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ABSTRACT The internal defect detection of magnetic tile is extremely significant before mounting.
Currently, this task is completely realized by manual operation in the magnetic tile manufacturing industry,
which results in inefficiency and diseconomy. In this work, we develop an intelligent system based on
the acoustic sound for internal defect detection of magnetic tile to overcome these drawbacks. Due to
the non-Gaussian and non-stationary characteristics of the acoustic sound, adopting the single modality of
the data for internal defect detection of magnetic tile cannot achieve good accuracy. Therefore, we design
a multimodal fusion convolutional neural network (MMFCNN) for internal defect detection of magnetic
tile. We train the network in an end-to-end way. Our proposed MMFCNN consists of three blocks, i.e.,
feature extraction block, feature fusion block and internal defect detection block, whose purposes are to
extract features from generated modal data, fuse multimodal feature maps and analyze whether the magnetic
tile has internal defects, respectively. Moreover, to realize the information interaction and emphasize more
representative information at feature extraction stage, we propose a novel attention mechanism, i.e., cross-
attention mechanism. Extensive experimental results demonstrate our proposed MMFCNN is effective for
internal defect detection of magnetic tile. Our code is available at https://github.com/Clarkxielf/Multimodal-
Fusion-Convolutional- Neural-Network-for-Internal-Defect-Detection-of-Magnetic-Tile.

INDEX TERMS Magnetic tile, internal defect detection, convolutional neural network (CNN), feature
fusion, cross-attention mechanism.

I. INTRODUCTION
Magnetic tile is a kind of arc permanent magnet, which is
the core component of the permanent magnet motor [1].
With the rapid development of automation technology,
abundant component magnet motors are widely used in
automation equipment and intelligent device. Therefore,
its quality plays a decisive role in the performance and
service life of electromechanical products. As a kind of
clean and cheap energy, magnetic tile has not only a wide
variety but also growing global market demand, especially
in the field of electric vehicles. The defects of magnetic
tile are mainly divided into two categories: external defects
and internal defects. As so far, researchers have proposed
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many methods to detect external defects based on machine
vision technologies [2], [3]. On the contrary, internal defects
are invisible, bringing new challenges to their detection.
There are many factors causing the internal defects of
magnetic tiles, such as uneven raw materials, thermal shock
and rapid cooling in the production process. Currently,
internal defects of magnetic tile are identified by experienced
workers through listening intently to the excited sound in
the magnetic tile manufacturing industry. But such process
is extremely risky. For the magnetic tile manufacturers, once
the internal defects of the sold magnetic tile are detected
by the user, this batch of magnetic tiles will be scrapped
and recycled, which would cause serious economic losses.
More seriously, if the magnetic tile with internal defects is
used, it is likely to cause safety accidents and casualties.
Therefore, developing an automation system to detect internal
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defects is becoming increasingly urgent in the magnetic tile
industry.

Nowadays, with the development of science and tech-
nology, abundant non-destructive testing technologies have
been successfully developed for internal defects by scientists
around the world, such as ultrasound, infrared imaging,
acoustic emission and X-ray diffraction tomography [4].
Although these technologies have attained great success
and are widely applied in many non-destructive testing
scenarios, they are too costly to operate in an automatic
way to match the agile manufacturing process for different
kinds of magnetic tiles. Inspired by the manual operation
in the magnetic tile manufacturing industry, we utilize the
acoustic sound for internal defect detection of magnetic tile.
This is because the characteristics of the acoustic sound
for an object are closely linked to its physical structure
vibration.

However, the acquired acoustic sound is generally nonlin-
ear, non-Gaussian and non-stationary, which can seriously
hinder the extraction and identification of the signal features
regarding internal defects, whereas these meaningful features
are usually too weak to be discovered [5]. Therefore, many
algorithms are proposed to process acquired acoustic sounds,
such as wavelet packet analysis (WPT) [6], hidden Markov
model (HDM) [7], principal component analysis (PCA) [8]
and variational mode decomposition (VMD) [9]. But those
algorithms need to design hand-crafted features, which
requires complex mathematical operations and a certain
understanding of the extracted signals as well as a wealth
of signal processing knowledge. More importantly, those
specially designed hand-crafted features generally work well
for specific signal and fault scenarios and are probably
not applicable for diverse types of time-series and different
operating conditions. To address this issue, it is superior to
design an end-to-end algorithm to analyze acoustic sounds
of objects without much expert knowledge. Therefore, deep
learning (DL) [10]–[13] is always a good choice for such a
situation.

As a special machine learning model, deep learning tech-
niques are structured by a stack ofmultiple layers of nonlinear
processing units. It shows excellent performance in many
fields, e.g., image classification [14], target recognition [15],
semantic segmentation [16], natural language process-
ing [17], machine translation [18], and so on. Compared with
the traditional machine learning algorithms, DL techniques
are capable of intelligently learning underlying features from
large and diverse data, which escapes from the dilemma
of hand-crafted feature design. Especially, convolutional
neural networks (CNNs) are the most widely used to extract
meaningful features. From AlexNet [19] to ResNet [20],
the depth of CNNs becomes deeper and deeper, and the
number of parameters becomes larger and larger. AlexNet
uses Rectified Linear Unit (ReLU) [21] to replace the
traditional activation function to solve the gradient dispersion
problem, and adopts Dropout to prevent overfitting of the
model. VGG [22] stacks multiple small convolution kernels

to replace a large convolution kernel, which can significantly
improve the learning ability of the network. This is because
the nonlinear ability of multiple small convolutional kernels
is stronger than that of a larger convolutional kernel.
GoogleNet [23] performs multiple convolutional operations
with different kernel sizes on features in parallel to learn
multi-scale representation information. ResNet introduces
the residual shortcut to solve the gradient disappearance
problem of deep network, which strengthens the information
interaction between adjacent residual blocks. Later, more and
more lightweight CNNs [24], [25] are proposed to reduce
the inference time of the model without compromising the
performance. Although the aforementioned CNNs show good
performance in classification tasks, it is not applicable to
the internal defect detection of magnetic tile based on the
acoustic data because of the non-Gaussian and non-stationary
characteristics of the acoustic sound. Moreover, the unknown
size, shape and location of internal defects also increase
the difficulty in extracting effective features embedded in
acoustic sound. Therefore, only extracting features from
time-domain acoustic sound cannot completely characterize
internal defects of the magnetic tile since the acoustic sound
in time domain only reflects the fluctuation of sound energy
over a period of time.

Currently, researchers have done a lot of studies on the
classification of multimodal fusion based on deep learning
for the time-series signal [26]–[32]. According to different
inputs, multimodal fusion is divided into two categories.
The first one is that inputs include various signals, i.e.,
voice, text, image or data from different sensors. For
example, Wang et al. [32] proposed a new deep learning-
based prognostics framework for predicting the remaining
useful life of machinery, which utilizes monitoring data from
different sensors as the inputs of the prognostics network so
as to integrate the complete degradation information. The
other is that inputs are the multiple transformed signals
of one signal. Ahmad et al. [29] proposed two efficient
multimodal fusion networks for electrocardiogram (ECG)
heart beat classification, whose inputs are images of Gramian
Angular Field, Recurrence Plot and Markov Transition Field.
Liang et al. [31] proposed a new methodology of parallel
convolutional neural network (P-CNN) for bearing fault
identification, which is capable of extracting features from
time domain and time-frequency domain of the raw vibration
signal. However, mostly previous works only simply stack
extracted features of each modality for fusion, without
considering the degree of importance among features.
Although few researchers assign weights to the features of
each modality, they ignore the differences of cross-modal
features.

Therefore, based on the latter fusion method, a novel CNN
framework termed MMFCNN is proposed for internal defect
detection of magnetic tile in this article. Its inputs are signals
of the raw time domain, frequency domain gained by fast
Fourier transform (FFT) and time-frequency domain yielded
by spectrogram transform. In the proposed MMFCNN,
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a multi-branch feature extraction strategy is developed to
learn high-dimensional representations from time domain,
frequency domain and time-frequency domain of the acoustic
data. Then, the cross-attention mechanism is proposed into
MMFCNN to realize the information interaction among each
branch and emphasize more representative features at feature
extraction stage. Next, feature fusion block integrates the
high-level information from feature extraction block. Finally,
the integrated representations are fed into an internal defect
detection block for internal defect detection of magnetic tile.
The main contributions of this article can be summarized as
follows.

1) MMFCNN architecture is proposed by three parallel
CNN branches, which can extract efficient representa-
tions from three different domains of the raw acoustic
data.

2) Cross-attention mechanism is proposed into the
MMFCNN to focus on more important features and
interact information among branches.

3) An intelligent system for internal defect detection of
magnetic tile is developed. This system can auto-
matically and efficiently classify magnetic tiles. The
detection speed of the system shall reach 40 magnetic
tiles per minute at least. Therefore, it has great practical
value for the magnetic tile industry.

The rest of the article is summarized as follows.
In Section II, details of the proposed MMFCNN are elabo-
rated. In Section III, themethod of internal defect detection of
magnetic tile is given. Section IV presents the experimental
results, and Section V concludes this article.

II. PROPOSED MMFCNN
In this work, our goal is to compose an intelligent network,
which is capable of disclosing the mapping relationship
between acoustic data and defect labels (whether there
are internal defects in magnetic tiles). However, due to
the acoustic sound being non-Gaussian and non-stationary,
adopting the single modality of the acoustic sound for
internal defect detection of magnetic tile cannot achieve good
accuracy. To overcome this problem, we design a multi-
branch neural network to extract features from time domain,
frequency domain and time-frequency domain.

The architecture of the proposed MMFCNN is illustrated
in Fig. 1, which consists of feature extraction block, feature
fusion block and internal defect detection block. The raw
acoustic data collected by a sound acquisition sensor, are
transformed by Fourier transform and spectrogram. The raw
acoustic data together with two kinds of transformed data
are first input into the feature extraction block to learn
multidimensional representations. Meanwhile, the high-
dimensional representations are fed into feature fusion block
to fuse the differently useful information of multimodal data.
Finally, we input the fused features into the internal defect
detection block to analyze whether the magnetic tile has
internal defects. The details of MMFCNN are described as
follows.

FIGURE 1. The architecture of MMFCNN.

A. FEATURE EXTRACTION BLOCK
The feature extraction block is structured by three streams
and each stream consists of several CNN layers. And the
architecture of each stream in MMFCNN is shown in
Table 1. In particular, to emphatically concern the important
information and effectively fuse the complementary features,
the cross-attention mechanism is established behind the
convolutional module.

TABLE 1. The architecture of each stream in MMFCNN.

1) CONVOLUTIONAL MODULE
In the constructed MMFCNN, the architecture of the con-
volutional module is established by a series of CNN layers.
The convolutional layer firstly utilizes several learnable
convolutional kernels to convolve the input data, and then,
applying an elementwise nonlinear activation function on the
outputs of convolution operations. To avoid the overfitting
of this model, batch normalization (BN) [33] is implanted
in the convolutional layer. Through those three operations,
different feature maps can be obtained in a convolutional
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layer. Mathematically, it can be expressed as follows.

x l = σr (φ(ω(x l−1))) (1)

where x l represents the feature map of the lth convolutional
layer, σr (·) is the rectified linear unit (ReLU) activation
function, φ(·) is the batch normalization operation, and ω(·)
denotes the convolutional operation.

Due to the signals in the time domain and frequency
domain being one-dimensional (1-D) sequences, so 1-D
convolution is used to extract features. On the other hand,
after the signal is transformed by spectrogram, the output
is an RGB image containing time domain and frequency
domain information. Thus, 2-D convolution is utilized to
learn the representation of the spectrogram. The principle
of one-dimensional convolution kernel and two-dimensional
convolution is the same. For convenience, we denote
the time domain, the frequency domain and the time-
frequency domain, respectively, as DT , DF and DT−F . Let
x l−1T ∈ RL×1×C (x l−1F ∈ RL×1×C , x l−1T−F ∈ RW×H×C )
and k l1 ∈ RK×1×C×N (k l2 ∈ RK×K×C×N ) represent the
input volume inDT (DF ,DT−F ) and 1-D (2-D) convolutional
kernel, where L is the length of the input volume, W and H
denote the width and height, N represents the number of the
convolutional kernel,K×1(K×K ) is the convolutional kernel
size. The output of convolution of the lth convolutional layer
can be calculated by

ul = k l ∗ x l−1 + b =
C∑
c=1

k lc ∗ x
l−1
c + bl (2)

where bl denotes the bias, ∗ denotes the convolutional
operation, and C represents the number of input channels.
To extract the main features of convolutional operation and

increase the receptive field, the pooling layer is optionally
used behind the convolutional layer. As an independent neural
layer, the pooling operation has no parameters, and is used
to filter out unnecessary characteristics and preserve vital
representations. As a result, the obtained feature maps cover
the significant information of the raw data. Mathematically,
the nth feature map of the lth pooling layer yln cloud be
expressed by

yln = pool(x ln, k, s) (3)
where x ln is the nth output feature map of the lth convolutional
layer, i.e., pool(·) is the max pooling operation, k is the
pooling kernel size, and s represents the stride of the pooling
kernel.

It is worth noting that the dimensions of the feature
maps outputted by the convolutional module of three
branches are not the same, which will bring difficul-
ties to the subsequent information interaction and feature
fusion. Therefore, we flatten the feature maps generated by
the 2-D convolution module along the channel, and then do a
1-D convolution operation. The output feature map Fz can be
formulated as

Fz = conv1d(f (x lT−F )) (4)

where f (·) denotes the flattening operation.

2) CROSS-ATTENTION MECHANISM
In essence, the attention mechanism in CNN is similar
to the human selective visual attention mechanism, and
the core goal is to select the information that is more
critical to the current task from numerous information.
Specifically, introducing an attention mechanism in CNN is
to emphasize more representative features that are relevant
to the internal structure of magnetic tile while restraining
inessential information. On the other hand, to realize the
information interaction among feature extraction branches,
a novel module named the cross-attention mechanism is
introduced into our designed MMFCNN. Moreover, due
to the differences among cross-modal features, the cross-
attention mechanism can make incompatible features align
in fused feature space. As shown in Fig. 2, it consists of
two blocks: channel-wise attention and feature interaction
mechanism [34].

FIGURE 2. Illustration for cross-attention mechanism in MMFCNN.

a: CHANNEL-WISE ATTENTION
In CNN, each channel of the feature maps is the activation
response corresponding to the convolution kernel, and
introducing channel-wise attention mechanism into CNN
can be regarded as the process of selecting semantics [35],
which learns the weight of each channel and improves
the representation performance of convolution features by
suppressing irrelevant features. In channel-wise attention,
firstly, an adaptive average pooling is carried out behind the
convolutional module. Then, it is forward into a multilayer
perception (MLP) with two layers, which yields a feature
vector. Last, the output feature vector is fed into the sigmoid
activation function to obtain the channel-wise attention
vector. It can be calculated by

Vca = σs(MLP(poola(Fx))) (5)

where Vca is the channel-wise attention vector, σs(·) rep-
resents the sigmoid activation function, pool(·) denotes the
global average-pooling (GAP), and Fx ∈ RB×I×C is the
output feature map of the convolutional module.
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b: FEATURE INTERACTION MECHANISM
The global feature of the single modality is crucial for
classification. Introducing feature interaction mechanism is
to take advantage of this global information, so that each
branch contains important information of other branches.
Given feature maps Fx ,Fy,Fz ∈ RB×I×C extracted from
three kinds of modal data, where B is the batch-size, C is
the number of channels and I is the length of each feature
map. We do feature interaction for any two of the three kinds
of features. Due to the operation of feature interaction is
asymmetric, selecting features of three domains to do feature
interaction, which eventually leads to the fusion features
containing redundant information. For convenience, just take
Fx and Fy as examples. Firstly, Fy is aggregated by channel-
wise max-pooling to gain the globally significant feature,
then the feature is concatenated with Fx at the same level.
It can be expressed by

Fx = ψ(Fx , poolm(Fy)) (6)

where Fx ∈ RB×(I+1)×C , ψ(·) represents the concatenation
operation, poolm(·) is the global max-pooling (GMP).

B. FEATURE FUSION BLOCK
As mentioned above, a single acoustic sound cannot well
realize the task of internal defect detection of magnetic tile.
Therefore, a feature fusion strategy that can make use of
the differently useful information of the generated modal
data, is embedded into our proposed MMFCNN. For multi-
dimension feature maps, there are many ways for multimodal
feature fusion, including max, mean, sum and concatenation
operation.

For max fusion operator, it calculates the max values of
three modal feature maps at the same spatial locations a of the
cth channel. The max fusion operator 0a,cmax can be expressed
as

0a,cmax = max{Fx
a,c
,Fy

a,c
,Fz

a,c
} (7)

For mean fusion operator, it calculates the mean values of
three modal feature maps at the same spatial locations a of
the cth channel. The mean fusion operator 0c,amean is expressed
as

0a,cmean =
1
3

∑
(Fx

a,c
,Fy

a,c
,Fz

a,c
) (8)

For concatenation fusion operator, it means the high-
dimensional feature maps of multimodal data are stacked
along the channel direction. Mathematically, the concatena-
tion fusion operator can be expressed as

0cat = ψ(Fx ,Fy,Fz)

= {Fx
1
, . . . ,Fx

C
,Fy

1
, . . . ,Fy

C
,Fz

1
, . . . ,Fz

C
} (9)

where 0cat is the output of the concatenation fusion operator
of three branches feature maps, ψ(·) is the concatenate
operation, Fx , Fy and Fz represent the output feature maps of
cross-attention mechanism, and C is the number of channels.

For sum fusion operator, it calculates the sum values
of feature maps at the same spatial locations. Since the
importance of each modal feature map is unclear, we assign
learnable parameters α, β, γ to feature maps of three
generated modal data, which represents the weight of each
feature. Mathematically, it can be expressed as

0a,csum =

C∑
c=1

(αFx
a,c
, βFy

a,c
, γFz

a,c
) (10)

where a represents the spatial location and c is the cth channel
of feature maps. The detail of learnable parameters α, β, γ is
described in Section IV (D).

C. INTERNAL DEFECT DETECTION BLOCK
The specifically designed internal defect detection block
consists of four fully connected layers (FCLs). And these four
FCLs contains 2048, 512, 128 and 2 neurons, respectively.
The first three fully connected layers are associated with the
Dropout and ReLUs. The feature map of feature fusion block
is then flattened to be fed to four FCLs.

D. LOSS FUNCTION
Essentially, the internal defect detection of magnetic tile is
a binary classification problem. Therefore, the binary cross-
entropy loss is chosen as the loss function. It is defined as

` = −(p log p̄+ (1− p) log(1− p̄)) (11)

where p̄ denotes the probability that the predicted result is a
positive example (without internal defects), and p represents
the label of the sample. If the sample is a positive example,
the value is 1; otherwise, the value is 0.

FIGURE 3. Scheme of internal defect detection system.

III. METHODS
A. SYSTEM SETUP
As shown in Fig. 3, we designed an intelligent detection
system for internal defects of magnetic tiles, which can
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automatically collect sound and send it to the computer
for prediction, and then feedback the prediction results
to the classification system to classify the magnetic tile
with or without internal defects. This system consists of
five parts, namely, transportation system, excitation system,
sound acquisition system, internal defect detection system,
and sorting device. The composition of each part is as follows:
the transportation system consists of three parallel conveyor
belts. The first two conveyor belts carry the magnetic tiles
in an upright and transverse posture respectively, and the
third conveyor belt transports the sampled magnetic tile to
the designated position for sorting. The excitation system
is essentially a mechanical arm, which is responsible for
grasping the magnetic tile to about two centimeters height
and then falling to collide with the iron block to generate
sound. The sound acquisition system is a data acquisition card
with a microphone. The internal defect detection system is
an application software, and its detection process is to call
the prediction program based onMMFCNN. Last, the sorting
device is composed of two cylinders, which remove broken
magnetic tiles (the magnetic tile with obvious internal crack
is easy to be broken after colliding) and magnetic tiles with
internal defects, respectively.

The working principle of this system is summarized as
follows. At first, the mechanical arm goes down to grab
the transverse magnetic tiles to a fixed height. Then, sound
acquisition system collects the sound generated by the
magnetic tile colliding with the iron block after falling.
Finally, the collected sound is input to the designed model
for prediction, and the prediction results are fed back to the
sorting device for classification.

B. DATASET CONSTUCTION
Before training a deep neural network, it is essential to obtain
data and label the corresponding labels. However, the internal
defects of magnetic tile are not as obvious as the surface
defects. In industry, the internal defect detection process in
magnetic tile mainly depends on the hearing of experienced
workers. They distinguish magnetic tiles with internal defects
from the sounds generated by the magnetic tile colliding with
the iron block.

To realize the trained model can be well applied to the
designed equipment, we use the designed device to sample
the acoustic data of the magnetic tiles, which are labelled by
experienced workers in advance. As for sampling parameters,
the sampling frequency is set to be 40 kHz and 7000 data
points are recorded for each sound. In the end, we obtained
1241 magnetic tile samples, including 730 samples with
internal defects and 511 normal samples. The split of the
dataset is shown in Table 2. Furthermore, the sample with the
internal defect was labelled as ‘‘Defective,’’ on the contrary,
it was labelled as ‘‘Normal.’’

C. DATA PROCESSING
Data processing is critical to the model training. In this
work, there are three main data processing methods, i.e.,

TABLE 2. Distribution of experimental samples.

data normalization, FFT and spectrogram transform. Data
normalization is helpful to adjust the learning rate and
accelerate the convergence speed. And the data transformed
by FFT and spectrogram will be used as the input of the
proposedMMFCNN together with the raw acoustic data. The
details of these data processing methods are as follows.

In this work, we adopt the min-max normalization method.
It transforms the range of the original signal to [0,1] without
changing the shape of the original signal. Mathematically,
it can be expressed as follows.

x∗ =
x[n]− x[n]min

x[n]max − x[n]min
(12)

where x[n] is the raw acoustic data, x[n]min and x[n]max
represent the minimum and maximum values in x[n].

FFT is a simplified form of discrete Fourier transform
(DFT). DFT is defined as follows.

X (k) = DFT (x[n]) =
N−1∑
n=0

x[n] · e−j
2π
N nk (13)

where X (k) is the DFT of kth point in x[n], N denotes the
length of x[n]. Let N = 2m be the largest integer tending
to N , and W k,n

N
= e−2π jnk/N . Duo to W k,n

N
is periodic

and symmetrical, the amount of DFT calculation can be
significantly reduced. This case is defined as FFT, and the
FFT of kthpoint in x[n] can be calculated by

X (k) = FFT (x[n]) =
N−1∑
n=0

x[n] ·W k,n
N

(14)

Spectrogram transform mainly includes three steps, i.e.,
framing, windowing function and FFT. Framing is to divide
the sound into small segments with fixed length (For example,
25 milliseconds). The signal of each frame is usually
multiplied by a smooth window function to make both ends
of the frame decay smoothly to zero for FFT. Here, we use
Hamming window function. It can be expressed by

τ (t) =

{
0.54− 0.46 cos [2π t/(M − 1)], 0 ≤ t ≤ M
0, other

(15)

where M is the length of the frame. To show the importance
of each frame of data, we calculate the energy of each frame
with the following formula.

E =
|FFT (x[n]i)|2

M
(16)

where x[n]i represents the ith frame of the acoustic sound.
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IV. EXPERIMENTAL RESULTS
The proposed MMFCNN is trained on 4 NVIDIA GeForce
RTX2080ti GPUs using PyTorch, a deep learning framework.
The initial learning rate is 0.01 and decays by a factor of
10 every 20 epochs at the last 40 epochs. The synchronous
SGD optimizer is adopted with weight 1e-5, momentum 0.9.
The total epochs are 200 and the size of mini-batch is 32.

As a binary classification problem, the mapping relation-
ship between acoustic data and internal defects of magnetic
tile is relatively simple. The number of collected samples is
sufficient to achieve good generalization performance, so no
data augmentation technique is used. To make experimental
results be more persuasive, each network is run five time.
Then, the final results are presented through the mean and
standard deviation. In comparative experiments (B, C, D),
we don’t add any attention mechanism.

FIGURE 4. Visualization of data difference. (a)∼(c) The time-domain
signal, frequency-domain signal and time-frequency-domain signal of
‘‘Defective’’ magnetic tile. (d)∼(f) that of ‘‘Normal’’ magnetic tile.

A. DATA DIFFERENCE
As shown in Fig. 4, it shows the visualization of the acoustic
data of the normal and defective magnetic tiles in three
kinds of domains, respectively. In the time domain, the signal
represents the fluctuation of sound energy over a period of
time. As can be seen from the first column in Fig. 4, it is
quite difficult to distinguish the difference of acoustic data
between the normal and defectivemagnetic tile. This situation
is not conducive to achieving accurate classification. Then,
we convert the time domain signal to the frequency domain
and time-frequency domain. Because the signal after FFT
is symmetrical, we only take advantage of half of the data
to avoid information redundancy. In the frequency domain
space, the signal shows the distribution of frequency of
each component wave. For defective and normal magnetic
tiles, the dominant frequencies of their sound signals are
mainly distributed around 7500Hz, 12000Hz and 16500Hz.
However, for defective ones, the curve of the frequency
domain signal contains more small peaks than that of normal
ones. These small peaks are caused by the magnetic tile
with internal defects. The spectrogram shows the distribution

relationship between energy and frequency of the acoustic
sound. As can be seen from the third column in Fig. 4, there
are several bright lines in the spectrogram, which represent
multiple dominant frequencies of the acoustic sound and
high-energy areas. By comparison, the color of the area near
the bright line in the spectrum of defective magnetic tile is
brighter than that of normal magnetic tile, which corresponds
to the distribution of sound signal in frequency domain.

TABLE 3. Performance comparison in time domain.

B. COMPARISION WITH CLASSICAL CNNS
In this article, to demonstrate the superiority of our proposed
MMFCNN, we compare our model with three famous
networks, i.e., AlexNet, VGG-16 and ResNet-18. These
models show state-of-the-art performance in the field of
image classification. Besides, three generated MMFCNNs
(MMFCNN-A, MMFCNN-V and MMFCNN-R) are com-
pared, whose backbones are aforementioned three networks.
Table 3 summarizes the performance comparison results of
the proposed MMFCNN and the aforementioned CNNs in
the internal defect detection of magnetic tiles. As shown in
Table 3, the accuracy of the proposed MMFCNN is much
better than that of aforementioned CNNs, whose accuracy
rate reaches 98.16%. While, the maximum accuracy rate of
aforementioned CNNs is 97.68%, which demonstrates that
only extracting the characteristics of sound signal in time
domain cannot achieve good results in predicting the internal
defects of magnetic tile and our proposed MMFCNN is
relatively superior. Besides, the deeper CNNs are, the higher
the accuracy rates cannot be significantly improved.

C. EFFECTIVENESS OF FEATURE FUSION
In this article, to verify that each modal data contributes
to the internal defect detection of magnetic tile and feature
fusion is effective, seven kinds of architectures are compared.
For simplicity, the time domain, frequency domain and time-
frequency domain are referred to as T, F and T-F respectively,
and all combinations between them are also obtained, i.e.,
T+F, T+T-F, F+T-F and T+F+T-F. For the data in T, F and
T-F, they are input to the single CNN for training. Moreover,
these data in T+F, T+T-F and F+T-F are respectively fed into
MMFCNN with two branches for training. Correspondingly,
the data in T+F+T-F are input to MMFCNN with three
branches for training. For the last four cases, these networks
all use concatenation operation as the way of feature fusion.
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TABLE 4. Accuracy rates based on different architecture.

Table 4 summarizes the performance comparison results.
As shown in Table 4, the highest accuracy rate is 98.16%,
whose architecture uses three modal data as input. As can
be observed from Table 4, the accuracy rate of feature
fusion is much higher than the single network, which
illustrates feature fusion is effective. However, the effect of
feature fusion between time domain and frequent domain
is poorer than the single network in frequency domain.
This is because the features in time domain and frequency
domain are inconsistent, which leads to disorder of defect
information through simple feature stacking. Another obvi-
ous result is that the more modalities of data are fused,
the higher the prediction accuracy is, which shows each
modal data contributes to the internal defect detection.
This is because each modal data describes internal defects
from a different angle. Moreover, it demonstrates that
feature extracted from different modalities can supplement
extra information for internal defect detection of magnetic
tiles.

D. FEATURE FUSION METHODS COMPARISON
In this experiment, feature fusion methods are explored. For
these four fusion methods, the max operation extracts the
most salient feature, the mean operation balances three types
of features, the sum operation makes a suitable combination
of features, and the concatenation operation integrates all
defect features, which are independent of each other in the
fused features. For sum fusion operation, we designed a
subnetwork to regress three trainable weight parameters,
i.e., α, β, γ , which were assigned to the feature maps of
corresponding modes. The architecture of this subnetwork
consists of four layers of processing units, i.e., a GMP and
three convolutional layers. The GMP samples down the size
of the feature map to 1. The subsequent three convolution
layers with 1× 1 kernel size, contain 256, 64 and 3 channels,
respectively. Finally, threeweight values are obtained through
the softmax activation function.

TABLE 5. Accuracy rates of MMFCNN based on different fusion methods.

The experiment results are summarized in Table 5. As can
be seen from Table 5, using max or concatenation operation
for feature fusion achieves the best result, whose accuracy
rate reaches 98.16%. The mean operation is a little better
than the sum operation, the accuracy rates of which are
98.08% and 97.60%, respectively. The accuracy of these
fusion methods is very close, which cannot explain which
fusion method has a better effect. To illustrate the impact
and generalization performance of these four fusion methods
on MMFCNN, the training loss and the validation accuracy
rates based on the aforementioned fusion methods are shown
in Fig. 5(a) and Fig. 5(b). As shown in Fig. 5, our proposed
algorithm based on these four fusion methods all converges
after 200 epochs. Especially, the concatenation operation
converges faster than others, and obtains higher accuracy on
the verification set after convergence.

FIGURE 5. Training process. (a) Loss on training set. (b) Accuracy on
validation set.

TABLE 6. The effects of each component in cross-attention.

E. NECESSITIES OF CROSS-ATTENTION MECHANISM
In previous experiments, it was obvious that using three
branches and concatenation fusion method achieved the
best results. On this basis, the cross-attention mechanism is
introduced into MMFCNN to demonstrate the effectiveness.
In addition, the order of components may have a great
impact on the effect of MMFCNN. Therefore, experiments
on the order of the exchange of components were carried
out. Experimental results are shown in Table 6. It can be
observed, using channel-wise attention followed by a feature
interaction mechanism (cross-attention) can more effectively
improve the performance of MMFCNN, whose accuracy rate
is 98.64%. This is because channel-wise attention enables
the network to focus on the information of internal defects,
and the feature interaction mechanism enables the network
to associate information between two branches during
feature extraction. By contrast, the result of using a feature
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interaction mechanism followed by channel-wise attention is
slightly worse than the previous architecture. As a result of
the locations of defect information in each modal data are
different, and the features of one mode integrate the global
features of another mode, resulting in the disorder of the
channel-wise attention mechanism. However, using channel-
wise attention or feature interaction mechanism alone cannot
improve the accuracy of our proposed algorithm. From the
training process, they can accelerate the convergence of the
network and make the network more stable. Moreover, the
confusion matrix of the validation set has also been given
in Fig. 6. For failure cases of prediction, there are two
reasons. On the one hand, long-hours working leads workers
to mistakenly mark samples. On the other hand, these failure
casesmay exist tiny internal defects that are acoustically close
to normal magnetic tiles.

FIGURE 6. Confusion matrix of MMFCNN on validation set.

TABLE 7. Time complexity and inference time.

F. FIELD VERIFICATION
Before the deployment of the model, we analyze the
time complexity and inference time of MMFCNN. For
time complexity, we calculate the FLOPs (floating-point
operations per second) of proposed network. For inference
time, we calculated the average value of the prediction time
of 10 magnetic tile data. The specific results are shown in
Table 7. To verify the adaptability of our proposed model
to the whole detection system, we simulate the detection
process of internal defects of magnetic tile, and build a
similar and simple system. The NI-9250 sound acquisition
card equipped with a sound sensor and the sound acquisition
software system written by LabVIEW is used to sample the
sound excited by magnetic tile and iron block in real-time.
To avoid the influence of subjective factors, we test the newly
produced magnetic tiles, and they are detected again by the
experienced worker. Finally, the results of the two tests are
compared. The comparison result is as follows. 100 newly
produced magnetic tiles are tested through our established
system. The test results show that 93 pieces are normal and
7 pieces have internal defects. The results of manual detection

are consistent with ours. Therefore, this shows that our model
has strong applicability.

G. INFLUENCE OF CONVOLUTIONAL PARAMETERS
Our backbone is based on AlexNet. The parameters in
Table 1 are similar to AlexNet. For time domain and
frequency domain data, because they are relatively sparse,
small convolution kernels are used to extract neighborhood
information. For time-frequency domain spectrogram, large
convolution kernel is firstly used to extract a wide range of
neighborhood information. Then, small convolution kernel
is used to extract high-dimensional features. To demonstrate
the influence of the different parameters, we mainly discuss
the number of filters. The number of filters of five layers
in our network is 1, 3, 6, 4 and 4 times that of the first
layer. Keep the multiplier constant, and set the number
of filters of the first layer as 32, 64, 96 and 128 to
illustrate the influence of the number of filters on the
network performance. And the corresponding parameters
are marked as Conv1_X(32), Conv1_X(64), Conv1_X(96)
and Conv1_X(128), respectively. The comparison results are
shown in Table 8. As can be seen from Table 8, the number
of filters in Table 1 can make the network achieve the highest
accuracy.

TABLE 8. The influence of the number of filters.

V. CONCLUSION
In this work, a novel deep learning-based CNN named
MMFCNN was proposed for the internal defect detection
of magnetic tile. Based on this algorithm, a new intelligent
system was developed, which can automatically obtain sound
and identify the internal defects of the magnetic tile. To take
advantage of multimodal information, we utilized multiple
branches to extract features respectively, and then, carry
out the feature fusion operation. And then, multiple feature
fusionmethods were discussed.Moreover, the cross-attention
mechanism was constructed to realize the information inter-
action among branches and emphasize more representative
features, which can improve the performance of our model.
As for whether eachmodule in the cross-attentionmechanism
is necessary, several ablation experiments were carried out.
Extensive experimental results show that our model is
superior for internal defect detection of magnetic tile.

In this article, we assume the training set and test set
follow the same distribution. Besides, the number of defective
samples is comparable to that of normal samples. However,
the number of normal magnetic tile is much more than that
of the defective in the production process. On the other hand,
our model is only for one kind of magnetic tile, which is not
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enough for the magnetic tile industry.Moreover, the proposed
network is relatively large, which lead to the detection speed
cannot be too high. Therefore, the related transfer learning,
few-shot learning and knowledge distillation models need to
be studied in our future work.
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