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ABSTRACT In this study, the Lie group approach was used for state estimation of the dynamic-model-aided
navigation (DMAN) of a small multirotor unmanned aerial vehicle. The unit quaternions constituting a Lie
group called the three-sphere space (S3) were used to represent the attitude in the dynamic equations for
the process and measurement models. The linearization of these models is presented in terms of Lie algebra
corresponding to S3. The use of Lie algebra to describe the attitude increment conforms to the linearity
assumption, on which the measurement update of the extended Kalman filter (EKF) is based. In this study,
it was experimentally validated that the Lie group approach combined with DMAN performs better than the
EKF that uses the conventional linearization of the process and measurement models under the assumption
that the nonlinearity effect is negligible for a small attitude increment. It was demonstrated that the navigation
states estimated using the proposed model are better than or comparable to those obtained using the current
methods, and the proposed method significantly improves the internal properties.

INDEX TERMS Three-sphere space, Lie group, Lie algebra, unit quaternion, multirotor, navigation,
dynamic model, Kalman filter.

I. INTRODUCTION
Many vehicle attitude representations are difficult to use
because they do not constitute a linear space. This is
the case with operations on attitude such as differenti-
ation, integration, and calculation of covariance that are
involved in Kalman filtering [1], [2]. The attitude forms a
three-dimensional special orthogonal group (SO(3)), three-
sphere space (S3), and two-dimensional special unitary group
(SU(2)), rather than a linear space [3], [4]. This non-linearity
complicates attitude estimation using an approach based on
the assumption that the variables and operations are in a
linear space, or that linearization does not cause any sig-
nificant problems. Kalman filter (KF) approaches to attitude
estimation also suffer from this non-linearity. Therefore, this
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study proposed utilizing Lie group theory, whereby a KF is
used for attitude estimation in terms of unit quaternions.
Specifically, an extended KF (EKF) was used in S3 for
the dynamic-model-aided navigation (DMAN) of a small
quadrotor.

Lie theory has been used in the application of KFs,
either explicitly or implicitly. Multiplicative EKFs (MEKFs)
implicitly employ Lie theory, where the attitude error is
represented by a three-component error vector [5]–[7]. The
three-component error vectors constitute Lie algebra cor-
responding to a Lie group composed of unit quaternions.
Although not explicitly expressed, the multiplicative term in
an MEKF corresponds to the exponential of the Lie algebra
element, called the three-component error vector [5]. In con-
trast, invariant EKFs (IEKFs) explicitly use Lie theory to
handle nonlinear and norm-preserving quaternion attitude
representations [8]–[10], which ensures robust performance
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and improved convergence [11]. The performance improve-
ment brought about by matrix Lie group formulation in solv-
ing an attitude control problem [9] has been demonstrated by
numerical analysis. However, neitherMEKFs nor IEKFs have
previously been used for DMAN.

The matrix Lie group of double direct isometries, SE2(3),
in which the attitude, position, and velocity are described
by a 5 × 5 matrix, was explored for estimation and control.
In [12], it was verified that the use of matrix Lie group SE2(3)
theory facilitates accurate propagation of uncertainty and
exact pre-integration of the inertial measurement unit (IMU).
This provides the background theory and tools of SE2(3) for
estimation and control applications. Cohen et al. defined a
matrix Lie group to represent a set of state variables that
included sensor biases and wind velocity, as well as attitude,
velocity, and position [13]. The defined matrix Lie group
contained SE2(3), in which the navigation state variables
of attitude, velocity, and position evolve. References [14]
and [15] proposed nonlinear observers on matrix Lie group
SE2(3) that estimated the attitude, position, and velocity using
landmarkmeasurements in addition to inertial measurements.
The use of Lie group theory efficiently handled measurement
noise and improved stability.

Many KF applications that have utilized Lie group theory
used matrix Lie groups [16]–[18]. Reference [19] imple-
mented an EKF on the Lie group of the special orthogonal
group SO(3) to estimate the initial attitude of the IMU relative
to a navigation coordinate system. In [17], a general frame-
work for the application of KFs in matrix Lie groups was
presented, and in [18], KFs were applied to matrix Lie groups
for simultaneous localization and mapping with simulation
results. In contrast to the aforementioned studies, the Lie
group approach is used in the S3 space in this study. More-
over, this study focused on a practical application: DMAN of
a multirotor unmanned aerial vehicle (UAV).

The unit quaternions representing the vehicle attitude
or rotation constitute a Lie group called the three-sphere
space [20]. Increments are evaluated in the tangent space,
which is called Lie algebra s3, for prediction and measure-
ment updates. The adjustment for the measurement update,
which is the product of the Kalman gain and measurement
innovation, is derived in Lie algebra. This correction restores
the Lie group quantity from the adjustment represented in
terms of Lie algebra. Covariance is calculated using Lie
algebra. The states are in the Lie group, and the differ-
ence between the states and covariance is evaluated using
Lie algebra. Lie group theory enables the evaluation of the
state error, noise, and increment without a linear approxima-
tion. In [21], a nonlinear state error was defined in the Lie
group for strapdown inertial navigation systems with a minia-
ture IMU, global navigation satellite system (GNSS), and
magnetometer.

This paper describes the use of Lie group theory for
dynamic-model-aided navigation of multirotor unmanned
aerial vehicles. To the best of the authors’ knowledge, there

has been no research on the use of the Lie group approach
for dynamic-model-aided estimation of a multirotor navi-
gation system. The proposed method employs EKF for the
estimation. The Lie group approach is appropriate for use in
EKF; it facilitates the differentiation of the process model and
measurement model that is required to derive the Jacobian
matrix for EKF implementation.

The Lie group approach is applicable to the unscented
Kalman filter (UKF) [22]–[25] and cubature Kalman filter
(CKF) [26]. However, the application of Lie group theory for
the UKF or CKF requires additional computations to make
the approach compatible with Lie group theory. Additions
and subtractions of sigma points involve the computation of
exponentials and logarithms [23]. The weighted mean calcu-
lated by the usual addition and subtraction method does not
produce a proper Lie group element. Therefore, calculation
of the weighted mean requires the repeated calculation of
exponentials for the Lie algebra elements and logarithms for
the Lie group elements. To reduce computational complexity,
a method utilizing an optimum regression matrix has been
proposed [22].

Dynamic-model-aided navigation is essential for UAVs
when a global navigation satellite system (GNSS) is tem-
porarily unavailable or unstable [27]–[29]. In [27], an EKF
was used for the DMANof a quadrotor; however, an approach
involving S3 was not adopted. In contrast to the model used
in that study, the proposed measurement model includes the
geomagnetic field as a measurement variable. Furthermore,
the noise involved in attitude propagation is described in
terms of Lie algebra.

The novelty and features of the proposed approach are as
follows.

1) Lie group theory is used for dynamic-model-aided esti-
mation of a multirotor UAV navigation system.

2) Using Lie group theory for dynamic-model-aided esti-
mation improves the performance of the estimation,
that is, improvement in the convergence of Kalman
gain and measurement innovation and the estimation
accuracy.

3) Lie group three-sphere space S3 is used for estima-
tion; however, many previous Lie group approaches
adopted matrix Lie groups. S3 consists of four com-
ponents, whereas matrix Lie group SO(3) uses nine
components.

4) Jacobians of the process model and measurement
model are derived using Lie group theory.

Section II describes the process and measurement models,
in which a dynamic model of the quadrotor is incorporated
for the estimation. In Section III, the Lie group approach is
presented, and Jacobians are derived for the implementation
of the EKF in S3 based on Lie theory. Section IV describes
the experiments and results demonstrating the improvements
owing to the proposed method compared with the previous
applications of KFs in DMAN [27]. Section V concludes the
paper.
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II. PROCESS AND MEASUREMENT EQUATIONS
INCORPORATING THE DYNAMIC MODEL
The process and measurement equations are established and
extended based on [27]. This section summarizes the models
used for the Lie-theory-based derivations in Section III.

A. NOMENCLATURE
Throughout this paper, the following notations are used:
x(t) location at time t in the local north-east-

down (NED) coordinate frame; x(t) =[
x(t) y(t) z(t)

]T
z̃(t) altitude measured by a barometric altimeter at

time t
v(t) velocity at time t in the local NED coordinate

frame; v(t) =
[
vx(t) vy(t) vz(t)

]T
bv(t) velocity at time t in the vehicle coordinate frame;

bv(t) =
[
bvx(t) bvy(t) bvz(t)

]T
q(t) attitude at time t in the local NED coordinate

frame represented by a unit quaternion; q(t) =[
qw(t) qx(t) qy(t) qz(t)

]T
=
[
qw(t) Eq(t)

]T
∈

S3, where Eq(t) =
[
qx(t) qy(t) qz(t)

]T
q∗(t) conjugate of the quaternion q(t); q∗(t) =[

qw(t) −Eq(t)
]T

ω(t) angular rate at time t in the local sensor coordi-
nate frame; ω(t) =

[
ωx(t) ωy(t) ωz(t)

]T
ω̃(t) measured angular rate at time t in the local sensor

coordinate frame; ω̃(t) =
[
ω̃x(t) ω̃y(t) ω̃z(t)

]T
g gravitational acceleration (m/s2)
1ti time difference between the (i−1)-th and i-th time

sequence; 1ti = ti − ti−1
rk (t) rotation speed of the k-th propeller at time t in

revolutions per minute (RPM)
fk (t) thrust force generated by the k-th propeller with

rotation speed rk (t)
tk (t) torque generated by the k-th propeller with rota-

tion speed rk (t)
m mass of the quadrotor
ar (t) acceleration generated by the four propellers at

time t in the z-direction of the vehicle; ar (t) =[
0 0 1

m

∑4
k=1 fk (t)

]T
a(t) acceleration of the vehicle at time t

in the local NED coordinate frame;
a(t) =

[
ax(t) ay(t) az(t)

]T
ã(t) acceleration measured by using the accelerome-

ter of an IMU or attitude and heading reference
system (AHRS); ã(t) =

[
ãx(t) ãy(t) ãz(t)

]T
m̃(t) geomagnetic field measured by using a magne-

tometer; m̃(t) =
[
m̃x(t) m̃y(t) m̃z(t)

]T
x̂(ti|ti−1) a priori estimation of the variable x(t) at time

t = ti
x̂(ti) a posteriori estimation of the variable x(t) at time

t = ti
P(ti) error covariance matrix of the estimate x̂(ti) at

time t = ti

FIGURE 1. Coordinate system for quadrotor UAVs.

Mk the k-th column of the matrixM
⊗ operator that multiplies two quaternions; to mul-

tiply a vector En ∈ R3 and a quaternion, the vector
is augmented to the pure quaternion

[
0 En
]T

[p]× cross product matrix of a vector p; p× r = [p]× r
for two vectors p ∈ R3 and r ∈ R3

R(q(t)) rotation matrix corresponding to the rotation by a
quaternion q(t); R(q(t))p = q(t) ⊗ p ⊗ q∗(t) for
a vector p ∈ R3

R(r) rotation matrix representing the rotation by the
rotation vector r; r = r

‖r‖ ‖r‖, where ‖r‖ is the
rotation angle, and r

‖r‖ is the axis of rotation
Im identity matrix with dimension m× m
0m zero matrix with dimension m× m
Ixx moment of inertia in the x direction. Similarly,

Iyy and Izz are the moments of inertia in the y and
the z direction, respectively

In this study, the local NED coordinate frame was regarded
as the reference coordinate frame. The dynamic model, pro-
cess equation, and measurement equation were derived based
on the vehicle coordinate system shown in Fig. 1. The sensor
coordinate system was set such that it coincided with the
vehicle coordinate system, and there was no need to convert
the sensor measurements to values in the vehicle coordinate
system.

For notational convenience, the time index ti within paren-
theses is denoted by subscript i (e.g., P i is used instead of
P(ti), and x̂i|i−1 is used instead of x̂(ti|ti−1)).

B. PROCESS EQUATIONS
The position, velocity, and attitude of a UAV are to be esti-
mated. The state x(t) at time t includes the angular rate of the
vehicle motion as well as its position, velocity, and attitude to
facilitate the estimation, as follows:

x(t) =
[
x(t) v(t) q(t) ω(t)

]T
. (1)

The process equation describes the time derivative of the
state as a function f (·) of the state x(t) and input u(t):

ẋ(t) = f (x(t),u(t) ), (2)

where u(t) =
[
r1(t) r2(t) r3(t) r4(t)

]T . The process equa-
tion f (x(t),u(t) ) is based on the dynamic model of
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a quadrotor described in [30], and the details of the derivation
are provided in [27].

The time derivatives of position and velocity are as follows:

ẋ(t) = v(t), (3)

v̇(t) =
[
0 0 g

]T
+ R(q(t) )ar (t)

+R(q(t) )
{
V (t) RT (q(t) )v(t)

}
. (4)

In (4), the drag force ratio matrix V (t) and drag force coeffi-
cient kl(t) of the quadrotor are expressed as follows:

V (t) =

−kl(t) 0 0
0 −kl(t) 0
0 0 0

 , (5)

kl(t) =
1
m
λ1

4∑
k=1

rk (t). (6)

In (6), λ1 denotes the drag coefficient of the propeller [28].
In (4),R(q(t)) ar (t) andR (q(t))

{
V (t) RT (q(t)) v(t)

}
describe

the dynamics of the quadrotor.
The time derivative of the quaternion that represents the

attitude of a vehicle is obtained using (7), and the derivative
of the angular rate is obtained using (8).

q̇(t) =
1
2
q(t)⊗ ω(t), (7)

ω̇(t) =


Iyy − Izz
Ixx

ωy(t) ωz(t)

Izz − Ixx
Iyy

ωx(t) ωz(t)

Ixx − Iyy
Izz

ωx(t) ωy(t)

+
ω̇xf(t)ω̇yf(t)
ω̇zt(t)

 , (8)

where

ω̇xf(t) =
1
Ixx
{d23(f2(t) + f3(t) )− d14(f1(t) + f4(t) )} ,

ω̇yf(t) =
1
Iyy
{d34(f3(t) + f4(t) )− d12(f1(t) + f2(t) )} ,

ω̇zt(t) =
1
Izz
{−t1(t) + t2(t) − t3(t) + t4(t) }.

In (8), dij ( ij ∈ {12, 23, 34, 14}) is the distance from the ori-
gin of the vehicle coordinate frame to the line connecting the
centers of propellers i and j. The distance is projected onto
the xy plane of the vehicle coordinate frame.

The process equation of quadrotor motion for the applica-
tion of the EKF consists of (3), (4), (7), and (8). Equations (4)
and (8) include a dynamic model that involves the thrust force
and torque exerted by the propellers, which play a key role in
aiding navigation.

C. MEASUREMENT MODEL
The measurement z(t) consists of the acceleration ã(t), accel-
eration direction da(t), geomagnetic field direction dm(t),
angular rate ω̃(t), and altitude z̃(t).

z(t) =
[
ã(t) da(t) dm(t) ω̃(t) z̃(t)

]T
. (9)

The acceleration and angular rate were measured using an
IMU or AHRS, and the geomagnetic field was measured
using the magnetometer in the AHRS. Altitude was mea-
sured using a barometric altimeter. The measurement z(t) has
13 elements.

The measurement model describes z(t) as a function of the
state x(t), input u(t), andmeasurement noise nm(t) as follows:

z(t) = h(x(t),u(t))+ nm(t),

nm(t) ∼ N (0,Qm(t) ). (10)

The measurement equations h(x(t),u(t)) are derived as
described below. The measurement equations for the accel-
eration ã(t), angular rate ω̃(t), and altitude z̃(t) are the same
as those in [27].

The acceleration measurement is related to two state vari-
ables: velocity and attitude. It is also related to the thrust force
exerted by the propellers. Thus, themeasurement equation for
acceleration ã(t) =

[
ãx(t) ãy(t) ãz(t)

]T is as follows:

ã(t) = 3(t)
{
q∗(t)⊗ v(t)⊗ q(t)

}
+ f(t), (11)

where

3(t) = −kl(t)

1 0 0
0 1 0
0 0 0

 ,
f(t) = ar (t).

In (11), 3(t) {q∗(t)⊗ v(t)⊗ q(t)} represents the drag force,
which is proportional to the velocity in the xy plane of the
quadrotor. The x and y components of ã(t) suggest that the
acceleration measured in the horizontal plane is proportional
to the velocity in the vehicle coordinate frame. Moreover, the
z component of ã(t) relates the thrust force to the acceler-
ation in the vertical direction. Acceleration measurement is
described without using gravitational acceleration.

The direction of the acceleration is also related to the
attitude. Because the magnitude of the proper acceleration
of a small quadrotor is not comparable to the gravitational
acceleration g, the acceleration measured by the accelerom-
eter is regarded as gravitational acceleration in the vehicle
coordinate system. Thus, it points outward from the center
of the earth. The direction is expressed by the unit vector
of the measured acceleration. The measurement model of
the acceleration direction for the attitude measurement is
described below. The acceleration direction is expressed by
da(t) =

[
da,x(t) da,y(t) da,z(t)

]T .
da(t) ,

ã(t)
‖ã(t)‖

= q∗(t)⊗ (−qe3 )⊗ q(t)

= RT (q(t))(−e3), (12)

where

e3 =
[
0 0 1

]T and qe3 =
[
0 e3

]T
.

The geomagnetic field at a given point on earth can be
regarded as constant over a period of several days, and it
can be used as a reference for the measurement of attitude.
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It is primarily used as a horizontal reference of attitude,
whereas the acceleration direction da(t) serves as an atti-
tude reference in the vertical direction. Therefore, it is only
required to use the horizontal component of the geomagnetic
field measurement. This component is extracted by using the
cross-product of the measured magnetic field and the vertical
directional vector that is represented by gravitational acceler-
ation. Because the direction is of interest, this cross-product
vector is also normalized to obtain the direction measurement
dm(t) of the geomagnetic field as follows:

dm(t) ,
m̃(t) × ã(t)
‖m̃(t) × ã(t)‖

= q∗(t)⊗
{ wm× (−e3)
‖wm× (−e3)‖

}
⊗ q(t)

= RT (q(t))
{ wm× (−e3)
‖wm× (−e3)‖

}
, (13)

where wm =
[wmx wmy wmz

]T is the geomagnetic field
vector that can be identified by the world magnetic model at
the place of navigation [31].

The angular rate ω̃(t) and barometric altitude z̃(t) are
directly related to the state variables, as follows:

ω̃(t) = ω(t), (14)

z̃(t) = z(t). (15)

The measurement equation h(x(t),u(t) ) consists of (11),
(12), (13), (14), and (15).

The proposed measurement model differs from that of [27]
in excluding roll φ(t) and pitch θ (t) from the measurement
vector. Instead, it includes the unit acceleration vector da(t)
and unit horizontal component dm(t) of the magnetic field
vector. These differences allow the proposed measurement
model to have the following advantages over the previous
model [27]. (1) Yaw estimation performance is improved
because the horizontal component of the geomagnetic field
acts as a reference for yaw estimation. (2) The elements of the
Jacobian matrix of the measurement model did not diverge,
unlike the previous model where some components of the
Jacobian diverge.

By incorporating the unit horizontal magnetic field vector
dm(t), yaw information is considered in the measurement
update stage of the estimation. Because only the horizontal
component of the magnetic field is used, the magnetic field
vector as ameasurement does not deteriorate the roll and pitch
estimation. The roll and pitch are measured using the unit
acceleration vector da(t).
By using the vectors as the measurement instead of the

Euler angles, divergence of the Jacobian of the measurement
model is avoided. Equation (17) of [27] indicates that pitch is
represented using the inverse of the sine function as follows:

θ (t) = sin−1 (qt (t) ) , (16)

where

qt (t) = 2
{
qw(t) qy(t) − qx(t) qz(t)

}
.

The Jacobian matrix H(t) of the measurement model of [27]
includes the partial derivatives of θ (t) with respect to
the quaternion components. The partial derivatives are as
follows:

∂θ(t)
∂q∗(t)

=
1√

1− q2t (t)
·
∂qt (t)
∂q∗(t)

, (17)

where ∗ ∈ {w, x, y, z}.
The partial derivative ∂θ (t)

∂q∗(t)
becomes infinite as qt (t)

approaches 1 or −1, which is the case when the pitch θ
approaches π/2 or −π/2. This indicates that the Jacobian
H(t) of the measurement model in [27] diverges depending
on the attitude of the quadrotor. By contrast, as derived in
Section III-B, no component of the Jacobian of the proposed
measurement model diverges.

III. USE OF LIE GROUP S3 FOR ESTIMATION
The process and measurement models use unit quaternions
that constitute a Lie group S3 (unit 3-sphere group). Lin-
earization of the models is required when using the EKF. The
partial derivatives required for linearization can be obtained
in S3 by using the corresponding Lie algebra s3. The fol-
lowing sections present the process for obtaining Jacobian
matrices using partial derivatives in S3. Details are provided
in Appendix A.

A. JACOBIAN OF PROCESS MODEL
1) JACOBIAN MATRIX
The process equation (2) is discretized and augmented
by adding the process noise ns(ti) to obtain the model
f d (x(ti),u(ti),ns(ti)) that fits the discrete-time KF as follows:

x(ti+1) = f d (x(ti),u(ti),ns(ti)). (18)

The noise ns(ti) consists of the noise in position nx(ti), noise
in velocity nv(ti), noise in attitude nq(ti), and noise in the
angular rate nω(ti):

ns(ti) =
[
nx(ti) nv(ti) nq(ti) nω(ti)

]T
,

n∗(ti) ∼ N (0,Q∗(ti)), ∗ ∈ {x, v, q, ω}. (19)

Each of nx(ti), nv(ti), and nω(ti) is in R3 and is assumed to be
additive. In particular, the noise in attitude nq(ti) is additive in
three-dimensional Lie algebra s3. The incorporation of nq(ti)
into themeasurement equation is explained in Sections III-A3
and III-C using Lie group theory.

The Jacobian matrix for the discretized process model (18)
is as follows.

F(ti+1)

=



∂x(ti+1)
∂x(ti)

∂x(ti+1)
∂v(ti)

∂x(ti+1)
∂q(ti)

∂x(ti+1)
∂ω(ti)

∂v(ti+1)
∂x(ti)

∂v(ti+1)
∂v(ti)

∂v(ti+1)
∂q(ti)

∂v(ti+1)
∂ω(ti)

∂q(ti+1)
∂x(ti)

∂q(ti+1)
∂v(ti)

∂q(ti+1)
∂q(ti)

∂q(ti+1)
∂ω(ti)

∂ω(ti+1)
∂x(ti)

∂ω(ti+1)
∂v(ti)

∂ω(ti+1)
∂q(ti)

∂ω(ti+1)
∂ω(ti)


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=


I3 1ti+1I3 03 03
03

∂v(ti+1)
∂v(ti)

∂v(ti+1)
∂q(ti)

03

03 03
∂q(ti+1)
∂q(ti)

∂q(ti+1)
∂ω(ti)

03 03 03
∂ω(ti+1)
∂ω(ti)

 . (20)

2) PARTIAL DERIVATIVES FOR VELOCITY PROPAGATION
The velocity v(ti) propagates to v(ti+1) owing to the acceler-
ation v̇(ti+1) as follows:

v(ti+1) = v(ti)+ v̇(ti)1ti+1 + nv(ti)

= v(ti)+

00
g

1ti+1 + R(q(ti))ar (ti)1ti+1
+R(q(ti))

{
V (ti)RT (q(ti))v(ti)

}
1ti+1

+nv(ti). (21)

In the description of the partial derivatives, the following
shorthand notations are used for simplicity:

R = R(q(ti)),

V = V (ti),

v = v(ti),

ar = ar (ti),

1t = 1ti+1.

First, the partial derivative of v(ti+1) with respect to v(ti) is
obtained as follows:

∂v(ti+1)
∂v(ti)

= I3 + RVRT1t. (22)

The partial derivative of v(ti+1) with respect to q(ti) is
obtained as follows:

∂v(ti+1)
∂q(ti)

= −R
{
[ar ]× +

[
VRT v

]
×

− V
[
RT v

]
×

}
1t.

(23)

The partial derivatives of v(ti+1) with respect to x(ti) and
ω(ti) are both zero:

∂v(ti+1)
∂x(ti)

=
∂v(ti+1)
∂ω(ti)

= 03. (24)

3) PARTIAL DERIVATIVES FOR ATTITUDE PROPAGATION
Using Lie group theory and (7), attitude propagation from
q(ti) to q(ti+1) can be expressed as follows:

q(ti+1) = q(ti)⊗ Exp(ω(ti)1ti+1)⊗ Exp(nq(ti)), (25)

where nq(ti) ∈ R3 is the noise vector in the attitude propa-
gation represented by the unit quaternions in S3. In (25), the
function Exp(·) is the exponential map, which maps a vector
in R3 to an element in S3 as follows [20]:

Exp(p) =

 cos
(
‖p‖
2

)
p
‖p‖

sin
(
‖p‖
2

)
 , (26)

where p is the vector equivalent of an element in Lie
algebra s3. Although (25) expresses attitude propagation as
quaternion multiplication in space S3, quaternion multipli-
cation corresponds to addition in Lie algebra s3. Therefore,
the noise nq(ti) is additive in s3. The partial derivatives are
obtained under the condition nq(ti) = 0.
The partial derivative of q(ti+1) with respect to q(ti) is:

∂q(ti+1)
∂q(ti)

= RT (ω1t), (27)

where RT (ω1t) denotes the rotation matrix corresponding to
the rotation vector r = ω1t = ω(ti)1ti+1 as follows:

R(r) = I3 + sin(‖r‖)
[
r
‖r‖

]
×

+ (1− cos(‖r‖))
[
r
‖r‖

]2
×

.

(28)

The partial derivative of q(ti+1) with respect to ω(ti) is

∂q(ti+1)
∂ω(ti)

=

(
I3 −

1− cos ‖r‖

‖r‖2
[r]×

+
‖r‖ − sin ‖r‖

‖r‖3
[r]2×

)
1t. (29)

The partial derivatives of q(ti+1) with respect to x(ti) and
v(ti) are both zero:

∂q(ti+1)
∂x(ti)

=
∂q(ti+1)
∂v(ti)

= 03. (30)

4) PARTIAL DERIVATIVES FOR ANGULAR RATE
PROPAGATION
The partial derivative of angular rate ω(ti+1) with respect
to ω(ti) is

∂ω(ti+1)
∂ω(ti)

= I3 +

 0 w1,2 w1,3
w2,1 0 w2,3
w3,1 w3,2 0

1t, (31)

where

w1,2 =
Iyy − Izz
Ixx

az, w1,3 =
Iyy − Izz
Ixx

ay,

w2,1 =
Izz − Ixx
Iyy

az, w2,3 =
Izz − Ixx
Iyy

ax ,

w3,1 =
Ixx − Iyy
Izz

ay, w3,2 =
Ixx − Iyy
Izz

ax .

B. JACOBIAN OF MEASUREMENT MODEL
1) JACOBIAN MATRIX
The Jacobian matrix of the measurement model z(t) =

h(x(t),u(t)) + nm(t) is partitioned according to the partial
derivatives of the measurements with respect to the states,
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as follows:

H(ti) =



∂ ã(ti)
∂x(ti)

∂ ã(ti)
∂v(ti)

∂ ã(ti)
∂q(ti)

∂ ã(ti)
∂ω(ti)

∂da(ti)
∂x(ti)

∂da(ti)
∂v(ti)

∂da(ti)
∂q(ti)

∂da(ti)
∂ω(ti)

∂dm(ti)
∂x(ti)

∂dm(ti)
∂v(ti)

∂dm(ti)
∂q(ti)

∂dm(ti)
∂ω(ti)

∂ω̃(ti)
∂x(ti)

∂ω̃(ti)
∂v(ti)

∂ω̃(ti)
∂q(ti)

∂ω̃(ti)
∂ω(ti)

∂ z̃(ti)
∂x(ti)

∂ z̃(ti)
∂v(ti)

∂ z̃(ti)
∂q(ti)

∂ z̃(ti)
∂ω(ti)



=



03
∂ ã(ti)
∂v(ti)

∂ ã(ti)
∂q(ti)

03

03 03
∂da(ti)
∂q(ti)

03

03 03
∂dm(ti)
∂q(ti)

03

03 03 03 I3[
0 0 1

]
01×3 01×3 01×3


.

(32)

Each partial derivative of the measurements with respect to
a quaternion has three columns, even though a unit quaternion
in S3 has four components, because the increments of the unit
quaternions constitute the tangent space s3, which is three-
dimensional. Therefore, the partial derivatives of the mea-
surements with respect to the unit quaternions are obtained
using the theory of Lie groups and Lie algebras in the follow-
ing sections.

2) PARTIAL DERIVATIVES OF ACCELERATION
MEASUREMENT
The partial derivatives of the acceleration measurement with
respect to the states are obtained from (11), as follows:

∂ ã(ti)
∂v(ti)

= 3(ti)RT (q(ti)), (33)

∂ ã(ti)
∂q(ti)

= 3(ti)
[
RT (q(ti))v(ti)

]
×

, (34)

∂ ã(ti)
∂x(ti)

=
∂ ã(ti)
∂ω(ti)

= 03. (35)

3) PARTIAL DERIVATIVES OF ACCELERATION DIRECTION
The partial derivatives of the acceleration direction with
respect to the states are obtained from (12) as follows:

∂da(ti)
∂q(ti)

=

[
RT (q(ti))(−e3)

]
×

, (36)

∂da(ti)
∂x(ti)

=
∂da(ti)
∂v(ti)

=
∂da(ti)
∂ω(ti)

= 03. (37)

4) PARTIAL DERIVATIVES OF GEOMAGNETIC FIELD
DIRECTION
The partial derivatives of the geomagnetic field direction with
respect to the states are obtained from (13), as follows:

∂dm(ti)
∂q(ti)

=

[
RT (q(ti))

{ wm× (−e3)
‖wm× (−e3)‖

}]
×

=

[
RT (q(ti))

{
e3 × wm
‖e3 × wm‖

}]
×

, (38)

∂dm(ti)
∂x(ti)

=
∂dm(ti)
∂v(ti)

=
∂dm(ti)
∂ω(ti)

= 03. (39)

C. EKF PROCEDURE
The state estimation is implemented using EKF. The EKF
uses the Jacobianmatrices derived in Sections III-A and III-B.
In addition to using the Jacobian matrices derived in Lie
group and Lie algebra, the EKF uses operations in Lie group
and Lie algebra to evaluate the attitude.

The attitude is propagated using the exponential of the vec-
tor ω(ti)1ti+1, which is the angular increment during 1ti+1,
and the vector counterpart of the increment in Lie
algebra s3. Therefore, attitude propagation is represented
using the following equation:

q̂(t−i+1) = q̂(ti)⊗ Exp(ω(ti)1ti+1), (40)

where q̂(t−i+1) is the state at time ti+1 propagated from the
previously estimated state q̂(ti) at time ti. The use of the expo-
nential ensures accurate predictions and preserves the norm
of the predicted unit quaternion. On the contrary, numerical
integration of (7) results in approximated predictions and
does not satisfy the unit norm constraint.

The process noise covariance Qs(t), which appears in pro-
cess models (18) and (19), requires further analysis. In (25),
nq(ti) is a vector describing the difference between the two
unit quaternions in S3, which belongs to Lie algebra s3, the
tangent space of S3. The addition of elements in s3 and scalar
multiplication of s3 elements results in elements in s3. The
error covariance for q̂(t−i+1) is of dimension 3 × 3 as shown
below:

P q̂q̂(t
−

i+1) = E
[
eq̂(t
−

i+1)eq̂(t
−

i+1)
T
]
, (41)

where eq̂(t
−

i+1) is the difference between the prediction q̂(t
−

i+1)
and q(ti+1) obtained as follows:

eq̂(t
−

i+1) =
(
q−1(ti+1)⊗ q̂(t

−

i+1)
)∨
. (42)

In (42),
(
q−1(ti+1)⊗ q̂(t

−

i+1)
)
is in s3, and operator (·)∨ maps

a Lie algebra element in s3 to the corresponding vector
inR3. Thus, the predicted state x̂(t−i+1) has an error covariance
matrix of dimension 12 × 12. This is one of the distinct
features of Lie group implementation of the EKF compared
to the implementation of the EKF in [27], where x̂(t−i+1) has
an error covariance matrix of dimension 13×13. The method
in [27] considered a unit quaternion as a variable inR4 instead
of S3. The addition and scalar multiplication of vectors in R4

do not result in elements in S3.
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The measurement update stage of the EKF adds the correc-
tion state δx(ti+1) to the predicted state x̂(t−i+1) as follows:

x̂(ti+1) = x̂(t−i+1)+ δx(ti+1), (43)

where

δx(ti+1) = [δx(ti+1) δv(ti+1) δq(ti+1) δω(ti+1)]T

= K(ti+1)
{
z(ti+1)− h(x̂(t−i+1),u(ti+1))

}
.

The correction state δx(ti+1) is the Kalman gain K(ti+1) mul-
tiplied by the measurement innovation at time t = ti+1. The
vector δq(ti+1), which is used for the attitude measurement
update, is a subvector of δx(ti+1):

δq(ti+1) = δx(ti+1)(7 : 9), (44)

where δx(ti+1)(7 : 9) denotes the subvector of δx(ti+1); the
elements of the subvector are the seventh to ninth elements
of δx(ti+1).
The correction state δx(ti+1) has 12 elements; however, the

predicted state x̂(t−i+1) has 13 elements. The attitude correc-
tion δq(ti+1) has three elements belonging to Lie algebra s3.
Therefore, adding δq(ti+1) to the predicted attitude q̂(t−i+1)
is not a meaningful operation, and Lie theory is required
to append δq(ti+1) to q̂(t−i+1). Lie theory is applied in the
measurement update to multiply the predicted attitude q̂(t−i+1)
by the exponential of the correction state δq(ti+1) as follows:

q̂(ti+1) = q̂(t−i+1)⊗ Exp(δq(ti+1)). (45)

Themeasurement update using (45) is exact. In an EKFwhere
the quaternion q̂(t−i+1) and the correction vector are treated
as vectors in R4, the correction vector is added to q̂(t−i+1)
in the measurement update procedure. However, in vector
addition, the geometrical properties of the attitude are not
considered; furthermore, vector addition provides an approx-
imated update that does not constrain the norm of the updated
quaternion to 1 [27]. Therefore, approximation errors are
inevitable, and normalization is required.

IV. EXPERIMENTS AND RESULTS
The improvement owing to the proposed method is verified
experimentally in this section. For comparison, the experi-
ments were conducted using the same quadrotor and sensor
set as in [27]. Details of the quadrotor and sensors are pro-
vided in [27]. The method was tested on two flight datasets:
one dataset was the same as that used in [27] and the other
was a new dataset with a different trajectory. The first dataset
was collected from a level flight and was termed Flight Test 1.
The quadrotor flew approximately 190 m in 45 s at an altitude
of 8.5 m without an altitude change. In the second dataset,
the quadrotor traversed the trajectory twice through a round-
trip path. The altitude varied by 10 m during the flight. The
quadrotor flew approximately 449 m in 124 s while varying
the altitude between 8 m and 18 m. The second experiment
was termed Flight Test 2.

As the feasibility and performance of DMANwere demon-
strated in [27], the present study primarily focused on the

FIGURE 2. Comparison of estimated trajectories.

advantage of applying Lie group theory to DMAN. The com-
parison with the previous DMAN focuses on two aspects:
estimation and properties of internal variables. Estimation
refers to the estimated location, attitude, and velocity. The
internal variables refer to the measurement innovation and
Kalman gain. Hereafter, in the figures and tables, the pro-
posed approach is referenced as ‘‘Lie,’’ whereas ‘‘MAN’’ and
‘‘UKF’’ refer to the previous approaches [27] which use EKF
and UKF respectively.

Figure 2 shows the estimated trajectories in the xy plane
for both experiments. As exteroceptive measurements are not
used in the estimation process, shifts and tilts are inevitable
in the estimated trajectory, and the estimation error accumu-
lates with time and travel distance. The location and attitude
relative to the initial location and attitude are thus more
significant than the absolute location and attitude. There-
fore, the error in the trajectory estimation was calculated
using the estimated trajectory, which was rotated and shifted
to fit the true trajectory as closely as possible. The translation
and rotation for the trajectory fitting were determined using
the nonlinear least-squares method [32].

Figure 3 shows the estimated x-directional velocity and
yaw for Flight Test 2. The results indicated that the estimated
velocity and attitude allowed dead reckoning for a short time;
however, the trajectory deviation increased with time and
travel distance.
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FIGURE 3. Estimated x-directional velocity and yaw in Flight Test 2.

TABLE 1. Root mean square distance error of the estimated locations (m).

A comparison of the errors in location estimation is pre-
sented in Table 1. The position error is the distance between
the estimated and reference locations. The location detected
by the real-time kinematic GNSS was regarded as the refer-
ence location for the error calculation. For both tests, the Lie-
group-based approach estimated the trajectory more accu-
rately than the previous approaches. The quadrotor flew for
a longer distance and time at varying altitudes in Flight
Test 2 compared with Flight Test 1. Therefore, the root-mean-
square error (RMSE) for Flight Test 2 was larger than that
for Flight Test 1. Moreover, the RMSE difference for the
approaches increased as the travel distance increased and
altitude changed.

A comparison of the errors in the estimated velocity calcu-
lated in the vehicle coordinate frame is provided in Table 2,
and the corresponding comparison for the estimated attitude
is provided in Table 3. The attitude estimated using the Esti-
mation and Control Library EKF (ECL EKF) was used as a
reference for the error calculation because it is regarded as the
closest estimation of the true attitude, as the ECL EKF uses
all sensor measurements including GNSS information [33].

The velocity and attitude errors are graphically com-
pared in Figures 4 and 5 based on the data presented in
Tables 2 and 3. The proposed method resulted in a smaller

TABLE 2. Error analysis of the velocity estimated in the vehicle
coordinate frame (m/s).

TABLE 3. Error analysis of the estimated attitude (degrees).

error than the previous methods [27] for most of the esti-
mation components in Flight Test 2. The smaller mean
error, standard deviation, and RMSE values indicate that the
proposed method performed better than previous methods.
In most cases, the mean error of the Lie group approach is
less than or comparable to that of previous methods.

Magnetic field measurements reduced the yaw estimation
drift, as shown in Figure 5. In both experiments, the drift in the
yaw estimation is larger than that in the other angles. A com-
parison of Figure 5(a) and 5(b) shows that as the flight range
increases, the drift in yaw estimation increases, whereas the
drift in roll and pitch does not. In particular, in the longer
flight range experiment (Flight Test 2), the Lie group-based
method generates the smallest drift in yaw estimation. RMSE
and mean of the yaw estimation error for the Lie group
approach is the smallest among the three approaches. Because
geomagnetic field measurements are vulnerable to external
and internal disturbances, the drift in yaw estimation is still
larger than that of roll and pitch, even when geomagnetic field
measurements are used.

Figure 6 shows theKalman gains of Flight Test 2, regarding
the correction of the location and velocity estimations with
respect to the measurement innovation on the angular rate
around the x axis. In all cases, the Kalman gains of the
Lie group approach converged faster and fluctuated less than
those of the previous approaches.

Figure 7 shows the measurement innovations for accel-
eration and height of Flight Test 2. Similar to the case of
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FIGURE 4. Comparison of errors in velocity estimation.

Kalman gains, the measurement innovations of the Lie group
approach fluctuated less, and were smaller than those of the
previous approaches.

The computation time of the Lie group-based method was
compared with that of the previous approaches. Because
Lie and MAN use EKF, they use the same computational
procedure. Compared to MAN, the Lie group-based method
requires additional computation: computation of the expo-
nential of the Lie algebra element for state prediction and
state correction. The computation times of these methods are
compared in Table 4. All methods were tested using MAT-
LAB R2021a running on Windows 10 Education on a com-
puter with an Intel(R) Core(TM) i7-10700F CPU and 16 GB

FIGURE 5. Comparison of errors in attitude estimation.

RAM running at 2.90GHz. For both datasets, the algorithms
were executed 100 times. The computation times for 100 iter-
ations were averaged. Table 4 shows that the Lie group-based
method required 11–14% more time than MAN. Although
the Lie group-based method requires more computation time
than MAN, it still exhibits a computation time that is feasible
for real-time applications.

The computational complexity of the UKF approach is the
highest among the three methods. Compared to the other
methods, the UKF approach requires additional computa-
tions. Cholesky decomposition of the error covariance matrix
and calculation of sigma points are required. In addition,
a time update is required for each sigma point. The calculation
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FIGURE 6. Comparison of Kalman gains in the Flight Test 2.

of covariance matrices of states and measurements involves
the weighted sum of the variables of the sigma points.
The cross covariance between states and measurements also
requires a weighted sum. Calculation of the time update,

FIGURE 7. Comparison of measurement innovation in Flight Test 2.

TABLE 4. Comparison of computation time.

covariance, and cross covariance involves calculation of the
sum and difference between sigma points. To obtain the sum
and difference, exponential and logarithm calculations with
respect to the unit quaternion are required. Accordingly, the
computation time for UKF was over 30 times longer than that
of the others, as shown in Table 4.

No one method outperforms the others in all aspects and
for all experiments. The Lie group-based method proposed
in this paper exhibited the best performance in the longer
travel distance experiment, whereas UKF performed best
in the experiment with a shorter travel distance. The stan-
dard deviation of the UKF approach was small. However,
in the longer travel distance experiment, the Lie group-based
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method outperformed the other two methods in all aspects.
The advantage of the Lie group approach over the MAN
and UKF approaches is evident for experiments in which the
quadrotor flies longer.

The above analysis of the estimation error and the internal
parameters suggests that the improvement by the Lie group
approach over the previous approaches is similar to that by
the invariant KF over conventional KFs, as demonstrated
in [10], [11], and [34]. The estimation results were better
or comparable, and the properties of the internal parameters
improved significantly.

V. CONCLUSION
In this study, a Lie-group-based navigation approach for a
quadrotor was proposed. Specifically, Lie group theory was
utilized for the implementation of the KF, and a dynamic
model was incorporated into the process and measure-
ment models using Lie group theory. Attitude and rota-
tion propagation were evaluated and corrected using Lie
algebra and an exponential operation. Moreover, the error
covariance of the attitude and rotation was properly repre-
sented. Thus, the proposed method improved the estimation
results and properties of the internal parameters, namely,
the Kalman gain and measurement innovation. The improve-
ments gained by the Lie group approach were experimentally
validated.

In future work, we intend to apply the Lie-group-based
DMAN to underwater vehicle navigation, where hydrody-
namic effects such as added mass and damping critically
influence the motion of the vehicle. The application of
DMAN to underwater vehicles is of practical importance
because these vehicles suffer from frequent lack, delay, and
distortion of ultrasonic sensor measurements, on which they
depend for navigation. Accordingly, DMAN can aid navi-
gation in the case of a lack or failure of ultrasonic sensor
measurements.

APPENDIX A
DERIVATION OF PARTIAL DERIVATIVES
A. PARTIAL DERIVATIVES OF VELOCITY
The velocity at time ti+1 can be obtained by discretizing (4)
as follows:

v(ti+1) = v(ti)+

00
g

1ti+1 + R(q(ti))ar (ti)1ti+1
+R(q(ti))

{
V (ti)RT (q(ti))v(ti)

}
1ti+1

= v+

00
g

1t + Rar1t + R {VRT v}1t.
(46)

Partial derivatives of
[
0 0 g

]T
1ti+1 and R(q(ti))ar (ti)1ti+1

with respect to v(ti) are zero. The partial derivative of

R(q(ti))
{
V (ti)RT (q(ti))v(ti)

}
1ti+1 with respect to v(ti) is

∂

∂v(ti)
R(q(ti))

{
V (ti)RT (q(ti))v(ti)

}
1ti+1

= R(q(ti))V (ti)RT (q(ti))1ti+1. (47)

Therefore, ∂v(ti+1)
∂v(ti)

is

∂v(ti+1)
∂v(ti)

= I3 + RVRT1t. (48)

In (46), the partial derivatives of v(ti) and
[
0 0 g

]T
1ti+1

with respect to q(ti) are zero. The partial derivative of
R(q(ti))ar (ti)1ti+1 with respect to q(ti) is

∂

∂q(ti)
R(q(ti))ar (ti)1ti+1

= lim
θ→0

1
θ
{R(q(ti)+ θ )ar (ti)− R(q(ti))ar (ti)}1t

= lim
θ→0

1
θ
{R(q(ti))Exp(θ)ar (ti)− R(q(ti))ar (ti)}1t

= lim
θ→0

1
θ

{
R(q(ti))(I + [θ ]×)ar (ti)− R(q(ti))ar (ti)

}
1t

= lim
θ→0

1
θ

{
R(q(ti)) [θ ]× ar (ti)

}
1t

= lim
θ→0

1
θ

{
−R(q(ti)) [ar (ti)]× θ

}
1t

= −R(q(ti)) [ar (ti)]×1ti+1. (49)

Removing 1ti+1 from R(q(ti))
{
V (ti)RT (q(ti))v(ti)

}
1ti+1

of (46), and differentiating it with respect to q(ti) yields

∂

∂q(ti)
R(q(ti))

{
V (ti)RT (q(ti))v(ti)

}
=

∂

∂q
R(q)

{
VRT (q) v

}
=

∂

∂q

{
R(q) VRT (q) v

}
= lim

θ→0

1
θ

{(
R(q+ θ )VRT (q+ θ )v

)
−

(
R(q)VRT (q) v

)}
= lim

θ→0

1
θ

{(
R(q)Exp(θ)V (R(q)Exp(θ))T v

)
−

(
R(q)VRT (q) v

)}
= lim

θ→0

1
θ

{(
R(q)(I + [θ ]×)V

(
R(q)(I + [θ ]×)

)T v)
−

(
R(q)VRT (q) v

)}
= lim

θ→0

1
θ

{(
R(q)(I + [θ ]×)V

(
(I + [θ]×)

TRT (q)
)
v
)

−

(
R(q)VRT (q) v

)}
= lim

θ→0

1
θ

{(
R(q)(I + [θ ]×)V

(
(IT + [θ ]T×)R

T (q)
)
v
)

−

(
R(q)VRT (q) v

)}
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= lim
θ→0

1
θ

{(
R(q)(I + [θ ]×)V

(
(I − [θ]×)R

T (q)
)
v
)

−

(
R(q)VRT (q) v

)}
= lim

θ→0

1
θ

{
R(q) [θ ]× VR

T (q) v

−R(q)V [θ ]× R
T (q) v− R(q) [θ]× V [θ]× R

T (q) v
}

= lim
θ→0

1
θ

{
−R(q)

[
VRT (q) v

]
×

θ

+R(q)V
[
RT (q) v

]
×

θ + R(q)
[
V [θ ]× R

T (q) v
]
×

θ

}
= −R(q)

[
VRT (q) v

]
×

+ R(q)V
[
RT (q) v

]
×

+ lim
θ→0

R(q)
[
V [θ]× R

T (q) v
]
×

= −R(q)
[
VRT (q) v

]
×

+ R(q)V
[
RT (q) v

]
×

+ lim
θ→0

R(q)
[
−V

[
RT (q) v

]
×

θ

]
×

= −R(q)
[
VRT (q) v

]
×

+ R(q)V
[
RT (q) v

]
×

+ 03. (50)

Combining (46), (49), and (50) yields ∂v(ti+1)
∂q(ti)

as follows:

∂v(ti+1)
∂q(ti)

= −R
{
[ar ]× +

[
VRT v

]
×

− V
[
RT v

]
×

}
1t.

(51)

B. PARTIAL DERIVATIVES OF ATTITUDE
q(ti) propagates during the time interval 1ti+1 to q(ti+1)
according to the following equation, which is derived from
(7) using Lie group theory:

q(ti+1) = q(ti)⊗ Exp(ω(ti)1ti+1)

= q(ti)⊗

 cos
(
‖ω(ti)‖

1ti+1
2

)
ω(ti)
‖ω(ti)‖

sin
(
‖ω(ti)‖

1ti+1
2

)
 . (52)

From (52), the partial derivatives of q(ti+1) with respect to
q(ti) and ω(ti) are obtained as follows [2], [20]:

∂q(ti+1)
∂q(ti)

= RT (ω1t), (53)

∂q(ti+1)
∂ω(ti)

=

(
I3 −

1− cos ‖r‖

‖r‖2
[r]×

+
‖r‖ − sin ‖r‖

‖r‖3
[r]2×

)
1t. (54)
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