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ABSTRACT Code obfuscation is a technique that makes it difficult for code analyzers to understand a
program by transforming its structures or operations while maintaining its original functionality. Android app
developers often employ obfuscation techniques to protect business logic and core algorithm inside their app
against reverse engineering attacks. On the other hand, malicious app writers also use obfuscation techniques
to avoid being detected by anti-malware software. If malware analysts can mitigate the code obfuscation
applied to malicious apps, they can analyze and detect the malicious apps more efficiently. This paper
proposes a new tool, Deoptfuscator, to detect obfuscated an Android app and to restore the original source
codes. Deoptfuscator detects an app control-flow obfuscated by DexGuard and tries to restore the original
control-flows. Deoptfuscator deobfuscates in two steps: it determines whether an control-flow obfuscation
technique is applied and then deobfuscates the obfuscated codes. Through experiments, we analyze how
similar a deobfuscated app is to the original one and show that the obfuscated app can be effectively restored
to the one similar to the original. We also show that the deobfuscated apps run normally.

INDEX TERMS Android app, malicious app, obfuscation, deobfuscation, control-flow obfuscation.

I. INTRODUCTION
The Android Operating System occupies 71.45% of the
smartphone operating system (OS) market as of May 2022,
and the number of apps that appeared in Google Play Store,
the official Google app market, records 2.59 million as of
March 2022 [1], [2]. According to the increased availability
of smartphones, variousmobile services such as SNS, stream-
ing, banking, shopping, or healthcare comprise a mobile
ecosystem, and people frequently use these services.

This situation furnishes that mobile apps in those services
increasingly handle users’ credit cards or private/sensitive
information. Simultaneously, the number of malicious apps
that hack/steal such sensitive information are rising continu-
ously [3]–[8]. For example, Tang et al. [9] (1) described an
attack that could steal sensitive information by connecting
URL links in smartphones where a malicious instant app
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was installed, and (2) proposed a tool called MIAFinder
which detected vulnerabilities that could be exploited by the
malicious instant app. MIAFinder collected 400,000 apps,
200,000 from both the Google Play Store and Tencent Myapp
respectively, and showed that 228,207 among the 400,000
apps were vulnerable to attacks by the malicious instant app.

Because Android apps can be decompiled easily, app
developers use obfuscation techniques to protect the app’s
business logic, internal structure, and code that handles sensi-
tive data. Code obfuscation refers to a technique that increases
the cost of program analysis such as reverse engineering by
transforming the control-flows and data structures or identi-
fiers of the program while preserving its original semantics
and behaviors.

On the other hand, malware authors also apply obfusca-
tion to avoid malware detection [10]–[17]. Aonzo et al. [17]
showed that obfuscated malicious apps could evade anti-
malware systems. They made their own tool to obfus-
cate Android apps, obfuscated Android malicious apps, and
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uploaded the apps to VirulTotal system [18] to check if the
apps could be accurately classified as malicious. The test
results showed that the performance of detecting obfuscated
malicious apps was significantly lower than that of detecting
the original malicious apps to which obfuscation was not
applied. Therefore, in order to effectively detect an obfus-
cated malicious app, it is necessary to deobfuscate the obfus-
cated malicious app.

There are several forms of obfuscation techniques for
Android apps: identifier renaming, control-flow obfuscation,
string encryption, class encryption, API hiding (Java reflec-
tion), etc. We focus on control-flow obfuscation and its deob-
fuscation in this paper.

We implement a new Android deobfuscation tool, Deopt-
fuscator, to determinewhether the control-flow of anAndroid
app is obfuscated by DexGuard, and then to deobfuscate the
control-flow obfuscated apps. We also evaluate the perfor-
mance of Deoptfuscator with respect to ReDex.
Among various issues related to Android deobfuscation

techniques, we try to answer the following three research
questions.

RQ1 How to detect and determine whether the
control-flow of a given Android app is obfuscated or
not?
RQ2 How to effectively deobfuscate a control-flow
obfuscated app?
RQ3 How can we confirm that our deobfuscation
approach was really successful?

In summary, the main contributions of this paper are the
following:
• Deoptfuscator is the first tool for Android apps to
detect and deobfuscate high-level control-flow obfusca-
tion patterns of DexGuard.

• The effectiveness of Deobfuscator is demonstrated by
checking whether the deobfuscated app also runs the
same as the original app which the control-flow obfus-
cation was not applied

• The source code of Deopfuscator has been published in
a public repository on GitHub. Thus, it can be freely
accessed and used by anyone [19], [20].

Our paper is organized as follows: Section 2 describes the
characteristics and patterns of control-flow obfuscation and
ART(Android Runtime) in Android. Section 3 explains the
design and implementation ofDeoptfuscator, and its deobfus-
cation strategy. Section 4 presents the experimental method
to evaluate Deopfuscator, and section 5 evaluates its perfor-
mance. Section 6 describes the related studies and discusses
the limitation of our study. Finally, section 7 concludes this
work.

II. BACKGROUND
Obfuscation is a technique that increases the time and
cost required for program analysis while keeping the pro-
gram’s functionality. Suppose an original program P is trans-
formed (obfuscated) to P′ using a transformation technique

T (P
T
→ P′). Then, the functionality of P and P′ are the

same, but the analysis complexity of P′ is much higher
than P [10]–[17], [21]–[24]. Popular obfuscation tools for
Android apps include R8 [25], a compiler suite that incor-
porates ProGuard’s [26] obfuscation functions, DashO [27],
DexProtector [28], and DexGuard [29].

Obfuscation techniques can be classified into four types as
follows.
• Identifier renaming changes the name of the identifiers
such as package, class, method and variable to meaning-
less symbols

• String encryption encrypts and stores string literals, and
decrypts them at runtime, restoring the original strings.

• Control-flow obfuscation changes the control-flow of
a program by inserting dummy codes or excep-
tion handling codes (try-catch phrase), modifying
branch/condition statements, etc.

• Reflection obfuscation hides the name of invoked meth-
ods using Java reflection (a.k.a. API hiding).

A. CONTROL-FLOW OBFUSCATION
Control-flow obfuscation is a technique that hinders efficient
program analysis by inserting dummy codes and exception
handling codes, or modifying branch/condition statements,
consequently complicating the order of code execution or
function invocation. However, control-flow obfuscated codes
can be simplified or removed by modern compilers. Recent
compilers, such as R8 compiler, are equipped with excel-
lent optimization techniques that can remove unnecessary
codes [15].

Opaque predicates and opaque variables are useful in effec-
tive control-flow obfuscation. An opaque predicate is a con-
ditional expression that is composed of complex operations,
so that it is difficult to tell whether the result of the expression
is true or false. The result of opaque predicate becomes known
at runtime. An opaque variable is a variable used in opaque
predicates [21]–[24], [30]–[35].

The usage pattern of the opaque variable and opaque pred-
icate can divide the code obfuscation into three levels. The
higher the level, the harder it is for the optimization tool to
remove the obfuscated code.

1) LEVEL 1
Level 1 control-flow obfuscation has the following
form.
• Opaque variables are declared as local variables.
• Opaque predicates test whether a opaque variable
is identical to a constant.

The optimizing compiler can remove Level 1 control-flow
obfuscation because it is easy for the compiler to determine
if a variable is a local variable and if the variable is compared
to a constant.

2) LEVEL 2
Level 2 control-flow obfuscation has the following
form.
• Opaque variables are declared as local variables.
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• Opaque predicates consist of mathematical oper-
ations (e.g. positive/negative decision, odd/even
decision, . . .)

Fig. 1 shows an example of level 2 control-flow obfus-
cation. It differs from level 1 control-flow obfuscation in
that the two opaque predicates employ modulo operations
(‘b % 128 == 1’ and ‘a % 64 == 0’) instead of just
comparing opaque variables with a constant. Again, since the
opaque predicates at line 8 and 9 are always false, a com-
piler produces bytecodes that do nothing and just return if
it optimizes the codes perfectly. However, when the source
code (Fig. 1(a)) is compiled by R8 compiler with the default
options, the produced bytecodes contain the logics for the
opaque predicates (Fig. 1(b)). ReDex, an Android app opti-
mization tool, can remove the local opaque variables and the
simple opaque predicates. Fig. 1(c) is the bytecodes produced
by ReDex. The resulting bytecodes do nothing and return
immediately.

FIGURE 1. Example of level 2 control-flow obfuscation. The opaque
variables and opaque predicates can be removed by ReDex.

3) LEVEL 3 (Advanced Control-flow Obfuscation)
Level 3 control-flow obfuscation has the following
form.
• Opaque variables are declared as global variables.
• Opaque predicates consist of mathematical oper-
ations (e.g. positive/negative decision, odd/even
decision, . . . )

Level 3 control-flow obfuscation is also called as advanced
control-flow obfuscation. Even optimizers of recent compil-
ers cannot easily optimize level 3 obfuscation. Fig. 2 shows
an example of level 3 control-flow obfuscation. In Fig. 2(a),

FIGURE 2. Example of level 3 control-flow obfuscation. The opaque
variables and opaque predicates cannot be removed by R8 and ReDex.

the opaque variables (‘g_a’ and ‘g_b’) are global within
class test. Although the opaque predicates at line 8 and 9
are always false, neither R8 compiler nor ReDex removes the
opaque variables and the opaque predicates. Fig. 2(b) and
Fig. 2(c) show the optimized Dalvik bytecodes optimized by
R8 compiler and ReDex, repectively. In this example, the two
Dalvik bytecodes produced by R8 compiler and ReDex are
exactly the same.
ReDex does not remove global opaque variables. Since a

global variable may be used in several methods,ReDex regard
global variables as non-opaque variables. To deobfuscate
level 3 control-flow obfuscated codes, we should remove
global opaque variables. If a global variable is used only
in a method and opaque predicates, the global variable and
predicates can safely be removed.

B. ANDROID RUNTIME (ART)
Android’s Dalvik Virtua Machine (DVM) was replaced with
Android runtime (ART) from Android 5.0 and ART adopts
Ahead-of-Time (AOT) compilation. AOT compilation stat-
ically converts all codes to machine codes at installation
time, while Just-in-Time (JIT) compilation analyzes Dalvik
bytecodes and translates hot spots into optimized native codes
during runtime [36]–[39]. Modern ART includes a JIT com-
piler with code profiling to improve runtime performance of
apps [40]–[42]. The advantages and disadvantages of DVM
and ART are described in Table 1.
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TABLE 1. The comparison of DVM and AOT compiler.

ART’s dex2oat is an on-device compiler suite with several
compilation backends, code generators for hardware plat-
forms, etc. It is responsible for the validation of apps and their
compilation to native code [32]. When a .dex file in an APK
is given as input to the dex2oat, it checks the validity of the
input file (.dex). Then, the code in the .dex is converted into
an .oat file through Hydrogen Intermediate Representation
(HIR). The .oat file is the AOT binary for the .dex file.
The HIR, also called optimizing’s intermediate representation
(IR), is a control-flow graph (CFG) on the method level
which is denoted as HGraph. The HGraph is used as the
single IR of the app code. When the HGraph is created,
the dex instructions of the app’s bytecode are examined one
after another, and the corresponding HInstructions are
generated and interconnected with the current basic block
and the graph (you can find control-flow graph examples in
APPENDIX). It is transformed into single static assignment
form(SSA) for complex optimizations.

Typical optimizations using HGraph are as
follows [43]–[47]:
• Class Hierarchy Analysis (CHA) guard elimination
• Bounds check elimination
• Global Value Numbering (GVN)
• Dead Code Elimination (DCE)
• Constant folding
• Loop optimization

C. DexGuard’s CONTROL-FLOW OBFUSCATION
The Android tool DexGuard provides obfuscation equivalent
to Advanced control-flow obfuscation (level 3). This section
describes the advanced control-flow obfuscation (level 3)
used by DexGuard. Fig. 3 shows the transformation of
Java source code when control-flow obfuscation is applied
using DexGuard. The original code (Fig. 3(a)) is a sim-
ple onCreate() method without any operation instruc-
tions or branch/conditional statements, but the obfuscated
code (Fig. 3(b) contains several operation instructions and
branch/conditional statements are inserted.

A pair of variables f65 and f66, declared as private
static int in the class in Fig. 3(b), are opaque variables.
The obfuscated onCreate() method adds a literal to f66
and stores the result in the local variable i. The result of
modulo operation with another literal on the value of i is
stored in f65. The variable i is used as part of the opaque
predicate in the conditional expression of the if statement.
Similar codes exist before the next switch-case state-
ment. Through code analysis such as this, we can find that

FIGURE 3. An original method before obfuscation (a) and the method
from which the original method was obfuscated by DexGuard.

f66 affects f65 through simple arithmetic operations and
local variable (i). This shows that f65 and f66 are global
opaque variables and used in pairs. Also, it can be con-
firmed that the local variable i is an important variable
that determines the true/false of the opaque predicate in
the conditional expression of branch/conditional statements
(if, switch-case).

D. ReDex OPTIMIZER
ReDex is an Android bytecode optimizer developed by
Facebook Engineering team, which was released as open
source [12], [15], [48], [49]. It takes a dex file as input
and outputs the dex file with optimized bytecode. ReDex
uses several modules to optimize dex files. Of them, we are
interested in the followings:
• Inlining
• Dead Code Elimination (DCE)
• Peephole
Inlining is the process of replacing a function call at the

point of call with the body of the function being called,
thus reduces the overhead of a function call. DCE walks
all branches and method invocations from the entry points
of an app and removes any code that is unreachable. Peep-
hole optimization involves replacing a small code patterns
with an equivalent pattern that performs better. It performs
a string search of the code for known inefficient sequences
and replaces them with more efficient code. It can remove
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redundant load/store instructions and perform algebraic sim-
plification, etc. Each module can be processed independently
of each other.

Based on analyzing the characteristics of the optimization
modules, we find out that ReDex can effectively remove the
control-flow obfuscation of Level 2 defined in Section II-A,
while it cannot handle the advanced control-flow obfuscation
(Level 3) directly.

III. DESIGN OF DEOPTFUSCATOR
We propose Deoptfuscator, a tool that can deobfuscate
Android apps. It can deobfuscate advanced control-flow
obfuscation. It can be used alone in a user’s PC or as a part
of ART compilation process. Deoptfuscator consists of three
modules:
• Opaque identification
• Opaque location
• Opaque clinit
The Opaque identificationmodule detects global

opaque variables. The Opaque locationmodule records
the location of opaque variables detected by the Opaque
identification module. The Opaque clinit mod-
ule changes the property of opaque variables appropriately.

A. OVERVIEW OF DEOPTFUSCATOR
Fig. 4 depicts the deobfuscation steps of Deoptfuscator.
Deoptfuscator proceeds in the following order.

1) Unpackaging Given a control-flow obfuscated APK,
it unpackages the input APK using APKTool.

2) Detecting opaque variables Using the Opaque identi-
fication module, it identifies the opaque variables.

3) Profiling detected opaque variables Using the
Opaque location module, the locations of opaque vari-
ables detected in step 2 are recorded in json format.

4) Lowering obfuscation levelChange the global opaque
variables recoreded in step 3 to local opaque variables,
which means that the obfuscation level is lowered from
level 3 to level 2.

5) Optimizing DEX Using ReDex, remove local opaque
variables and opaque predicates.

6) Repackaging Repackage the DEX file. The resulting
APK is control-flow deobfuscated.

B. OPAQUE IDENTIFICATION
This section describes the process of the Opaque
identificationmodule ofDeoptfuscator in detail using
an example. This module answers research question 1 in
Sec.I. Fig. 5 shows a part of method onCreate() which
is control-flow obfuscated using DexGuard (Fig. 3(b)).
In Fig. 5, f65 and f66 are global opaque variables, and i is
a local variable used as a bridge between f66 and f65 and
between opaque variables and opaque predicates. Variable i
is also used in a conditional expression (an opaque predicate).
Using a local variable as a bridge between global opaque
variables and opaque predicates increases the program

complexity and prevents compilers or optimizers from
removing control-flow obfuscation.

Fig. 6 shows the HIR for the code snippets in Fig. 5.
Deoptfuscator utilizes this HIR to analyze the variable usage
pattern, remove global opaque variables effectively and sim-
plify the control-flow. In Fig. 6, ‘pred’ and ‘succ’ indicate
the basic block numbers before and after the current basic
block. BasicBlock 0 is the first basic block of method
onCreate(), so there is no previous block and the subse-
quent block number is 1. BasicBlock 1 indicates that the
previous block number is 0, and can branch to block 9 or 10.
The label of each instruction denotes the return data type of
the instruction and the execution order in a method. Alphabet
‘j’, ‘l’, ‘i’, ‘v’, and ‘z’ stand for ‘Java long’, ‘Java refer-
ence’, ‘Java int’, ‘Java void’, and ‘Java boolean’, respectively.
For example, ‘i9: StaticFieldGet [l8]’ means that
this instruction gets a Java int variable from the field area of
the class referred by l8.

Fig. 7 shows the HIR instructions converted from obfus-
cated Java source codes in the example. We explain each Java
statement (S1 ∼ S4) and its corresponding HIR instructions
in a DexGuard’s obfuscation pattern.

S1 Get a reference to the class (l8) that contains the
current method (j7), and get the class variable
f66 of the class (i9).

S2 Add f66 obtained from i9 and constant
125 (i10), and store the result in local
variable i (i11).

S3 Perform modulo operation by dividing i11 (i)
by constant 128 (i12), and store the result
(i13) to the class variablef65(v15) using class
reference (18).

S4 Perform modulo operation by dividing i (i11)
by constant 2 (i16), and the result (i17) is
compared with constant 0 (i18) by NotEqual
operation (z19). The result of the NotEqual
operation is used as the conditional expression of
If operation (v20).

Deoptfuscator analyzes the variable usage pattern based on
HIR to detect global opaque variables. Fig. 8 shows the inter-
nal representation for the HIR given in Fig. 6. The analysis is
performed as follows.

1) Deoptfuscator traverses all basic blocks from the
BasicBlock 1 of the method. BasicBlock 0 is
the initialization part of the method and BasicBlock
1 is where the actual instruction starts. Deoptfusca-
tor checks whether the last instruction of basic block
is If. Due to the nature of the basic block, branch-
related instructions (if, goto, throw, return, etc.)
are located in the last of each basic block. If the last
instruction of the block is If,Deoptfuscatormarks the
instruction (If(v20)) and records the location.

2) Deoptfuscator traces the operands from the marked
If, finds the StaticFieldGet through backward
tracing and temporarily records the location as well.
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FIGURE 4. Deobfuscation process of Deoptfuscator.

FIGURE 5. The code snippets from Fig. 5(b).

This is because a global variable can be an opaque
variable only when it affects the decision of the opaque
predicate of If. Through the trace of If(v20) →
NotEqual(z19) → Rem(i17) → Add(i11)
→ StaticFieldGet(i9), it can be seen that the
global variable obtained by StaticFieldGet is
used in a series of operations (such as Add and Rem)
and affects the decision of the opaque predicate of If.

3) It is necessary to check whether i9 is a class vari-
able in the field area of the class to which the current
method belongs. This is because DexGuard’s control-
flow obfuscation does not use other classes’ opaque
variables, but defines global opaque variables for each
class and uses them only within a class. This step
can be done by tracing StaticFieldGet(i9)→
LoadClass(l8)→CurrentMethod(j7). Now
we have a global variable that determines a opaque
predicate and i9 is a candidate for a opaque variable.

4) This step finds the buddy of global opaque variable i9.
Through forward tracing StaticFieldGet(i9)
→Add(i11)→Rem(i13)→StaticFieldSet
(v15), we discover that the result i13 of the oper-
ations is stored to a global variable via instruction
StaticFieldSet(v15). Deoptfuscator records

FIGURE 6. HIR for the code snippets in Fig. 7.

the locations of v15 and i13. Thereby, i9 and i13
become a pair of global opaque variable candidates.

5) This step confirms that the global opaque variable can-
didates are actually the opaque variables, i.e., opaque
variables are not used anywhere except the obfus-
cation pattern. This step is necessary because fatal
errors might occur if a developer unfortunately writes
codes similar to obfuscation patterns and global vari-
ables are removed carelessly. Through forward tracing,
we can be convinced that the values of i9, i11, and
i13 are not used in any other part of the current
method.
Fig. 9 displays the constants (green), global variables
(red), and a local variable (blue) of the Java source,
as well as their location in the HIR. We can see that the
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FIGURE 7. Java source code to HIR conversion.

FIGURE 8. Internal representation of HIR.

global variables and the local variable are used only in
the obfuscation patterns. We can confirm that i9 and
i13 are global opaque variables. The information for
the confirmed global opaque variables is stored in a
temporary file for each method.

The above process is repeated for each method in a class.
Note that opaque variables can be used in many methods in a
class.

FIGURE 9. Location of opaque variables in HIR.

C. OPAQUE LOCATION
The Opaque location module collects the temporary
files containing the information for the confirmed opaque
variables and records the information in json format. Specifi-
cally, the information includes class name, method name, the
field indexes of global opaque variables and the locations of
instruction (sget and sput) that accesses global opaque
variables. The instruction locations are the distance from the
method’s offset in DEX file and can be calculated using the
location of StaticFieldGet and StaticFieldSet in
the HIR.

D. OPAQUE CLINIT
The Opaque clinit module removes the detected
advanced control-flow obfuscation by lowering the obfus-
cation level. To decide whether to remove the detected
control-flow obfuscation from a class, we measure the ratio
of bytecodes matching the obfuscation pattern to the entire
bytecodes of a class. We call this ratio Obfuscated Bytecode
Ratio (OBR) and is defined as follows:

OBR =

∑
m Nm∑
m Lm

(1)

where Nm is the length of bytecodes of control-flow obfus-
cation patterns detected in method m and Lm is the length of
bytecodes of method m.
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The series of instructions from l8 to v20 in Fig. 8 is a
control-flow obfuscation pattern in HIR. Its corresponding
pattern in bytecodes is a series of instructions from ‘sget’
to ‘if-nez’ in Fig. 10. For example, consider a class Cwith
two methods m1 and m2. Assume Deoptfuscator detected
one obfuscation pattern in m1 and two in m2, and that the
obfuscation patterns are the same as Fig. 10 (from ‘sget’
to ‘if-nez’). Since the length of a bytecode instruction is
4 bytes, the length of an obfuscation pattern is 24 bytes. Thus,
the total length of the obfuscation patterns detected in class
C is Nm1 + Nm2 = 24+ 2× 24 = 72 bytes.

FIGURE 10. Android bytecode representation of the detected obfuscation
pattern.

Lm is the length of bytecodes of method m and can be
obtained from DEX file. Among the items of DEX file, there
are insns and insns_size fields in the code item area.
insns is an array containing the bytecode of a method,
and insns_size indicates the length of insns. In other
words, insns_size is the total length of the bytecode
of a method. Let insns_size of method m1 and m2 of
class C be 100 and 200, respectively. Then Lm1 + Lm2 =
100+ 200 = 300.

A high OBR implies that obfuscation patterns are found in
a class many times. Such a class is likely to be control-flow
obfuscated since obfuscators tend to insert obfuscation pat-
terns into a class many times. If the OBR of a class is
higher than a threshold θ , Deoptfuscator regards the class
as obfuscated and deobfuscates it. Otherwise, the detected
obfuscation pattern, if any, is regarded as false positive.

Using the threshold, we can control how aggressively we
deobfuscate classes. As the threshold decreases, the num-
ber of classes to which deobfuscation is applied increases
(aggressive deobfuscation). As the threshold increases,
the number of classes to which deobfuscation is applied
decreases (passive deobfuscation). If the threshold is 0,
Deoptfuscator deobfuscates all classes. For example, assum-
ing θ = 0.15, the OBR of class C above is calculated as
follows and Deoptfuscator deobfuscates C.

OBR =

∑
m Nm∑
m Lm

=
24+ 48
100+ 200

= 0.24 > θ (= 0.15)

For a class with OBR > θ , Deoptfuscator lowers its
control-flow obfuscation level from 3 to 2 by converting
global opaque variables to local variables. These global
variables are defined in method clinit. The Opaque

clinit changes the instruction to read a global variable
(sget) and the instruction to write a value to the global vari-
able (‘sput’) to the instruction to assign or get a value of a
local variable (‘const/16’). Then, the Opaque clinit
module removes the codes that declare the global opaque
variable pairs. Since there is no place where global opaque
variables are used in the class through the previous processes,
removing them does not cause errors.

E. OPTIMIZING DEX
Deoptfuscator optimizes the modified bytecodes (DEX file)
utilizing ReDex. As explained in Section II-A, ReDex can
remove level 2 control-flow obfuscation. Fig. 11 shows the
Java code decompiled from the deobfuscated version of
onCreate() of Fig. 3(b). You can see that the code of
the method has been restored to the same as the origi-
nal (Fig. 3(a)).

FIGURE 11. The deobfuscated method by Deoptfuscator, which is
in Fig. 3(b).

In summary, Opaque clinit module lowers level 3
control-flow obfuscation to level 2 and ReDex eliminates
level 2 obfuscation. This answers research question 2.

IV. EXPERIMENTAL SETUP
A. DATASET FOR EVALUATION
We used the Android apps that F-Droid project col-
lected in our experiment. We randomly selected 102 apps
among 1426 F-Droid collection (we call these set of apps
original in this paper). We generated two more apps for each
selected app using DexGuard. The first app is generated
by performing moderate level obfuscation and optimization,
and we call this app a moderately obfuscated app. A high
degree of obfuscation and optimization is performed to gen-
erate the second app, which is called a highly obfuscated
app. After running the original, moderately obfuscated, and
highly obfuscated apps on Android Virtual Device (AVD)
and physical smartphones (Pixel 2 XL with Android
Oreo 9.0), we selected 63 final apps that all three versions
were successful.

B. EXPERIMENTAL METHOD
We deobfuscated 63 highly obfuscated apps and 63 moder-
ately obfuscated ones using our proposed To determine how
well the Deoptfuscator perform, first, we checked whether
the deobfuscated app is installed on the AVD and physical
smartphone and works successfully. We manually checked
whether the app was installed successfully, whether it ran,
and whether configuration settings were possible and so on.
For example, we installed a calculator app, calculated some
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expressions, and changed the settings to a scientific mode or
a unit conversion mode.

Next, the deobfuscated apps were compared with ones
optimized using the ReDex optimization tool. The optimizer
does not aim to deobfuscate apps, but it can be considered
as minimal deobfuscation in that it eliminates meaningless or
unnecessary comparisons and loops. We generated 63 opti-
mized apps for highly obfuscated apps and moderately obfus-
cated ones, respectively.

The Deoptfuscator’s performance depends on the thresh-
old of Eq. 1. The threshold is obtained by experience. Based
on the threshold of 0.15, the values of 0.225, 0.075, and
0.015, which are 1.5 times, 0.5 times, and 0.1 times 0.15,
were selected. A total of 504 apps were generated, two sets
of 252 (63 × 4) apps for highly and moderately obfuscated
apps. Therefore, the list and the number of apps used in our
experiment are as follows (Fig. 12).
• original apps (63)
• highly obfuscated apps (63)
• moderately obfuscated apps (63)
• ReDex-optimized versions of highly obfuscated apps (63)
• ReDex-optimized versions of moderately obfuscated
apps (63)

• Deobfuscated versions of highly obfuscated apps
according to the thresholds (252)

• Deobfuscated versions of moderately obfuscated apps
according to the thresholds (252)

FIGURE 12. All apps used in the experiments.

We compared the deobfuscation performance based on the
following criteria.
• Size of dex file
• The number of methods
• The number of basic blocks
• The number of edges in Control-flow Graph (CFG)
• The number of basic blocks per method in CFG
• The number of edges per method in CFG
• Size of insns
Using the Androsim module of Androguard [50], we mea-

sured the similarity between the deobfuscated app and the
original app. Androsim expresses the bytecode extracted from

the Android app as a string and compares the similarity
between the two apps on a method-by-method basis.

By comparing the code optimized with ReDex, which can
be considered as a minimal deobfuscation tool, and mea-
suring the similarity to the original app, it is possible to
judge how successful Deoptfuscator is. This will answer the
research question 3.

V. PERFORMANCE EVALUATION
To measure the deobfuscation ability of the proposed tool,
we analyzed the characteristics of the apps according to the
criteria mentioned above. The numerical value presented is a
normalized value based on the value of the original app.

A. HIGHLY OBFUSCATED APPS
Fig. 13 shows the results of measurements for highly obfus-
cated apps. In the legend of the figure and table, ‘original’ is
the original apps, ‘DexGuard’ is the obfuscated apps, ‘ReDex’
is the apps optimized by ReDex. ’θ=n’ represents the apps
deobfuscated by setting the threshold to n.

Looking at the number of methods in the highly obfuscated
app, we can see that it has decreased by about 30% com-
pared to the original app. In contrast, the number of basic
blocks and the number of CFG edges increase significantly
by 8.23 times and 12.8 times, respectively. Naturally, it can
be seen that the number of basic blocks and edges for each
method also increases 11.5 times and 17.8 times, respectively,
and the value of insns, which represents the number of byte-
code instructions, also increases more than 4 times. Despite
the significant increase in the number of basic blocks and
instructions, related to executable code, the reason why the
size of the dex file has increased by about 43% is due to
optimizations such as identifier renaming and unnecessary
method removal.

Let’s see the result of optimizing the obfuscated app with
ReDex. First, if you look at the change in the number of meth-
ods, you can see that there is little difference because Dex-
Guard removes unused methods along with obfuscation. The
number of basic blocks and CFG edges is about 1.57 times
and 3.6 times that of the original app, which correspond
to about 19% and 28% of the highly obfuscated app. The
number of basic blocks and edges per method shows a similar
trend. It can be confirmed that the length of the bytecode is
also about 50% of the obfuscated one.

When deobfuscating with Deoptfuscator, the larger the
threshold, the fewer classes to which deobfuscation is
applied, and the smaller the threshold, the more it increases.
When the number of classes to which deobfuscation is
applied is small, most classes are only optimized by ReDex,
so the results of deobfuscation and optimization show a simi-
lar result. As an example, you can find the result of deobfusca-
tion with θ=0.225 is almost similar to that of optimizing with
ReDex. When the other three thresholds were set, the number
of basic blocks was 1.15 times the original, and the number of
edges was about twice. The length of the bytecode was about
1.06 times, which was almost the same size as the original.
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FIGURE 13. Comparison of performance using Deoptfuscator and ReDex for highly obfuscated apps.

As shown in Fig. 13, if the threshold is greater than 0.15, the
effect of intrinsic deobfuscation almost disappears.

B. MODERATELY OBFUSCATED APPS
Fig. 14 shows the experimental results for an app that is
moderately obfuscated.Withmoderately obfuscated apps, the
results show the same tendency as highly obfuscated apps, but
the numbers are small because DexGuard applies the same
optimization but a subset of obfuscation.

The number of methods yielded almost the same result
as for highly obfuscated apps. In other words, it can be
confirmed once again that the decrease in the number of
methods is a result of DexGuard’s optimization. The number
of basic blocks and CFG edges increased to about 3.78 times
and 5.19 times of the original, respectively. The number of
basic blocks and CFG edges per method also increased. The
length of bytecode increased by about 69%, but the size of
the .dex file was reduced to about 76% due to optimization.
ReDex optimization reduces the number of basic blocks

and CFG edges to about 28% and 30% of the moderately
obfuscated app, which correspond to about 1.04 times and
1.58 times that of the original app. The number of basic
blocks and edges per method shows a similar trend. It can be
confirmed that the length of the bytecode is also about 57%
of the obfuscated one.

The deobfuscated app has 0.84 times the original basic
blocks, and 1.12 times the number of edges. The length of the
bytecode was about 1.06 times, which was almost the same
size as the original.

C. THE DEGREE OF SIMILARITY
How similar the deobfuscated app is to the original
app will best indicate the effectiveness of a deobfusca-
tion tool. Since control-flow obfuscation is performed on

a method-by-method basis, it is reasonable to measure sim-
ilarity on a method-by-method basis. We use Androguard’s
Androsimmodule to calculate the similarity between an orig-
inal app, one obfuscated with DexGuard, one optimized with
ReDex, and one deobfuscated with Deoptfuscator.

As described above, the number of methods in the obfus-
cated app is about 68% of that of the original one, so the
expected similarity to the original is about 68%. In addition,
the similarity will be lower because methods that are not
obfuscated can be modified by optimization.

Fig. 15 shows similarity for highly obfuscated apps. The
average similarity of highly obfuscated apps is about 19%,
and the average similarity of apps optimized with ReDex is
about 26%. It can be said that the similarity increased because
the optimization tool can remove some obfuscated codes.
Looking at the similarity with the app deobfuscated with
Deoptfuscator, the larger the threshold, the less the number
of methods to which deobfuscation is applied, which is closer
to the ReDex result.

Fig. 16, which compares the similarity of a moderately
obfuscated app, shows the same pattern although the figure
is slightly higher. A high number indicates that the strength
of the obfuscation is weaker than that of the highly obfuscated
case.

VI. RELATED WORK AND DISCUSSION
A. RELATED WORK
Piao et al. [37] first inspected both the weakness and the
obfuscation process of DexGuard. For an app obfuscated
by DexGuard, they could (1) rename classes of a DEX to
deobfuscate the identifier renaming technique by analyzing
the renaming dictionary of DexGuard and using dex2jar,
(2) restore the original strings of encrypted ones by analyzing
string encryption and decryption processes, (3) obtain the
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FIGURE 14. Comparison of performance using Deoptfuscator and ReDex for moderately obfuscated apps.

FIGURE 15. Comparison of similarity for highly obfuscated apps
(DexGuard_High).

disassembled smali code logic that is the same as origi-
nal source code logic by breaking class encryption feature,
and (4) remove the tamper detection routines or skip it and
remake a fake app. They mentioned that the hardest parts
of analyzing the weakness of DexGuard was to remove the
opaque predicates or understand the reordered opcodes gen-
erated by control-flow randomization. Finally, they presented
a server-based obfuscation technique to securely protect the
encrypted classes and the tamper detection routine.
Simplify [51] uses a virtual machine sandbox for executing

an app to understand its behavior. Simplify analyzes the exe-
cution graphs from the virtual machine sandbox and applies
optimizations such as constant propagation, dummy code
removal, reflection removal, etc. If these optimizations are

FIGURE 16. Comparison of similarity for moderately obfuscated apps
(DexGuard_Moderate).

applied together repeatedly, they will decrypt strings, remove
reflection, and simplify code that is easier for humans to
understand. Simplify does not rename identifiers.
We conducted some experiments with Simplify for

the obfuscated apps used in this paper. As an out-
put, Simplify produced only 9 deobfuscated apps of the
63 DexGuard_High apps and 16 deobfuscated apps of
the 63 DexGuard_Moderate apps, and an error occurred
during deobfuscation for the remaining apps. Since Dex-
Guard changed the identifier name to special characters,
it seems that the error occurred due to the failure of the
string processing. In the case of the 25 apps deobfuscated
by Simplify, the control-flow obfuscation of DexGuard could
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not be handled, and all of them did not run in our experi-
mental environment (AVD and real smartphone). Therefore,
we do not include these experiment results in the performance
evaluation.
DeGuard [52] and Anti-ProGuard [53] are deobfuscation

tools which targets identifier renaming obfuscation applied
by ProGuard. Bichsel et al. [52] developed DeGuard, a sta-
tistical deobfuscation tool for Android which could reverse
the layout obfuscation performed by ProGuard and rename
obfuscated program elements of Android malware. Their
approach phrases the problem of predicting identifier names
renamed by the layout obfuscation as a structured prediction
with probabilistic graphical models for identifiers that are
based on the occurrence of names.DeGuard predicted 79.1%
of the obfuscated program elements for open-source Android
apps obfuscated by ProGuard and Android malware samples.
Anti-ProGuard [53] also aims to deobfuscate the identifier

renaming technique. It requires smali files as input, and then
uses a database storing obfuscated snippets and their orig-
inal counterparts. Anti-ProGuard employs similarity hash-
ing not pursuing exact matches for accuracy improvement.
It could successfully identify over 50% of known packages
in Android apps.
Java-Deobfuscator [54] is a tool that deobfuscates

obfuscated Java bytecodes and makes them much read-
able. It can handle Java bytecodes (JAR) obfuscated by
commercially available Java obfuscators such as Zelix,Klass-
master, Stringer, Allatori, DashO, DexGuard, etc. Since
Java-Deobfuscator is not a tool for Android apps, several
processes are required to use it for Android apps. That is, it is
necessary to (1) convert the obfuscated DEX file of a given
Android app into a JAR file, (2) apply Java-Deobfuscator to
the JAR file, and then (3) convert the deobfuscated JAR file
into a DEX file again. However, since there is a loss in the
process of converting the obfuscated DEX file into a JAR file,
it is difficult to expect Java-Deobfuscator to work properly,
and it is very hard to correctly create and run an Android app
with the finally deobfuscated DEX file.

Moses and Mordekhay [55] utilized both static and
dynamic analysis to defeat two obfuscation techniques: string
encryption and dynamic method binding via reflection. Their
deobfuscation solution was tested on 586 Android apps, con-
taining strings encrypted by DashO obfuscator. They identi-
fied decryption calls and extracted argument values, executed
the decryption calls, and obtained the decryption results. They
found out that the argument values were retrieved for 99%
of the decryption calls on average. They mentioned that it is
necessary to handle string encryption even in case that the
decryption logic is not included in a single function for further
research.

De Vos and Pouwelse [56] proposed a string deobfuscator,
ASTANA, to identify the deobfuscation logic for each string
literal and execute the logic to recover the original string
values from obfuscated string literals in Android apps.
ASTANA uses program slicing to seek for an executable code
snippet with proper statements to handle a obfuscated strings.

According to the study of Wong and Lie [47], language-
based and full-native code obfuscation techniques include
reflection, value encryption, dynamic loading, native meth-
ods, and full-native code obfuscation. In addition to the tra-
ditional obfuscations, Wong and Lie [47] described a set
of runtime-based obfuscations in ART such as DEX file
hooking, class data overwriting, ArtMethod hooking, etc.
They then developed a hybrid iterative deobfuscator, TIRO
(Target-Instrument-Run-Observe), which is a framework to
deobfuscate malicious Android apps. TIRO employed both
static instrumentation and dynamic information gathering,
and could reverse language-based and runtime-based obfu-
cation techniques.

In our previous work, we analyzed the performance of
tools for obfuscating, deobfuscating, and optimizing Android
apps [15]. We chose R8 compiler andObfuscapk for obfusca-
tors,DeGuard for a deobfuscator, andR8 compiler andReDex
for optimizers. As the default compiler for Android apps,
R8 has various features including optimization (removing
unused codes, inlining) and obfuscation (identifier renam-
ing). We examined the characteristics of the four tools and
compare their performance. R8 showed better performance
than ReDex in terms of the number of classes, methods, and
resources.

An Android app can contains native code binaries writ-
ten in C or C++. Thus, there was a study to deobfuscate
Android native binary code rather than the Android Dalvik
bytecode. Kan et al. [57] proposed an automated system to
deobfuscate native binary code of an Android app obfuscated
byObfuscator-LLVM (O-LLVM).O-LLVM is a popular native
code obfuscator which provides three obfuscations: instruc-
tion substitution, bogus control-flow and control-flowflatten-
ing. Kan et al. could recover the original control-flow graph
of native binary code using taint analysis and flow-sensitive
symbolic execution. For example, they used taint analysis for
global opaque predicate matching to remove dead branches.

On the one hand, Ming et al. [34] tried to detect obfus-
cation techniques based on opaque predicates. Pointing out
that existing researches were not sufficient to detect opaque
predicates in terms of generality, accuracy, and obfuscation-
resilience, They suggested a Logic Oriented Opaque Predi-
cate (LOOP) detection tool for obfuscated binary code, which
developed based on symbolic execution and theorem proving
techniques. Their approach captured the intrinsic semantics
of opaque predicates with formal logic, and could even detect
intermediate contextual and dynamic opaque predicates.

B. DISCUSSION
In our previous work [15], we compared optimizers and
deobfuscators for Android apps, and evaluated their per-
formance. Program optimization is a technique aimed at
improving program execution speed by reducing the use of
resources as well as by eliminating redundant instructions,
unnecessary branches, and null-checks. On the other hand,
program deobfuscation focuses on removing ormitigating the
obfuscation techniques applied to the program and restore
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FIGURE 17. Four control-flow graphs: the graph of an original code (a), the graph of the code obfuscated from the original with DexGuard (b), the graph
of the code optimized from the obfuscated with ReDex (c), and the graph of the code deobfuscated from the obfuscated with Deoptfuscator (d).

the obfuscated codes to the same or similar states as the
original. Traditional control-flow obfuscation contains call
indirection by substituting existing methods and adding new
methods, junk-code insertion (insertion of useless computa-
tions), abuse of goto instructions, etc. Thus, deobfuscating
control-flow obfuscated codes seems similar to optimization
because it may also improve program execution performance.
However there is a difference in that its key purpose is to
restore the control-flow obfuscated app to the original.

In this paper, we devised a new approach to deobfus-
cating control-flow obfuscated Android apps, and verified
its effectiveness based on various evaluations and similarity
measurements. In addition, our approach is flexible and scal-
able because it allows users to determine whether to apply
aggressive or passive debofuscation techniques after calcu-
lating the proportion of patterns identified that control-flow
obfuscation are applied among instructions within one class
through OBR.

Our work has some limitations. The proposed technique
can only handle control-flow obfuscation by DexGuard, and

does not consider control-flow obfuscation by other obfusca-
tors includingDashO and Allatori. Codes written by develop-
ers can accidentally match DexGuard’s control-flow obfus-
cation pattern. To prevent Deoptfuscator from arbitrarily
removing opaque variables used in these patterns, the opaque
variables are selected as one of the deobfuscation candidates.
Then, if it is confirmed that the opaque variable is not used
outside of the obfuscation pattern, it is removed, otherwise it
is not removed. Separately, we analyzed codes to see if there
are any apps that accidentally contain DexGuard’s control-
flow obfuscation pattern. No such benign apps were found
within the scope of our analysis.

The experiments with 63 apps prove the effectiveness of
the Deoptfuscator. We, however, need to experiment with
a wider variety of apps and larger numbers of apps, and
check if there is room for improving the performance of
Deoptfuscator.

All apps that have been deobfuscated byDeoptfuscator are
executable on both an AVD and a physical smartphone. The
research on apps with an anti-tampering protection is out of

61438 VOLUME 10, 2022



G. You et al.: Deoptfuscator: Defeating Advanced Control-Flow Obfuscation Using ART

the scope of this paper. Thus, if an obfuscated app is equipped
with an integrity protection mechanism, the execution of its
deobfuscated app cannot be guaranteed because the code has
been changed due to the debofuscation.

VII. CONCLUSION
We defined the three levels of control-flow obfuscation
according to the usage patterns of opaque variables and the
type of opaque predicates used in Android apps. DexGuard,
a powerful obfuscation tool for Android, offers the level 3
(advanced control-flow obfuscation) obfuscation, which uses
global variables as opaque variables. Existing deobfuscators
or optimizers have a difficulty of removing the level 3 obfus-
cation codes because if the global variables are arbitrarily
removed from the obfuscated app, a fatal error may occur
during execution.

We have then developedDeoptfuscator that can effectively
detect and deobfuscate the codes added by the control-flow
obfuscation of DexGuard. The Deoptfuscator analyzes vari-
able usage patterns to confirm global opaque variables are
used only in opaque predicates. We evaluated its performance
with respect to ReDex and demonstrated the effectiveness by
showing that the apps deobfuscated by Deoptfuscator can
run normally on both a real device and the AVD. We have
published the source code of Deoptfuscator at the public
repository GitHub, which helps malware analysts to reverse
control-flow obfuscated malicious Android apps.

APPENDIX
Fig. 17 shows four control-flow graphs: the graph of an
original code (a), the graph of the code obfuscated from the
original with DexGuard (b), the graph of the code optimized
from the obfuscated with ReDex (c), and the graph of the
code deobfuscated from the obfuscated with Deoptfusca-
tor. The name of apk and method is ‘An.stop_9.apk’
and ‘An.stop.SettingsActivity.onCreate()’,
respectively. Four control-flow graphs are the same method,
but the name of the package and class has been changed due
to DexGuard’s identifier renaming.
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