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ABSTRACT In fluorescence microscopy imaging, noise is a very usual phenomenon. To some extent, it can
be suppressed by increasing the amount of the photon exposure; however, it is not preferable since this may
not be tolerated by the subjected specimen. Thus, a sophisticated computational method is needed to denoise
each acquired micrograph, so that they become more adequate for further feature extraction and image
analysis. However, apart from the difficulties of the denoising problem itself, one main challenge is that the
absence of the ground-truth images makes the data-driven techniques less applicable. In order to tackle this
challenge, we suggest to tailor a dataset by handpicking images from unrelated source datasets. Our tailoring
strategy involves exploring some low-level view-based features of the candidate images, and their similarities
to those of the fluorescence microscopy images. We pretrain and fine-tune the well-known feed-forward
denoising convolutional neural networks (DnCNNs) on our tailored dataset and a very limited amount of
fluorescence images, respectively to ensure both the diversity and the content-awareness. The quantitative
and visual experimentation show that our approach is able to curate a dataset, which is significantly superior
to the arbitrarily chosen source images, and well-approximates to the fluorescence images. Moreover, the
combination of the tailored dataset with a few fluorescence data through the use of fine-tuning offers a
good balance between the generalization capability and the content-awareness, on the majority of considered
scenarios.

INDEX TERMS Bioimaging, convolutional neural networks, fluorescence microscopy, image denoising,
mixed Poisson-Gaussian model, transfer learning.

I. INTRODUCTION
In the field of bioimaging, fluorescence microscopy (FM) is a
crucial examination tool that visualizes fluorescence emitted
by synthetic protein markers (i.e., fluorophores) introduced
to the specimen of interest. The images are recorded by the
light of certain wavelengths. Due to various instrumental
conditions (e.g., resolution limit of microscope, detector’s
ability to capture the photons), the images obtained by using
FMmodalities (e.g., confocal, two-photon, wide-field) suffer
from noise and blur. Longer excitation time, higher amount of
photon exposure, or acquiring multiple images of the same
scene could help to reduce the noise and improve imaging
quality, however these may deteriorate time resolution of
recorded sample dynamics as well as damage to the delicate
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specimens by altering their chemical structures. One way
of obtaining high quality images under low-photon, short
exposure, and single-image conditions is postprocessing the
image by a denoiser.

One of the main sources of the noise is the imperfections
in the imaging system [1]. This type of noise is known as
measurement noise and represented by the standard additive
white Gaussian noise (AWGN) model, in which the noise
values at any pixel are i.i.d. A Gaussian denoiser recovers
the underlying clean image x, from the observation y, for the
forward corruption model y = x + η, where η ∼ N (0, σ 2I ))
denotes the noise for the standard deviation σ . During the
past decades, many techniques have been proposed to sup-
press AWGN. These techniques are designed by encoding
some priors on the underlying clean image, such as spatial
contiguity (e.g., total variation [2]), sparsity in a transform
domain (e.g., wavelet shrinkage [3]), sparsity over learned
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dictionaries (e.g., K-SVD [4]), non-local self-similarity –
NSS (e.g., non-local means [5], non-local total variation [6]),
or a combination of such priors (e.g., block-matching and 3D
filtering (BM3D) [7]). When it comes to today’s data-driven
techniques, the deep neural networks (DNNs) have gained a
lot of popularity in solving image restoration problems, as in
solving detection/classification problems, especially in the
field of computational biology (e.g., [8] in histopathologi-
cal image analysis, [9] in computed tomography, [10]–[13]
in genome biology, [14]–[16] in microscopy imaging).
In contrast to the deep classifiers, the deep restoration net-
works aim at learning a map from corrupted observations
to the latent clean data. As being the simplest restoration
task, Gaussian denoising holds the best achievements, which
are mostly recorded by the convolutional neural networks
(CNNs). The very first paper that uses a five-layer CNN for
Gaussian denoising is [17], published in 2009. In [18], the
authors adopted the stacked denoising auto-encoders method
to solve denoising problem. As a non-CNN example, in [19],
a learning framework named as trainable nonlinear reaction
diffusion (TNRD) was proposed, and yielded the state-of-
the-art results; however, a model trained by TNRD can only
handle a certain noise level. Later in [20], a feed-forward
network DnCNN that exploits residual learning rather than
discriminative one was proposed, which achieved state-of-
the-art performance as a Gaussian denoiser. MemNet [21],
FFDNet [22], UNet and its non-local version UNLNet [23],
andNoise2noise [24] are other notable CNN-based examples.

In the context of FM imaging, another source of noise
is weak signaling due to the photon counting problems.
The number of photons captured by a detector is rather
small, which causes shot noise. This noise is stochastically
dependent to the intensity of the observed image and fol-
lows Poisson distribution. There are various model-driven
approaches engineered to handle Poissonian restoration prob-
lems (See the paper [25], and the references therein, for a
comprehensive review). In fluorescence micrographs, both
types of noises present, which is referred to as the mixed
Poisson-Gaussian (MPG) noise [26]. In this case, the naive
approach is performing the variance stabilization transforms
(VSTs such as [27], [28]), which transform the input data
to a domain where the noise follows a Gaussian distribution
with a fixed variance. These transforms are applied prior
to the effective Gaussian denoisers (e.g., VST + NLM [5],
VST + BM3D [29]). There are also methods that depend
on the preservation of Poisson statistics in Haar wavelet
transform domain. PURE-LET [30]–[32] is such an example,
which is already in use for the restoration of the fluorescence
micrographs. On the other hand, exploiting deep CNNs for
Poisson denoising is rare. The recent work [33] suggests a
Poisson deblurring framework by exploiting deep learning for
regularization purpose to restore microscopy images. They
incorporate a neural network only to approximate the reg-
ularization function. This paradigm differs from that of the
fully convolutional neural networks (FCNNs), which learn
an end-to-end mapping between the observed and the desired

images (or residuals as inDnCNN). To our best of knowledge,
three FCNN methods dominate the fluorescence microscopy
denoising literature: (1) Although it is originally a Gaus-
sian denoiser, the DnCNN [20] is frequently involved in the
recent experiments reported in the fluorescence microscopy
literature as a representative of deep denoisers (See for
example [34]–[38]). It reports competitive performance by
employing residual learning and batch normalization. (2) The
self-supervised Noise2noise [24] and its variants [36], [37],
[39] are also preferable in fluorescencemicroscopy, due to the
lack of clean data (See [35], [38], [40]). (3) The content-aware
image restoration (CARE) network [41] that uses a series
of convolutional layers in a U-Net architecture [42] shows
a state-of-the-art performance when trained on a large num-
ber of task-specific, well-registered clean/noisy image pairs
(See [40], [43], [44]).

The thing that makes well-generalized FM denoising by
CNNs challenging is not only the existence of the MPG
noise, but also the difficulty of acquiring the ground-truth data
that are clean enough and can fairly represent the variety of
the microscopic world. The training is mostly established by
using potentially large unrelated source datasets (e.g., natural
images in [34]), computer-generated images that are synthe-
sized in task-specific manner (e.g., [41], [45]), or the pairs of
noisy images without supervising clean data (e.g., [24], [36],
[39]). One can effortlessly find an unrelated dataset with a
vast number of clean images, however they are usually non-
representative. The models trained on such datasets discard
the prior knowledge on the target domain, which results
in performance drop. On the contrary, task-specific images
(synthesized or not) promote content-awareness, however
the content here is usually very narrow such as a specific
biological organism. Although they demonstrate stunning
performance, when such a model is applied to an image
that it was not trained for, the quality dramatically degrades.
Therefore, such approaches are not likely to attain the desired
diversity, when the goal is having a well-generalized model
to denoise various fluorescence images. On the other side,
the self-supervised learning methods entirely eliminate the
need for clean data, but they typically provide lower per-
formance [36]–[38]. At this point, it is also worth touching
upon the unsupervised learning examples. Deep image prior
(DIP) [46] provides a very effective generative model, which
was successfully used to improve the quality of the pho-
toacustic microscopy in [47]. As another notable example,
cycle generative adversarial network (cycleGAN) [48] was
employed to deconvolve microscopy images in [49]. Note
that, in this study, we focus solely on the paired scheme,
where the data are constituted by the clean and the noisy
image pairs. In particular, we concentrate on the data, rather
than the method itself, and develop a strategy to curate a train-
ing dataset that balances diversity and content-awareness.
In order to see how the diversity matters, one could inves-
tigate the studies that record better performance by using
non-medical (or medical but unrelated) images in medi-
cal image classification tasks. In [50], the classification of
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abnormalities in CT chest image slices was learnt slightly bet-
ter when they include STL-10 dataset [51] of natural images
than using lung images only. In [52], the authors attempt to
classifymelanomas in skin lesion images by pretrainingVGG
network on ImageNet and Kaggle diabetic retinopathy [53]
images, and later fine-tuning on a small set of target data.
This strategy outperformed the full-training on the skin lesion
images. Also in [54], nine different datasets were compared
for the classification of polyps in endoscopy images and
the texture datasets performed best among others including
target (endoscopy) data.

A. CONTRIBUTION
We basically aim at gaining insights into two pertinent ques-
tions: (1) can unrelated images with low-level resemblance
to the target images approximate to them in training, and
(2) can such a substitution even do better by receiving support
from a small amount of fluorescence data? In this respect,
we tailor a training dataset, which is a hybrid subset of
four unrelated public repositories with different contents. The
tailored dataset is supposed to bring the data with structural
diversity and the data with higher resemblance to the flu-
orescence images together. We use this dataset to pretrain
the well-studied DnCNN and investigate the model’s perfor-
mance. Themodel is further retrained on the real fluorescence
microscopy data by keeping the weights obtained, in order
to support content-awareness. Moreover, to make our model
applicable for real fluorescence images, we suggest to use
it in collaboration with the generalized Anscombe transform
(GAT) [55] and the exact unbiased inverse of the GAT [29].
We validate the effectiveness of both the model only, and the
entire framework by comparing the results with the baseline
methodsNLM [5], BM3D [7], K-SVD [56], PURE-LET [30],
[31] (for MPG noise only), and the DnCNN [20] models
trained on different datasets from different domains.

II. METHOD
From the previous discussion, it is clear that our paper will
consider three aspects: (1) tailoring a training set such that
it meets the structural similarity expectations, (2) training a
DnCNN model on the tailored dataset to transfer some inten-
tionally chosen low-level knowledge along with the addi-
tional high-level knowledge from unrelated sources to FM
image denoising problem, and (3) incorporating GAT [55]
with the exact unbiased inverse of it [29] to the infer-
ence framework, so that it can be used for the real world
FM images.

A. TAILORING A TRAINING DATASET
The idea of employing unrelated data especially when the
data of interest are in short supply is a commonly used strat-
egy in deep learning. This strategy transfers the information
from a source domain to the target domain at hand. Due
to lack of available fluorescence data (target dataset), the
fluorescence imaging is a convenient target domain to apply
this strategy.

When the strongest activations in the shallower layers
are shown during the forward pass of a deep model, one
can observe the discriminant low-level structures, as in [57].
These are the features of sharp edges, lines, textures, col-
ors, orientations, image symmetry, etc. Distributions of these
details play an important role in the perceptual similarity
of the images and we may assume that the perceptually
similar images can substitute each other. If we can develop
a methodology to characterize the fluorescence data as a
group of low-level features, many unrelated clean images
with similar features may serve as alternative ground-truths.
Plus, these images from different sources may even train a
better model than the fluorescence images, since by the nature
of our methodology, diversity is promoted.

Our goal is gathering a dataset with images whose
low-level features are similar to those of the target fluo-
rescence images. We also desire that the images involved
in our dataset are with a large variety of contents, shapes,
and colors; since we believe that such variations provide
additional information to boost the generalization capabil-
ity of the model. Accordingly, we’ve selected four publicly
available repositories as source datasets, each of which has
a different content addressing different categories: Berkeley
Segmentation Dataset (BSD500)1 [58] of 500 natural images,
Describable Textures Dataset (DTD)2 [59] of 5100 textures,
PLACES dataset3 [60] of 1000 scenes, and UCMerced Land
Use Dataset (UCMERCED)4 [61] of 2100 aerial images.
We choose these datasets due to their diverse natures. When
we visually judge the low-level characteristics of these
datasets, we observe that BSD500 and PLACES are rich of
structures and colors, whereas DTD is a collection of multi-
farious textures. UCMERCED, on the other hand, combines
flat regions and textures, which, in some sort, might represent
FM images well. We believe that the contributions of such
distinct datasets intrinsically promote the diversity among the
images to be involved in our dataset. On the other hand, for the
fluorescence images, we combine 400 images from three dif-
ferent sources: Fluorescence Microscopy Denoising (FMD)
dataset5 [35], Cell Nucleus Segmentation Dataset (Nucle-
usSegData) [62], [63], and a dataset used in cell segmentation
of microscopy images [64]. FMD dataset contains images
of bovine pulmonary artery endothelial (BPAE) cells (mito-
chondria, F-actin, nuclei), zebrafish, and mouse brain tissues
captured with either a confocal, two-photon, or wide-field
microscope, whereas the last two datasets contain images of
Hela, fibroblasts, HEPG2, and U2OS cell lines. We refer to
the combined dataset as TARGET. We also combined addi-
tional 120 fluorescence images from the same repositories
for the purpose of fine-tuning. These 120 images are also the
images that we use as reference while tailoring our dataset.
From now on, this dataset will be referred to as TARGET120.

1https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2https://www.robots.ox.ac.uk/~vgg/data/dtd/
3http://places.csail.mit.edu/
4http://weegee.vision.ucmerced.edu/datasets/landuse.html
5https://github.com/yinhaoz/denoising-fluorescence
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All images are preprocessed by cropping the center
180 × 180 region, subtracting the per-pixel mean of all
images, discarding the ones without information, and con-
verting them to grayscale.

Our image selection procedure computes the pairwise sim-
ilarities between each image in each source dataset, say s, and
the images in TARGET120 dataset, say t for each, i.e.,

sim(s, t) = D(T (s),T (t)) (1)

where T is the feature extractor and D is the similarity mea-
sure. In this respect, let us first introduce the features that we
use in the selection procedure for the quantitative similarity
assessment.

1) COLOR FEATURES
Since the units in the earlier layers are sensitive to color, the
images to be used for pretraining can be selected by consid-
ering color similarities. We use histogram encodings as it is
the simplest and the most usual color feature. It represents the
distribution of the intensities in our case, since we’re dealing
with the scalar-valued images. We uniformly quantized the
levels into 256 bins.

2) BASIC IMAGE FEATURES (BIFs)
BIFs [65] provide a way to represent an image by clas-
sifying its pixels into seven categories depending on local
image structures and symmetry. Themethod described in [65]
first computes the scale-normalized versions of the second
order derivative-of-Gaussian (DoG) filter family responses as
cqp = σ

p+q
B hpq, where σB is the scale of the filter (standard

deviation), hpq is one of the DoG filters, p and q are the orders
of {0, 1, 2}. Next, it defines two variables γ1 := 1

2 (c20 + c02)

and γ2 :=
√

1
4 (c20 + c02)

2 + c211, and classifies each pixel
according to the largest of the set:

M = {εc00,
√
(c210 + c

2
01), γ1,−γ1,

(γ2 + γ1)/
√
2, · · · , (γ2 − γ1)/

√
2, γ2} (2)

where ε controls the amount of flatness. If εc00 is the
largest, then the pixel is assigned to be a part of flat region.

If
√
(c210 + c

2
01) is the largest, there should be a ramp edge

around the pixel. γ1 and −γ1 respectively indicate light and
dark blobs, while (γ2 + γ1)/

√
2 and (γ2 − γ1)/

√
2 refer to

the light and the dark lines. If the winner is γ2, on the other
hand, the pixel is classified as a part of a junction.

3) DIRECTIONAL FEATURES
Directional cues in an image are often exploited by the image
recovery methods, e.g., [66] and [67] that employ curvelet
transforms respectively for denoising and reconstruction
purposes, [68] and [69], [70] that design first-order
derivative-based directional priors, and [71] that makes use
of the steerable filters. These efforts motivate us to benefit
directionality while tailoring our training data. Intuitively,
if the images seen by the network have similar directional

characteristics with the target data, then they ought to achieve
a similar performance.

There are many directional image-analysis tools in the
literature. Structure tensor (ST) is such a tool, which is also
employed while designing regularizers in handcrafted image
restoration methods (e.g., [69], [72]). The structure tensor of
a scalar-valued image x at any point is a 2 × 2 symmetric
positive semi-definite (PSD) matrix of the form:

SK x = Kσ̂ ∗ (∇x∇x
T ) (3)

where Kσ̂ is a Gaussian kernel of standard deviation σ̂ , and
∇ denotes the gradient operator. This semi-local descriptor
is capable of summarizing all the gradients within the patch
supported by Kσ̂ . It characterizes the variations better than
the local differential operators.

The local orientation is given by the eigenvector v+ ∈ R2

associated with the greatest eigenvalue λ+, i.e.,

θ =
1
‖v+‖

[
v+1
v+2

]
(4)

As ameasure of directionality, one can equip the coherence
measure α ∈ [0, 1], defined as:

α =
λ+ − λ−

λ+ + λ−
(5)

where the larger values of α is an indicator of the flow-like
structures.

To be able to use these direction and coherence fields
as a feature descriptor, we express them in histogram form
again. We split image into patches of size 30 × 30. For each
patch, we calculate a histogram, where the local orientation
determines which bin to be increased, while the local coher-
ence determines how much is added. The number of bins is
kept as 18, each of which is corresponding to a 10-degree
interval.We perform block normalization on the concatenated
histograms over the overlapping patches of size 60 × 60,
by each time shifting a window by 30 pixels. The final feature
vector of the entire image is nothing but the concatenation of
the normalized histograms (i.e., a 18×4×25 = 1800 dimen-
sional vector). This idea is very similar to the histogram of
oriented gradients (HOG) [73], however by using structure
tensor, one assigns more weight to the directions [74].

Another directional feature that we employ is related to
the BIFs again. Oriented BIFs (oBIFs) expand BIFs by con-
sidering the orientations. The number of categories rise from
seven to 23 when eight different orientations of ramp edges,
four different orientations of junctions, four orientations of
light and four orientations of dark lines are taken into account.
In [75], the authors discussed the role of distributional statis-
tics on appearance learning. They used oBIFs to encode the
appearance in terms of textons. They computed oBIFs at two
different scales (finer and coarser) σo = {1.1, 2.2}, which
results in 529 possible textons for a pixel within a patch. They
consider the histogram of these textons while measuring the
similarities. We adopt this system and combine it with the
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other aforementioned features with the expectation of bet-
ter performance. Note that, the MATLAB implementations
for the computation of oBIFs were made publicly available
in [76].

4) OVERALL FEATURES AND THE SIMILARITY
In brief, we have three histograms encoding the intensities,
the orientations (i.e., invariant to the sign of the direction),
and the oBIF textons. They are normalized such that they
have unit sum and scaled to the same interval. Now, we are
interested in how similar a certain image in a subset of
TARGET is to the most similar one in a source dataset.
In other words, we need to score sim(s, t), for all s and t by
using three pairs of histograms at hand. As the similarity
measure D in (1), if we had only one pair of histograms
(a and b), we would employ Bhattacharya distance subtracted
from one, i.e., D(a, b) = 1 − 1

cos(
√
a·
√
b)
. Since the number

of histogram pairs is three, we take the harmonic mean of
histogram similarities into account.

For each image in the TARGET120 dataset, our image
selection procedure selects k most similar images that max-
imizes sim(s, t). Some source images are surely be selected
multiple times, since the self-similarity of the TARGET120
dataset is high, thus many target images may vote for exactly
the same source images. In our case, we have 8700 candidates
coming from four source datasets. 412 source images are
selected as the most similar images by setting k = 23. This
value of k was empirically set such that it yields a value close
but more than to 400 (the desired size of the dataset), since
the images we suspect to be noisy should also be eliminated.
Note that, six of those images are discarded, since they’re
estimated to be exhibiting Gaussian noise with σ ≥ 0.01.
Also note that, our tailored training set (hereinafter referred
to as TAILORED) consists only 400 randomly chosen images
of the remaining 406 images, for a fair comparison. The
final dataset involves 196 DTD, 120 PLACES, 60 BSD500,
and 24 UCMERCED images. Fig. 1 shows some sample
substitutions from TAILORED dataset. First row shows four
images from TARGET120 and in second row, just below
each target image, one can see one of the source images
selected due to its high resemblance. The TARGET images
shown in Fig. 1 are contrast-enhanced for more visibility.
Note that, we haven’t applied such an enhancement while
extracting the features. Moreover, in Fig. 2, an illustration
that roughly summarizes the dataset tailoring process is pro-
vided. The source datasets are corresponding to BSD500,
DTD, PLACES, andUCMERCED,whereas the target dataset
is TARGET120. The zoomed inset at the right-hand side
sketches the Feature Design & Image Comparison procedure.
Each colorful grid displays a portion from a matrix as an
image with scaled colors. The entries of thosematrices are the
similarities between the source and the target descriptors that
describe either color, OBIF, or directionality-based features.
The figure visually exemplifies color, OBIF, and directional

FIGURE 1. Sample substitutions from our TAILORED dataset. The TARGET
images are contrast-enhanced here, for more visibility.

descriptors (histograms) for a pair of target and source image
samples.

We also provide the two-dimensional t-SNE projections
in Fig. 3, in order to visualize the distributions of the
chosen descriptors within each dataset. The descriptors are
projected without using the dataset labels, but shown with
labels a posteriori for visualization purposes. The considered
low-level features are not expected to set all of the datasets
apart, however one can see that they definitely hold some
information. The data points from BSD500 and PLACES
mostly collapse on each other because of their similar content.
Many data points from UCMERCED dataset concentrate on
a close neighborhood, while the DTD dataset seems to have a
diverse nature. Many DTD data points are coinciding with
the TARGET, thus with the TAILORED dataset. Most of
the data points from TARGET form clear clusters. This can
be interpreted as the chosen low-level features are good at
distinguishing the fluorescence images and this disparity may
be playing an important role in restoration. Overall, the con-
sidered low-level view-based features carry some domain-
specific information, especially for fluorescence microscopy
domain. Thus, the TAILORED dataset well compromises
between the domain invariance and the domain-specificity.

B. TRANSFER LEARNING & FINE-TUNING
As described in the previous section, we transferred the
knowledge coming from different source datasets to FM
denoising domain. The features are extracted by pretraining a
DnCNNmodel on the tailored dataset, which does not involve
any fluorescence images. We train 50 epochs with learning
rate decayed exponentially from 1e-1 to 1e-4. For each epoch,
we utilized multiple sub-epoch system that reiterates forward
and backward by arbitrarily cropping fragments from entire
image to train much more patterns. Those mini-batches are of
size 128.

As the loss function, (6) is used to learn a residual mapping
R(y) ≈ η with trainable parameters 2:

`(2) =
1
2N

N∑
i=1

‖R(yi;2)− (yi − xi)‖2F (6)
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FIGURE 2. A representative illustration on tailoring the pretraining dataset.

FIGURE 3. t-SNE plots visualizing the distributions of (a) Color-based, (b) Oriented BIF, (c) Directional, and (d) Overall feature descriptors within each
dataset.

for N noisy-clean (yi, xi) pairs, where ‖ · ‖F denotes the
Frobenius norm.

A frequently used transfer learning strategy is training a
network on unrelated source data, then using it to initialize the
weights of a network that is further trained on a fair amount of
target data. This is what known as fine-tuning. In this respect,
we also further retrained all layers on TARGET120, starting
with the pretrainedweights of TAILORED.Note that, we also
tried to retrain only the last layers by freezing the other
parameters, however the results were not that satisfactory.

C. DEALING WITH THE MIXED POISSON-GAUSSIAN
NOISE
As mentioned earlier, fluorescence images are contaminated
by MPG noise. Unlike Gaussian, Poisson noise is signal-
dependent. The forward corruption model is

y[i] = x[i]+ η[i] (7)

at an image point i, where η[i] = ηp(x[i]) + ηg[i] for p
and g subscripts are denoting the Poisson and zero-mean

Gaussian components of the noise, respectively. Therefore,
for a > 0 denoting the scaling coefficient of the detector,
(x[i] + ηp(x[i]))/a ∼ P(x[i]/a), and ηg ∼ N (0, bI ), where
b ≥ 0 is the variance of the Gaussian noise. A fluorescence
micrographwith a large value of a but a small value of bmight
be considered as Poisson noise dominated, while the opposite
may address to the Gaussian noise dominance.

A naive approach to deal with signal-dependentMPGnoise
is using variance stabilization techniques (VST). One such
VST is generalized Anscombe transform (GAT) [55] of the
form:

f (y[i]) =
2
a

√
max

(
ay[i]+

3
8
a2 + b, 0

)
(8)

such that after transformation, the noise of the new sig-
nal approximately behaves like Gaussian with unit variance.
Since GAT requires a and b, these parameters need to be
fitted before transformation. In this paper, we estimate these
parameters by using the method described in [28]. Note that,
although the Gaussian noise variance cannot be negative
valued, this method could generate negative b values when
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the Gaussian noise component is so small. For more details,
the reader is referred to [28]. In our work, we just make any
negative estimate of b zero.

Once the signal is transformed, the AWGN denois-
ers become convenient to work with. However, their
variance-stabilized outputs also require to be transformed
back to the original range. Exact unbiased inverse transfor-
mation of the GAT [29] provides an unbiased and accurate
way of inversion even at low signal levels, which is usually the
case in fluorescence imaging. The closed form approximation
of the exact unbiased inverse transform is given as:

Ĩ (D) =
1
4
D2
+

1
4

√
3
2
D−1 −

11
8
D−2 +

5
8

√
3
2
D−3 −

1
8
− b

(9)

where D is the denoised image (See [29] for details.) There-
fore, we come up with the resulting estimate x̃ = Ĩ (D).
In our work, we exploit both GAT [55] (with parameter

estimation [28]) and its exact unbiased inverse transforma-
tion [29] for not only the classical Gaussian denoisers, but
also the DnCNN models. In fact, it is not frequent to see
deep Gaussian denoisers in combination with a variance sta-
bilization module in the literature. For instance, in the recent
benchmarking papers [35], [40] on fluorescence microscopy
restoration, GAT (and exact unbiased inverse transforma-
tion) was only performed before denoising with the classical
Gaussian denoisers (e.g., BM3D, NLM, K-SVD). Although
the DnCNN was also among the competing methods, it was
kept separate from the variance stabilization. Our framework
inspects the parameters a and b, since the estimate values
of these parameters may determine the effectiveness of VST
(or specifically GAT) usage. When the estimated value of a
is negative, our framework switches to non-GAT state, where
we do not perform variance stabilization.

After the attachment of the variance stabilization module,
the overall inference framework gets into the shape shown in
Fig. 4. Note that, we used the source codes of the exact unbi-
ased inverse transform, which were made publicly available
by the authors.6

III. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTINGS
The models were trained on a computer equipped with
NVDIA GeForce GTX 1080Ti, while the feature design,
image comparison procedures, and testing were all conducted
on another computer with Intel Core Processor i7-7500U
(2.70-GHz) with 16 GB of memory. All procedures and
methods were written in MATLAB. We used the training
and testing codes of the MatConvNet [77] implementation7

of DnCNN. We kept the configuration settings as suggested
in [20]. All the models were trained end-to-end by using
400 images of size 180× 180.

6http://www.cs.tut.fi/~foi/invansc/
7https://github.com/cszn/DnCNN

B. COMPARISON AND EVALUATION
We group the experiments into ‘‘Gaussian Noise Denoising’’
and ‘‘MPG Noise Denoising’’. In the first group, we only
focus on DnCNN, which is responsible for Gaussian denois-
ing. We evaluate our DnCNN model trained on the tailored
dataset. We also assess the effect of fine-tuning on top of
pretraining. In the second group of experiments, we consider
MPG noise, which is the actual noise type exhibited by
FM images. This time, the noise present on the test data is
real, rather than synthetic. In both groups, we use an unseen
40-image subset of FMD dataset [35] as the test set. From
now on, it is referred to as FMDTest40. Note that the
ground-truth images in this set are estimated by averaging
50 captures of the same FoV [35]. Additional to FMDTest40,
we use three HeLa cell images acquired with a confocal
microscope from [25], six images of actin, mitochondria,
membrane, and nuclei acquired with a wide-field fluores-
cence microscope from [40], and two images of fly wings
and planaria acquired with a confocal microscope from [41],
and finally four images of human U2OS cells acquired with
confocal microscope from [78]. The ground-truth images in
these datasets were acquired under combined high photon
exposure + long excitation time settings. In order to prepare
a test dataset, we crop large images into non-overlapping
patches of size 512 × 512. The smaller ones are all of
size 256 × 256, thus we leave them intact. We discard the
patches with no information. At the end, we have a dataset of
55 images (3 HeLa, 22 Actin, 20Mitochondria, 2 Membrane,
1 Nucleus, 1 Fly Wings, 2 Planaria, and 4 Human U2OS
cells). These additional images serve as external validation
data used to assess how our model generalizes when the data
goes out of the imaging configurations (sample+microscopy
type/settings + FoV) in TARGET dataset. A few samples
from this external test set are shown in Fig. 5.
For all quantitative comparisons, we use the structural

similarity index (SSIM) [79] and the peak signal to noise
ratio (PSNR) measures. We also provide denoising results
of the competing methods/models for a few sample images
in order to assess the proposed approach visually.

1) EXPERIMENT 1- GAUSSIAN NOISE DENOISING
We train seperate DnCNN-S [20] (non-blind, trained for
a specific noise level) models by using randomly selected
400-image subsets of each source dataset (BSD500, DTD,
PLACES, and UCMERCED), and the TARGET dataset.
In order to create clean-noisy image pairs, we degrade the
ground-truth images by adding Gaussian noise with four
different noise levels, σ = {15, 25, 35, 50}. Thus, we obtain
five different DnCNNmodels for each noise level, which will
compete with the two models of ours (i.e., the models before
and after fine-tuning). Note, that, as suggested in [20], the
training data are cropped into 40 × 40 patches for the data
augmentation and the network depth is set to 17. In addition
to the DnCNN models, we also include three state-of-the-art
Gaussian denoisers as baselines: NLM [5], BM3D [7], and
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FIGURE 4. The overall framework that we use to restore fluorescence microscopy images with MPG noise.

FIGURE 5. Some samples of the external validation images: HeLa cell
image is from [25], and the others are from [40]. CF and WF stand for
confocal and wide-field microscopy modalities, respectively.

K-SVD [56] to the experimentation. For the publicly avail-
able source codes of these methods, the reader may check
the websites given in the footnotes: NLM,8 BM3D,9 Analysis
K-SVD.10

The quantitative results on the set FMDTest40 for each
noise level are reported in Table 1. PSNR is the former (top)
value in each cell, while the latter (bottom) value is SSIM.
Each measure is followed by ± the standard error (SE). The
best PSNR and SSIM results are highlighted in red. The
second bests are also colored with blue in order to underscore
the gain. From the reported results, one can observe that the
DnCNNmodels clearly beats the baseline denoisers. When it
comes to establishing a comparison betweenDnCNNmodels,
as one may expect, DnCNN (TARGET) performs consis-
tently better than all the models trained by using four source
datasets, both in terms of PSNR and SSIM. Only when σ =
25, the difference is not so distinguishable; in fact, DnCNN
(BSD500) performs at the same level. DnCNN (TARGET)
also beats our DnCNN (TAILORED), except for the case
σ = 25 again. The gain of using target data rather than our
tailored dataset is significant, when the level of noise is low
(i.e., σ = 15); but the difference is not so prominent, when
σ = 35 and σ = 50. The success of TARGET dataset on this
experiment was expected due to the exact similarity between
the training and the test sets. But we can draw the conclusion
that our tailored dataset managed to catch a similar (−0.1 dB
to+0.06 dB) PSNR performance, except for the case σ = 15,
even though it only considers the similarities among low-level

8https://www.mathworks.com/matlabcentral/fileexchange/13619-
toolbox-non-local-means

9https://webpages.tuni.fi/foi/GCF-BM3D
10https://elad.cs.technion.ac.il/software/

features. Its PSNR and SSIM scores are consistently above
the other source datasets, even the gain is sometimes small
(e.g., 0.08 dB over DnCNN (BSD500) when σ = 25). When
it comes to our fine-tuned model, it achieves the best results
for all noise levels. We observe PSNR gains between 0.1 dB
and 0.25 dB at higher noise levels, when compared toDnCNN
(TARGET), although there is no gain when σ = 15.
Fig. 6 illustrates some visual results of all competing meth-

ods/models, when the noise level σ = 35. We pick three
sample images, which are referred to as Image-1, -2, and -3,
fromFMDTest40. The very first row shows the ground-truths,
whereas the second row shows the noisy observations. Each
ground-truth and observed image is followed by a detail patch
corresponding to the yellow box superimposed on it. The
rest of the rows are illustrating the restored images. Each
column corresponds to a different method/model. Just below
the output images, the detail images are provided. Under such
a high level of noise, the results produced by the baseline
techniques are not pleasant at all. NLM and K-SVD tend to
over-smooth fine details. BM3D generates artifacts. When
it comes to the DnCNN models, it can be seen that the
tiny details in Image-1 (mouse brain tissues) are much more
visible in the results obtained by DnCNN (TARGET) and
DnCNN (TAILORED). By the other models, these details
are smoothed out. On the other side, the fibres in Image-2
restored by DnCNN (DTD) and DnCNN (UCMERCED) are
not distinguishable at all. They become more visible (but still
not satisfying enough), when using BSD500 and PLACES,
possibly because fibrous textures present in these diverse
and content-rich datasets. Our TAILORED dataset leads to a
better performance for Image-2, although it causes a cloudy
look around the fibres. DnCNN (TARGET)’s result is smooth
in the direction that stresses the fibrous structure, but still
not as good as the fine-tuned DnCNN (TAILORED), where
the gaps between the fibres are clearer. Image-3 involves
curvilinear structures corresponding to the intracellular mito-
chondrial network of BPAE cells. Such structures are mostly
interrupted by the models at hand. In detail images, we see
that a line-like structure is almost disappeared by DnCNN
(BSD500), DnCNN (DTD), and DnCNN (TARGET) mod-
els. The datasets PLACES and UCMERCED do better in
this example, when compared to the other source datasets,
probably due to their rich content in line-like structures.
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TABLE 1. PSNR / SSIM comparisons on Gaussian noise denoising of the FMDTest40 [35].

The loss along the structure is far less visible in DnCNN
(TAILORED) restoration than in the others, even though the
PSNR / SSIM performance is fairly similar to that of pro-
duced by the TARGET dataset. Fine-tuning this model, on the
other hand, manage to fix the oil-painting-like artifacts, while
preserving the line connectivity, and yield the best PSNR /
SSIM among all.

In Table 2, the restoration results on the external test images
are separately reported, for the same noise levels present in
Table 1. These images are visually less similar to the images
in TARGET, when compared to FMDTest. In this case, one
may expect that the performance of DnCNN (TARGET)
would drop, perhaps to the levels of those given by the
source datasets. This anticipation has partially been met in
Table 2. For example, on HeLa and Fly Wings images, the
DnCNN (TARGET) failed to be one of the three best per-
forming models, except for the cases when σ = 50. Contrary
to this, it produced the best PSNR and SSIM scores on Actin
(σ = 15), Membrane (σ = {35, 50}), and Nucleus (σ = 35)
images and experiments. For the rest of the experiments,
predominant observation is that the DnCNN (TAILORED)
and the DnCNN (TARGET) alternately shared the second
place.When it comes to our DnCNN (TAILORED) with fine-
tuning, it achieved the best restoration results with a few
exceptions, even though its training required only 120 images
of the target field. This achievement provides us insights on
how the usage of the computationally chosen unrelated data
can lower the need of the related data.

Paired sample t-tests are also carried out over 40 test
images in FMDTest40 to determine if the PSNRs produced
by the DnCNN models trained (w/ or w/o fine-tuning) on
TAILORED dataset is significantly higher than the ones
trained on the other datasets (including TARGET). The tests

are performed for all noise levels (σ = {15, 25, 35, 50}) to
assess the general significance of our approach. In each t-test,
the null hypothesis (H0) is that the PSNR for both models is
the same. The alternative hypothesis (H1) is that the PSNR
produced by the winner model is larger than that produced by
the competing model. In Table 3, we report the exact p values
obtained for each pair of DnCNNmodels trained by using six
different datasets (plus, one set of fine-tuning data). Each test
has 159 degrees of freedom and the threshold is selected as
α = 1e− 07. The p values larger than α are marked in blue,
indicating that there is no significant difference (p > 1e−07)
in PSNRs amongst the considered models. It can be seen
that, when the considered models are the ones trained on
two of the four source datasets, almost all tests fail to reject
H0. On the other hand, the red color highlights the p values
found by the t-tests run between our fine-tuned DnCNN
(TAILORED), which is the best performing model, and each
of the other models. We can deduce that the PSNR produced
by our fine-tuned model is significantly larger (p < 1e− 07)
than that of all other models, including the TARGET. More-
over, the test carried out between DnCNN (TARGET) and
DnCNN (TAILORED) shows that although the mean PSNR
of the samples produced by using the TARGET data is higher,
the difference is not so significant. This also supports the
claim that the TAILORED dataset can be used as a substitute
for target data, without even the need for fine-tuning, when
the data are in short supply.

2) EXPERIMENT 2- MPG NOISE DENOISING
In the second group, we test our entire FM denoising frame-
work. This time, we train DnCNN-B [20] (blind, trained for
a range of noise levels, i.e., σ ∈ [0, 50]). The patch size is set
to 50 × 50 for the data augmentation. The network depth is

61024 VOLUME 10, 2022



E. Demircan-Tureyen et al.: Restoring Fluorescence Microscopy Images by Transfer Learning From Tailored Data

TABLE 2. PSNR / SSIM comparisons on Gaussian noise denoising of external test set.

stepped up to 20, as suggested in [20]. Test set involves FM
images with real MPG noise. For the set FMDTest40, differ-
ent noise levels are obtained by averaging S = {1, 2, 4, 8, 16}
raw images of the same scene [35]. For the external test
images, the Poisson noise dominated samples were imaged

with short excitation times and/or reduced laser power
(in confocal micrographs) [25], [40], [41], [78].

Before passing on to the comparative analyses, we explore
the effectiveness of GAT usage prior to DnCNN denois-
ing. We run fine-tuned DnCNN (TAILORED) model, with
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FIGURE 6. Denoising of three different images from FMDTest40, degraded by Gaussian noise of σ = 35. The first and the second rows show clean and
noisy images, respectively. The quantity pairs shown at the bottom of each image is correspoding to PSNR / SSIM values. The images are presented by
using a different colormap to stress the details. The abbreviations TAI. and ft. stand for TAILORED and fine-tuning, respectively.

and without GAT module, on FMDTest40 images with
different MPG noise levels. Since there are five lev-
els (|S| = 5), we have 200 different image instances
in total. For each instance, Fig. 7 illustrates the differ-
ence between the PSNR scores produced by the fine-
tuned DnCNN(TAILORED) model with and without GAT
incorporation (i.e., gap = psnr(GAT+DnCNN(y),x) -
psnr(DnCNN(y),x)). Fig. 7 (a) plots the gaps with respect
to the estimated scaling coefficient of the detector, whereas
Fig. 7 (b) plots them as a function of the variance estimate of
the Gaussian noise. The same data points across two plots are

marked in the same color. It is observed that the GAT usage
shows quantitative improvement up to nearly 2.5 dB (0.47 dB
on average) for 148 out of 200 instances (PSNR gap > 0).
In 25 instances, the results are neither negatively nor
positively affected (PSNR gap = 0). These are actually
corresponding to the cases when the estimated value of the
parameter a is negative. On the other hand, we observe
27 negatively valued PSNR gaps addressing to the situations
where the GAT incorporation has failed (-0.29 dB on aver-
age). One may observe that, many data points with relatively
large b values also have negative a values. In such cases,
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FIGURE 7. PSNR differences between GAT + DnCNN and DnCNN as a function of (a) scaling coefficient estimate of the detector and (b) variance estimate
of the Gaussian noise, for each FMDTest40 image with MPG noise. The higher the gap value is, the more effective it is to incorporate variance
stabilization. Negative gaps indicate the cases where the GAT incorporation has failed.

TABLE 3. Resulting p values of paired sample t-tests undertaken on the
FMDTest40 images for four different Gaussian noise settings. Red
highlights the significance of using our fine-tuned DnCNN (TAILORED)
model. Blue marks results that show no statistical significance
(p > 1e− 07). Some dataset names are abbreviated using only the first
three letters (e.g., TAI. stands for TAILORED).

our framework bypasses the GAT module, which results in
no difference (PSNR gap = 0). Among the rest of the data
points, the ones that satisfy the ’’large a, small b’’ condition
mostly have satisfactory PSNR gap values, although some
exceptions (PSNR gap < 0) exist.

As the baseline methods, we again test NLM, BM3D, and
K-SVD in combination with GAT. We also involve PURE-
LET11 [30] as a representative of the state-of-the-art Pois-
son denoisers. The rest of the competing methods are all
DnCNN-B models trained on different datasets, as in Experi-
ment 1. The PSNR/SSIM scores on FMDTest40 are reported
in Table 4. The columns are corresponding the number of raw
images averaged. So the strength of the noise decreases as this
number increases. Each row is corresponding to a different
method or model. As in Table 1, each cell contains PSNR ±
SE at the top and SSIM ± SE at the bottom. The text color
red highlights the best, while the blue marks the second best.
When the strength of the noise is high, the baseline methods
are poorly functioning. The PSNR gap between the worst

11https://github.com/hijizhou/PureLetDeconv

performing DnCNN model and the best performing baseline
method PURE-LET is around 4.5 dB. As the noise settles
down, this gap drops considerably. When the number of
images averaged is 16, GAT + BM3D becomes the best per-
forming baseline and produces even better PSNR and SSIM
results than the DnCNN models trained on BSD500, DTD,
and PLACES. Among the DnCNN models, the one trained
on BSD500 produced the worst results for all noise levels.
It seems the structure-rich content of the natural images is
not a good fit for FMDTest40 data in this experimentation.
Another structure-rich dataset PLACES seems more effec-
tive, but still be beaten by the texture-rich DTD. On the
other hand, the reason why UCMERCED dataset worked
better than the other source datasets might be the presence of
both textured and homogeneous areas in its data. Although
the results obtained by using our TAILORED dataset are
consistently above the ones obtained by four source datasets,
they are not as promising as those reported in Table 1. This is
also the case for our fine tunedGAT+DnCNN (TAILORED)
model, which falls behind GAT + DnCNN (TARGET) in
this experimentation. It is observed that the performance
gap between these two models increases at low noise levels,
in parallel with the fact that the performance differences
between the models become more apparent as the level of
noise decreases. Our fine tunedmodel shows 0.9 dB improve-
ment over the best-performing source model at the lowest
noise level, whereas it falls 0.3 dB behind the TARGET
model. This may seem in contrast to our hypothesis that
the unrelated data with high resemblance to the low-level
features of the target data may even do better. However,
one should note that the set TARGET consists of exactly
the same configurations as the FMDTest40. The results are
actually remarkable, since the tailored dataset is successful
enough to almost replace the TARGET dataset. This provides
us a substantial facility that can be utilized when the data
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TABLE 4. PSNR / SSIM comparisons on MPG noise denoising of the FMDTest40 [35].

shortage is the case. Even though the fine tuned model takes
the support of some target data, the number of fluorescence
images is far less than the ones used by the target model.

As was done in the first set of experiments, we also tried
MPG noise denoisers on the external test images. Table 5
reports PSNR and SSIM scores for each type of external
test data produced by using competing methods and models.
When the results are compared to those in Table 2, the benefit
of using TAILORED dataset over TARGET dataset does
not seem to be significant. Even so, our GAT + DnCNN
(TAILORED) model almost always (with the exception of
PSNR result obtained on Planaria) produced better results
than the models trained on the source datasets. Moreover,
in some cases (e.g., HeLa, Nucleus, Fly Wings), our model
achieved better quantitative results (either PSNR or SSIM)
than GAT + DnCNN (TARGET). These observations sup-
port that these unrelated images in TAILORED dataset can
nearly substitute the target data. As was observed in the
previous experiments, this gain even becomes higher when
we fine-tune the model with a few fluorescence microscopy
images. Except for the case of denoising raw Actin images,
our training set tailoring approach (with/without fine-tuning)
achieved competitive results against the approach of training
on the fluorescence microscopy images only. Fig. 8 shows
some detail results obtained by using baseline methods,

whereas the detail results obtained by the DnCNNmodels are
demonstrated in Fig. 9. The very first column of Fig. 8 shows
the detail patches cropped from the input images suffering
from MPG noise. The very last column of Fig. 9 shows the
same detail images cropped from the ground-truth images.
Note that, the PSNR / SSIM pairs given below are for the
entire images rather than the cropped ones. This time, unlike
the previous results shown in Fig. 6, the improvement brought
by using TAILORED dataset with fine-tuning is visually less
perceptible. By zooming in, one may realize that training
on the TAILORED data tends to yield artificial structures,
especially on the originally smooth regions, whereas training
on the TARGET data tends to over-smooth some sharp con-
tents. The fine-tuned GAT + DnCNN (TAILORED) model,
on the other side, demonstrates slight visual improvements
over using target data. However, it seems to be offering a
good balance between the benefits of using TARGET and
TAILORED datasets, aside from requiring a smaller amount
of fluorescence data.

We run paired sample t-tests also for the MPG noise
denoising experiments. The tests are conducted over 40 test
images and for five different noise settings. The null and the
alternative hypotheses are addressing to the same statements
that are reported before. In Table 6, we report the p values
obtained for each pair of DnCNN models trained by using
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TABLE 5. PSNR / SSIM comparisons on MPG noise denoising of external
test set.

FIGURE 8. Denoising of short exposure external test images by using
baseline methods. The images are the detail patches cropped from the
outputs and presented by using a different colormap. First column shows
the detail patches of the observed images with real MPG noise. The
results with the DnCNN models are shown in Fig. 9.

six different datasets (plus, one set of fine-tuning data). This
time, each test has 199 degrees of freedom. The threshold is
selected as α = 1e−07, as was done earlier. Additional to the
blue and red markers, we also use underline to highlight that
the TARGET’s success compared to the TAILORED (with
fine-tuning) seems statistically significant (p > 1e− 07).

IV. DISCUSSION
Overall, we tackled denoising of fluorescence microscopy
(FM) images. These images often suffer from the mixed
Poisson-Gaussian (MPG) noise. That is one of the reasons
why in the literature it is rare to come across deep denoisers
used to restore fluorescence micrographs, since such net-
works mostly assume that the noise is Gaussian. Yet another
and the major reason for the supervised deep denoisers is

TABLE 6. Resulting p values of paired sample t-tests undertaken on the
FMDTest40 images for five different MPG noise settings. Red highlights
the significance of using our fine-tuned GAT + DnCNN (TAILORED) model.
Blue marks results that show no statistical significance (p > 1e− 07).
Underline shows the significance of using target data instead of our
tailored dataset with fine-tuning. Some dataset names are abbreviated
using only the first three letters (e.g., TAI. stands for TAILORED).

the lack of clean data. The images taken under high photon
exposure, or the average images of the same scene may
serve as ground-truths; however, the former may cause pho-
totoxicity, while the later is pretty exhaustive. Plus, in both
cases, the images acquired wouldn’t be competent enough
to represent the structural richness of the microscopic world.
Here is where the transfer learning comes into play, which
suggests to borrow some domain-invariant information from
unrelated sources. This strategy is applied not only because
the amount of data in the target domain is limited and calls for
augmentation, but also to promote diversity for better gener-
alization. In our work, we asked two questions: (1) could a
dataset of unrelated images tailored by considering low-level
similarities to the fluorescence data can substitude the real
fluorescence images, and (2) could such a dataset even do
better? We achieved tailoring a dataset (i.e., TAILORED)
that partly confirms the former question. Our work showed
that the target data (i.e., TARGET) and a tailored dataset
of unrelated images with low-level similarities to the target
data could produce comparable results with a few exceptions.
Only when the noise was MPG and the test set was involving
the same configurations with those in the target dataset (i.e.,
FMDTest40), the tailored dataset prominently fell behind
the TARGET. Even so, its performance was still superior
to the arbitrarily chosen source datasets. These visual and
quantitative experiments show that our tailored dataset strikes
a good balance between the denoising performance and the
data availability, to which the success of a supervised deep
denoiser largely depends on. Namely, our approach offers a
computational way to choose training images from poten-
tially large unrelated sources at the cost of slight decrease
in denoising performance. This is a substantial facility since
the amount of fluorescence data is often not sufficient. When
it comes to our second question, we have shown that the
model trained on our tailored dataset can produce better
results with the aid of a few fluorescence images. Fine-
tuning the DnCNN (TAILORED) model on a small dataset
of target images (involving 120 fluorescence images in our
case) came up with a significantly superior model against
all of the other competing models in the majority of the
cases. There exist exceptions (especially those reported in
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FIGURE 9. (Continued from Fig. 8) Denoising of short exposure HeLa cell images by using GAT + DnCNN (·), where · stands for dataset name. The
images are the detail patches cropped from the outputs and presented by using a different colormap. Last column shows the detail patches of the
ground-truth images.

Table 4), where our fine-tuned model performed comparable
to DnCNN (TARGET). In this way, the need for fluorescence
data has been considerably reduced, although not completely
eliminated. In brief, our work gives insights on how the
considered low-level features can be exploited to approxi-
mate inadequate target data, how beneficial they might be
in balancing content-awareness and universality, and how
discriminative they become in a restoration task. Recall that,
while tailoring, we only took the low-level similarities into
account by encoding descriptors for color, local symmetry,
and directionality related features.

As we touched upon in Section I, various transfer learn-
ing approaches are employed in the field of microscopy
imaging. However, the literature is dominated by detec-
tion/classification studies, rather than restoration. A Google
Scholar search for ‘‘restoration’’ or ‘‘denoising’’ and
‘‘microscopy’’ and ‘‘transfer learning’’ returned 361 hits as
of April 2022, but many of the returned papers were still on
detection and recognition tasks (due to some coinciding key-
words as in ‘‘stacked denoising autoencoders’’). We screened
those papers by relevance and realized three very recent trans-
fer learning models that we wouldn’t finish without referring
to. In [80], the authors propose a universal reconstruction
scheme for structured illumination microscopy (SIM). Their
model generalizes beyond the task by transferring knowledge
from a large and diverse dataset of unrelated high-resolution
images (i.e., DIV2K [81]). When compared to our strategy,
one can see that they do not run a selective procedure. They
generate the training data by transforming all the images
in the source dataset, such that the imaging conditions of
SIM are simulated. One interesting research direction here
might involve the realization of this strategy in fluores-
cence microscopy domain as well, and combining it with our

tailoring procedure. In [82], on the other side, the authors
propose a scheme that transfers knowledge learned from syn-
thetic noise data to the real noise domain. Another engaging
study [83] uses transfer learning to combine supervised and
self-supervised training, in order to eliminate the demand to
the clean images. Our approach may further be reconsidered
in combination with these studies as well.

In order not to finish discussion without referring to the
state-of-the-art for fluorescence microscopy image restora-
tion one more time, we want to draw the reader’s attention
to a recent preprint [45]. In this preprint, the authors discuss
that the pixel-intensity distributions of themicroscopy images
differ from those of natural images and a successful denoiser
should take this into account. They refer to the DnCNN as
the state-of-the-art for photographic image noise reduction,
which is not that good at denoising transmission electron
microscope (TEM) images. They attribute its insufficiency
to its very small field of view (41 × 41 pixels), and state
that the electron micrographs call for larger field of view,
due to the prominent global regularities that they exhibit. The
U-net architecture [42] allows us to increase the field of view
without dramatically increasing the number of parameters.
Therefore, the success of CARE [41] and Noise2noise [24]
in microscopy imaging might be due to their U-net back-
bone with a large field of view. Our training dataset tailor-
ing approach may be considered as an attempt to promote
the distinctive global regularities in fluorescence microscopy
images. Another attempt may be made to further improve
the performance by using a U-net architecture, instead of
DnCNN. Our approach can be tried with CARE [41] at the
cost of relaxing the strong prior on the visual characteristics
of the task-specific data that the CARE networks aim to learn.
It can even be exploited by Noise2noise [24] and its variants
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to reduce the demand to the low-SNR fluorescence images as
well.

V. CONCLUSION
Acquiring clean fluorescence microscopy (FM) images is
an inconvenient process. This poses an obstacle for restor-
ing noisy micrographs through the use of supervised deep
denoisers. In this respect, this paper suggested to tailor a
dataset of images coming from various unrelated repositories,
with the hope of approximating the fluorescence data up to
a point. While gathering images, we considered some low-
level view-based features. Our tailoring process carefully
chooses the images whose colors, basic image features, and
the directional characteristics are similar to those of fluo-
rescence images. On top of training a feed-forward denois-
ing convolutional neural network (DnCNN) model with our
tailored dataset, we also applied fine-tuning to encourage
content-awareness. In order to combat MPG noise, we incor-
porated the generalized Anscombe transform (GAT), which
is a variance stabilization technique. Finally, we assessed the
performance of our approach on both Gaussian and MPG
noise denoising problems.We performed tests on both unseen
fluorescence images of the same configurations (sample +
fluorescence microscopy type/settings + FoV) with those
in the target dataset, and the images of entirely different
configurations. Overall, the experiments prove that the pro-
posed approach (with fine-tuning) produces either superior
or comparable results against the models trained on the real
fluorescence data. Furthermore, it outperforms all of the other
models, trained on the arbitrary datasets. We can conclude
that tailoring such a dataset strikes a good balance between
the restoration quality and the data availability. Future work
may involve many research directions. The tailored dataset
may further be exposed to some transformations that simu-
late the imaging conditions of the fluorescence microscopy.
The image descriptors used to define similarity might be
enriched, maybe by inspecting the intermediate layers of a
deep denoiser. Our approach might be tested on a different
application field, where the data shortage is the case.Multiple
datasets by considering different feature groups might be
tailored and these datasets might be used to train multiple
networks to be combined in an ensemble.
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