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ABSTRACT Yard cranes (YCs), yard trucks (YTs), and quay cranes (QCs) are the main material handling
equipment (MHE) used to fulfill Yard Storage Plan (YSP) and Vessel Stowage plan (VSP) in a traditional
container terminal. However, previous studies have often considered part of these MHE, with either import
or export containers being neglected simultaneously. Such studies at most can only achieve local optimality
which in a worst-case scenario can cause bottleneck(s) in the downstream operations. In addition, it is noted
that the YSP, VSP, and their constraints have been often neglected in previous studies. Such negligence
can cause operational problems. To best operate a container terminal, it needs to address the above
issues. Our literature review shows that exact methods have difficulty solving a problem of big size to
optimality due to NP-hard, thus alternative approaches are still required. Simulation-based optimization
approaches are found with the potential to deal with container terminal problems. However, software for
the integration of simulation and optimization effectively is found unavailable. In this research, different
simulation-based optimization approaches, based on a simulation-based optimization framework (HSBOF),
have been developed. These approaches help to schedule YCs, YTs, and QCs in handling both import and
export containers for a ship in a traditional container terminal, taking YSP, VSP, and their constraints into
consideration. Various heuristics/metaheuristics have been employed in the HSBOF as a sequencing method
to arrange alternative operational sequences of containers. The results show that the Simulation(ISFLA) has
the best performance.

INDEX TERMS Quay crane, yard crane, yard truck, terminal, metaheuristic, simulation-based optimization
approach.

I. INTRODUCTION
Recently, port congestion and supply chain disruption have
introduced problems to the world, which highlights the
importance of maritime transport. Maritime container trans-
port is found especially important as it takes a large share
of maritime transport. This kind of transport has an essential
part of the global transportation system. The use of standard
containers leads to the advantage of the ease of loading,
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unloading, and transportation in the supply chain. The
increasing global container shipments highlight the need for
continuous improvement in the capacity and efficiency of a
container terminal [1].

Improving the terminal capacity, such as by increasing the
total number of container terminals, is a hardware approach
that can have a significant effect. However, it belongs to a
long-term plan that is time-consuming and costly. To achieve
an immediate effect, it needs to improve the operational
efficiency of the material handling equipment (MHE) used
in a container, which is considered one software approach
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focused in this research. In a conventional container terminal,
yard cranes (YCs), yard trucks (YTs), and quay cranes (QCs)
are the three essential MHE for handling containers. They
affect the overall performance of a container terminal consid-
erably [3], [4]. Coordinating the operations of these MHEs is
critical.

FIGURE 1. A common layout of a seaport container terminal.

Fig. 1 shows the layout of a traditional container ter-
minal which is separated into the seaside, yard, and land-
side areas with different MHE [5]–[7]. For example, the
seaside uses QCs to load/unload containers; the yard uses
YCs to store/retrieve containers; the YTs transport containers
between the QCs and YCs. These MHE are necessary to han-
dle both import and export containers for a ship in a container
terminal. The import containers are unloaded firstly, followed
by the export containers. Containers can be treated as groups
or individuals when planning. This research treats containers
as individuals.

A container terminal faces many operational problems,
such as berth allocation problem (BAP), quay crane assign-
ment problem (QCAP), quay crane scheduling problem
(QCSP), yard crane assignment problem (YCAP), yard crane
scheduling problem (YCSP), yard truck assignment problem
(YTAP), yard truck scheduling problem (YTSP), YT routing
and traffic control problem, storage planning, space planning
problem, and pre-reshuffling problem, etc. [8]. These prob-
lems are belonging to different areas. Solving these problems
in one study is impossible, thus this study focuses on the
YCSP, YTSP, and QCSP simultaneously.

The container terminal is a complex system that is hard to
optimize its operations. This complexity comes from many
factors such as different types of containers, storage positions,
storage/stowage plans, and MHE. For instance, a container
can have various storage positions such as one in the yard
arranged by Yard Storage Plan (YSP) and another in the
vessel arranged by Vessel Stowage Plan (VSP). The purpose
of the activities in the container terminal can be regarded as to

fulfill the two plans through the use of MHE, including YCs,
YTs, and QCs.

The [9] reviewed some studies focusing on the seaside
and yard side areas. That study helps identify the following
research gaps: (1) the only focus on one MHE; (2) the neg-
ligence of YSP and VSP and their constraints; and (3) the
lack of applying simulation approaches to deal with container
terminal problems [9]. Another study [10] reviewed some
maritime logistics problems and it pointed out that software
for the integration of simulation and optimization effectively
is unavailable. This is another research gap that is required to
be addressed.

Different kinds of approaches such as exact approaches,
evolutionary heuristics, heuristics, and simulation have been
applied to deal with container terminal problems [9]. As kinds
of exact approaches, Mixed Integer Linear Programming
(MILP), Mixed Integer Programming (MIP), Dynamic Pro-
gramming (DP), Branch and Bound (B&B), and Column
Generation (CG) have been often used to find the optimal
solution. However, these exact approaches tend to face the
computationally intractable problem in dealing with a big
instance so Rules, genetic algorithms (GAs), local search-
based algorithms, greedy algorithms, particle swarm opti-
mization (PSO), etc. have been used to find an optimal/
near-optimal solution [9].

In this research, a heuristic/metaheuristic-based simula-
tion optimization framework is proposed for developing
simulation-based optimization approaches in which heuris-
tics and metaheuristics serve as a sequencing method. The
developed approaches are used to plan the collaborative oper-
ations of YCs, YTs, and QCs in handling both import and
export containers, taking YSP and VSP and their constraints
into consideration. A simulation model is used in the frame-
work to simulate the planning results. An iterative procedure
is used to improve and find the best planning result.

In this research, one heuristic (Random) and some meta-
heuristics, including GA, PSO, firefly algorithm (GA), shuf-
fled frog-leaping algorithm (SFLA), and an improved SFLA
(ISFLA), have been used as alternative sequencing methods
respectively used in the framework. The standard SFLA,
proposed by Eusuff and Lansey [11], was originally used to
design the water distribution network which is not with a
discrete solution domain. The standard SFLA is found with
the following weaknesses; (1) lack of global strategy for
grouping frogs, (2) lack of capability to handle the problem
with the discrete domain, and (3) lack of adaptive jump to
approach the target frog adequately. The ISFLA improves
these weaknesses of the standard SFLA by introducing new
features. Then, extensive experiments have been conducted
to investigate their effectiveness. The experimental results
show that the Simulation(ISFLA) outperforms the others in
terms of the total cost consisting of sub-costs of makespan
and penalty of constraint violation. The statistical t-test has
been used to validate the robustness of the results.

The rest of this paper is organized as follows.
Section 2 reviews background knowledge and relevant
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FIGURE 2. Stowage positions of containers in a vessel.

studies. Section 3 defines the problems of QCSP, YTSP, and
YCSP. Section 4 proposes a hierarchical simulation-based
optimization framework for developing simulation-based
optimization approaches. Section 5 shows and discusses
the experimental results. Finally, Section 6 concludes and
suggests future research directions.

II. BACKGROUND AND RELEVANT STUDIES
A. VESSEL STOWAGE PLAN
A container ship contains multiple bays. Each bay is com-
posed of many stowage positions for storing containers [12].
The positions of containers in a vessel are planned by the
so-called Vessel Stowage Plan (VSP). Fig. 2 shows the exam-
ple of Bay 6 with stowage positions in a vessel. Each position
in theVSP is denoted as (b, r, t), with the b, r , and t indicating
a bay, row, and tier numbers, respectively.

B. YARD STORAGE PLAN
A container yard consists of multiple blocks [13]. Fig. 3 illus-
trates a block of Asia type with containers stacked one on
one. The assignment of containers to storage positions in a
block is specified by the so-called Yard Storage Plan (YSP).
Each storage position is denoted as (x,y,z), with the x, y, and
z indicating bay, row, and tier number, respectively. Usually,
import and export containers are respectively stored in differ-
ent blocks to avoid problems. These blocks provide tempo-
rary storage service for containers before loading/unloading
into/from a ship.

C. RELATED STUDIES
1) STUDIES FOCUSING ON ONE SINGLE PROBLEM
Some studies focused on QC [14]–[18]. The [14] pro-
posed a coordinated optimization model to deal with the
QCSP and QCAP (quay crane assignment problem). The
Red Deer Algorithm (RDA) was at its first time applied
to solve the two problems simultaneously. Differently, the
[15] first decomposed the QCSP into a workload-assignment
master problem and operation-sequence slave sub-problem,
which were formulated as mathematical models, considering

FIGURE 3. Storage positions of containers in a block.

non-crossing constraints. This model was based on logic-
based Bender decomposition. The. Logic-based cuts were
proposed to ensure the convergence of this approach. The [16]
used a two-level dynamic programming (DP) algorithm to
solve the QCSP. The solution found by the DP algorithm
was compared to a lower bound. The [17] dealt with the
QCSP with the uncertainty of loading/unloading times of
containers and travel time of quay crane taking into con-
sideration. A simulation-optimization approach was used to
find good-quality solutions. An Ant Colony Optimization
(ACO) metaheuristic hybridized with a Variable Neighbor-
hood Descent (VND) local search was used to assign tasks
to QCs and determine the operational sequences of con-
tainers on each QC. The simulation was used to generate
scenarios. The [18] was also devoted to solving the QCSP as
quay cranes are considered the most important MHE in port
container terminals. A MIP mathematical model was formu-
lated. In addition, a B&B method was developed to find the
optimal solution. To overcome the computational difficulty
of the B&B method, a heuristic search algorithm called the
greedy randomized adaptive search procedure (GRASP) was
proposed.

Others focused on the YT [19]–[23]. The [19] formulated
a mathematical model for reducing emissions generated from
YTs idling. The total truck waiting time in the yard was esti-
mated by using discrete event simulation. To solve this model,
a GA was proposed and a case study in a Singaporean port
was analyzed. The [20] proposed a Look-Ahead Dispatching
Method for automated guided vehicles (AGVs) in Automated
Port Container Terminals. This study discussed how to dis-
patch AGVs by utilizing information about locations and
times of future tasks. The [21] studied the optimization of
dispatchingYTs to containers forminimizing the total service
time required for a ship. The total time includes the unloading
time of import containers as well as the loading time of export
containers. Some easy heuristic algorithms were developed
for dispatching YTs. The [22] used GA to address the YTSP.
A MIP mathematical model was firstly formulated for the
YTSP. However, due to NP-hard, a GA was used to solve the
problem. The proposed GA has been compared to other GAs
with six popular crossover operators. The [23] presented a
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new MIP model considering two strategies, outsourcing, and
collaboration, simultaneously. In literature, the two strategies
have been used as alternatives to keep a large number of YTs
to alleviate the possible arising of bottlenecks during peak
hours. The outsourcing strategy means renting additional
YTs for a container terminal while the collaborative strategy
means the sharing of YTs amongmultiple container terminals
with adjacent locations. However, the two strategies have
been dealt with separately in the literature. The proposed
model is solved using a rolling horizon heuristic.

Still, others focused on the YC [24]–[29]. The [24] first
formulated a MIP mathematical model for the YCSP with
non-interference constraints taken into consideration. How-
ever, due to NP-hard, a hybrid GA was further used to obtain
near-optimal solutions. The [25] formulated a MIP for the
QCSP, considering non-interference constraints. However,
due to NP-hard, the authors further proposed an alternative
approach. The [26] first formulated an IPmathematical model
for the YCSP. The objective was to minimize the total task
delay at blocks. However, due to NP-hard, a novel dynamic
rolling-horizon decision strategy, along with a simulation
model, was then proposed for solving the YCSP. The [27]
was devoted to solving the YCSP with the trade-off between
efficiency and energy consumption considered. The YCSP
was regarded as a vehicle routing problem with soft time
windows (VRPSTW) and formulated into a MIP. The objec-
tives aimed at minimizing the total completion delay of all
task groups and the total energy consumption of all YCs.
Subsequently, an integrated simulation optimization method
is developed for solving the problem. The simulation is used
to evaluate alternative solutions. On the other hand, an opti-
mization algorithm that integrates the genetic algorithm (GA)
and the particle swarm optimization (PSO) algorithm was
used to explore alternative solutions. The [28] conducted a
comparative study of two modeling approaches, centralized
and decentralized, for solving the YCSP. The centralized
approachwas found to outperform the decentralized approach
by an average of 16.5 %, due to complete and accurate infor-
mation about future truck arrivals. Nevertheless, the decen-
tralized approach can better adapt to real-time truck arrivals,
making it better suited for real-life operations. Finally, it is
suggested to integrate the two approaches as they have com-
plementary features. The [29] studied the YCSP for a given
set of loading/unloading jobs with different ready times. The
objective was to minimize the total waiting time for jobs.
A B&B algorithm was proposed to solve the scheduling
problem to optimality. In addition, efficient and effective
algorithms are proposed to find lower bounds and upper
bounds.

2) INTEGRATED STUDIES OF MULTIPLE PROBLEMS
Other studies have been devoted to solving integrated prob-
lems. The [30] regarded the integrated scheduling problem
of QC, YT, and YC as a hybrid flow shop scheduling prob-
lem. The authors highlight that good coordination among the
MHE is essential to minimizing the service times of ships.

In addition to formulating a mathematical model, a Tabu
search (TS) was proposed for dealing with a big instance
within an acceptable time. The [31] dealt with the QCSP
and YCSP simultaneously with the storage positions in a
yard as well as a vessel being considered. A heuristic was
proposed as a scheduling means for an automated container
handling system with twin 40’ cranes. However, that study
neglected the YTs. The [32] formulated a MIP model to
deal with the YCSP and YTSP simultaneously. However, the
mathematical model was found hard to solve a big instance.
Two methods, based on Benders’ decomposition, were thus
further proposed. However, this study neglected the QCs. The
[33] formulated a Constraint Programming (CP) model to
deal with the QCSP, YCSP, and YTSP simultaneously. The
YTs can serve multiple vessels simultaneously. The objective
was to minimize empty travel times of the QC, YC, and
YT. However, it is found that the CP has difficulty dealing
with a big instance and even a small instance. A three-stage
approach, based on heuristic and disjunctive graph, was thus
proposed. This approach can deal with a big problem of up
to 500 containers. However, that study neglected the VSP
and YSP constraints. The [34] proposed an integrated model
including YC and AGV, considering yard storage position.
The objective was to optimize the yard operation. This study
considered the loading operation as short-term planning and
the YSP as long-term planning. In addition, it assumed that
the processing sequences of containers for QCs were known.
A MIP model was formulated to minimize the total berthing
time for ships. However, a GA was another proposed to
solve a big instance. The [35] studied an integrated problem
including yard storage allocation, QCSP, and YTSP. A MIP
was formulated, which minimizes two weighted objectives.
The first objective is makespan and the second objective is
the total transportation distance of YTs. However, this study
neglected the non-crossing constraint required for QCs. The
yard storage assignment considered block, instead of con-
tainer slots assignments. A two-stage heuristic algorithm was
proposed. The first stage uses ant colony optimization (ACO)
for yard storage allocation. The second stage uses a greedy
algorithm and a local search algorithm to solve the YCSP
and QCSP simultaneously. The [36] studied the integrated
problem of QCSP, YTSP, and YCSP. A MIP was firstly
formulated to minimize the overall departure delay of ships
and energy consumption of tasks. Then, a simulation-based
optimization approach, which integrates GA with PSO, was
proposed to solve the integrated problem. The GA performs
a global search while the PSO performs a local search. The
results showed the optimal tradeoff between time-saving and
energy-saving. The [37] studied the YTSP together with the
yard storage problem for import containers in an automated
container terminal. A MIP model was formulated for dealing
with small instances while a GAwas further used to deal with
big instances. However, this study neglected QC interference
and export containers. The [12] proposed a framework to
deal with the integrated problem of QCSP and 3D stowage
planning problem. Simulation and GA were used to solve the
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problems with 30 ports and 1500 TEUs of ships as well as 15
ports and 22,000 TEUs of ships, under the use of 2 QCs. The
additional consideration of QCSP increased about 45.82% of
loading/unloading time for the solution to the 3D stowage
planning problem. The [38] formulated aMIPmodel and aCP
model to optimize the assignment and scheduling of QC and
YC. The containers were treated as groups (or shipments).
Each group has a port destination and belongs to a customer.
Then, QC and YC are assigned to handle these shipments.
Containers of the same group are stored in the same vessel bay
and storage block. The CP model was found more efficient
than the MIP model. The [39] studied integrated scheduling
of QCs, YCs, and AGVs as well as the routing problems. Both
import and export containers were considered. A bi-level
optimization model was proposed to minimize makespan.
The top level considers the scheduling problem and the sec-
ond level handles the AGV routing problem. AGA-based rule
was proposed to prevent congestion. The authors highlighted
the impotence to solve these problems at the same time. The
[40] considered the QCSP, YCSP, and AGV simultaneously
as a hybrid flow shop problem and proposed a formulation
to process both import and export containers. In addition,
this study allows a QC to handle two containers at the same
time. SA was used as the main approach. The [41] presented
a planning model for the integration of BAP, QCSP, and
YTSP. The developed model contributes to the existing lit-
erature by including energy-saving goals and some realistic
factors such as shortages of internal trucks and handling
time estimations. A Lagrangian relaxation-based method was
proposed in that study. The [42] integrated the assignment of
QCs in container terminals and internal truck sharing assign-
ments among them. A bi-objective optimization model was
proposed. This model includes multiple assignment phases,
including the assignments of the vessel to container termi-
nals, cranes to terminals, cranes to vessels, and trucks to
cranes. The model also seeks to improve the efficiency and
effectiveness of YTs by sharing them among multiple termi-
nals. Two meta-heuristic multi-objective algorithms, includ-
ing modified non-dominated sorting genetic algorithm-II
(MNSGA-II) and modified multi-objective particle swarm
optimization (MMOPSO), are presented. The [43] presented
a mathematical model for solving the QCAP, the specific
QCAP, and the assignment of YTs to each QC simulta-
neously. The proposed model considers important practi-
cal aspects such as the limited availability and operational
cost of the YTs. A Lagrangian relaxation and subgradient
optimization procedure-based heuristic were proposed. The
[13] developed integrated scheduling for YC and YT in the
handle of export containers collaboratively in the yard side
area of a container terminal. However, this study neglected
QCs and the VSP constraints in the seaside area. The [44]
extended the [13] to further consider the QC operations
as a whole, in addition to taking the VSP constrain into
consideration. However, this study and many of the past
studies, including the [13], have neglected either import or
export containers whose operations are found can also affect

the whole operations in a container terminal. Both opera-
tions of inbound and outbound containers should be equally
esteemed.

3) RESEARCH GAP
The above literature review shows that many past studies have
been devoted to one single MHE problem, which at most
can only achieve local optimality. The local optimality in
the worst case can introduce bottleneck(s) to the downstream
operations if the whole operations in the container terminal
are not well synchronized. Coordinating the whole operations
in a container terminal is essential. A global view requests
coordination of all of the operations in the container terminal,
with the inbound and outbound containers being equally
esteemed and considered simultaneously.

Table 1 compares the present research with some pre-
vious studies in terms of problems domain, export/import
(I/E) container, and methodology. The present research has
a wider scope which includes YC, YT, QC, VSP, YSP, VSP
and YSP constraints, and both import and export containers.
The consideration of both import and export containers has
complicated the integrated scheduling problem considerably.
In addition, the present research investigates more method-
ologies (SIM, ISFLA, SFLA, FA, GA, PSO, and RA). Var-
ious heuristic/metaheuristic-based optimization approaches
have been developed to solve this integrated scheduling
problem.

The [10] reviewed studies with simulation and optimiza-
tion. A total number of 107 papers published within the last
two decades were reviewed and classified into three areas:
terminal, shipping line, and hinterland transport. Of these
papers, 20 papers were classified into the ‘‘yard’’ area while
8 papers were classified into the ‘‘terminal’’ area. This shows
more simulation and optimization-based studies are required
for the container terminals. Meanwhile, the [10] pointed out
that software for the integration of simulation and optimiza-
tion effectively was relatively unavailable – which is regarded
as one research gap in this research.

III. DEFINITION OF PROBLEM, ANALYSIS OF CONTAINER
TERMINAL OPERATIONS, FORMULATION OF A
MATHEMATICAL MODEL
A. PROBLEM DEFINITION
The problem to be dealt with in this research is defined as an
integrated scheduling problem of QC, YT, and YC in a tradi-
tional container terminal. The traditional container terminal is
a non-automated container terminal that uses single-spreader-
single-trolley QCs and tired-type YCs and YTs to complete
the changes of storage positions of import and export contain-
ers of a ship between the yard and vessel. Each import/export
container is assigned with a yard storage position and a vessel
stowage position defined in the YSP and VSP, respectively.
This problem also considers the YSP and VSP constraints.
All of the QCs, YTs and YCs work with the single-cycle
operation mode.
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TABLE 1. The comparisons of features of some integrated studies with
the present research.

B. OPERATIONS IN THE CONTAINER YARD
Fig. 4 (a) shows the moving paths for the YC1 to retrieve
the container j at the storage position (xj, yj, zj), after loading
the container i with the storage position (xi, yi, zi) along the
path 1. The hoist first moves to the container j along the
path 2, then picks up this container. Subsequently, the hoist
moves the container j to the truck lane along the path 3.
Finally, it loads the container j onto the YT2. Eq. (1) is used
to estimate the total retrieval time for the container j (RT j).

RT j = Max{d(
∣∣xj − xi∣∣)/vx , d(yj)/vy} + 2

· d(H − zj)/vz + d(yj)/vy + 2 · d(H − 1)/vz (1)

FIGURE 4. (a). The movement of hoist to retrieve container i . (b). The
movement of hoist to store container i .

The right-hand side includes four terms. The first term is
the moving time for the hoist to reach the position above the
target container j from the position of the previous container
i, where the d(

∣∣xj − xi∣∣) is a moving distance between the two
bays of containers i and j; the vx is a moving speed along the
x (bay) direction; the d(yj) is the distance between the row
of container j and the truck lane; the vy is a moving speed
along the y (row) direction. The second term estimates the
roundtrip time for the hoist to lower down and pick up the
container j, where d(H -zj) is the one-trip distance; the vz is
a moving speed along the z (tier) direction. The third term is
the time required for the hoist to move the container j to the
truck lane. The fourth term side is the roundtrip time for the
hoist to load the container j onto the YT2, where the d(H -1)
is a one-trip distance to load the container. The fourth time
components form the cycle time of retrieval.

Let aj and ap be the available times of container j and its
assigned YC p (p = 1 in this case), respectively. Then, Eq. (2)
is used to determine the start retrieval (SRj) time of the YC p.

SRj = Max
{
aj, ap

}
(2)

The end retrieval (ERj) time of the export container j is
estimated by Eq. (3).

ERj = SRj + RT j (3)

Fig. 4 (b) shows the moving paths for the YC1 to store
the container j to its yard storage position (xj, yj, zj). After
storing the container i along the path 1, the hoist starts storing
the container j. After arriving at the YT2 along the path 2,
the hoist starts picking up the container j. Following this, the
YC1 moves and stores the container j into its yard storage
position. Eq. (4) is used to estimate the total storage time for
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the container j (ST j).

ST j = Max{d(
∣∣xj − xi∣∣)/vx , d(yi)/vy} + 2

· d(H − 1)/vz + d(yj)/vy + 2 · d(H − zi)/vz (4)

Let aj and ap be available times of the container i and its
assigned YC p, respectively. Eq. (5) is used to estimate the
start storage (SS j) time of the import container j for the YC p.

SS j = Max
{
aj, ap

}
(5)

The end storage (ES j) time is estimated by Eq. (6).

ES j = SS j + ST j (6)

When storing or retrieving containers, the sequence of
these containers is important. Given a set of containers to be
retrieved or stored, the following constraints should be taken
into account.
• YCs should not cross over each other.
• Containers of the same bay are assigned to the same YC.
• For some containers with the same bay and the same row
number, a container with a lower-tier storage position is
stored earlier and retrieved later.

The last one is regarded as YSP constraints whose violation
is given a penalty cost (PC) which is an additional time
required for recovering this unsuitable order. Eq. (7) shows
the cost matrix (M1) of storing operations. The c1ij is set
with the value 0 if there is no problem storing container j after
container i. Otherwise, the c1ij is set with a penalty cost value
PC (PC > 0).

M1 =

 c111 · · · c11N
... c1ij

...

c1N1 · · · c1NN

 (7)

Eq. (8) shows the cost matrix (M2) of container retrievals.
The c2ij is set with the value 0 if there is no problem retrieving
container j after the container i.Otherwise, the c2ij is set with
the penalty cost PC (PC > 0).

M2 =

 c211 · · · c21N
... c2ij

...

c2N1 · · · c2NN

 (8)

The penalty costs are taken into account in the objective
function to rule out those solutions violating the VSP con-
straints seriously.

C. OPERATIONS IN THE CONTAINER SHIP
Let (bi, ri, ti) and (bj, rj, tj) be vessel stowage positions of the
containers i and j, respectively.

Fig. 5(a) shows the paths for the QC1 to load the container j
into a ship. After loading the container i into the ship, the hoist
starts to pick up the container j on the YT2 in the truck lane
along the path 1. After picking up the container j, the hoist
starts moving the container j to its stowage position along
the path 2. Finally, the container j is stored into its stowage

FIGURE 5. (a). The QC loading operation in the seaside. (b). The QC
unloading operation in the seaside.

position (bj, rj, tj). Eq. (9) estimates the total loading (LT j)
time for the container j.

LT j = Max{d(
∣∣bj − bi∣∣)/vb, d(ri)/vr } + 2

·CH/vt + d(rj)/vr + 2 · d(H − tj)/vt (9)

On the right-hand side, the first term is the time for the hoist
to reach above the container j, from the position of previous
container i,where the d(

∣∣bj − bi∣∣ indicates a distance between
the two bays of containers i and j; the vb is a moving speed
along the bay direction; the d(ri) indicates a distance between
the bay ri and the truck lane; the vr is a moving speed along
the row direction. The second term is the time for the QC1 to
pick up the container j, where the CH is the one-trip distance
to reach the container j on the YT2; the vt is the moving speed
of the hoist along the tier direction.

The third term is the time for the QC1 to reach the row
position rj of the container j. The d(rj) is the moving distance
to reach the row position rj of the container j. The fourth
term is the roundtrip time to put the container j at its stowage
position (bj, rj, tj), where d(H -tj) is the one-trip distance to
reach the tier position tj.

Let aj be the available time of the container j and aq be
the available time of the assigned QC q, Eq. (10) is the start
loading (SL j) time of the QC q.

SL j = Max
{
aj, aq

}
(10)

And, Eq. (11) is the end loading (EL j) time.

EL j = SL j + LT j = Max
{
aj, aq

}
+ LT j (11)
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Fig. 5(b) shows the paths for the QC1 to unload container
j from the ship. After unloading the container i from the
ship to the YT1 along the path 0, the hoist starts to handle
the container j. After reaching above the row position of the
container j along the path 1, the QC1 starts picking up the
container. After picking up this container j, the QC1 starts
moving this container to the YT2 in the truck lane along the
path 2. Finally, the container j is loaded onto theYT2. Eq. (12)
estimates the total unloading time (ULT j) of the container j.

ULT j = Max{d(
∣∣bj − bi∣∣)/vb, d(rj)/vr } + 2

· d(H − tj)/vt + d(rj)/vr+2·CH/vt (12)

On the right-hand side, the first term is the time for the hoist
moving from the container i to the container j. The second
term is the pick-up time of the container. The third term is
the time for the hoist moving the container j to the truck land.
The fourth term is the round-trip loading time for the hoist to
load the container onto the YT2.

Let aj be the available time of the container j and aq be the
available time of the quay crane q assigned to the container j,
Eq. (13) is the start unloading (SUL j) time for the QC q.

SUL j = Max
{
aj, aq

}
(13)

Eq. (14) is the end unloading (EUL j) time of the QC q.

EUL j = SUL j + ULT j = Max
{
aj, aq

}
+ ULT j (14)

For the QC operation, the following constraints are consid-
ered [10].
• QCs should not cross over each other.
• Containers of the same bay are assigned to the same QC.
• For some containers with the same bay and row num-
bers, the container with a lower-tier number is loaded
earlier and unloaded later.

The last constraint is identified as a VSP constraint. Each
violation of the VSP constraint is given a penalty cost.
Eq. (15) shows the matrix of penalty cost (M3) for loading
the container j into a ship. If the container j is loaded after
the container i and this causes no problem then the c3ij is set
with the value 0; Otherwise, c3ij is set with the penalty cost
PC (PC > 0).

M3 =

 c311 · · · c31N
... c3ij

...

c3N1 · · · c3NN

 (15)

Eq. (15) shows the matrix of penalty cost (M4) for unload-
ing the container j from a ship. If the container j is unloaded
after the container i and this causes no problem then the c4ij
is set with the value 0; Otherwise, c4ij is set with a penalty
cost PC (PC > 0).

M4 =

 c411 · · · c41N
... c4ij

...

c4N1 · · · c4NN

 (16)

The penalty costs will be taken into account in the objective
function to rule out those solutions violating the VSP con-
straints seriously.

D. OPERATION OF THE YT
YTs are used tomove containers betweenQCs andYCs. After
loading an export container j onto an assignedYT, the YTwill
transport this container to an assigned QC at the seaside. Let
aj be the available time of container j and Min

k∈KE
{ak} be the

available time of the first available YT k in the block, then
the start transportation time of the export container j (STE j)
by the YT k is determined by Eq. (17).

STE j = Max
{
aj, Min

k∈KE
{ak}

}
(17)

Given an average one-trip transportation time for an export
container (ETK), then the end transportation time (ETE j) of
the container j is determined by Eq. (18)

ETE j = SME j+ETK=Max
{
aj, Min

k∈KE
{ak}

}
+ETK (18)

For an import container j, after being loaded onto a YT k ,
the YT then starts transporting the container j to its assigned
YC in the container yard. Let aj be the available time of
container j and Min

k∈KE
{ak} be the available time of the first

available YT k at the seaside, then the start transportation
time of the container j (STI j) by the YT k is determined by
Eq. (19).

STI j = Max
{
aj, Min

k∈KE
{ak}

}
(19)

Given an average one-trip transportation time for an import
container (ITK), the end transportation time of the import
container j (ETI j) by the YT k is determined by Eq. (20).

ETI j = STI j + ITK = Max
{
aj, Min

k∈KE
{ak}

}
+ ITK (20)

E. ASSUMPTION AND OBJECTIVE FUNCTION USED IN
THIS RESEARCH
The assumptions and objective function of the simultaneous
problems are defined as follows:

1) ASSUMPTIONS
• The import and export containers are stored in two dif-
ferent blocks.

• Each import container has a current VSP position in the
vessel and a future YSP position in the container yard.

• Each export container has a current YSP position in the
container yard and a future VSP position in the vessel.

• Each kind of equipment (YCs, YTs, QCs) works with
the same average moving speed.

• YCs do not cross over each other.
• QCs do not cross over each other.
• No interruption on operations of loading, unloading, and
transporting of a container.

• No reshuffling of containers.
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2) THE OBJECTIVE FUNCTION
Eq. (21) shows the objective function used in this research,
which aims to minimize the makespan as well as the cost
of additional time caused by violating the YSP and VSP
constraints.

Min Z

= Max(EL j)+
∑‖P‖

p=1

∑N

j=1

∑N

i=1
(c1ijX1ijp+c2ijX2ijp)

+

∑‖Q‖

q=1

∑N

j=1

∑N

i=1
(c3ijZ1ijp + c4ijZ2ijp)

(21)

where

X1ijp =1, if the import container i is stored before
the container j on the YC p; =0, otherwise

X2ijp =1, if the export container i is retrieved before
the container j on the YC p; =0, otherwise

Y1ijk =1, if the import container i is transported
before the container j on the YT k; =0,
otherwise

Y2ijk =1, if the export container i is transported
before the container j on the YT k; =0,
otherwise

Z1ijq =1, if the import container i is unloaded
before the container j on QC q;=0, otherwise

Z2ijq =1, if the export container i is loaded before
the container j on the QC q; =0, otherwise

IV. HIERARCHICAL SIMULATION-BASED OPTIMIZATION
APPROACH
A. A HIERARCHICAL SIMULATION-BASED OPTIMIZATION
FRAMEWORK (HSBOF)
A hierarchical simulation-based optimization framework
(HSBOF), shown in Fig. 6, is used to develop simulation-
based optimization approaches. It includes the three main
layers, (1) load-balancing, (2) sequencing, and (3) simulation,
which are introduced as follows:
(1) Load-balancing layer: this layer aims to balance the

workload for both QCs and YCs by using a load-
balancing heuristic.Workload balance among available
equipment is expected to provide a good foundation for
the generation of good solutions.

(2) Sequencing layer: this layer aims to form operation
sequences for containers assigned to the same equip-
ment. Heuristic/metaheuristics such as PSO, Random,
SFLA, ISFLA, GA, and FA are used as the sequencing
tools. The operational sequences of containers obtained
in this layer will be used as inputs to the simulation
layer.

(3) Simulation and evaluation layer: based on the obtained
operational sequences, this layer aims to simulate the
YC, YT, and QC operations, meanwhile evaluating and
finding the best one.

Also, the HSBOF includes functions such as constraints
discovery, input, and output. The constraints discovery aims

FIGURE 6. A hierarchical simulation-based optimization framework
(HSBOF).

to discover operational constraints from YSP and VSP. The
input is a basic function to get the necessary data for exper-
iments. The output function is a basic function to output the
best planning result. A termination check is used to terminate
the simulation or routing the process back to the sequencing
layer again. A total number of iterations is used as the termi-
nation condition.

The three core layers are further detailed as follows.

B. THE LOAD-BALANCING HEURISTIC
This layer uses a load-balancing heuristic (Algorithm 1) to
balance the workload among equipment.

Algorithm 1 The Pseudo Code of the Load-Balancing
Heuristic
(1) SET N ; setWLe = 0 (e ∈ P ∪Q)
(2) ESTIMATE the upper workload limit as follow.

WL_limit = RD(N/E)
(3) SORT containers into a list L according to their bay

numbers increasingly; set j = 1; e = 1.
(4) REPEAT
(5) Assign the i-th containers in L to the e;
(6) WLe = WLe + 1; // add 1 container
(7) IF (WLe >= WL_limit) // workload limit is reached or

over
(8) IF (yj 6= yj−1) //bay numbers are different
(9) e = e+ 1; // change to the next equipment
(10) END IF
(11) END IF
(12) UNTIL j = N

In Algorithm 1, Step (1) initializes parameter values for
N (the total number of import and export containers), E (the
total number of equipment), and WLe (current workload of
equipment e), where e ∈ P ∪ Q. Step (2) determines the
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upper workload limit of each equipment. The functionRD(•)
rounds a real value up to an integer. Step (5) assigns the first
container inL to the equipment e. Step (7) checks whether the
upper limit (WL_limit) has been achieved? Step (8) checks
whether the next container to be assigned is located at a
different bay; If ‘‘yes’’ then change the assignment to the next
equipment by using Step (9). This algorithm ensures contain-
ers of the same bay are assigned to the same equipment. It also
separates equipment into different working spaces to avoid
collision(s).

C. SEQUENCING METHODS
Heuristics/Meta-heuristics are used as different sequenc-
ing methods to generate alternative simulation-based opti-
mization approaches. The standard SFLA and an improved
SFLA (ISFLA) are introduced below.

1) STANDARD SFLA
Proposed by Eusuff and Lansey [11], the SFLA is a
population-based metaheuristic mimicking the foraging
behavior of frogs, which aims to find the most amount of
food (the best position in a solution space). The goodness of a
position can be measured by a predefined objective function.
The jumps of frogs lead to search (exploration or exploitation)
in the solution space. These frogs are separated into groups
(termed memeplexes) and each frog can be influenced by the
elites (i.e., the best frog of the same group or the global best
frog). Givenm groups and F frogs, the best frog is assigned to
the memeplex 1; the 2nd best to the memeplex 2; the mth best
to the memeplex m; the m+ 1th best back to the memeplex 1,
and so on. Each group finally contains F/m frogs. However,
only a specified number of q frogs (q < F/m) in a group
are allowed to evolve. These frogs are sampled from the
original memeplex to a sub-memeplex by using the triangular
distribution shown in Eq. (22).

Pf = 2(n+ 1− f )/n(n+ 1) f = 1, . . . , n (22)

Let Xf (t) and Xb(t) be the positions of frogs f and b, where
the b indicates the best frog in the sub-memeplex, then the
leaping distance for the frog f is determined by Eq. (23).

1Df (t)

=

{
min

{
int
{
R
(
Xb (t)− Xf (t)

)
, Sm

}}
for+ step

max
{
int
{
R
(
Xb (t)− Xf (t)

)
,−Sm

}}
for− step

(23)

The R is a random number within the range [0,1]; the Sm is
the maximum leaping step allowed. With a leaping distance,
the next position of frog f is determined by Eq. (24).

Xf (t + 1) = Xf (t)+1Df (t) (24)

If the next position is better then accept this position;
Otherwise, replace the Xb(t) with the Xg(t) in Equation (23)
and jump this frog again. If this jump finds a better position
then accept this position; Otherwise, give a random jump for
this f . Repeat the above procedure until the last frog in the

FIGURE 7. The encoding scheme of frog position.

sub-memeplex is processed. Then, continue the next round
of local searches for frogs. When all rounds of local searches
are completed, go to the next iteration. Before starting the
next iteration, a reshuffle of frogs into groups and then the
sub-groups is necessary. The above procedure repeats until
the satisfaction of the termination condition [44].

2) ISFLA
The improved SFLA (ISFLA) is employed by Simula-
tion(ISFLA) to generate alternative sequences of containers.
• Position Representation of a frog
Fig. 7 shows the position scheme used for frogs in this

research. The position scheme has a variable dimension
depending on the number of containers (n) assigned to spe-
cific equipment (YC or QC). In this position scheme, each ui
indicates the container No. assigned to the container i. Given
the position vector [4,3,2,1,5,6] with n = 6 as an example,
it indicates that container 4 is assigned with order 1; container
3 with order 2, and so on.
• The novel features of ISFLA
The ISFLA includes the following features:

a: DECREASING THE GROUP NUMBER WITH INCREASING
GROUP SIZE
An exploration-to-exploitation strategy is employed by the
ISFLA. Eq. (25) implements this strategy by changing the
number of groups at each iteration.

G(t) = RD(
√
ρ +
√
ρ/2− t ·

√
ρ/Total_iteration) (25)

The RD(•) is a function rounding a decimal value up to
its nearest integer. The ρ indicates the total number of frogs
in the swarm, which decreases iteratively until to a bottom
line. The most number of groups appears at the first iteration
(t = 1), giving the maximum momentum for exploration.
The last iteration has the least momentum for exploration,
but the maximum momentum for exploitation, as each group
has the most number of forges in exploiting the target frog
which can be the best in the same group or the global best
frog.

b: DISCRETE OPERATORS WITH A SELF-ADAPTIVE JUMP
To make a better jump, discrete operators ‘‘∼’’, ‘‘⊕’’ and
‘‘⊗’’ are used by the ISFLA to operate on discrete vectors.

Based on their current positions, frogs jump toward the
target frog adaptively. Three steps are initiated for this. First,
measure the total distance between the two frogs; Second,
determine the adaptive leaping distance for the frog; Third,
jump this frog to the next position for local search. Fig. 8 illus-
trates an example that gives Xf (t) = [1, 2, 3, 4, 5, 6] and
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FIGURE 8. Frogs i and j jump towards the target frog o.

Xo (t) = [4, 3, 2, 1, 5, 6] as the position vectors of the frogs
f and o, respectively.

First, we define the total-distance vector, denoted Do,f (t),
between the frogs f and o, in Eq. (26).

Do,f (t) = [Xo,k (t) ∼ Xf ,k (t) ; k = 1, . . . ,D] (26)

where Xo,k (t) ∼ Xf ,k (t) the k-th element in Do,f (t), deter-
mined by the k-th element in Xo (t) and the k-th element in
Xf (t) as well as the operator ‘‘∼’’ which works as follow.

Xo,k (t) ∼ Xf ,k (t) =

{
0, if Xo,k (t) = Xf ,k (t)
Xo,k (t) , if Xo,k (t) 6= Xf ,k (t)

(27)

Given that Xf (t) = [1, 2, 3, 4, 5, 6] and Xo (t) =
[4, 3, 2, 1, 5, 6], based on Eqs. (27) and (28), we derive the
Do,f (t) as follow.

Do,f (t) = [4, 3, 2, 1, 5, 6] ∼ [1, 2, 3, 4, 5, 6]

= [4, 3, 2, 1, 0, 0].

Now, we continue to determine the adaptive leaping dis-
tance for the frog f , denoted as D̃f (t), by using Eq. (28).

D̃f (t) = Do,f (t)⊕ ADf (t) (28)

The AV j(t) is a binary vector, with its k-th element being
determined by Eq. (29).

ADf ,k (t) =

{
0, if Rand() ≥ PR1f (t)
1, if Rand() < PR1f (t)

(29)

The Rand() is a random number and the PR1f (t) is a
threshold controlling the generation probability of the binary
value 1 for the frog f and it is determined by Eq. (30).

PR1f (t) =


HDo,f (t)− 2

D
, if HDo,f (t) > 2

0, if HDo,f (t) ≤ 2
(30)

The HDo,f (t) is termed Hamming Distance which counts
the total number of different elements between two vectors
and can be determined by Eq. (31).

HDo,f (t)=D−
∑D

k=1
(Xo,k (t) ∼ Xf ,k (t))/Xo,k (t) (31)

Using Eqs. (30) and (31), we can obtainPR1f (t) = 2/6 and
HDo,f (t) = 4, respectively.
However, to derive the D̃f (t), it needs to define the opera-

tion of the operator ‘‘⊕’’ on Do,f (t) andADf ,k (t). The opera-
tor ‘‘⊕’’ works as follows.

Do,f (t)⊕ADf ,k (t) =

{
Do,f (t) , if ADf ,k (t) = 1
0, if ADf ,k (t) = 0

(32)

Suppose that ADf (t) = [0, 1, 0, 0, 0, 0], based on
Eqs. (28)–(32), then we can obtain D̃f (t).

D̃f (t) = [4, 3, 2, 1, 0, 0]⊕ [0, 1, 0, 0, 0, 0]

= [0, 3, 0, 0, 0, 0]

After determining D̃f (t), the next position of the frog f is
determined by Eq. (33).

Xf (t + 1) = Xf (t)⊗ D̃f (t) , (33)

where operator ‘‘⊗’’ works in this way. First, it finds the
first non-zero value out of the D̃f (t) and replaces the value
with the same position in the vector Xf (t). Then, the replaced
value further takes the position of the non-zero value in the
Xf (t). Repeat the above procedure until no non-zero in the
D̃f (t). Finally, the resulting Xf (t) becomes the Xf (t + 1).

Based on Eq. (33) and the operator ‘‘⊗’’ then we can derive
the next position of for the frog f as follow.

Xf (t + 1) = Xf (t)⊗ D̃f (t)

= [1, 2, 3, 4, 5, 6]⊗ [0, 3, 0, 0, 0, 0]

= [1, 3, 2, 4, 5, 6]⊗ [0, 0, 0, 0, 0, 0]

= [1, 3, 2, 4, 5, 6]

c: ADVANCED MOVEMENT MECHANISMS FOR FROGS
Also, the ISFLA employs two mechanisms, Tabu jump and
neighborhood search, to better move a frog. The Tabu jump
is used to prevent a frog f from jumping to the target frog o
with one step. This will waste one local search as this position
has been already visited by the target frog. This mechanism
works in this way. First, it measures theHDo,f (t) between the
frogs o and f . Then, the following rule is employed.
Rule: If the HDo,f (t) ≤ 2 then stop the frog from jumping

toward the target frog o.
This rule is implemented by stopping generating binary

value 1 for the vector ADf (t). However, as Tabu jump stops
jumping for a frog, the frog can also lose one local search. For
improvement, the ISFLA allows such a frog to make a neigh-
borhood search, which exchanges two randomly-selected
elements in the position vector of the frog f .

d: THE LOGIC FLOW OF THE ISFLA
Algorithm 2 shows the main logic flow of the ISFLA.

D. THE SIMULATION MODEL
Referring to [45] [46], a simulation model termed Timed
Predicate/Transition net (TP/T net) is developed for discrete-
event simulation.
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Algorithm 2 The Main Logic Flow of the ISFLA
1 Set parameter values (N, Rm, P, iterations, l_iter,

etc.)
2 Initialize frog positions
3 FOR (t = 1; t <= iterations; t ++){
4 Calculate Z values for all frogs using Eq. (21).
5 Rank frogs according to their Zs
6 Generate group number G(t) for this iteration.
7 FOR (int li = 1; li <= l_iter ; li++)
8 FOR (int j = 1; j <= G(t); j++)
9 FOR (int k = 1;k <=

the_number_of_frogs_in_j; k ++)
10 IF frog k is not the best frog in the group j
11 Jump frog k one step towards the best

frog in j
12 Estimate the Z value for this position

using Eq. (21).
13 IF Z value of this movement is

improved
14 Store the Z value for this frog k
15 Store the current position for

this frog k
16 ELSE
17 Jump the frog k toward the global

best frog
18 Calculate Z value using Eq. (21).
19 IF Z value of this movement

is improved
20 Store the Z value for this frog k
21 Store the current position for

this frog k
22 ELSE
23 Let the frog k have a random

jump
24 END IF
25 END IF
26 Compare and store the global best

position
27 END IF
28 END FOR k
29 END FOR j
30 END FOR li
31 END FOR t

Definition 1: A Timed Predicate/Transition net (TP/T net)
is defined as 6- tuple:

TP/T net = (P,T,A,6,L,F)

where

P: a set of predicates; P = Pt ∪ Pnt, where the Pt is
a set of timed predicates and the Pnt is a set of
predicates without consuming time. Pi ∈ Pt or
Pnt, Pt ∩ Pnt = ∅.

T: a set of transitions {T1,. . . ,Tn}.
A: a set of arcs.
6 : is a structure consisting of individual tokens

(Tki), operations (Oj), and relations (Rk), i.e.,
6 = (Tk1,. . . ,Tki; O1,. . . ,Oj; R1,. . . ,Rk).

L: labeling of arcs with a formal sum of n attributes
of token’s variables; zero-attributes indicating a
token with no argument.

F: a set of inscriptions in transitions; being logical
formula built from the operations and relations
of the structure 6; Variables occurring free in a
formula have to occur at an adjacent arc.

M: a marking of P with formal sums of n-tuples of
individual tokens. M0 indicates an initial mark-
ing of tokens.

Fig. 9 depicts a TP/T net model with the follow-
ing components: P={Open_task, Close_task, Avail_R,
Using_R} (in which Using_R is a timed predicate and
the others are non-timed predicates); A={A1,. . . ,A18},
T={T1,T2,T3,T4,T5,T6}, and M0 =C_tokens∪ R_tokens.
The container tokens C_token={<1,1,1,0>,. . . ,<1,
‖TE‖,1,0>}∪{<2,1,3,0>,. . . ,<2,‖TI‖,3,0>} and resource
tokens R_token={<1,1,1,0>,. . . , <1,p,2,0>},
{<2,1,1,0>,. . . ,<2,k ,1,0>}, and {<3,1,1,0>,. . . ,
<3,q,2,0>} are staying with the Open_task and
Avail_Rpredicates, respectively. Each container token con-
tains four attributes, C_TP, CID, R_TP, and CT, corre-
sponding to container type, container ID, resource type
required, and available time, respectively. The C_TP=1 and
R_TP=1 are initialized for an import container token while
the C_TP=2 R_TP=3 are initialized for an export con-
tainer token. Each resource token includes four attributes,
R_TP, RID, SM, and R_T, corresponding to resource type,
resource id, service mode (1: import; 2: export), and available
time, respectively. The values of R_TP=1,2, and 3 indi-
cate the resource type of YC, YT and QC, respectively.
The SM=1 indicates service mode for import container and
SM=2 indicates service mode for export containers. The
<C_TP,CID,R_TP,CT> + <R_TP,RID,SM,RT> on A6 is
a formal sum. The ‘‘R_TP<3’’, ‘‘C_TP=1’’, and ‘‘SM=1’’
in the transition T1 are logical formula (conditions) for trig-
gering this transition.
Each transition in the TP/T net model corresponds to a

discrete event that can be triggered by a rule [43]. The
rules used to trigger transitions T1 to T6 are detailed as
follows:
Rule 1: If (one import container token in the Open_task

predicate and one resource token in the Avail_R predicate &
R_TP<3&C_TP=1& SM=1) then trigger the transition T1.
After triggering the transition T1, one import container token
and one resource token will be transitioned to the Using_R
predicate.

Rule 2: If (one export container token in the Open_task
predicate and one resource token in the Avail_R predicate &
R_TP>1 & C_TP=2 & SM=2) then trigger the T2. The T2
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FIGURE 9. A simulation model based on Predicate/Transition net.

will transit the export container token and the resource token
to the Using_Rpredicate.
Rule 3: If (one import container token+one resource token

in the Using_R predicate & R_TP<3 & C_TP=1 & SM=1)
then trigger the T3. After triggering the T3, one import
container token will be transitioned back to the Open_task
predicate and one resource token will be returned to the
Avail_Rpredicate.

Rule 4: If (one export container token+one resource
token in the Using_R predicate & R_TP>1 & C_TP=2
& SM=2) then trigger the T4. After triggering the T4,
the export container token will be transitioned back to the
Open_taskpredicate and the resource token will be returned
to the Avail_Rpredicate.
Rule 5: If (one import container token+one resource

token in the Using_R predicate & R_TP=1 & C_TP=1
& SM=1) then trigger the T5. After triggering the T5,
the import container token will be transitioned to the
Close_taskpredicate and the resource token will be returned
to the Avail_Rpredicate.
Rule 6: If (one export container token+one resource

token in the Using_R predicate & R_TP=3 & C_TP=2
& SM=2) then trigger the T6. After triggering the T6,
the export container token will be transitioned to the
Close_taskpredicate and the resource token will be returned
to the Avail_Rpredicate.
The following simulation procedure is used.
1) Make initial marking M0. Let export and import

container tokens stay with the Open_task predi-
cate and all resource tokens stay with the Avail_R
predicate.

2) Trigger the enabled transitions (rules) in this model.
The T1 is used to trigger operations (YC, YT, or QC)
for an import container token. The R_TP specifies the
operation to perform. An import container uses QC,
YT, and YC sequentially. The T2 is used for export con-
tainer tokens which will use YC, YT, and QC sequen-
tially. The trigger of T1 or T2 will send one container
token <C_TP, CID,R_TP,ST> and one resource token
<R_TP,RID,SM, ST> to the Using_Rpredicate and
the start event time is Max{CT,RT}, where the CT
is container available time and RT is resource avail-
able time. The load-balancing heuristic and sequence
method are used to determine the assignment and
sequence of containers on available resources.

3) After a resource usage duration at the Using_R predi-
cate, the transitions T3, T4, T5, or T6 will be triggered,
depending on the conditions (Rules). If T3 or T4 is trig-
gered then the container token<C_TP,CID,R_TP,ET>
will go back to the Avail_task predicate and the
resource token <R_TP,RID,ET> will return to the
Avail_R predicate. Meanwhile, the R_TP will be
decreased by 1 for an import container token to
indicate the next resource type (operation) required
(for an export container the R_TP is increased by
1). If Rule 5 is satisfied then it will trigger the T5
which will transition the import container token to the
Closed_taskpredicate and return the resource token
<R_TP,RID,SM,ET> to the Avail_R predicate. The
T6 is used for export containers.

4) Check whether all container tokens are staying with
theClosed_task predicate?When all import and export
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TABLE 2. The parameter setting for YC, YT, and QC.

TABLE 3. The parameter setting for different approaches.

container tokens stay with the Closed_taskpredicate it
means all operations have been completed. The STs
and ETs of resource instances will be recorded during
the simulation process. If ‘‘yes’’ go to Step 5); Other-
wise, go to step 2).

5) Stop running and output the best panning result.

V. NUMERICAL EXPERIMENTS
Based on the proposed framework, we have developed
six heuristic/metaheuristic-based simulation optimization
approaches, namely Simulation(Random), Simulation(SFLA),
Simulation(FA), Simulation(GA), Simulation(PSO), and
Simulation(ISFLA), by using Java programming language.
To investigate their effectiveness, experiments were con-
ducted on a personal computer with an Intel PENTIUM CPU
2117U (64 bits and 1.8 GHz) and 4GB DRAM.

A. PARAMETER VALUES SETTING
Table 2 shows the parameter values set for experiments.
Table 3 shows the parameter values for different approaches.

The storage block uses the following parameter values:
X = 50; Y = 10; Z = 4; H = Z+1. The YCs are
set with the following parameter values: ‖P‖ = 2; vx =
vy = vz = 1 m/sec. The YTs are set with the following
parameter values: ‖K‖ =5 and ITK=ETK=300 seconds. The

QCs are set with the following parameter values: ‖Q‖ =2;
vb = vr = vt = 1 m/sec. The VSP are set with the following
parameter values: ‖B‖ = 10; R = 10; ‖T‖ = 10.
The N = 20,100,200,400 as well as P = 121 are common

parameter values used for all approaches. TheN = 20 is used
for a small-sized example. In addition, different approaches
may have some different parameter values. For example,
Simulation(Random) is set with IT=1000; Simulation(GA)
is set with IT=1000, Rm=0.3, and Rc=0.4; Simulation(PSO)
is set with IT=1000, w = 0.5, V = 2, V = −2; Simula-
tion(ISFLA) is set with n = P/G(t), n_ls=4, and IT= 250.

B. EXPERIMENT DATA GENERATION
Experimental instances were generated with the parame-
ter values defined in Table 2 considered. For example,
in Table 4 the data in rows 3, 4, and 5 constitute the (bj, rj, tj)
which represents the stowage position of container j in the
VSP (vessel). These values are within these ranges 1≤ bj ≤
‖B‖, 1≤ rj ≤ ‖R‖, 1≤ tj ≤ ‖T‖. Similarly, the data in
rows 17,18, and 19 constitute the (xj, yj, zj) which represents
the storage position of container j in the YSP (block). The
xj, yj, zj are confined in these ranges 1≤ xj ≤ X ; 1≤ yj ≤ Y ;
1≤ zj ≤ Z , where the values of the X,Y, and Z are defined
in Table 2. The position data of each container is generated
by the computer automatically. For an import container, the
container type is set to 1 (C_TP=1). In Tables 4 and 5, these
marked rows contain the data generated by the computer
automatically, while other unmarked rows 6–16 are those
relating to decision variables whose values are determined by
the approach used.

Table 5 shows the data of export containers. The rows
3,4 and 5 constitute the current storage position (xj, yj, zj) in
the YSP while the rows 17, 18, and 19 represent the future
stowage position (bj, rj, tj) in the VSP for the container j to
be transported by the ship.

C. A SMALL-SIZED EXAMPLE
This subsection illustrates the inputs and outputs of a small-
sized problem (N = 20) obtained from the Simula-
tion(ISFLA).

1) INPUT DATA
The input data are generated by the computer automatically,
based on the parameter values set in Tables 2 and 3. These
input data include the container ID; container type (C_TP=1:
import container; C_TP=2: export container); the vessel
storage positions (B: bay number; R: row number; T: tier
number); the yard storage position (X: bay number; Y: row
number; Z: tier number), etc.

2) VSP AND YSP CONSTRAINTS
Based on the input VSP data, the VSP constraints for both
import and export containers and the YSP constraints for both
import and output containers are generated automatically.
These constraint data are shown in Tables 6 and 7 with
PC=600 seconds used as the penalty cost.
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TABLE 4. The solutions to the integrated problem of YCSP, YTSP, and QCSP found by simulation (ISFLA) for import containers (n=20).

TABLE 5. The solutions to the integrated problem of YCSP, YTSP and QCSP found by simulation(ISFLA) for export containers (n=20).

Table 6 is the cost matrix M4 of VSP constraints for import
containers. It shows no constraint is imposed.

Table 7 shows the cost matrix M1 of YSP constraints for
import containers, which includes the following constraints:

• Container 2 should be unloaded before container 3;
• Container 16 should be loaded before container 10.

Table 8 shows the cost matrix M2 of YSP constraints for
export containers, which suggests the following constraint:

• Container 20 should be unloaded before container 15.

Table 9 shows the cost matrix M3 of YSP constraints for
export containers, which includes the following constraint:

• Container 9 should be loaded before container 13.
For each violation of the YSP or VSP constraints, a penalty

cost of 600 is imposed.

3) OUTPUT RESULT
Table 4 shows the best solution found by Simulation(ISFLA)
in the process of import containers. Row 6 shows the QC
assigned to the container j; row 7 shows the unloading order
of container j on its assigned QC; rows 8 and 9 respectively
show the start and end completion time of the QC; row
10 shows the YT assigned to the container j; rows 11 and
12 respectively show the start and completion times of the
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TABLE 6. The cost matrix (M4) of VSP constraints for import containers.

TABLE 7. The cost matrix (M1) of YSP constraints for import containers.

YT; row 13 shows the YC assigned to the container j; row
14 shows the storage order of the container j on the assigned
YC; rows 15 and 16 show the start and completion time of the
YC, respectively. The best Z is 2456.9 (s) found by the Simu-
lation(ISFLA). The import containers 11,7,9,14,17,19,5,8,4,
and 6 are assigned to the QC1 with this unloading sequence
while the import containers 2,18,15,3,13,1,20,16,10, and
12 are assigned to QC2 with this unloading sequence. The
two unloading sequences are feasible due to no violation of
any of the VSP constraints. In addition, the two QCs are
workload balanced. Following the QC operations, the YTs
are subsequently used to transport these containers to their
assigned YCs. The workload of these YTs is found to be
balanced, each transporting 4 containers. At the container
yard, the import containers 7,18,9,13,19,1,5,20,4,6 and 12 are
assigned to the YC1 and loaded with this sequence while the

TABLE 8. The cost matrix (M2) of YSP constraints for import containers.

TABLE 9. The cost matrix (M3) of VSP constraints for import containers.

import containers 11,2,15,14,3,17,8,16 and 10 are assigned
to YC2 and loaded with this sequence. The two YCs are
workload balanced and subject to the YSP constraints.

Table 5 shows the best solution found by Simula-
tion(ISFLA) in the handle of export containers. The best
Z=5397.4 (s) is found at the 245th iteration, at the compu-
tational cost of 6.1 seconds. This table shows that the export
containers 8,17,11,6,12,20,3,15,13,19 and 16 are assigned
to the YC1 with this retrieval sequence while the export
containers 18,5,14,7,9,1,2,4 and 10 are assigned to YC2 with
this retrieval sequence. The two sequences are conforming to
YSP constraints and the two YCs are almost balanced and
conform to the requirement that containers of the same bay
are assigned to the same YC. Also, the YTs are workload
balanced, each transporting 4 containers. The YTs run in a
loop and take turns transporting the import containers. For
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TABLE 10. Comparisons of different approaches.

the QCs, the export containers 17,11,6,9,20,1,15,13,10, and
16 are assigned to QC1 with this loading sequence while the
export containers 8,18,5,14,7,12,3,2,4, and 19 are assigned
to QC2 with this loading sequence. Both QC1 and QC2 are
workload balanced, each loading 10 containers.

Table 10 shows the data of the best solutions found by
different approaches. It is found that the Simulation(ISFLA)
approach finds the best solution, but with the most computa-
tional cost.

D. EXTENSIVE EXPERIMENTS
Extensive experiments of different problem sizes have been
further conducted to investigate the effectiveness of different
approaches. Table 11 shows the results obtained from these
different approaches. They are summarized as follows:
• Fig. 10 shows the comparative results of different
approaches at the problem size N = 100. It is found that
Simulation(ISFLA) outperforms Simulation(PSO) with
the edge 2.1%, Simulation(SFLA) with the edge 2.6%
Simulation(GA) with the edge 2.9%, Simulation(FA)
with the edge 3.3%, Simulation(Random) with the edge
4.9%, in terms Z value.

• Fig. 11 shows the comparative results of different
approaches with the problem size N = 200. It is found
that Simulation(ISFLA) outperforms Simulation(PSO)
with the edge 2.1%, Simulation(SFLA) with the edge
2.9%, Simulation(GA) with the edge 2.9%, Simula-
tion(FA) with the edge 3.2%, Simulation(Random) with
the edge 5.0%, in terms of Z value.

• Fig. 12 shows the comparative results of different
approaches at the problem size N = 400. It is found that
Simulation(ISFLA) outperforms Simulation(PSO) with
the edge 2.5%, Simulation(SFLA) with the edge 3.0%,
Simulation(GA) with the edge 3.1%, Simulation(FA)
with the edge 3.4%, Simulation(Random) with the edge
4.7%, in terms of Z value.

E. STATISTICALLY TEST
The statistical t-test is used to test the Hypotheses H0 and
H1 at the significance level of α = 0.05. The Ho is a
null hypothesis assuming that the average Z values obtained
from comparing approaches have no significant difference;
H1 assumes that these average Z values are different.

Table 12 shows test results of comparing each approach
to Simulation(ISFLA). The symbol ‘‘+’’ that Simula-
tion(ISFLA) is better; the symbol ‘‘-’’ indicates that Sim-
ulation(ISFLA) is inferior; the symbol ‘‘N’’ indicates
no difference. It shows the p-values of each compari-
son are less than 0.005. For example, at the problem

FIGURE 10. Z values of different approaches at N=100.

FIGURE 11. Z values of different approaches at N=200.

FIGURE 12. Z values of different approaches at N=400.

size N = 100, the comparisons of Simulation(ISFLA) with
Simulation(Random), Simulation(FA), Simulation(GA), and
Simulation(SFLA), Simulation(PSO) have the following
p-values, 1.34839E-6, 3.91071E-8, 4.84051E-5, 0.0002207,
5.40429E-7, respectively, which lead to rejection of H0 and
the acceptance of H1. Simulation(ISFLA) is concluded to
outperform the others.

F. ANALYSIS AND DISCUSSIONS
• While balancing workload, the load-balancing heuristic
meanwhile can separate YCs and QCs into different
working spaces. This avoids crossover of each other.
Subsequently, a heuristic/metaheuristic is used to ini-
tiate alternative operational sequences for containers
assigned on each equipment. Finally, the simulation
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TABLE 11. The results obtained from different approaches under different problem sizes.

TABLE 12. T-test results of average z values obtained from the six approaches under different problem sizes.

model is used to simulate and evaluate these sequences
and identify the best one.

• For the small-size experimental instance, it shows that
the solution found by Simulation(ISFLA) has a good
quality and is free from the violation of the VSP and
YSP constraints. Specifically, the completion times of

import containers for the YC1 and YC2 are 2456.9 and
2455.8, respectively. It shows that import containers are
balanced and parallel handled by the two YCs. The
completion times of export containers for the QC1 and
QC2 are 5390.2 and 5397.4, respectively, which shows
that the two QCs are also with balanced workload.
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FIGURE 13. Sensitivity analysis of using different number of YTs.

In addition, the YTs are also with a balanced workload
and well utilized with no spare time.

• Fig. 13 shows the experimental results of sensitiv-
ity analysis using different numbers of YTs, together
with 2 QCs and 2 YCs in handling 100 import and
100 export containers for a ship. The use of one YT
leads to a huge cost (Z=119662.5) that can be further
reduced by increasing the number of YTs from 2 to 8.
However, the numbers of YTs exceeding 8 are found
unable to reduce the Z value (19442.8) further, meaning
that the best number of YTs to cooperate with the 2 QCs
and 2 YCs for this ship is 8. If the number of YTs is
below 8 then improvement is available by increasing this
number.

• In our experiments, Simulation(ISFLA) is found better
than the other approaches in terms of makespan. The
advantage is believed to result from the novel features
of the ISFLA, such as decreasing the number of frog
groups, self-adaptive leaps, and the advanced movement
mechanism. In addition, the ISFLA is with more popu-
lation advantage due to allowing all frogs to evolve [47].

• Containers can be treated as groups or individuals when
planning [35] [44]. Though the treatment of containers
as groups makes the planning easier, it cannot facili-
tate real operations due to rough resolution. By treat-
ing containers as individuals, our approach can offer
a high-resolution solution that makes implementation
easier.

• Effective software for the integration of simulation and
optimization effectively is still unavailable [10], which
is considered one research gap in the existing litera-
ture. To address this gap, we have proposed a hierarchi-
cal simulation-based optimization framework (HSBOF)
for developing alternative heuristic/metaheuristic and
simulation-based optimization approaches to deal with
the integrated scheduling problem of QCs, YTs, and
YCs. This helps container terminal planners to pursue
global optimality, instead of local optimality.

• Managers should note that local optimality is not cer-
tainly beneficial as it may form bottleneck(s) in the

downstream operations. It is important to consider all
MHE as well as both import and export containers.
To achieve global optimality, the simulation-based opti-
mization approach is useful.

VI. CONCLUSION
This research proposed a hierarchical simulation-based opti-
mization framework (HSBOF) for developing heuristic/
metaheuristic-based simulation optimization approaches to
deal with the simultaneous YCSP, YTSP, and QCSP, tak-
ing YSP, VSP, and their constraints into consideration.
Specifically, Simulation(Random), Simulation(ISFLA), Sim-
ulation(PSO), Simulation(SFLA), Simulation(GA), and Sim-
ulation(FA) have been developed in this research. The
objective is to minimize costs of makespan as well as penalty
costs of constraint violation. A small-size instance has been
used to illustrate the planning results, and extensive exper-
iments of different sizes (N = 100,200, and 400) have
been conducted to investigate the effectiveness of different
approaches. Finally, the statistical t-tests have been used to
validate the experimental results. The Simulation(ISFLA) is
found to outperform the others.

The contributions of this research are listed as fol-
lows: (1) we have proposed a hierarchical simulation-based
optimization framework (HSBOF) for the integration of sim-
ulation and optimization. Based on this framework, var-
ious heuristic/metaheuristic-based simulation optimization
approaches have been developed; (2) these approaches have
been successfully applied to solve the YCSP, YTSP, and
QCSP simultaneously, taking the YSP andVSP and their con-
straints into consideration; (3) we have proposed an improved
version (ISFLA) to advance the standard SFLA; (4) we
have performed experiments to investigate the effectiveness
of different approaches, including Simulation(ISFLA), Sim-
ulation(PSO), Simulation(SFLA), Simulation(GA), Simula-
tion(FA) and Simulation(Random).

The following research directions are suggested. (1) this
study can be extended to include multiple ships; (2) the uses
of other methods such as Bee-inspired Algorithms (BA), Bac-
terial Foraging Optimization (BFO), Fish Swarm Optimiza-
tion (FWO), and Cuckoo Search Algorithm (CSA), Whale
Optimization Algorithm (WOA) as the sequencing methods
can be investigated in the future research; (3) The inclusion
of transshipment containers; (5) the inclusion of storage allo-
cation problems; (6) the inclusion of 3D storage plan in the
vessel; (7) the consideration of 40-foot containers.
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