee an accurate and reliable abnormal node

detection, we introduce a new recovery method, TkRP,
to correctly recover the missing sensor data.

2) We improve the previously proposed FIS in FuzHD
[11] by introducing FuzHD+rRB, in which we design
a hybrid FIS to detect abnormal nodes, making it a more
comprehensive and flexible FIS.

3) We use a new FDIA threat model to generate a malicious
dataset from the original sensor data [12], allowing us to
test the abnormal node detection method and evaluate its
performance against different threat severity levels.

4) We evaluate our proposed methods through a number
of experiments designed to test their parameterization
(number of top-k patterns, number of sensor nodes per
cluster, length of sensor data streams), accuracy and
efficiency.

5) We also augment our evaluation with the Intel Lab
dataset [42] in addition to the Yokota Lab dataset,
as in our previous work. Our experiments using the two
real-world datasets demonstrate that the proposed miss-
ing sensor data recovery method TkRP achieves more
than 20% improved root mean square error (RMSE)
results than most existing methods. Furthermore, the
combination of the two proposed methods, FuzHD++,
achieves better results than FuzHD in terms of abnormal
node detection, with an average accuracy improvement
of 14.11%.

The remainder of the paper is organized as follows.
Section II reviews the related methods of missing data
recovery and anomaly detection in time series. Section III
describes some essential background characteristics before
introducing our proposed method. Section IV presents the
detailed architecture and design of TkRP and FuzHD+rRB
to recover missing sensor data and detect abnormal nodes,
respectively. We then describe the experimental setup in
Section V and present an analysis of the results and evaluation
in Section VI. Section VII contains some concluding remarks
and perspectives.
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II. RELATED WORK
Applications, such as anomaly or abnormal node detection,
built upon incomplete sensor data streams are obviously unre-
liable. If the missing data cannot be filled accurately, existing
detection algorithms can hardly be performed. Recovering
dirty and missing data could improve clustering over spatial
data [16]. For sensor data streams, we argue that recovering
the missing values can also improve applications such as
abnormal sensor node detection. To guarantee a dependable
IoT system, it is essential to conduct studies to deal with
these two issues. Although much related research has indeed
been carried out, most work tends to focus on recovering
missing data or detecting anomalous data, and few studies
have simultaneously addressed these two problems.

A. MISSING SENSOR DATA RECOVERY
The straightforward idea is to carry forward the last observed
value [11]. However, such a naive interpolation method may
not be the best way to handle missing sensor values, as it
may confuse the abnormal node detection method and raise
false alarms. The estimation algorithms of missing data have
been extensively researched by applying different methods;
for example, mean impute, k-NN impute, maximum likeli-
hood, Bayes estimator, regression imputation, and delete and
multiple imputations [17]. However, none of these methods
can be used in sensor data because they can only deal with
discrete data and not continuous data. According to the under-
lying method, recovery algorithms can be classified as either
matrix based or pattern based to solve the missing sensor data
missing problem.

A matrix-based algorithm transforms the sensor data in
a way that allows the application of dimensionality reduc-
tion. The singular value decomposition (SVD) method [18]
is the most popular method that has been used to achieve
such a goal [19]–[23]. Other matrix-based algorithms rely on
techniques that differ from SVD, such as principal compo-
nents analysis [24]–[26], centroid decomposition [27], matrix
factorization [28], and nonnegative matrix factorization [29].
All of these matrix-based recovery algorithms multiply back
the matrices after reduction and use the results to fill the orig-
inal missing values. However, the number of reduced dimen-
sions needs to be parameterized as the accuracy–efficiency
trade-off is heavily impacted.Moreover, thesemethods do not
consider the sensor spatial correlation. In contrast, pattern-
based recovery methods [30]–[32] consider the high spatial
and temporal correlation between sensor data streams. When
a sensor stream is incomplete with missing values, an algo-
rithm leverages the similarity to any number of reference
sensor streams. The observed values in the reference sensor
streams are treated as a query pattern. Any incomplete sensor
streammatching in that pattern may reveal candidate replace-
ment values in the base streams. Similar to matrix-based
algorithms, pattern-based techniques also require predefined
user parameters. The length of the query pattern dramatically
impacts the accuracy–efficiency trade-off. If the pattern is too
small, the technique loses accuracy; if the pattern is too big,

the computational time in pattern comparison becomes too
costly.

B. ANOMALY DETECTION IN SENSOR DATA
Several techniques for anomaly detection in IoT have
been proposed, but most either restrict their application to
faults or failures [33]–[35], or to specific network attacks
alone [36]–[39]. The area of FDIA detection for WSN has
been overlooked by existing works, and only a few studies
tackled this issue [11], [12], [40].

In this context, anomaly detection in WSNs can be clas-
sified as methods that directly run on sensing devices (i.e.,
distributed methods) or those running on the cloud (i.e., cen-
tralized methods). Performing anomaly detection in a central
processing system allows us to adopt complex algorithms
and, consequently, to obtain accurate results. A centralized-
based approach is proposed where all heterogeneous sensor
streams are collected and controlled in a centralized base sta-
tion [11], [33]. The proposed solution evaluates the intensity
of the correlation between the sensor streams by calculating
the lag correlation between them.

A centralized failure detection approach is proposed where
the base station aggregates the network sensor readings and
detects failures by finding an insufficient flow of incoming
data [34]. In contrast, distributed methods run directly on
sensor nodes equipped with light computation capability.
Most of these approaches require historical data samples
to be kept in the sensor node, which has limited memory
storage. A rule-based distributed fuzzy inference system for
WSNs is proposed that combines both local and neighboring
observations to identify the occurrence of events [10], [35].
Their experimental results showed that using fuzzy logic
improved the accuracy of the event detection. Thus, notwith-
standing the limitations of the aforementioned works, few
studies have simultaneously addressed both the problem of
missing data recovery and abnormal node detection. Instead
of simply discarding the sensor streams with missing data,
we propose to recover them and then detect the abnormal
nodes. Table 1 shows a summary of the characteristics of
different approaches along with our proposed method.

In this paper, our proposed methods utilize the observed
temporal and spatial correlation of sensor data to achieve
reliable estimation and detection performance.

III. PRELIMINARY BACKGROUND
This section provides the essential background characteristics
used in our proposed framework and discusses some assump-
tions about the monitoring environments considered in this
paper. A list of abbreviations and notations used in this paper
is provided in Table 2 and 3, respectively.

A. SYSTEM AND SENSOR DATA MODEL
An environmental monitoring application in a WSN is
defined as an application that monitors the real world and
issues a report whenever an event of interest arises during a
certain period in a specific location. This paper considers a

61048 VOLUME 10, 2022



N. Berjab et al.: Recovering Missing Data via Top-k Repeated Patterns

TABLE 1. Summary of characteristics of different approaches.

FIGURE 1. A hierarchical distributed wireless sensor network (WSN)
based on two-level clustering.

TABLE 2. List of abbreviations and acronyms.

typical WSN architecture consisting of heterogeneous sensor
nodes, a server, and a network connecting all sensor nodes.
The server is for collecting and processing sensor data. All the
sensor nodes in the WSN are connected to this server directly
or indirectly (Figure 1).

This paper addresses the network scalability issue by
adopting a hierarchical WSN topology based on two-level
clustering. The adopted clustering method allows us to prop-
erly utilize the network energy among all nodes, capture the
correlation between the sensors, and enhance the system’s
trustworthiness.

Before describing our proposed approach, we give defi-
nitions of the key terms used in this paper. To implement

TABLE 3. Symbols and notations.

such a thorough monitoring system, n sensor nodes (S1,
S2,. . . , Sn) are geographically divided into clusters, each cov-
ering a certain area. Each cluster should include one cluster
head (CH) and other heterogeneous cluster member (CM)
nodes arranged into groups according to their type. Each
group is controlled by a cluster aggregator (CA). The CMs
are responsible for sensing and collecting various attributes,
such as temperature, humidity, and light intensity. The CA
is responsible for all communication between the CM and
CH nodes. Once all the sensed data within the cluster are
collected, the CH forwards themessages directly to the server.
Figure 1 depicts the topology of this hierarchical network
formed by two-level clustering.

Each sensor node (i.e., CM, CA, and CH) has a unique
identifier, where i ∈ [1, n]. Each Si is characterized by six
attributes, L, T , C , A, input I , and output O.

Definition 1: Let L(Si) be the location of sensor Si,
specified by its geographic coordinates xi, yi, and zi.
Definition 2: Let D be the set of sensor types, where D
includes Temperature, Humidity, Light , and Smoke.
Definition 3: Let T (Si) be the node’s sensor type, where
T (Si) ∈ D.
Definition 4:Wedenote size(C) as the number of sensors
deployed in the cluster C . LetC(Si) be the cluster within
which Si is located. The clustering formation is based on
a defined distance threshold, thd . Two sensors, Si and Sj,
belong to the same cluster C if and only if C(Si) =C(Sj),
and the distance between L(Si) and L(Sj) is less than thd .
Definition 5: In addition to the clustering, homogeneous
sensor nodes within the same cluster are divided into
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groups according to their type T (Si). Let A(Si) denote
the group within which Si is located. The two sensor
nodes Si and Sj belong to the same groupwithin the same
clusterC if and only if T (Si) = T (Sj) andC(Si) = C(Sj).
Definition 6: Let I (Si, Sj, t) denote an input report mes-
sage received by Si from Sj at time t .
Definition 7: Finally, let

−−→
O(Si) be Si’s sensor data

stream, where
−−→
O(Si) = {O(Si, 1), . . . ,O(Si, t), . . . ,

O(Si,m)}. O(Si, t) is the sensor node’s output data
stream with every Si sensing data at time t , and m is the
length of the sensor data stream.

B. ASSUMPTIONS
Our research is based on the following assumptions.

• To reduce the complexity of the problem, we assume
that every sensing environment is characterized by its
environmental conditions, such as temperature, light
intensity, and relative humidity.

• As noted, the clustering concept is adopted for the
network topology. Although several complex and inno-
vative clustering techniques have been proposed for
WSNs, this paper considers a very simple clustering
technique for environmental monitoring in WSNs.

• All clusters should be composed of homogeneous and
heterogeneous sensor nodes to maintain high event-
detection accuracy.

• Depending on the application, a CH node can be a spe-
cial sensor with more potential than other sensor nodes
in terms of energy, bandwidth, and memory. However,
in this paper, we consider that all the sensor nodes in
the network have the same performance characteristics.
In addition, the role of the CH is periodically rotated
among all nodes to balance the energy consumption and
the traffic load in the network.

• In this paper, the CAs or the CHs do not aggregate
the collected data. Instead, we need to keep the actual
collected data from each sensor to recover the missing
data and detect the abnormal data.

• N-modular redundancy is used to achieve a dependable
and fault-tolerant WSN. Furthermore, the considered
WSN must satisfy a good distribution of the clusters
where at least three sensor nodes must be deployed
within one cluster (i.e., triple modular redundancy is a
particular case of N-modular redundancy).

• While some sensor nodes may be compromised and
considered abnormal nodes, we assume that the majority
of the sensors will remain trustworthy.

IV. PROPOSED APPROACH
Our proposed approach aims to guarantee the system’s
dependability by recovering the missing sensor data and
detecting abnormal nodes. This problem can be expressed as
follows.
Problem: Given n coevolving correlated sensor stream

sequences provided by n heterogeneous sensors collected at

the same time, recover the missing sensor data, determine at
any point in time which sensors are abnormal, and report all
such nodes.

To address these challenges and guarantee reliable and
secure monitoring of WSN, we propose two new methods,
called TkRP and FuzHD+rRB, for detecting abnormal nodes
in a heterogeneousWSNwhile recovering the missing sensor
data. Both TkRP and FuzHD+rRB utilize the observed tem-
poral and spatial correlation of sensor data to achieve reliable
estimation and detection performance. First, the proposed
TkRP adopts a matrix profile to extract the top-k repeated
patterns from different sensor nodes and utilize k-NN pattern
information of neighbor nodes to recover the missing data.
Second, it detects abnormal nodes using a fuzzy logic-based
hierarchical detection method. The proposed framework is
depicted in Figure 2, which shows the various sensor node
modules and the flowchart for recovering missing data and
processing abnormal nodes.We follow a three-step process to
achieve our objective, as described in detail in the following
subsections.

A. STEP 1 IN FuzHD++: DATA ACQUISITION AND
FuzHD+rRB ABNORMAL NODE-LOCAL DETECTION
The first step involves collecting heterogeneous sensor
streams from the various clusters deployed in the monitored
area and performing the abnormal node-local detection. In the
following subsections, we explain the details related to the
local detection module in FuzHD+rRB.

1) DEFINITION OF THE INPUT/OUTPUT VARIABLES ALONG
WITH THEIR MEMBERSHIP FUNCTION
The CM senses environmental events and executes the local
detection process to check whether the newly collected data
are subject to abnormality. Figure 3 illustrates details of the
design of the adopted scheme for the local detection module.
This detection module considers temporal semantic correla-
tions to derive a crisp local decision. Every CM maintains a
short-term history of the collected sensed data. This aggre-
gation of data is used to construct a sliding time window
containing the most recent sensed data in the sensor node
stream. In the literature on stream processing, time windows
are a familiar concept [33].

In this paper, we use the time window not only as a mech-
anism for bounding the sensor node stream aggregation but
also to profile the behavior of the sensor node readings over
time [11]. The sensed data will be time correlated, and the
variation range will usually be small in the short term [41].
By using the time window concept, we can derive valuable
information regarding the sensor nodes’ temporal similarity.
The sensed data contain a k-second timestamp, indicating the
time at which the sensor node reported the reading.

As shown in Figure 4, the sensor node time-series samples
are grouped into (p + 1) frames to compose the sliding time
window of sizeWl , where l ∈ {0, p}.

As time passes, the window slides in one-frame incre-
ments over the sensor data stream. Each frame contains T

61050 VOLUME 10, 2022



N. Berjab et al.: Recovering Missing Data via Top-k Repeated Patterns

FIGURE 2. Overview of FuzHD++: Fuzzy-based hierarchical abnormal node detection with top-k repeated
patterns as a missing data recovery method.

FIGURE 3. FuzHD+rRB: Local detection scheme for CMs.

FIGURE 4. Temporal average similarity (TAS) based on a sliding window.

successive sensor readings. After setting the sliding time
window, we apply a summarization function to extract the rel-
evant information about sensor node temporal similarity.F0 is
the frame containing the recently collected sensor readings.
F1 is the frame for the T previous sensor readings. p + 1 is
the size of the sliding time window, and T is the number of
sensor readings within each frame. For each frame Fl within
the window, we calculate the temporal similarity between
the frame Fl and the current frame F0 [11]. The temporal
similarity is given by Equation (1).

q(Fl,F0) =
1

(1+
√∑T

t=1(O(Si, t)Fl − O(Si, t)F0 )
2 ))

(1)

The temporal average similarity (TAS) between the current
frame data and the data in the window is then calculated.
As indicated in Equation (2), the average similarity is cal-
culated by adding a weighted summation to the calculation.
The closer the frame is to the current timestamp frame, the
more it is correlated [11].

Q(F0) =

∑p
l=1 weight · q(Fl,F0)

l + 1

where the weight: weight =
1

TF0 − TFl
(2)

Here, Tf0 is the last timestamp of the collected sensor
readingO(Si,T ) in frame f0. The same applies to Tfl , where it
is the last timestamp of the collected sensor reading O(Si,T )
in frame fl . The smaller the TAS, the more the frame at
the current timestamp deviates from the historical sensor
node data. After the CM finishes the calculation of the TAS,
it conducts the fuzzy local detection process. Indeed, this
paper proposes a fuzzified methodology for detecting abnor-
mal nodes in the network. It uses fuzzy logic to identify
the severity of abnormality of sensor nodes rather than just
giving crisp results. Moreover, a fuzzy-based system tends to
provide rules that are by nature easy to interpret.

Thereby, together with the obtained TAS value, both the
current raw sensed value O(Si, t) and its timestamp are
fuzzified through predefined membership functions (MFs).
Choosing to include the sensed data timestamp is highly sig-
nificant for the accuracy of the detection [42]. The monitored
environment can differ for each time-of-day segment. As a
result, the input–output response will also differ depending
on the time of day. For example, the light intensity and
temperature during the day are generally higher than at night.

In this paper, we consider an environment monitored by
sensor nodes for temperature, humidity, light, and smoke den-
sity. For each type of sensor node, the local detection module
takes three linguistic variables as its input: sensed value, aver-
age temporal similarity, and sensed data timestamp. In the
fuzzification process, the three crisp values are converted
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into degrees of membership, with each membership using
the trapezoid and triangle models. The trapezoidal function
is determined as follows:

trapezoid(x; a, b, c, d) =



0 if x < a
x − a
b− a

if a ≤ x ≤ b

1 if b ≤ x ≤ c

d − x
d − c

if c ≤ x ≤ d

0 if d > x

(3)

where x is a member of the universal set, and the parameters
a, b, c, d (with a < b < c < d) determine the x coordinates of
the four corners of the underlying trapezoidal MF. As for the
triangular MF, the function is specified by three parameters
{a, b, c} as follows:

triangular(x; a, b, c) =



0 if x ≤ a
x − a
b− a

if a ≤ x ≤ b

c− x
c− b

if b ≤ x ≤ c

0 if c ≥ x

(4)

The sensed value input is one of temperature Te, humidity
Hu, light Li, or smoke Sm. The trapezoidal and triangular MF
for the Te variable has four semantic values, i.e., very low VL,
low-to-medium LM, medium-to-highMH, and very high VH.
For instance, the MFs for temperature are shown in Figure 5.
The triangular MFs for the Hu, Li, and Sm variables have
three semantic values, i.e., low Lo, mediumMe, and high Hi.
The triangular MF for average temporal similarity TAS has
two semantic values, i.e., small Sm and big Bi. Finally, the
trapezoidal MF for the sensed data timestamp TS has four
semantic values, i.e., nightNt, morningMo, afternoon Af, and
evening Ev [11]. After being fuzzified, the three fuzzy inputs
are then fed into the fuzzy inference system.

2) GENERATION OF THE REFINED RULE SET
FOR FuzHD+rRB
The inference engine of the proposed FIS uses the
Mamdani-type fuzzy process. FIS can be designed either
from domain knowledge or from data. In FuzHD [11],
the adopted FIS is based on expert knowledge. However,
it may suffer from a loss of accuracy under different envi-
ronmental conditions. Rule-based legibility is essential to
take full advantage of FIS. For this reason, here we improve
the previously proposed FIS in our FuzHD by designing a
hybrid FIS that cooperates between two kinds of information,
namely background knowledge and hidden knowledge in
data. In FuzHD+rRB, the generation of the fuzzy rule base
for the FIS is conducted offline and is decomposed into two
main phases (Figure 6).
• In the rule induction, we use the WMmethod for gener-
ating fuzzy rules from the sensor sample data along with
the background knowledge-based predefined rules.

FIGURE 5. Membership functions (MFs) for the input linguistic variables:
Temperature sensed value.

FIGURE 6. Generation of the refined rule set for FuzHD+rRB.

• In the rule validation and selection, the initial combi-
nation rule set is further checked to only keep those
that are relevant and select those that are appropriate for
inclusion in the refined rule set.

a: RULE INDUCTION
First, we start by acquiring the predefined rules. The form of
these rules is as follows.

IF premise, THEN consequent
where the premise is the fuzzy input variables connected by
and and or logical connectors, and the consequent is the
fuzzy output variable. More formally:

If x1 is Ai
1 and x2 is A

i
2 . . . and xp is A

i
p then y is Ci.

The fuzzy sets Ai
j are those for which the MF of xij is maxi-

mum for each input variable j from pair i. The fuzzy set Ci is
that for which theMF of the observed output, yi, is maximum.

The predefined fuzzy rule base comprises a set of rules
designed to decide the probability of the node being abnor-
mal. By considering the background knowledge, we use
heuristics to build the rule base for our abnormal node detec-
tion. An example might be as follows.

IF Te isHiAND TAS is SmAND TS isNi, THENAbnormal
is Hi.
For instance, the predefined fuzzy rules related to temper-

ature sensor nodes are listed in Table 4. This set of rules
contains the rules involving linguistic variables based on the
sensed values from temperature sensor nodes. The rule base
for the other sensor types can be constructed similarly [11].

Once we acquire the predefined rules, we move to the
WM-derived rules. The adopted WM model follows the
following three steps.
1) Each variable of the input space is automatically divided

into fuzzy regions. The WMmodel does not impose any
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TABLE 4. Predefined rule base for temperature sensor nodes.

specific partition for the input variables. Indeed, they are
equally partitioned on a predefined number of triangular
membership fuzzy sets. Each domain interval is divided
into 2N+1 regions. The center of each MF lies in the
center of the region, and the extreme lies at the center of
the next region.

2) Then, we generate the fuzzy rules from the given data
pairs from the sample sensor data. One fuzzy rule
is generated for each input–output data pair from the
sample data. The output is computed through centroid
defuzzification.

3) Finally, the conflicting rules are removed. For example,
the rules that share the same antecedent but with differ-
ent consequents are removed.

After acquiring both the predefined and WM-derived rules,
we merge the two sets to obtain the initial combination rule
set.

b: RULE VALIDATION AND SELECTION
In the rule validation, we aim to identify the relevant rule set
from the initial combination rule set. Clearly, certain rules
will show some redundancy after combining the two sets.
Therefore, such redundant rules need to be removed and not
included in the relevant rule set. Moreover, rules having a
number of MF fuzzy sets that differ from that defined by
the WM model are also removed and are not included in
the relevant rule set. In the rule selection, we aim to select

the appropriate rules to be included in the refined rule set.
At this stage, we assess the conflicting rules and rank them
according to their prediction accuracy in the sample sensor
data. A rule is added to the refined rule set if the expected
predictive accuracy of the rule meets the desired accuracy and
is not subsumed by a conflicting rule with a lower expected
predictive accuracy.

3) DEFUZZIFICATION
Finally, the defuzzification process of obtaining a single num-
ber from the output of the aggregated fuzzy set is conducted.
It is used to transfer FIS results into a crisp output, which is
used to make a local decision and send a report message to
the CH for further analysis that eventually leads to the final
decision. The centroid method is used to calculate the crisp
value of the fuzzy output as follows:

x∗ =

∑k
i=1 xiµ(xi)∑k
i=1 µ(xi)

(5)

where x∗ is the crisp value, xi represents each member of the
output universe, µ(xi) is the aggregated output MF, and k is
the number of items in the fuzzy set.

The confidence for abnormal node detection is defined as
the output. The triangular MF for the fuzzy output variable
is defined in terms of three levels, i.e., low Lo, medium Me,
or high Hi. Figure 7 shows the MFs for abnormal detection
confidence. The linguistic variables represent the detector’s
confidence about the presence of a data integrity attack. For
example, if the local detection value is higher than 30, we are
more than 30% certain that it is an abnormal node. If the
detector’s confidence is smaller than 30%, it is more than
likely that it is not an abnormal node.

B. STEP 2 IN FuzHD++: TkRP MISSING DATA RECOVERY
AND FuzHD+rRB ABNORMAL GROUP DETECTION
After collecting all the data (i.e., sensed data and local deci-
sions) from the CMs, the CA verifies whether there are miss-
ing values within the sensed values. When missing values
occur in the CMs, the CA executes the missing data recovery.
In this subsection, we introduce our new recoverymethod that
uses the matrix profile (Figure 8) to extract the top-k repeated
patterns from sensor nodes within the same group and utilize
the k-NNpattern information of neighbor nodes to recover the
missing data. The top-k repeated patterns are only extracted
from the CMs identified as a normal sensor during the local
detection process.

1) TkRP: CONSTRUCTION OF THE REFERENCE
PATTERN DATABASE
The first step toward recovering the missing sensor data is
constructing the reference pattern database. Figure 9 illus-
trates the construction process. From each collected sensor
data stream

−−→
O(Si), the CA starts computing the stream’s

matrix profile.
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FIGURE 7. Abnormal node confidence MF.

FIGURE 8. Example of matrix profile calculation.

Thematrix profile is a recently proposed data structure [12]
that annotates a time series to solve the problem of anomaly
detection and motif discovery.

Besides its novelty, the method is robust, scalable, and
parameter free. Hence, we adopt this data structure for our
proposed recovery method. The matrix profile comprises
two primary components, namely, a distance profile and a
profile index. The distance profile is a vector of minimum
Z-normalized Euclidean distances. The profile index contains
the index of its first nearest neighbor, i.e., it is the location of
its most similar subsequence.

Definition 8:A subsequence
−−→
O(Si)t,o of a sensor Si’s data

stream
−−→
O(Si) is a continuous subset of the values from

−−→
O(Si) of length o starting from t . Formally,

−−→
O(Si)t,o =

{O(Si, t),O(Si, t + 1), . . . ,O(Si, t + o− 1)}, where 1 ≤
t ≤ o− m+ 1.

The algorithms that compute the matrix profile use a sliding
window approach. Given a sensor data stream

−−→
O(Si) and

the desired subsequence
−−→
O(Si)t,o of length o, first, we use

a sliding window of length o to extract all subsequences of
length o.

Definition 9: An all-subsequences set B of a sen-
sor Si’s data stream

−−→
O(Si) is an ordered set of all

the possible subsequences of
−−→
O(Si) obtained by a

sliding window of length o across
−−→
O(Si) : B ={

−−→
O(Si)1,o,

−−→
O(Si)2,o, . . . ,

−−→
O(Si)m−o+1

}
.

Then, we compute the pairwise distance among these win-
dowed subsequences against the entire sensor data stream
−−→
O(Si). The distance calculations occur m − o + 1 times,
where m is the length of the sensor data stream and o is the

window size. Because the subsequences are pulled from the
sensor data stream itself, an exclusion zone is required to
prevent trivial matches. For example, a subsequence of sensor
data stream matching itself or a subsequence of sensor data
stream very close to itself is considered a trivial match. The
exclusion zone is simply half of the window size before and
after the current window index. The values at these indices
are ignored when computing the minimum distance and the
nearest neighbor index. Figure 8 illustrates an example of
matrix profile calculation. It shows the computation of a
distance profile starting at the second window. The matrix
profile stores the distances in Euclidean space, meaning that
a distance close to 0 is most similar to another subsequence
in the sensor data stream, and a distance far away from 0, say
100, is unlike any other subsequence.

With the matrix profile computed, it becomes simple to
find the top-k of repeated patterns [43].

Definition 10: The most repeated pattern is a pair

of subsequences
{
−−→
O(Si)v,o,

−−→
O(Si)w,o

}
of a sensor Si’s

data stream
−−→
O(Si) that are most similar. More for-

mally, ∀a, b, v,w the pair
{
−−→
O(Si)v,o,

−−→
O(Si)w,o

}
is the

subsequence pattern if and only if distance(
−−→
O(Si)v,o,

−−→
O(Si)w,o) ≤ distance(

−−→
O(Si)a,o,

−−→
O(Si)b,o); where

|v− w| ≥ gapth and |a− b| ≥ gapth for gapth: the gap
that exists between the subsequences where gapth < 0.
Definition 11: The k th most repeated pattern is the k th

most similar pair
{
−−→
O(Si)v,o,

−−→
O(Si)w,o

}
.

Here for simplicity, we only deal with pairs. However, we can
also extend the notion of most repeated patterns to a set of
subsequences that are very similar to each other.

Once we finish extracting the top-k repeated patterns,
we extract the snippets. For each extracted pair of subse-
quences within the top-k repeated patterns, we extract their
snippet.

Definition 12: The most repeated pattern snippet is a
subsequence of the most repeated pattern.

Time series snippets are defined to describe the most rep-
resentative subsequences in a time series [44]. The primary
use of snippets here is to find the subsequence patterns that
occupy most of each top-k repeated pattern in question to
summarize the repeated pattern at a high level. In this paper,
instead of extracting the kth snippet [39], we are only inter-
ested in extracting the top-1 snippet for each extracted pair of
subsequences within the top-k repeated patterns. Indeed, the
top-1 snippet is undoubtedly the most representative pattern
that summarizes the subsequence. For each extracted snippet,
we check if a similar one already exists in the reference
pattern dataset, and if not, insert it.

Definition 13: The reference pattern dataset is a
database that contains a set of d snippets that represent
the most repeated patterns of sensors located within the
same group.
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Having a reference database of patterns, we are now able to
recover the missing sensor data.

2) TkRP: MISSING DATA RECOVERY METHOD
Figure 10 depicts the workflow of the missing recovery
method. The CA collects the latest observations generated
by the CMs’ sensor data stream. A null value is included in
the streamwhenmissing observations are reported. If missing
measurements are reported, the CA requests an estimation of
missing values. This estimation is based on the k-NN algo-
rithm and uses the previously constructed reference database
that includes the top-k repeated patterns. It checks if a similar
experience already exists in the reference dataset and iden-
tifies patterns similar to the current one. After identifying
similar patterns, the CA computes the k-NN distances and
generates the estimated values.

Then, the recovered sensor data stream follows the process
described in subsection B.1 to check if the stream includes
any new patterns and updates the reference pattern database
when it is necessary.

3) ABNORMAL NODE GROUP DETECTION
The group detection module operates at the CA level by
considering spatial semantic correlations. In this detection
module, a more accurate decision is made by including the
local decisions of multiple homogeneous CMs located in the
same group within the same cluster. After receiving a local
decisionmessage from a CM, the CA stores the crisp decision
value. After collecting all the CMs’ local decisions, the CH
executes the cluster detection process for each CM node
to give a group decision about the node’s abnormality. The
group detection module uses two inputs, the CMs’ crisp local
decisions and the CMs’ local decisions. The fuzzifier converts
the crisp values into degrees of membership by applying the
corresponding MF. After being fuzzified, a sigma-count fac-
tor [45] is used as a measure of fuzzy cardinality to quantify
the CMs’ local decisions.∑

Count(f ) =
∑

µf (Si) (6)

Here, f is a fuzzy set characterized by anMFµf (Si), which
gives the degree of similarity for S, and Si = (S1, S2,. . . ,Sn)
is the set of CMs. Precisely, f (Si) is the property of interest
related to the sensor node’s local decision, e.g., ‘‘Abnormal
level is high.’’ A fuzzy majority quantifier is then used to
obtain a fuzzified indication of the consensual CMs’ local
decisions. For a more accurate decision, we use the Most
quantifier to characterize the fuzzymajority of the CMs’ local
decisions, which takes any value from the interval 0 to 1 as
the truth value of its proposition [46].

umost (

∑
Count(f )
|Si|

) = umost (

∑
i µ(Si)
n

)
(7)

Next, the fuzzified inputs and the quantified CMs’ local
decisions are fed into the fuzzy inference process. The fuzzy

TABLE 5. Experiment environment.

TABLE 6. Experimental parameters.

rule base comprises a set of rules designed to decide about the
abnormality of the CM. An example of the format of the rule
is ‘‘IF Abnormal is H AND Most(CMsDecision) is L THEN
Abnormal isH.’’ Fuzzy inference combines the rules to obtain
an aggregated fuzzy output. Finally, the defuzzifier converts
the fuzzy output variable back to a crisp value that is used to
make a group decision and reported to the CH.

C. STEP 3 IN FuzHD++: FuzHD+rRB ABNORMAL NODE
CLUSTER DETECTION
Cluster identification is processed at the CH level by consid-
ering the ST and MVA sensor correlations. In this detection
module, a more accurate decision is made by including the
group decisions of multiple heterogeneous CAs located in the
same cluster. After receiving a group-decision message from
a CA, the CH stores the crisp decision value. After collecting
all the CA group decisions, the CH performs the fuzzy infer-
ence for each sensor node to give the cluster decision about
the node’s abnormality. The detectionmechanism is similar to
that for group detection. However, compared with the group
decision, the cluster decision considers the observations from
heterogeneous sensor nodes in addition to only homogeneous
sensor nodes.

The CH’s fuzzy rule base comprises a set of rules designed
to determine the CM’s abnormality. An example of the rule
might be ‘‘IF Abnormal is LoANDMost(CAsDecision) is Lo,
THEN Abnormal is Lo.’’ If abnormal nodes are detected, the
CH sends a report message to the server.

V. EXPERIMENTAL SETUP
This section describes the datasets used to evaluate our pro-
posed approach and the details of the sensor network that we
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FIGURE 9. Missing data recovery process in TkRP.

FIGURE 10. Missing data recovery process in TkRP.

have implemented, including the deployment setting and the
experimental scenario design.

A. DATA ACQUISITION
To show that our proposed approach applies to real-world
WSNs deployed with heterogeneous sensors, we use two
datasets that have different types of sensor deployment. The
first dataset is the publicly available Intel Berkeley Research
Lab dataset [47]; the second is the Yokota Lab where the data
are collected from our deployable WSN in our laboratory.

1) INTEL BERKELEY RESEARCH LAB DATASET
In this dataset, the data were collected from 54 sensor
nodes deployed in the Intel Berkeley Research Lab between

February 28 and April 5, 2004. To effectively monitor the
whole lab environment, 54 sensors are unevenly distributed
in different locations in the research lab. Mica2Dot sen-
sors with weatherboards are used to collect time-stamped
topology information, along with temperature (in degrees
Celsius), humidity (temperature-corrected relative humidity
ranging from 0 to 100%), light (Lux) (a value of 1 Lux corre-
sponds to moonlight, 400 Lux to a bright office, and 100,00
Lux to full sunlight), and voltage values (in volts ranging
from 2 to 3). The batteries, in this case, were lithium-ion cells
that maintained a reasonably constant voltage over their life-
time. A new reading was collected every 31 seconds. In total,
2.3 million readings were collected from these sensors. The
sensors were dispersed in the lab, as shown in Figure 11.
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2) YOKOTA LAB DATASET
In addition to the Intel Lab dataset, we also collected sen-
sor data streams from 27 sensor nodes in our laboratory
between January 24 and July 25, 2018. The real-world sen-
sor data were collected periodically while performing our
usual daily activities. The sensor nodes were deployed using
the Raspberry Pi 2 and 3 Model B microcontroller plat-
forms (Table 5), as we consider the Raspberry Pi to be
the best IoT hardware platform in terms of performance and
flexibility. Each physical sensor node is equipped with one
temperature sensor module (DS18B20 temperature sensor),
one humidity sensor (DHT11 humidity sensor), one smoke
density sensor (MQ-2 smoke sensor), and one digital light
intensity sensor (BH1750 digital light sensor), yielding a total
of 64 sensors. The technical characteristics of the Raspberry
Pi platforms, sensors, and server used in our experimental
setting are described in Tables 4 and 5. As shown in Figure 12,
the sensor nodes were divided into five clusters separated
from each other and with different environmental conditions.
Two clusters comprised five sensor nodes each and were
located in our laboratory room. The third cluster consisted of
six physical nodes located in a kitchen corner and exposed to
sunlight, the fourth consisted of six physical nodes located in
a seminar room, and the fifth consisted of five physical nodes
located in a server room. Each sensor transmits data approx-
imately every two minutes, giving a total of 20.9 million
readings.

B. DATA PREPROCESSING
Three main steps must be performed to prepare the dataset
for evaluation: cleaning the raw sensor data, injecting false
sensor data, and physically separating the sensor nodes into
clusters. Cleaning the data is necessary to ensure that the
proposed abnormal node detection is only executed on known
FDIAs, allowing for consistent evaluation. After that, new
false sensor data may be injected. The clustering process is
also considered a necessary process here to capture the sensor
data correlation adequately. In the following subsections,
we explain the three main steps in more detail.

1) DATA CLEANING
To use the Intel Berkeley Research Lab dataset, we encoun-
tered an issue related to the notion of time variation (i.e.,
epoch) within the collected data. Indeed, the usage of the
epoch is necessary to build a baseline that works on sensor
data streams such as our collected dataset or the Intel Lab
dataset.

However, for the case of the Intel Lab dataset and even our
dataset, the notion of the epoch is loosely defined. Indeed,
even though sensor nodes are commanded to collect a new
reading in every defined epoch, the fact of having multi-
ple values or missing values for different epochs cannot be
avoided (because of failures or communication problems).
For the WSNs deployed at the Intel Lab, the reasons behind
the failures were communication problems and the sensor
battery condition. In addition, we found that readings of

FIGURE 11. Sensors deployed in the Intel Berkeley Research Lab.

FIGURE 12. Heterogeneous sensor nodes deployed in the Yokota Lab.

sensor node five in the Intel Lab data were not recorded.
Consequently, it was removed from the dataset.

Concerning our deployed WSNs, some sensor nodes had
missing data for different epochs because of SD card corrup-
tion. However, because of the sensor constraints, we found
that the epoch was not strongly defined in either dataset.
Indeed, both datasets were missing less than 10% of the
expected measurements. Thus, we needed to standardize
the concept of epoch and set it to a well-defined size.
To unify the size, we split the readings into epochs of two
minutes each. The proposed missing sensor data recovery
TkRP was used to substitute each missing sensed value in
an epoch. If a sensor had more than one reading during the
epoch, we took the average of thesemeasurements.We recov-
eredmissing data using the original dataset containing normal
sensor readings. In other words, at this stage, we are still not
dealing with malicious data. The summary of the datasets is
shown in Table 7.

2) FALSE SENSOR DATA INJECTION
Given the lack of sensor datasets with malicious data for
WSNs and the need to test the accuracy of our approach,
we propose an FDIA model to create an attack strategy.
An attacker’s goal in the context of FDIA is to evoke or hide
events without triggering the detection alarm. The primary
challenge is to maintain a balance between the outcome
of the attack and the risk of being detected. In our prior
work [11], the proposed attack models were unsophisticated
and not comprehensive enough to support the claims in the
paper. In that work, we only considered three trivial cases
where the attacker deliberately either randomly changes a
sensor reading or selects the minimum or the maximum
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TABLE 7. Datasets.

possible value.We carefully chose the type of attacked sensor,
insertion time, and attack period. With such a proposed attack
strategy, it is impossible to guarantee a variety of attack
patterns, resulting in uninteresting attack outcomes that are
easy to detect. In contrast,WSNs are subject to various threats
where we cannot simply anticipate the attacker’s actual
intention.

To tackle this issue, here we use an attack strategy that
generates a malicious dataset from the original sensor data,
allowing us to test the detection algorithm and evaluate
its performance against different threat severity levels [12].
We create evaluation data, including FDIA based on the
initially collected dataset. The occurrence probability ofmali-
cious data depends on the exponential distribution:

f (e) =
1
ε
exp(−

e
ε
) (8)

where (500 ≤ ε ≤ 1000). In addition, we defined nine types
of false data. The difference in the false injected data between
the real data and the evaluation data depends on a Gaussian
distribution:

f (e) =
1

√
2πσ 2

exp
{
−
(e− O(Si, t))2

2σ 2

}
, (9)

where σ ∈ [1, 2, 3, · · · 9]. We referred to both Equations
(5) and (6) and injected false sensor data readings into the
initially collected sensor data. The sensor type, FDIA type,
and insertion time were chosen randomly.With such an FDIA
strategy, the attack can be very stealthy and deceive the
detection mechanism without being easily detected.

VI. EVALUATION
Each conducted experiment was repeated twice, and the aver-
age results were taken.

A. EVALUATION OF TkRP IN TERMS OF ACCURACY
To measure TkRP accuracy, as our evaluation metric,
we adopt the most commonly used measure, that is, RMSE
between the original value and the recovered value:

RMSE =

√
1

|Tm|
∑

t∈Tm(O(Si, t)− O(Si, t))2
(10)

where Tm is the set of missing values, O(Si, t) is the original
value, and O(Si, t) is the recovered value.

FIGURE 13. Accuracy of TkRP with an increasing number of top-k
repeated patterns: Intel Lab dataset.

FIGURE 14. Accuracy of TkRP with an increasing number of top-k
repeated patterns: Yokota Lab dataset.

To compare the efficiency and accuracy of TkRP against
state-of-the-art recovery algorithms (introduced in Table 1),
we use the recent benchmark that evaluates missing value
recovery techniques in time series [48]. We set missing
sensor values to appear arbitrarily in themiddle of a randomly
chosen sensor data stream in the dataset.We then vary the size
of the missing values from 20% to 80% (of the chosen sensor
data stream) and measure the average recovery accuracy
using RMSE. We normalize the error across all algorithms
using a z-score (the lower, the better) and present the results
in Figures 13–21.
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FIGURE 15. Runtime of TkRP with an increasing number of top-k
repeated patterns: Intel Lab dataset.

FIGURE 16. Runtime of TkRP with an increasing number of top-k
repeated patterns: Yokota Lab dataset.

1) EVALUATION OF TkRP WITH AN INCREASING NUMBER
OF TOP-k PATTERNS
In this set of experiments, we used the Intel Lab dataset
and the Yokota Lab subdataset (one-month period). The
most critical parameter for TkRP is the number of top-k
extracted repeated patterns. We observed that the run-
time of TkRP increases along with the increased value, k
(Figures 15 and 16). This result was expected because the
higher the value of k, the higher the number of comparisons
performed to produce the recovery (causing more time- and
space-intensive computations). Surprisingly, increasing k did
not always improve accuracy (Figures 13 and 14). The pat-
tern extraction used by TkRP keeps only the most repeated
patterns and filters out the rest.

At some point, the extra extracted patterns resort to infre-
quent pattern extraction that corrupts the recovery. To achieve
a suitable trade-off between accuracy and efficiency, the best
top-k proved to be k ∈ {8, 9, 10}.

2) COMPARISON OF TkRP WITH OTHER RELATED WORKS
In this set of experiments, we study the effect of traffic load
associated with the decrease in the amount of sensed data on

FIGURE 17. Accuracy comparison between pattern-based methods: Intel
Lab dataset.

FIGURE 18. Accuracy comparison between pattern-based methods:
Yokota Lab dataset.

the performance of TkRP. In other words, we evaluate the
recovery accuracy when increasing the percentage of missing
values in one sensor data stream. For the evaluation, we use
the Intel Lab dataset and the Yokota Lab sub-dataset (i.e.,
one-month period).We also present the accuracy results using
RMSE.We set the size of the top-k to 10. Figures 17–21 show
the results. The results show that TkRP outperforms the other
algorithms. Indeed, this experiment shows that, in general,
TkRP takes advantage of having correlated sensor streams to
produce better accuracy. The improvement is more noticeable
in the case of the Yokota Lab dataset, although both datasets
stand out by their very high correlation between the sensor
streams. However, in the Yokota Lab dataset, the correlation
between the sensors is higher than in the Intel Lab dataset
because of the small distance between the CMs. This is why
TkRP, which captures such correlations by design, performs
so well compared with the other related works. We also
observe in this experiment that the error does not always
increase along with the size of the missing block. However,
as shown in Figure 19, the runtime of TkRP increases almost
linearly as the missing rates increase. Thus, although the
runtime of TkRP is slower than in the pattern-based methods,
from a practical point of view, it is still reasonable.
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FIGURE 19. Runtime comparison between pattern-based methods:
Yokota Lab dataset.

FIGURE 20. Accuracy comparison between matrix-based methods: Intel
Lab dataset.

3) SCALABILITY WITH A LARGE DATASET
In this experiment, we study the effect of traffic load asso-
ciated with the increase in the amount of sensed data on
the performance of TkRP. In other words, we evaluate the
scalability of TkRP when we are dealing with an increase
in the length of sensor data streams. For the evaluation,
we use the Yokota Lab sub-dataset (i.e., one-month period)
and the whole Yokota Lab dataset (i.e., six-month period).
Figure 22 illustrates the experiment results. The increase in
RMSE occurs as expected because adding more incomplete
sensor streams increases the number of missing values. How-
ever, the accuracy of the results is still under 1.

4) IMPACT OF THE NUMBER OF SENSOR NODES PER
CLUSTER ON THE PERFORMANCE OF TkRP
In this set of experiments, we evaluate the impact of the
number of sensor nodes per cluster on TkRP performance.
Figure 23 depicts the efficiency of TkRP and recovery accu-
racy on the Intel lab dataset when increasing the number of
sensor nodes per cluster. We only use the Intel lab dataset for
these experiments since it has more sensor nodes scattered
in different areas. We set the size of the missing block to
20%. The sensor stream length is fixed when the number

FIGURE 21. Accuracy comparison between matrix-based methods:
Yokota Lab dataset.

FIGURE 22. Accuracy with a large dataset: Yokota Lab for a period of six
months.

of sensor nodes per cluster varies. Here, we also use the
average RMSE and runtime values to assess the efficacity and
efficiency of TkRP. The experiment shows that the RMSE
accuracy of TkRP remains largely unaffected when we vary
the number of sensor nodes per cluster. This was expected,
as TkRP is only interested in extracting the top-k repeated
patterns from neighboring sensor nodes and disregards the
rest. It can be seen from the results that when the number of
neighbor nodes is small (less than 4), the selected neighbor
nodes may not be in the adjacent area of the node’s physical
location. Thus, errors may happen while recovering the actual
values of the incomplete sensor streams. Nevertheless, there
is a slight decrease in RMSE when the number of sensors
increases from 5 to 11. That is due to the increase in the
number of nodes sharing similar physical locations.

B. ACCURACY OF THE ABNORMAL NODE
DETECTION METHOD
To evaluate the combination of the two proposed methods
FuzHD++ (FuzHD+rRB with TkRP) in terms of abnor-
mal node detection, four performance metrics were used:
accuracy, precision, recall, and F1-score. We used precision,
recall, and F1-score to quantify the detection accuracy. Accu-
racy is the degree to which the detection results confirm
the actual values. Precision is the percentage of the actual
abnormal nodes among the identified nodes. Recall is the
percentage of the identified abnormal nodes among the actual
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FIGURE 23. Impact of the number of sensor nodes per cluster on the
performance of TkRP: Intel Lab dataset.

FIGURE 24. FuzHD++ for better abnormal node detection accuracy:
Yokota Lab dataset.

abnormal sensors. The F1-score is a measure of a test’s
accuracy and is calculated from the precision and recall of the
test. In addition, we used one month of data from the Yokota
Lab dataset and one week of data from the Intel Lab dataset
as the sample sensor data to generate the WM-derived rules.

Figures 23 and 24 show the evaluation results of the two
datasets measuring the extent to which the combination of
the two proposed methods (i.e., FuzHD++ and the previous
method FuzHD) detects abnormal nodes.

Even though the environmental conditions for each cluster
in the two datasets differed, the proposed combined method,
FuzHD++, achieved good detection accuracy with a low
false-positive rate for the task of analyzing the sensor read-
ings to determine whether the sensor nodes were behaving
normally or had been exposed to FDIAs.

The results show that FuzHD++ achieved an average
accuracy of 92%, average precision of 84%, recall rate of
85.50%, and average F1-score of 85%.Moreover, FuzHD++
achieved better detection results than those achieved using
FuzHD, with an average accuracy improvement of over
14.11%, improved average precision of 8.13% and recall rate
of 14%, and a higher average F1-score of 11.05%. Therefore,
we conclude that our proposed method detects abnormal
nodes with high accuracy.

Furthermore, Figures 23 and 24 show the evaluation results
of FuzHD++ and FuzHD+rRB (with the last observed val-
ues as the missing recovery method) using the two datasets.
The results show that by adopting the proposed TkRPmethod

FIGURE 25. FuzHD++ for better abnormal node detection accuracy: Intel
Lab dataset.

as a missing recovery method, the abnormal node detection
accuracy achieved an average accuracy improvement of over
1.6%. Overall, both datasets did not suffer from high missing
rates (less than 10%), explaining the low improvement.

1) EVALUATION OF FuzHD++ UNDER HIGHER
MISSING DATA RATES
To investigate this issue further, we broke down the Yokota
Lab dataset into smaller defined groups. Table 8 illustrates
the breakdown of the missing data rate of the Yokota Lab
dataset by one-month period and cluster location. From the
obtained results, we selected three cases with high miss-
ing data rates as case studies to evaluate the importance
of FuzHD++ for better detection accuracy. The first case
evaluates the abnormal node detection accuracy of the cluster
located in the kitchen area during the period fromMarch 24 to
April 24 (with a medium missing data rate of 25.44%). The
second case evaluates the abnormal node detection accuracy
of the cluster located in the seminar room during the period
from June 24 to July 25 (with a medium–high missing data
rate of 35.08%). Finally, the third case evaluates the abnor-
mal node detection accuracy of the cluster located in the
seminar room during the period from March 24 to April 24
(with a high missing data rate of 58.73%). Figure 25 illus-
trates the F1-score evaluation of FuzHD, FuzHD+rRB with
the last observed values as a missing recovery method,
and FuzHD++ for each case study. The results show that
FuzHD++ achieved the best detection results with an aver-
age F1-score improvement of over 8.22%. Thus, instead of
simply replacing the missing values with the last observed
values, the proposed recovery method TkRP is a better choice
for FuzHD+rRB to achieve higher abnormal node detection
accuracy.

2) IMPACT OF THE NUMBER OF SENSOR NODES PER
CLUSTER ON THE PERFORMANCE OF FuzHD++
In this set of experiments, we evaluate the impact of the num-
ber of sensor nodes per cluster on FuzHD++ performance.
Figure 27 depicts the detection accuracy and the efficiency
of FuzHD++ on the Intel lab dataset when increasing the
number of sensor nodes per cluster. Here, we use the average
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TABLE 8. Breakdown of the missing data rate of the Yokota Lab dataset by one-month periods and cluster location.

FIGURE 26. F1-score evaluation of FuzHD++ under higher missing data
rates: Yokota Lab dataset.

FIGURE 27. Impact of the number of sensor nodes per cluster on the
performance of FuzHD++: Intel Lab dataset.

F1-score and runtime values to assess the abnormal node
detection accuracy and efficiency of FuzHD++. It can be
seen from the results that when the number of neighbor nodes
is small, the selected neighbor nodes may not be in the neigh-
boring area of the node’s physical location, which may cause
a wrong decision. Indeed, FuzHD++ uses the temporal and
spatial correlation of the sensing data between neighboring
nodes to detect the abnormal nodes and assist the fuzzy logic-
based decision-making system. With the continuous increase
of the number, the number of nodes sharing similar spatial
environment conditions gradually increases, and the accuracy
of the detection rate is also continuously improved. However,
with many nodes grouped into one cluster, FuzHD++ will
use the sensed data of nodes with a longer physical dis-
tance to participate in the decision-making, which will lead
to an increase in the false detection rate. Thus, FuzHD++
depends not only on the number of neighboring sensor nodes
to achieve a higher detection rate but also on the distance
or the spatial correlation between intra-cluster neighboring
sensors.

VII. CONCLUSION
To improve the chances of correctly detecting abnormal
nodes in the sensor network, we think it is necessary to ensure
the completeness of a sensor data stream before using it in any
anomaly detection system. This paper presents FuzHD++,
a new method that handles missing and anomalous data
with the capability of recovering and detecting them in an
integrated framework. In FuzHD++, the two new methods,
TkRP and FuzHD+rRB, are devised to recover missing data
and detect abnormal nodes, respectively. The observed tem-
poral and spatial correlations of sensor data are utilized in
both elements to effectively achieve reliable estimation and
detection performance. In TkRP, we adopt a matrix profile
to extract the top-k repeated patterns from different sensor
nodes. Furthermore, it utilizes the k-NN estimator to recover
the missing data based on the extracted pattern information
of multiple neighbor nodes. In FuzHD+rRB, we adopt a
refined fuzzy rule-based abnormal node detection method
with a refined rule base. The refined rule-based FIS inte-
grates the expert rules and the rules obtained from sensor
data analysis, making it a more comprehensive and flexible
inference system. We demonstrated the effectiveness of our
proposed methods by conducting a variety of performance
evaluations. We evaluate our proposed methods through a
number of experiments designed to test their parameterization
(number of top-k patterns, number of sensor nodes per cluster,
length of sensor data streams), accuracy, and efficiency. Our
experiments using two real-world datasets demonstrate that
the proposed missing sensor data recovery method TkRP
achieves improved RMSE results of over 20% compared with
most existing methods. Furthermore, the combination of the
two proposed methods, FuzHD++, achieves better results
than FuzHD in terms of abnormal node detection, with an
average accuracy improvement of over 14.11%. Besides, the
experiment results show that the proposed method depends
not only on the number of neighboring sensor nodes but also
on the distance or the spatial correlation between intra-cluster
neighboring sensors to achieve a higher detection rate.

FuzHD++ can detect abnormal sensor nodes under FDIAs
but cannot detect other types of attacks at this moment.
As for future work, we are currently working on this part.
Such expansion may contribute to enhancing the overall IoT
security issues.
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