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ABSTRACT The energy management of buildings plays a vital role in the energy sector. With that in mind,
and targeting an accurate forecast of electricity consumption, in the present paper is aimed to provide decision
on the best prediction algorithm for each context. It may also increase energy usage related with renewables.
In this way, the identification of different contexts is an advantage that may improve prediction accuracy. This
paper proposes an innovative approach where a decision tree is used to identify different contexts in energy
patterns. One week of five-minutes data sampling is used to test the proposed methodology. Each context
is evaluated with a decision criterion based on reinforcement learning to find the best suitable forecasting
algorithm. Two forecasting models are approached in this paper, based on K-Nearest Neighbor and Artificial
Neural Networks, to illustrate the application of the proposed methodology. The reinforcement learning
criterion consists of using the Multiarmed Bandit algorithm. The obtained results validate the adequacy of
the proposed methodology in two case-studies: building; and industry.

INDEX TERMS Consumption forecast, contextual operation, decision tree, reinforcement learning.

I. INTRODUCTION
An important aspect to improve the energy management,
namely in the presence of demand response programs, is the
forecasting of electricity consuming activities [1]. In fact,
the present paper’s authors have previously published several
works in the literature concerning electricity consumption
forecast [2]. K-nearest Neighbors (KNN) and Artificial
Neural Networks (ANN) have been proved to be adequate
technics for an office building application. However, in some
specific periods, here stated as contexts, one of the algorithms
is better than the other. Moreover, reinforcement learning has
been largely applied to power and energy systems problems
[3], providing learning of decisions in complex modeling
environments. The authors of the present paper have also used
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reinforcement learning in buildings environments, despite not
for consumption forecasting, in [4].

The electricity consumption forecasting is important to
guarantee improved energy management in smart build-
ings [5]. Therefore, there are in the literature several
buildings with data accessibility that research different
machine learning techniques on how to achievemore accurate
predictions, as in [6].

Buildings equipped with smart grids technology take
advantage of data generated from several sources, including
smart meters, phasor measurement units, and various sen-
sors [7]. Using such data, forecasting algorithms are essential
for prediction activities. Artificial Neural Networks have the
advantage of extract and model unseen relationships and
features. This ability gifts the neural networks with more
robust choices if used the right way [8]. The K-Nearest
Neighbour algorithm is an alternative recommended for time
series classification. However, the algorithm’s performance
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requires aminimum quantity of labeled data [9]. The decrease
of energy costs may be more effective with the assistance
of modeling strategies that combine different forecasting
algorithms includingArtificial Neural Networks and Random
Forest [10]. In fact, the uncertainties of load demand
in the energy management present obstacles to achieve
accurate forecasts. Reinforcement learning is recommended
to overcome complex nonlinear issues with a decision-
making ability that optimizes the current solution to be
more effective [11, 12]. Reinforcement learning has a strong
learning ability and high adaptability gifted with control
and decision-making abilities. These are essential to ensure
optimal outcomes in different scenarios including in robotics
and distributed control [13]. Reinforcement learning is used
for different applications according to the problem diversity,
including performance improvement. It is also stated that a
few applications use reinforcement learning to improve the
prediction accuracy with different deep learning techniques,
which is the case of this paper. Additionally, the learning
method is also discussed being the Q-learning a researched
option [14].

Given the results of the above-mentioned literature,
the methodology proposed in the present paper aims to,
in the first step, identify different contexts using decision
trees. Then, reinforcement learning is applied in each
context to identify the most accurate forecasting model.
It innovates in overcoming the approach of selecting a
single forecasting model for all the operational situations
in a single consumer or building. For illustration purposes,
models based on ANN and KNN forecasting algorithms
have been used. The motivation consists in improving
the forecasts obtained in recent research published by the
authors of this paper [2]. Therefore, the authors reuse
several forecasting aspects from [2] including the forecast
horizon and forecast strategies. Innovative topics featuring
the formation of new contexts with decision tree training
and the reinforcement learning evaluation considering the
most effective algorithm in different contexts are expected
to improve these forecasts. Moreover, the decision tree and
reinforcement learning innovative aspects are inspired from
recent research published by the authors of this paper,
respectively in [15] and [16].

After this introduction, Section 2 explains the proposed
contextual approach, Section 3 evidence the details of the case
study, and Section 4 presents the obtained results. Finally,
Section 5 presents all the conclusions.

II. PROPOSED CONTEXTUAL APPROACH
In this section, it is explained the different phases of
the proposed contextual approach. These include obtaining
energy consumption forecasts, decision rule-based learning,
definition of contexts, learning process, and the selection of
the best forecasting algorithm for the target context.

The main goal is to evaluate the best forecasting model
for each of different contexts. After obtaining energy
consumption forecasts with different algorithms, a decision

FIGURE 1. Proposed contextual approach.

tree gifted with rule-based learning defines different contexts.
Later, a learning process evaluates the best algorithm for
different contexts. The first step consists of obtaining energy
consumption forecasts for five minutes and according to
two algorithms: Artificial Neural Networks and K-Nearest
Neighbors.

Afterwards, a rule-based decision learning trains a decision
tree with the forecasting data of both algorithms and
additional factors from the actual and previous periods.

These factors consider time features including the weekday
and the actual period and furthermore consider quantitative
data obtained from the previous period including the
consumption and two sensor devices data. These last two
factors monitored on sensors devices consist of CO2 and
a light variable with the value one or zero corresponding
respectively to light in the building or no activity at all.
These two parameters have been selected in sequence of the
validation made in [2].

The learning process arises to evaluate the more suitable
forecasting algorithm in different contexts. A set of agents
perform this evaluation in an interactive environment through
trial and error using feedback from their actions, obser-
vations, and rewards. The observations correspond to the
contexts defined previously in rule-based decision learning.
The agent’s action is triggered every five minutes, and it
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corresponds to the selection of a forecasting algorithm, either
K-Nearest Neighbors or Artificial Neural Networks. The
reward is calculated after every five minutes after the agent
algorithm selection, representing how good the forecasting
algorithm selection was for each actual context. In one hand,
Rewards assigned to 0 correspond to scenarios where the
selected algorithm is the one with higher forecasting error.
On the other hand, rewards assigned to 1 correspond to
scenarios where the selected forecasting algorithm has lower
forecasting error. Each obtained reward is updated to an
average of rewards, measuring the reward performance for all
five-minute periods. In other words, the average of rewards
measures the algorithm selection performance with lower
forecasting error expectations. In each context evaluation,
the learning methods and the exploration and exploitation
rates are updated. The learning methods may correspond to
greedy or upper confidence bound — the exploration rate
focus on the angle of unexplored territory for each forecasting
algorithm selection.

The exploitation rate focus on the knowledge exploration
of a particular forecasting algorithm selection. After eval-
uating the best forecasting algorithm for all five minutes
periods, the multi-agent system is prepared to select the best
forecasting algorithm for the target context. Then, according
to upper confidence and greedy learning methods, the action
is calculated every five minutes according (1) and (2).

At = argmax(Qt(a)+ c ∗

√
lnt
Nt(a)

(1)

At = argmax(Qt(a) (2)

where:
• Nt(a) – number of times the action has been selected
before time t

• Q(t) – current estimation
• c – degree of exploration
• a – maximizing action

III. CASE STUDIES
In order to illustrate the use of the proposed methodology, the
implemented decision tree methodology studies a sample of
data obtained from electric devices measuring different units
and magnitudes. It has been implemented, in this paper, for
two case studies: a building case study, and a industrial case
study.

In the building case study, it is contextualized for a whole
week from 18 to 24 November 2019 in five minutes periods.

Only a week with five minutes contexts from
18 to 24 November 2019 is considered to compare the same
data size studied in recent publications by the authors of this
paper [15]. Table 1 presents the decision tree inputs structure
with the weekday, the allocated period, the consumption, the
light, and the CO2. This table also adds the decision tree
output structure with the forecasting algorithm application.
Moreover, the input variables with nonlinear behaviors are
studied according to their profile during 18 to 24 November

TABLE 1. Decision tree inputs and outputs structure.

FIGURE 2. Input parameters of train data (decision tree).

2019 in Fig. 2. Therefore, temporal variables are excluded
from the analysis in Fig. 2 keeping however the consumption,
light and CO2 profile. The light and CO2 sensors were
added to the decision tree structure due to previous research
published by the authors of this paper concluding that these
two factors have more influence on the consumption [17].

The case study researches the different factors according
to a weekly profile and five minutes contexts. Five similar
patterns are identified, representing the activity data from
each day of the week more concretely from Monday to
Friday. This is followed by two similar patterns representing
the low activity of the weekend. The consumption shows
usual variations from 500 to 1500 W, as seen on the patterns
from Monday to Thursday. The consumption variation from
Friday is shown to bemore productive, reaching consumption
ranges higher than 2000 W. During the weekend, the
consumption behavior is described by variations nearly to
600W. The light intensity describes variations between 0 and
1, representing respectively the absence or presence of light
intensity measuring devices. CO2 devices present variations
between 0 and 20%. The two sensors present null values
during the whole weekend.

The reinforcement learning methodology studies the
evaluation of the most suitable forecasting algorithm in five
minutes from 18 to 24 November 2019. These five minutes
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FIGURE 3. Consumption profiles: a) morning, b) afternoon, c) night.

decisions correspond to the forecasting algorithm selection,
K-Nearest Neighbors, or Artificial Neural Networks. One
week with five minutes contexts is considered to compare
with other publications by the authors of this paper [16].

Regarding the industrial case study, which has been
included for validation purposes, detailed information is not
provided due to space limitations. Further details can be
obtained in [18].

IV. RESULTS
In this section are presented the results regarding the use
of the proposed methodology. These are obtained with the
greedy learning method and according to four selected
contexts (SC1, SC2, SC3, SC4).

A. BUILDING
The decision tree approach has been applied to the data in
section III, testing different tree depths. Three data samples
evidence different day features classified as the morning,
afternoon, and night labeled respectively in a), b), and c),
as seen in Fig. 3. These three samples correspond to previous
known research published by the authors of this paper [16]
and are detailed in this case study to support known forecasts
in unique and different parts of the day. These forecasts
are later used as research during the reinforcement learning
evaluation of the most effective algorithm in different
contexts.

The k-nearest neighbors and artificial neural networks
present very accurate predictions much nearer to the real
consumption for almost all five-minute periods. The morning
scenario presents consumption variations between 500 and

TABLE 2. Accuracy of each depth scenario.

1500 W. The afternoon scenario presents variations between
500 and 1500 W and between 500 and 2500 W. Finally, the
night scenario presents many variations between 500 and 600
W and sequences of 5 minutes reaching 1000W.

The accuracy of the decision tree resulted from the depth
parameterization is presented in Table 2.

Table 2 evidence very accurate results for the differ-
ent depth parameterization values. It is noted that depth
parameterizations assigned within ranges between 2 and
4 are not large enough to result in accuracies greater than
66.96%. However, it is possible to obtain higher accuracies
by increasing the decision tree depth to values higher than
4. As seen in Table 2, increasing the depth parameterization
value to 5 and 6 results in more accurate results, respectively
67.86%, and 71.43%. Therefore, while no real improvements
are seen for depth ranges between 2 and 4, parameterization
depth value changes to 5 and 6 show accuracy improvements
respectively of 0.90% and 4.47%. The reason for these
improvements is a higher complexity in the elaboration of
decision rules. Therefore, the higher the decision tree depth,
the higher the complexity of rules, possibly resulting in more
accurate results. The accuracy results obtained in the decision
tree feature similar research provided by the authors of this
paper [15].

A simple rules elaboration illustrates the decision tree for
a depth assigned to the value two as presented in Fig. 4.
This scenario is a simple example to summarize the simpler
logic presented in the decision tree rules. As identified
previously in Table 2, the scenario with decision tree depth
assigned to 6 leads to more accurate results. Therefore,
the rules split of this scenario is analyzed in List 1. The
decision tree presented in Fig. 4 shows very simple rules
for depth assigned to 2. Two contexts are identified on the
decision tree in Fig. 4 with a) weekday from Monday to
Friday and consumption ranges below or equal to 568.833 W
or b) weekday from Monday to Friday and consumption
ranges higher than 568.833 W. List 1 presents very complex
rules for a decision tree depth assigned to 6 corresponding
to a total of 46 contexts. These contexts presented many
differences, including the day corresponding to a weekday
from Monday to Friday or a weekend and specified ranges
for consumption (cons), CO2 (CO2), and the period allocated
(min). From these 46 contexts, several can be identified
within the restrictions defined in a) and b).

Moreover, the selected contexts are identified within the
restrictions defined in a) and b) and separating small from
large occurrences labeling respectively in SC1, SC2, SC3,
and SC4.

The learning phase studies the average rewards and the
history of actions for five minutes periods and all exploration
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FIGURE 4. Decision tree for depth 2.

and exploitation rates from 0.1 to 0.9 with the greedy learning
method. Moreover, this is presented respectively in Fig. 5,
and Fig. 6 for four contexts SC1, SC2, SC3, and SC4 labeled
respectively in a), b), c), and d).

The average reward alternates every five minutes between
0 and 1, representing algorithm selections with higher and
lower forecasting errors. All presented scenarios start with
an average reward assigned to 1 in the first five minutes,
followed by at least an alternate decision that causes the
average reward to converge to an interval between 0.2 and
0.8. Scenario a) has average rewards convergences between
0.7 and 0.8 for low exploration rates. However, it tends to
decrease to patterns between 0.4 and 0.7 as the exploration
rate increases. Scenario b) has average rewards to converge
to 0.6 for lower exploration rates and 0.5 for higher. Scenario
c) has average rewards to converge to 0.8 for low exploration
rates. However, it tends to decrease to patterns between
0.3 and 0.8 as the exploration rate increases. Scenario d) has
average rewards to converge to 0.5. As noted in scenarios b)
and d), the increase of the exploration rate makes the different
exploitation rates converge towards a more similar pattern.

Thus, the exploitation rates assigned to values 0.1, 0.4,
and 0.9 tend to converge to higher average rewards on some
scenarios and for the different exploration rates. The historic
actions associated with context SC1 and for exploitation rates
of 0.9 are illustrated in Fig. 6.

The history of actions is illustrated for context SC2 for the
three exploitation rates identified previously as frequent cases
to result in higher average rewards. These rates are within
0.9, 0.1, and 0.4, labeled respectively in a), b), and c) in
Fig. 7. The historical actions for context SC1 illustrated in
Fig. 6 show long sequences of five minutes deciding to use
KNN repeatedly. After nearly 75 sequences of five minutes,
the history of action finds it essential to alternate between

LIST 1. Decision tree rules for depth 6.

KNN and ANN, being this more frequent between 190 and
230 and between 260 and 297 long sequences of fiveminutes.

The historical actions for context SC2 show two possible
behaviors for long sequences of five minutes: either to use
repeatedly KNN as seen between 408 and 445 long sequences
of five minutes or alternating very frequent between KNN
ANN as seen between 445 and 482 long sequences of five
minutes.

The history of actions of context SC1 presented in Fig.6,
and SC2 presented in Fig. 7 labeled in a), b) and c) suggest
a long-term learning approach more capable of alternating
more between KNN and ANN according to the five minutes
context, rather than repeatedly evaluating for KNN.

Lower exploitation rates tend to repeatedly evaluate more
sequences of fiveminutes as KNN as evidenced in Fig.7 when
comparing scenario b) with scenarios a) and b), respectively
low and higher exploitation rates. This is understandable as
low exploitation rates take more sequences of five minutes
to acquire knowledge about KNN. Therefore, scenario
a) has the advantage of acquiring more knowledge about
a particular forecasting algorithm in fewer periods of five
minutes. The historic actions associated with context SC3 and
for exploitation rates of 0.9 are illustrated in Fig. 8.
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FIGURE 5. The average reward for contexts SC1, SC2, SC3, and SC4.

FIGURE 6. Historic of actions for context SC1 and exploitation rate 0.9.

The historical actions are illustrated for context SC4 for
the three exploitation rates identified as frequent cases to
result in higher average rewards. These rates are within

0.9, 0.1, and 0.4, labeled respectively in a), b), and c) in
Fig. 9. The historical actions for context SC3 illustrated in
Fig. 8 show long sequences of five minutes deciding to use
KNN repeatedly. After nearly 75 sequences of five minutes,
the history of action finds it essential to alternate between
KNN and ANN. This behavior is presented between intervals
of sequences of five minutes, including between 90 and
110, 120 and 150, 152 and 190, 192 and 294, and finally
197 and 334.

The history of actions for context SC4 show two usually
and possible behaviors for long sequences of five minutes:
either to use repeatedly KNN as seen between 260 and
297 long sequences of five minutes or alternating very
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FIGURE 7. Historic actions for context SC2 and scenarios a), b) and c)
respectively with exploitation rates 0.9, 0.1, and 0.4.

FIGURE 8. Historic of actions for context SC3 and exploitation rate 0.9.

frequent between KNN and ANN as seen between 297 and
334 long sequences of five minutes. Although these two
behaviors are usual, the scenario represented in b) with a low
exploitation rate of 0.1 shows that the historic of actions is
also capable of evaluating small sequences of five minutes
periods repeatedly as ANN as seen between 112 and 149 long
sequences five minutes.

This is understandable as low exploitation rates need more
time to acquire knowledge of ANN on five minutes contexts
before having knowledge of both forecasting algorithm and
reaching more pragmatic decisions.

The history of actions of context SC3 presented in Fig. 8,
and SC4 presented in Fig.9 labeled in a), b) and c) suggest
a long-term learning approach more capable of alternating
more between KNN and ANN according to the five minutes
context, rather than repeatedly evaluating for KNN or ANN.
Lower exploitation rates tend to repeatedly evaluate more
sequences of five minutes as KNN or ANN, as evidenced
in Fig. 9 when comparing scenario b) with scenarios a) and

FIGURE 9. Historic actions for context SC4 and scenarios a), b) and c)
respectively with exploitation rates 0.9, 0.1, and 0.4.

FIGURE 10. Average reward for the whole period (18-24 November 2019).

b), respectively low and higher exploitation rates. This is
understandable as low exploitation rates take more sequences
of five minutes to acquire knowledge about KNN or ANN.
Therefore, scenario a) has the advantage of acquiring more
knowledge about a particular forecasting algorithm in less
periods of five minutes. It is possible to research the learning
phase results for the whole week from 18 to 24 November
2019 with no contexts distinction. This research presents the
average rewards for five minutes and all exploration and
exploitation rates from 0.1 to 0.9, as illustrated in Fig. 10.

The results obtained in Fig. 10 presents overall average
rewards nearly to 0.6, highlighting average rewards above
reasonable. It is possible to obtain higher average rewards
with context distinction for context SC3 nearly to 0.8 as
illustrated in Fig. 5 scenario c).
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TABLE 3. Accuracy of each depth scenario in industrial context.

FIGURE 11. Average reward in the industrial context for the whole period
(8 to 13 April 2019).

B. INDUSTRY
An identical simulation contextualized in industrial energy
consumptions compares the decision tree accuracies and
the average rewards with the electrical building simulation
previously studied.

The accuracy of the decision tree is obtained for different
tree depths according to an industrial use case as visualized
in Table 3.

The decision tree accuracies visualized in Table 3 evidence
very accurate predictions between 60.42 and 61.11% using
decision tree depths assigned to values between two and five.
The decision tree loses accuracywhile improving the decision
tree depth from value five to value six decreasing the accuracy
from 61.11 to 56.25%. This is logical as the use of time
features and industrial energy consumption has its limitations
while elaborating decision rules. Table 3 also evidences the
decision tree accuracy decrease from 61.11 to 60.42% while
changing the depth from value three to value four. However,
a decision tree depth increase from value four to value five,
improves the accuracy from 60.42 to 61.11 %.

The average rewards evaluation of the most effective
forecasting algorithm application in different five minutes
contexts is also studied for the industrial context. This
analysis considers all exploration and exploitations rates from
0.1 to 0.9 in the learning phase parameterization with the
greedy method application as illustrated in Fig. 11.

The average rewards contextualized in the industrial
context show an initial average reward of one for all
exploration rates due to the selection of the most effective
forecasting algorithm in the first five minutes. This is
followed by at least a forecasting algorithm selection with

FIGURE 12. Historic of actions for industry, exploitation rate 0.4.

lower accuracy leading to the average reward decreasing from
1 to a lower value between 0.4 and 0.6. The average reward
converges to 0.6 for exploration rates between 0.1 and 0.2 and
to 0.5 for exploration rates between 0.3 and 0.9 until the last
five minutes period evaluation.

The historic of actions studies the forecasting algorithm
application in different five minutes periods. The k-nearest
neighbors and artificial neural networks applications are
alternated in different five minutes contexts for an industrial
application with an exploitation rate assigned to 0.4 as
illustrated in Fig. 12.

Alternations between the k-nearest neighbors and artificial
neural networks applications in different five minutes con-
texts can be visualized in many long five minutes sequences.
Some examples are observed between 163 and 186 periods of
five minutes, between 325 and 379 periods of five minutes.
The historic of actions presents another behavior where the
k-nearest neighbors algorithm is applied repeatedly in long
sequences of periods with five minutes. Some examples
are observed including between 1 and 37 sequences of five
minutes and between 91 and 145 sequences of five minutes.

V. CONCLUSION
This paper identifies suitable contexts through decision tree
rules and analyzes the best forecasting model in different
periods. The results obtained for the different decision tree
depth values suggest the decision tree is suitable to identify
contexts. It is also noted that increasing the depth value
higher enough makes the decision rules complex enough
to result in more accurate results. The obtained results on
the learning phase for the greedy method show average
rewards converging to values above reasonable. It is noted
that increasing the exploration rate may decrease the final
average reward in some contexts. The historic actions present
two frequent patterns on long sequences of five minutes:
to select KNN or ANN repeatedly or to alternate between
KNN and ANN. It also noted that it is advantageous to
use large exploitation rates to acquire more knowledge of a
particular forecasting algorithm selection in fewer periods of
five minutes. Moreover, this motivates to alternate between
KNN and ANN on different five minutes contexts faster than
for low exploitation rates. An accurate analysis of the learning
phase results for the whole period reveals that context use
is advantageous for obtaining higher average rewards. The
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industrial use case also reaches very accurate decision tree
accuracies, however this is limited to a maximum of 61.11%
while the electrical building application contextualized in
this paper reaches accuracies with maximums of 71.43 %.
It is inferred that the less precise decision tree accuracy
in the industrial context is because of the lack of sensors
data in the decision rules. Moreover, this problem may
also explain why the increase of the decision tree depth at
some point decreases the accuracy. It is inferred that the
rules built in the decision tree training are able to reach
stronger logics when including sensors data. The average
of rewards analysis on the industrial use case has also
obtained above reasonable forecasting algorithm applications
in different contexts. The historic of actions contextualized
in the industrial use case have shown two similar behaviors
leading to either alternating between k-nearest neighbors
and artificial neural networks applications or evaluating
repeatedly with k-nearest neighbors.
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