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ABSTRACT Most existing recommendation systems (RSs) are primarily concerned about the accuracy
of rating prediction and only recommending popular items. However, other non-accuracy metrics such as
novelty and diversity should not be overlooked. Existing multi-objective (MO) RSs employed collaborative
filtering and combined with evolutionary algorithms to handle bi-objective optimization. Besides cold-start
problem from collaborative filtering, it also vulnerable to highly sparse environment, while the evolutionary
algorithm suffers from premature convergence and curse of dimensionality. These limitations have prompted
this work to propose deep reinforcement learning (DRL) approaches for MO optimization in RSs. Several
works in DRL are available but none has addressed MO RS problems. In this study, the performances
of proposed DRL approaches that based on Deep Q-Network in MO recommendation problem were
investigated. The approaches were evaluated with movie recommendation dataset by using three conflicting
metrics, namely precision, novelty, and diversity. The results demonstrated that deep reinforcement learning
approaches has superiority performance in MO optimization, and its capability of recommending precise
item along with achieving high novelty and diversity against the benchmark that using probabilistic based
multi-objective approach based on evolutionary algorithm (PMOEA). Although PMOEA algorithm secured
higher average value in precision, it has lower values of novelty and diversity than the proposed DRL
approaches. The DRL approaches surpassed the benchmark results in average of maximum novelty and the
average of mean diversity metrics, the optimization between accuracy and non-accuracy metrics is inevitable.
In addition, the experiments revealed that incorporation of user latent features enhanced the recommendation
quality.

INDEX TERMS Deep reinforcement learning, machine learning, multiobjective, recommendation system.

I. INTRODUCTION

The volume of information and data are growing exponen-
tially nowadays, where we can simply get tons of information
through online applications at fingertips. Excessive informa-
tion may cause the online users difficult to meet the user’s
interest or correct target information. Therefore, recommen-
dation systems (RSs) are applied to direct users through vast
information space, toward the items that could fulfill the
user’s desire. The recommendation algorithm is aimed to
provide a list of relevant items that user might be interested in
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order to secure user satisfaction and maintain user activeness
in the system. From business perspective, an RS is a crucial
and valuable tool to boost the business revenue. For instance,
an online streaming platform consists of few million movies
and series and thus requires a recommendation engine to gen-
erate playlists anticipating their interest. When the suggested
relevant items are matched with user interest, it is expected to
increase the subscription rate and enhance the user’s online
streaming experience.

Approaches for RSs may be categorized into 6 classes [1]
as follows:

i. Context-Aware RSs which provides references by user’s

contexts.
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ii. Group RSs which consider the preferences of a group of
users instead of a single user to generate recommenda-
tions.

iii. Multi-Criteria RSs which address user preferences vari-
ous item’s aspects (such as cleanliness and location, for
the recommendation of a hotel).

iv. Cross-Domain RSs which utilizes knowledge inferred in
a source domain (e.g., movie) for recommendation to
users in a target domain (e.g., music).

v. Multi-Stakeholder RSs considers several perspectives of
users to generate the recommendation.

vi. Multi-Task RSs which utilize ensemble method to com-
bine output from several RSs typically through a joint
optimization over a shared network representation.

Most of the traditional RS approaches [2]-[9] are only
focused on accuracy of rating prediction or item with high
rating. Recently, findings of several studies [10]-[13] have
shown that non-accuracy metrics included novelty and diver-
sity in RS are significantly correlated with the satisfaction
level of users. Another interesting finding [14] shows diver-
sification is one of the noteworthy factors that affect users’
satisfaction positively. Other scholars [13], [15] also sup-
ported that favourable recommendation quality is highly cor-
related to novelty and diversity of the items. In other words,
focusing solely on accuracy metric does not secure high-
quality recommendation since the items with high accuracy
result do not assure satisfaction of users [16].It is not argued
that accuracy metrics should be neglected, but rather that
other evaluation metrics should also be considered simulta-
neously, hence multi-objective (MO) based recommendation.
It provides extensive motivation to this work in solving MO
recommendation problem.

Among classical RS, content-based filtering (CB)
[5], [6], [8] and collaborative filtering (CF) [2]-[4] are com-
monly used. According to [9], [17], the former approach
endured the limitations of handling inter-dependencies event,
whereas the latter struggled in cold-start problem and data
sparsity [9], [17]-[23] to generate recommendation if it
lacks sufficient historical relationship information between
the user and item. Another review study [24] on social
media analysis by machine learning indicated that typical
RS algorithms such as matrix factorization or Support Vector
Machine (SVM) also suffered from cold-start, serendipity,
and scalability problems. In addition, the CB method encoun-
ters difficulty in suggesting items from categories that are
new to the users or have not been experienced by them
since it focuses only toward similar content or item group
to user [25]. Furthermore, the techniques involving CF have
the limitation to include side features for query item such
as user’s latent information. The hybrid approach [26]—[28]
tackled some limitations of CB and CF approach, but the
main weakness of dealing with a new user or item that
has never been experienced still persists [29]. Moreover,
traditional recommendation approaches fail to consider feed-
backs from users [30] and are inadequate for handling
MO problem.
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Scalarization and population-based heuristics methods are
the common techniques for MORS [1]. Scalarization is used
to transform a MOP to a single-objective problem (SOP),
so that most of the existing optimization methods for SOP can
be reused to solve the problem. Meanwhile, the population-
based heuristics utilizes evolutionary algorithms (EAs) or
swarm intelligence methods (SIs) to produce the Pareto
optimal set. Scalarization methods are popular due to its
simplicity since they transform MOPs to SOPs. However,
scalarization methods may not be able to handle non-convex
problems in contrast to the Multi-Objective Evolutionary
Algorithms (MOEAs). By contrast, MOEAs can handle both
convex and concave problems but may suffer premature con-
vergence at local optima besides the weakness in diversity and
typically trapped in efficiency issue when processing large
dataset.

Most of the existing MO optimization frameworks
[31]-[33] integrate genetic algorithm (GA) with classi-
cal CF method despite them being time- and resource-
consuming [34]. This poor reputation is due to abundance
of iterations required to search and populate the solutions
as it has constraints on scaling up for large-scale optimiza-
tion task. GA is a prominent technique used among evo-
lutionary computing (EC) or evolutionary algorithm (EA)
approaches [35], and premature convergence is one of the
critical weakness of EC approaches [36]. In GA, only the
most optimal solution is selected and this hill-climbing-based
solution leads to premature convergence problem. In addition,
while using EC approach [37], it is difficult to achieve good
density points and converge to optimal solutions [38].

There are also approaches that focus on personalization
in MORS such as the preference-based method called the
Extreme Dominance and Statistical Significance Tests for
defining a new Pareto-based dominance relation that guides
the optimization search considering users’ preferences [39].
Multi-criteria RSs based on deep learning such as the deep
autoencoders are employed to exploit the non-trivial, nonlin-
ear and hidden relations between users with regard to multi-
criteria preferences [40]. Tensor model has also been used in
Multi-criteria RS [41] which combines aspects (e.g., users or
countries, restaurants, multiple ratings, and cultural groups)
and applies factorization (e.g. higher order singular value
decomposition) to process the inter-relations of the various
aspects for predicting the missing values in the models, and
then used for predicting the rating.

In the last decade, reinforcement learning (RL) approaches
have grabbed attention of many researchers as its applications
are increasing progressively. RL approaches have rose to
prominence for solving complex decision-making problems.
Q-learning [42] is one of the basic RL techniques and has
been widely researched in various fields including electric
power management [43], the Internet of things [44], and
RSs [45]. Despite its demonstrated ability to learn optimal
strategy dynamically, tabular mapping function approach is
inefficient in a high-dimensionality environment [46]. There-
fore, various deep reinforcement learning (DRL) approaches
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such as Deep Q-Network (DQN) [47] and Deep Recurrent
Q-Learning [48] have been proposed to overcome the short-
comings of basic RL tabular function approaches in large-
scale environments.

Several researchers have demonstrated that DRL
approaches such as Q-learning-based approach outper-
form the EC approach in various MO problems [49]-[51].
RL approaches in MO problems could optimize power
consuming and voltage stability, and DRL approach is
better than the EA in terms of Pareto solutions achieve-
ment; besides, DRL has more accurate optimal points [50].
A significant study [49] on multi-objective traveling sales-
man problem demonstrated that DRL approach outperformed
the MO-based EC approaches in terms of solution conver-
gence and large sparse data handling. They presented the
proposed non-iterative solver and demonstrated that DRL
approach is more efficacious than EC approaches for solving
MO problem.

The characteristic of DRL to explore the environment
and make decision autonomously has become very useful
in RS applications. Several researchers have evidenced the
practicality of DRL in complex RS environment with single-
objective algorithms [52]-[55]. However, after a thorough
search of relevant literature, it can be asserted that there is
a lack of adequate research concerning the application of
DRL techniques in MO problem of RS domain. In accor-
dance with the works discussed above, the extensive potential
of DRL approaches to handle MO problems in RS is fur-
ther investigated throughout this work. This research further
examines the capability of RL in RS application, along with
MO optimization problem. In this context, we developed a
DQN-based approach to solve MO problem in RS (called
DQNMORS) and evaluated the same according to three
metrics namely accuracy, novelty, and diversity. We have
developed an MODRL approaches, which salient features are
enumerated as follows:

1) Our approaches do not rely on rating predictor for
MORS and optimize three evaluation metrics simulta-
neously, namely precision, novelty, and diversity. This
paper also presents an extensive analysis of the compar-
ison between optimization techniques by scalarization
method and Pareto filtering method.

2) Our approaches are based on DQN (called DQNMORS),
which incorporates user latent features to help improve
recommendation and extensive investigation and show
the impact of learning user latent on performance.

3) Our approaches consider time-sequential rating data as
one of the input types and study the impact of learning
sequential rating data using recurrent layer (through a
model called recDQNMORS).

The remainder of this paper is organized as follows.
Section 2 discusses literature review and related works.
Section 3 presents the proposed DRL approaches for MO
optimization in movie recommendation. Section 4 discusses
the experimental results. Finally, Section 5 concludes the
salient findings of this study.
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II. LITERATURE REVIEW

As discussed in the previous section, traditional approaches
such as CF, content-based, or even hybrid approaches
suffer from cold-start issue and are inadequate to learn
autonomously from a dynamic environment [17], [24],
[25], [30]. Moreover, these approaches are insufficient to
handle MO problems. Most of the general RSs tend to serve
users using high-rating or popular items, or similar items
in accordance with user’s previous preferences in order to
achieve high accuracy of prediction. Despite these accuracy
metrics being adequate for evaluation purposes, the recom-
mendation quality should not completely rely on accuracy
metrics. In other words, other non-accuracy metrics should be
considered as well [10]-[13], [16] in order to provide better
recommendation quality.

A. MULTI-OBJECTIVE RECOMMENDATION APPROACHES
The existing techniques applied in RS for handling MO
optimization problem are mostly EC techniques [31], [36],
[56]-[58]. The GA is one of the most popular approaches
in EC family that is inspired by biological evolution
mechanisms such as nondominated neighbor immune algo-
rithm [33], decomposition-based MO evolutionary algorithm
(MOEA/D) [32], and nondominated sorting genetic algo-
rithm II (NSGA-II) [31], [57]. These approaches are not
only limited by time-complexity and resource-consuming
issues [34] because they require large numbers of iteration
and population size for large-scale optimization [49], but
they are constrained by premature convergence issue [34].
Furthermore, the EC approaches have difficulty to converge
to optimal points [38] in higher-dimensionality MO problem.
Moreover, such approaches primarily work on optimization
and must be coupled with other prediction algorithms to gen-
erate recommendation list. Most of the existing MO studies
primarily employed CF technique to predict rating prior to
optimization using EC (see Fig. 1) which starts from rating
prediction, and generates candidate list, followed by MO
optimization.

In the realm of large RS application such as e-commerce
platform, the database usually contains vast number of users
and at least millions of items that are actively browsed.
However, only a small portion of the items are rated by users.
Thus, it is impractical to predict the relationship between
user and all items since both dimensional quantities increase
periodically. Consequently, loads of missing rating values
make the user—item matrix scarcely filled. The CF approach
that resulted to large data sparsity, also encounters a lot of
difficulties to compute similarity between the user or item to
identify appropriate items to recommend [2]. The challenge
grows even further when it is required to generate recommen-
dation for new users or items added into the system since EC
technique is unable to perform optimization without complete
item-rating data. The CF method is only learned from the
rating matrix, and it is difficult to learn other potential useful
features such as user latent.
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Item Rating Evaluation

Predict the unknown ratings of
unrated items and fill up
sparse item-rating matrix

|

Item List Prediction

Generate recommendation
candidate items list based on
the rating matrix.

!

Multi-objective Optimization

Using algorithm to select and
generate optimized solutions then
provide pareto solutions.

FIGURE 1. General process of MO recommendation using CF method
combined with EC technique.

In contrast, the nature of DRL in adaptive self-learning
through environment exploration and epsilon-greedy pol-
icy [47] makes the algorithm itself possess the capacity to
sustain in large complex and even sparse environment. With
epsilon-greedy policy, DRL agent is allowed to explore the
environment for searching better direction and preventing
itself from being perplexed at local minima or maxima.
The agent has certain policy to perform a random action
with probability ¢ and take action using greedy policy with
probability 1 — ¢. In another words, the ¢ parameter deter-
mines the probability of agent exploration and exploitation
as shown in (1).

1 —¢ if a; = argmaxy, Q (¢, as)

7 (ar|s) = . .
otherwise random action

ey

The epsilon-greedy algorithm ensures all the action space
is explored by maintaining a certain exploration probability.
Fig. 2 illustrates the interaction between an RL agent with
its environment where the agent observes the state from
environment and takes action accordingly. Each of the action
performed by agent will obtain reward as feedback. Several
studies [53], [54], [59]-[64] have demonstrated the robust-
ness of RL algorithm in complex RS application. As sug-
gested by [46], the function approximation algorithm such as
DRL approach is more suitable for solving vast state space
problem rather than using tabular mapping function such
as Q-learning tabular algorithm in numerous state—action
environment. One of the most extensively deployed DRL
algorithms is DQN [47]. It utilizes deep neural network to
approximate Q-values and has been examined in few innova-
tive RS applications [59], [60], [62].
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FIGURE 2. Interaction between RL agent with its environment in a typical
RL approach.

Inspired by a study [48] that highlighted DQN’s advantage
in RS by using multi-step user-specific based interactive
recommendation with explicit feedback mechanism, we rep-
resent the recommendation model as follows in order to adapt
RL interaction with the dynamic environment:

o States, S. The state, s € S is the feature representa-
tion that expresses the interaction between a user and a
movie; it represents user’s behavior along the ascending
timestamp.

o Actions, A. The a is the action executed on a state, s.
Each a € A is the is the recommended item list with
a fixed length L for each user. The item in this case is
referred to as a movie, and so the action output is list of
movie item denoted by a unique ID number.

e Rewards, R. R(s, a) is the immediate reward obtained
by agent for every action a executed in state, s. Since
the goals of the MO agent is to optimize the eval-
uation metrics, the reward is summation of metrics
values. Higher overall rewards indicate a likely better
performance.

A few studies [49]-[51], [65], [66] have demonstrated the
robustness of RL algorithms in tackling MO problems (such
as power system [38] and traveling salesman problem [54])
and overcome the shortcomings of EC techniques. The stellar
performance of DRL methods in MO problem provide strong
motivation to this study for solving MORS optimization prob-
lem using DQN-based approaches. When dealing with MO
issues, there is no perfect solution that can reach the best value
in all goals concurrently, and it is inevitable to sacrifice at
least one target in order to enhance another.

To further explore the potential of RL in RS, a study
that applied Q-learning in single objective RS [67] pointed
out that the present ratings are significantly correlated with
the sequences of past rating. Hence, this finding is taken
as encouragement for this work to further investigate the
effect of learning rating in sequence by using LSTM layer.
The sequential rating information is referred as the user—item
rating data arranged in an ordered sequence, and the position
of each entry data is significant. In [67], the entries of the
training data had included explicit order of the rating given
by user on the movie, which required additional effort to label
the sequences of mass data. In this work, the training data is
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sorted ascendingly on the basis of a timestamp and stacked
up to be fed as input to recurrent-based DQN agent without
the explicit label of the rating order as the recurrent layer can
capture the sorted sequential data directly.

Studies on online RS based on DRL is also available, which
exploits the users’ responses to the current recommendation
results (immediate feedback) to optimize the recommenda-
tion strategy. Generative adversarial network (GAN) is used
to exploit the users’ immediate feedback with Q-learning and
actor-critic network [68]. This work also proposed a deep
generative adversarial networks-based collaborative filtering
approach to optimize the negative sampling method. Despite
using different DRL approach, this work is similar to our
proposed work in the sense that it uses Q-network. However,
since it does not handle MORS, we do not consider it as our
benchmark.

Another popular approach in DRL called policy gradient
is used in combination with RNN [69] to propose a novel
top-N model for long-term prediction in a single RS that
focuses on hit-rate (fraction of users for which the correct
answer is included in the recommendation list) and Normal-
ized Discounted Cumulative Gain, (NDCG) which measures
the quality of ranking. They also proposed a new extended
GRU cell named EMGRU, which can efficiently enhance the
recommendation accuracy by incorporating additional histor-
ical information to address the warm-start scenario in long-
term prediction. Another similar work on policy gradient
method with dynamic recurrent [70] is built in which a profile
constructor with autonomous learning ability is designed to
make personalized course recommendation. The approach
is proposed to address the exploration-exploitation trade-off
issue in constructing user profiles while the recurrent scheme
by context-aware learning exploit the user’s current knowl-
edge and explore the future preferences.

B. EVALUATION METRICS

Optimization between the competing metrics is obligatory to
achieve the optimum values in accuracy and non-accuracy
metrics concurrently. As indicated by [31], there is trade-
off dilemma between the accuracy and diversity of a rec-
ommendation, and it sacrifices the accuracy of one met-
ric to improve the other aspects. The study [33] supported
that conflict among matching quality and diversity function
requires optimization. On the other hand, the relationship
between accuracy and novelty is also competing, as shown
in [32]. Hence, both accuracy and non-accuracy metrics are
deliberated in the proposed algorithm.

Accuracy, commonly also known as precision metric, is an
essential evaluation tool that measures how precise are the
prediction results. It is measured as the level of correct-
ness between predicted ratings and actual ratings given by
user. It also indicates the proportion of recommended items
with a high-rating value in the total user’s preferable item
list. Several studies [31]-[33], [57], [71] have used the
precision function as used in this work to evaluate each
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recommendation list, as defined in (2).

P — L,NT,

L
where L, is the predicted recommendation list that contains
items for user u, L, = [x1, x2, ..., x,]. T}, is the list of actual
items in the test set that the user u rated with high rating.
A high-rating item is an item that has been given a rating of 3
or above by the user. L is the length of the recommendation
list. The recommendation result will be awarded better pre-
cision if the greater number of predicted items appear in the
test set’s high-rated item list.

On the other hand, the diversity function quantifies the
difference between items in the recommendation list. This
difference can be described by various topics of items in the
recommendation. There are some works [33], [71] that use
intra-user diversity to assess the capability of recommending
the different items to a user. In [31], the another kind of
diversity is proposed, which is based on Shannon’s entropy.
The measurement in [31] is more comprehensive since it
comprised of three principal parts, included topic distribution,
number of different topics, and the distribution of a topic for
each item in the recommendation list. Hence, the proposed
diversity for evaluating the recommendation list is formulated
as in (3).

ta] oe 1LY
DLM:_(ZieLu ; JO{gm o ©

2|

(@)

where Div(L,) is the numbers of topics and its distribution
in the recommendation list L,,, lx,-| is the amount of topics
included in item x;, and |ZL,,| is the total number of topics in
the recommendation list. More precisely, the diversity func-
tion is related to the topics of items in the recommendation
list.

Novelty denotes the popularity of the recommended items.
It is a measure of the ability to recommend low-popularity
items to the user, assuming that such items, which are in long
tail, are considered novel by the user. According to [31], [57],
the novelty function is defined as in (4).

1 M M
N = M- L Zu:l ZaeLu 10g2 (N_a> (4)

where M is the total number of users and N, is the number
of ratings for item «. The recommended items with lower
popularity or fewer ratings received are considered novel and
have higher novelty value according to (4).

As demonstrated in the MO optimization research
works [31], [32], the accuracy indicator and non-accuracy
indicators are contradictory. The existing works often focus
only on bi-objective optimization between accuracy and
another non-accuracy metrics such as either accuracy against
diversity or accuracy against novelty. In order to evaluate
the robustness of the proposed method, both diversity and
novelty metrics are taken into optimization simultaneously
with accuracy as MO problem.
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C. MULTI-OBJECTIVE OPTIMIZATION

Generally, MO problem involves more than one constraint,
and there is no single or best solution for the problem; instead,
it may have several solutions. Therefore, MO problem can be
described in mathematically as in (5).

max fi (x), f2 (), ... fu(x), x € X (5)

where x is solution, n is the number of objective functions,
and X is the set of feasible solutions. The purpose of MO
optimization is to achieve the optimal solution by trade-off
to a certain degree on any objective values, and each objec-
tive function is represented by a vector in multi-dimensional
space. The MO optimization method is mainly distinguished
into scalarization and Pareto methods [72]. The former trans-
forms MO operations into scalar fitness function using the
weighted-sum approach as shown in (6).

F)=wifi ) +wafa () +...+wef, (1) (6)

where w is the weight assigned to each objective. The optimal
solutions of the weighted-sum problem combine all the MO
functions into one scalar composite objective function. For
Pareto method, the solution vectors represent dominated and
non-dominated solutions in objective space. A solution vector
X, that dominates another solution x; can be defined as (7)

Vi=1,2,...,0f; (xa) = fi (xp)
AT =1,2,...,nf(xa) > fj (xp) 7)

where if there is no other solution of f (x;) dominating f(x,),
then x, is Pareto optimal solution. The dominance solution
often requires degradation of one objective function in order
to improve the target objective function to achieve optimal
value. The non-dominated solution is also referred to as
Pareto optimal solution.

Based on literature search, precision, novelty, and diver-
sity are the most common combined metrics optimization
in MORS and thus being focused on this study. However,
most of the existing works do not provide a Pareto-based
solution that combines all these three competing objectives
concurrently. In fact, precision, novelty, and diversity metrics
are reflecting the essential objectives of higher quality recom-
mender system respectively. Therefore, this indicates a room
of improvement for MO RS.

Ill. DEEP REINFORCEMENT LEARNING-BASED MULTI
OBJECTIVE RECOMMENDATION SYSTEM

Two types of DQN approaches and its variant are proposed
to adapt in MORS environment to generate recommendation
items list for user. The proposed DRL approaches are then
compared with benchmark work [31], which applied EC tech-
nique coupled with CF method. There are three evaluation
metrics that are concurrently taken into optimization, namely
precision, novelty, and diversity. As discussed in the previous
section, both accuracy and non-accuracy metrics are contra-
dictory to each other such that if one objective is maximized,
it degrades the other objective(s).
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In this MO optimization work, the effectiveness of
weighted-sum strategy and Pareto optimal filtering meth-
ods are evaluated. As aligned with the benchmark [31], the
length of recommendation list L is fixed at 10 for all users.
The recommendation output is evaluated in terms of preci-
sion (2), diversity (3), and novelty (4) metrics as proposed
by [31]. This work is distinguished from previous studies
[31], [33], [57], which only focus on optimization between
precision and either novelty or diversity, where we simul-
taneously study the optimization between three objectives:
precision, novelty, and diversity.

A. DQNMORS
When dealing with an enormous state space, utilization of
large memory to save all state—action pair values is imprac-
ticable and inadequate. Moreover, exploration of every state
and updating the Q-values using Q-table would be unrealistic.
Therefore, the DQN method that uses function approximator
to optimize the policy is more practical. The working prin-
ciple of the proposed DQN algorithm is aligned with the RL
mechanism as illustrated in Fig. 2. The algorithm learns to
predict the item for user based on feedback from the interac-
tion with the environment. In the RL algorithm, the agent is
considered as a component that make decisions on which item
to be recommended. It responsible to act accordance with the
observed state from environment, each of the action taken will
be rewarded corresponding values as feedback to the agent.
Our proposed algorithm, namely DQNMORS is based
on DQN and examined in the recommender environment.
Fig. 3 shows the diagram of the proposed DQNMORS with
optimization. The DQNMORS architecture consists of expe-
rience buffer and two identical networks called predicting
network (evaluation) and target network. Both networks are
initialized with identical parameters. The Q-function approx-
imator is used to optimize the policy, and the approximator is
made up of neural networks that consists of 4 layers including
the output layer. The two fully connected hidden layers are
connected to output layer for each valid action. The first
hidden layer consists of 512 neurons and followed by second
hidden layer which consists of 1024 rectified units. Lastly,
the output layer made up of 1682 units as there are total 1682
unique movies in dataset. The action performed on respective
state and the reward obtained are stored in replay memory for
experience replay as tuple form, e; = (sy, as, r, s;4+1) at each
time step, ¢. During training, the agent randomly samples the
minibatches of transition from the replay memory and then
performs gradient descent with respect to the network param-
eters. The randomly sampling breaks undesirable correlations
between the samples and therefore minimize the variance of
the updates. The predicting network is updated periodically
with parameters from the target network. It is responsible
for regulating the action values toward target values, thereby
leading to a more stable learning process. The loss function
applied in the DRL neural network is mean squared error of
predicted Q-value and the target Q-value.
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B. recDQNMORS

he sequence of past ratings information is significantly cor-
related with the current ratings [67]. This motivates us to
investigate further on the impact of learning sequential data
by applying recurrent layer to the prediction task. Recurrent
neural network (RNN) is mainly used for solving the short-
term memory issue in a basic neural network. Few researches
[48], [73], [74] pioneered the integrated the RNN with DRL
to learn sequential data. In RS domain, [63], [75] employed
the hybrid RNN in RL algorithm and demonstrated the ability
of capturing long-term sequential information. Thereupon,
we fused long-short term memory (LSTM) recurrent layer
with the DQNMORS algorithm and named this algorithm as
recDQNMORS (see Fig. 4 and Appendix B).
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FIGURE 4. Structure of proposed recDQNMORS method.

LSTM [76] is an extension architecture from RNN and
is meant to address the short-term memory issue in basic
RNN occurring because of vanishing gradient effect. The
proposed recDQNMORS approach is modified from LSTM-
based recurrent enhanced approach used in [77], which
demonstrated the significant role of LSTM in handling data
in order. The LSTM is placed on the top layer of network to
handle the sequential input data.

C. OPTIMIZATION METHODS

Both scalarization and Pareto method are applied on identical
DQNMORS algorithm in order to determine which opti-
mization method has better performance. From the compar-
ison result among DQNMORS approaches, the optimization
method that contributes better result is selected to be adopted
in recDQNMORS approach for subsequent experiment.
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TABLE 1. Summary of algorithm name according to optimization method
used with the deep reinforcement learning approaches.

DRL Approach Algorithm Name Optimization Method
DQNMORS_ws Scalarization method
DQNMORS —
DQNMORS pf Pareto method

In order to classify conveniently, the name of experimental
algorithms is summarized in Table 1.

Both algorithms are applied to identical MO environment
but associated with different optimization method. First, the
DQNMORS, which used scalarization method, also called
weighted-sum method (6) was used to compute the reward
value after each recommendation list produced by agent.
The reward for this recommended list is an aggregation of
each metric functions that have been discussed previously:
precision (2), diversity (3), and novelty (4) multiplied with
corresponding weights as shown by line 29 in DQNMORS
algorithm (Algorithm 1). The weight for each objective is
determined in proportion to the relative importance of each
objective. Since the importance of each metric is considered
equivalent, the weights, w),, wg, and wy, that assigned to each
objective respectively is equal to 0.3. The reward function in
the proposed DQNMORS_ws framework is established by
summation of the evaluation metrics as it reflects directly to
DRL agent about the quality of recommended items. On the
other hand, the DQNMORS_pf with Pareto method (7) was
used to select the optimal recommendation list from the five
recommendation lists generated by agent for each individual
user. Every recommended list was then evaluated with the
metric functions (2), (3), and (4), respectively and only one
optimum list was selected as final recommendation list for
that user.

IV. EXPERIMENTS SETTING

A. DATASET

To evaluate the performance of the proposed DRL approaches
in RS, the agent and environment were designed to be interac-
tive, while a well-known dataset from GroupLens Research,
namely MovieLens 100K dataset [78], was utilized. It com-
prises of 100,000 ratings that scale from 1 to 5, and total
943 individual users with1682 movies. All the users have
rated at least 20 movies in the dataset. There are a total of
19 genres, and each movie has devoted to at least 1 genre
topic. In this work, the user information was also exploited
as latent input for the DRL agent, and the impact of taking
the latent user input is discussed in the next section. The
user information includes age, gender, occupation, and demo-
graphics. These features are related to user personalization
and act as a unique representation for every user. In the
test set, there are 462 users and only those movie items
rated 3 or above in order to accommodate precision evaluation
as in [31].

B. INPUT LATENT STATES
The DRL agent interacts with the environment by observ-
ing the input state and performs corresponding action
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(explore or exploit) continuously. The state in RS environ-
ment commonly refers to the interaction between the user and
the item in the application (according to the dataset). Since the
DRL approach is effective in incorporating side features such
as user latent into input states, it possesses advantages over
other algorithm that incapable to learn the latent features.

A comparison was carried out between DQNMORS with
user and without user latent in accordance with user’s movie-
rating values to validate the effect of incorporating user latent.
The comparison was made to justify the impact of user latent
on the recommendation result. In order to capture the essen-
tial information from the state, the input was embedded as
input vector. One-hot encoding is not suitable in this case as
it lacks meaningful relations between vectors. Instead, user
information was embedded as latent representation. Same
setting was applied to recDQNMORS. Table 2 summarizes
the differences between the setting of input features. It is
hypothesized that the user latent input will benefit the DRL
agent since the additional features are strongly related to user
personalization, and it is a unique representation for every
user in dataset.

TABLE 2. Input features for the proposed deep reinforcement learning
agents.

User Feature Movie-rating Feature

User attributes include age, gender,
occupation, zip code, and rated
movie ID with corresponding rating
value by user.

User ID, movie ID with
corresponding rating value by
user.

C. SEQUENTIAL INPUT STATES

Since the order of past rating has influence on the present
ratings [67], the historical sequential rating data could benefit
the agent to generate better predictions. In order to capture
sequential input, the LSTM layer is applied on the top of
dense neural network. The sequential rating information is
referred to as the user—item rating data, which is arranged
in ascending order. The recDQNMORS is proposed to study
the effect of learning the sequential rating input. In order
to verify this assumption, reccDQNMORS is compared with
DQNMORS by using the same input features and optimiza-
tion method.

D. HYPERPARAMETER SETTING

Preliminary experiments were conducted to identify the opti-
mum hyperparameter values for DQNMORS and recDQN-
MORS. The essential hyperparameters such as learning rate,
discount factor, or epsilon values could directly control the
agents’ behavior in learning process. The tuned hyperparam-
eters that were used are encapsulated in Table 3. In general,
the hyperparameter-tuning experiments are executed through
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30 independent runs in order to collect statistical results.
The average metrics values of 10 sample users are taken for
analysis and plotted.

E. COMPLEXITY ANALYSIS

The computational complexity of proposed approaches is
deduced from its pseudocode as introduced in
Algorithm 1 and 2 respectively (Appendix A & B). By refer-
ring to the operational rules of the symbol O, the worst-case
complexity of the algorithms has been simplified accordingly.
The DQNMORS_ws_m_u take a complexity of O(m> - a)
whereas the DQNMORS_pf_mu and both recDQNMORS
algorithms have same complexity of O(m? - P - a), where m is
the number of users, P is the number of recommendation list,
and a is the recommended items by the agent. On the other
site, the existing MO optimization algorithm adopt NSGA-II
framework, including MOEA-ProbS, PMOEA [31], and
MOEA-EPG [58] which possess same computational com-
plexity O(T - N -m? - n), where T is the predefined maximum
number of generations, N is the population size, and n denotes
the number of items. By comparison, the proposed DRL
approaches has no higher complexity than benchmark GA.

TABLE 3. Parameter settings for proposed multi-objective deep
reinforcement learning agents.

recD
poNMo | PN ponm | onm | PR
MORS NMO
Parameter RS ws ORS p | ORS
-~ | _pfm RS pf
m_u fm pf
u m
_ m u |
. User .
User User Movie- Movie-
Input Feature . Featu .
Feature Feature rating re rating
Optimization Weighted I
method Sum Pareto Filtering
Method
Learning Rate 0.0001
Discount
Factor 0.10 0.9
Epsilon 3.0
Min. Epsilon 0.5
Epsilon Decay
Rate 0.9 0.7
Finest Epoch
Number >0 10
Length of the
Recommendat 10
ion list
Number of
recommendati 1 5
on list

V. RESULTS AND ANALYSIS
Three experiments were conducted to substantiate the pro-
posed algorithms, as summarized in Table 4.

A. SCALARIZATION METHOD VERSUS PARETO METHODS

The results of comparison between the scalarization
(weighted-sum) method and Pareto method are presented in
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TABLE 4. Summary of experiments.

No Experiment Objective

To determine which

optimization method
contributes to better

performance

1 Comparison between
scalarization method
and Pareto method in
optimization

2 Studying the effect of
incorporating user
feature into input state

To investigate the effect of
user latent input on the
performance of DRL agent

3 Studying the impact of  To investigate the influence
learning rating data in  of learning sequential input
sequence data

this subsection. As shown in Fig. 5, the DQNMORS_pf_m_u
approach with Pareto method outperformed the DQN-
MORS_ws_m_u approach, which adopts the weighted-sum
method, especially in terms of precision and novelty by
13.04% and 2.56%, respectively. The average diversity of
DQNMORS_pf_m_u is lower than DQNMORS_ws_m_u
by 8.42%.

From the result shown in Fig. 5, DQNMORS_pf_m_u is
regarded as a better performer than DQNMORS_ws_m_u
from the aspect of average metrics value despite the diversity
being slightly lower than DQNMORS_ws_m_u. This indi-
cates that that Pareto method is more effective for attain-
ing higher accuracy while maintaining other non-accuracy
metrics. It has better ability to optimize multiple metrics
because of Pareto filtering from the solution space with-
out the requirement of assigning weight factor to each
objective.

B. USER LATENT FEATURE VERSUS
MOVIE-RATING FEATURE
To investigate the impact of user latent feature on the
performance, DQNMORS with user latent input (denoted
DQNMORS_pf_m_u) is compared against DQNMORS with
movie-rating feature input (denoted DQNMORS_pf_m). The
average metrics obtained by each agent are shown in Fig. 6.
Overall, the results show that the hypothesis is true. i.e.,
user latent input contributes to better performance. The
results from DQNMORS_pf_m_u have surpassed the DQN-
MORS_pf_m in terms of all evaluation metrics.
DQNMORS_pf_m_u achieved higher precision than
DQNMORS_pf_m_u by 19.80% (Fig. 6). According to the
average of novelty, the DQNMORS_pf_m_u outperformed
DQNMORS_pf_m by 20.46% and attained higher average
of diversity by 1.60%. As expected, DQNMORS_pf_m_u,
which incorporates user features, can learn more context
about the interaction between user and movie item, whereas
the DQNMORS_pf_m lacks this information, which affected
the performance. Therefore, incorporating user latent as side
features beyond the query led to better recommendation
results.
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FIGURE 5. Average metrics values of recommendation results obtained
by DQNMORS_ws_m_u and DQNMORS_pf_m_u for 10 sample users.

C. LEARNING SEQUENTIAL RATING INPUT

In order to present the impact of learning sequential rat-
ing information, the recDQNMORS_pf_m_u algorithm was
compared against DQNMORS_pf m_u algorithm, where
both algorithms applied Pareto method for optimization and
user latent input sorted in an ascending order according to
timestamp. The main difference is only the presence of LSTM
layer, where the recDQNMORS algorithm utilizes LSTM
layer to capture sequential input states, while the DQNMORS
is purely based on DQN without LSTM layer. The compari-
son results are shown in Fig. 7.

The performance of recDQNMORS_pf_m_u using LSTM
layer is not aligned with the expectation. The results show
that learning sequential rating data does not enhance the
recommendation as the average of precision was unex-
pectedly lower than DQNMORS_pf m_u by 17.57% and
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FIGURE 6. Average metric values of recommendation results obtained by
DQNMORS_pf_m_u and DQNMORS_pf_m for 10 sample users.

novelty by 4.68%. Only in average diversity, the recDQN-
MORS_pf_m_u achieved better performance than DQN-
MORS_pf m_u by 2.66%. The contradictory performance
of recDQNMORS_pf_m_u indicated that learning sequential
past ratings has no positive effect to the agent.

The reason behind this result may be the inefficient repre-
sentation of the sequential rating input state. First, the tran-
sition of the user movie-rating across the timestamp actually
has no meaningful context to represent the changes of users’
preferences. In contrast to the case in [77], which utilized
LSTM layer to learn the trend of stock price, the change
in stock price provide meaningful signal information to the
agent. However, in the case of RS environment, the alteration
of user movie-rating did not provide any useful representa-
tion. Besides, the MovieLens dataset contained high sparsity
on top of watching and rating sequence gaps patterns, and the
LSTM layer has difficulty to extract sufficient historical data,
thereby causing unstable learning. Therefore, the strength of
LSTM layer in this case is not exerted.
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FIGURE 7. Average metrics values of recommendation results obtained
by recDQNMORS_pf_m_u approach and recDQNMORS_pf m_u approach
for of 10 sample users.

D. PMOEA VERSUS DQNMORS VERSUS recDQNMORS
The performance of DQNMORS and recDQNMORS algo-
rithms were compared by including comparison against the
benchmark results from [31], which utilized probabilistic
MO evolutionary algorithm (PMOEA) approaches in terms
of precision, novelty, and diversity. The average of mean,
minimum, and maximum values of precision, novelty, and
diversity metrics from 10 sample users are presented in
Appendices C, D, and E.

As evidenced by the result plotted in Fig. 8, the pro-
posed DRL approaches are capable of concurrently handling
multiple competing objectives in RS. In general, none of
the approach was found to achieve the best results on both
metrics simultaneously. The PMOEA+CF_User technique
from the benchmark obtained the highest average of mean
precision value at 0.50, whereas the highest average of mean
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precision from DQNMORS_pf_m_u is only 0.22. However,
the average of maximum precision values obtained by DQN-
MORS_ws_m_u and DQNMORS_pf_m_u s still considered
competent against the best from benchmark, which achieved
0.50 and 0.46, respectively among the 10 sample users as
shown in Appendices C, D, and E. DQNMORS_ws_m_u
and DQNMORS_pf_m_u have higher maximum precision
than PMOEA+CEF_Item for Users 1, 4, and 9, while max-
imum precision on User 2 and User 8 was achieved with
PMOEA+CF_Item.

Although the benchmark PMOEA-+CF_User achieved
higher precision, it has lower values of novelty and diver-
sity compared to any of the proposed DRL approaches.
Both DQNMORS and recDQNMORS have higher aver-
age of mean novelty than PMOEA+CF_User, except DQN-
MORS_pf_m. The recDQNMORS_pf_m achieved higher
novelty than PMOEA+CF_Item in all sample users. In aver-
age of maximum novelty, all the proposed DRL approaches
surpassed all the PMOEA based approaches. In terms of
average minimum novelty, the PMOEA+CF_Item has the
highest values compared to DRL approaches. However, the
majority of PMOEA approaches are considered lower in
novelty compared to the proposed DRL approaches.

The exploration—exploitation nature of DRL agents induce
higher potential to explore items with more variety, as it
enables the agent to reach wider range of items and con-
tribute to better diversity. There is a striking achievement
in diversity by all the DQNMORS and recDQNMORS
approaches. As shown in the results, both DQNMORS
and recDQNMORS approaches surpassed all PMOEA-based
approaches in the average of mean diversity. The DQN-
MORS_ws_m_u and DQNMORS_pf_m_u clearly achieved
higher average mean, minimum, and maximum of diversity
compared against the PMOEA. The recDQNMORS_pf_m
has lowest mean diversity among DRL approaches, but it still
outperformed PMOEA+ProbS by 69% in average of mean
diversity.

In general, our proposed algorithms have endured in opti-
mization of three constraints simultaneously instead of dual-
objectives. Appropriate exploration level support DRL agent
to prospecting higher reward action, it advocates agent to
discover long-tail items that potentially higher novelty and
diversify the categories of recommendation list. The inter-
actions between DRL agent with environment are dictated
by a balance of exploration and exploitation, it provides
advantages over the GA which vulnerable to premature con-
vergence effect. The premature convergence issue generally
is a consequence of losing diversity within the population
due to GA operators. The crossover and mutation operator
are function for exploitation and exploration respectively by
produce genes from available parents. However, it is difficult
to generate optimum solutions because of limited items dom-
inated the sub-population and then constraining it to converge
to a local optimum. In contrast, the exploration-exploitation
strategy in DRL approaches has more flexibility as it pro-
vides larger probability for random selection, therefore, it has
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FIGURE 8. The average of mean, minimum, and maximum metrics values
from all the algorithms on 10 sample users.

greater exploration rate to discover more novel diverse items.
Compared to GA that applied in [31], it has only fixed prob-
ability to randomly select items from the sub-population.
The superiority of DRL approach also can be explained by
its ability to explicitly represent uncertainty in its transition
function and to monitor dynamic changes in the highly sparse
environment. The agent able to predict and optimize the
recommendation directly without rely on additional separated
rating predictor as used in [31]. Although rating prediction
tends to secure precision, it disregards novelty and diversity.
Nevertheless, balancing between conflicting objectives
required additional efforts, and the cost of considering non-
accuracy metrics is that certain degree of precision metrics
was required to be abated. As a trade-off, precision of recom-
mendation was affected. The learning performance of DRL
agent is heavily rely on reward that obtained after every
action taken. However, the reward function for MO problem
is always problem dependent, and it is difficult to justify the
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Algorithm 1

Input: Set of latent feature input
Output: List of movie items

O 00 1 N Lt B W N =

—
)

11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43

Initialize parameters and replay memory D to capacity N
Initialize weights for the evaluation networks, Q and target network Q
for epoch =0to M
for =1, T in a batch do
Observe input state, s, which is latent features
if using Pareto filtering optimization
if ¢ > random generated number then
Select random movie items to compose P list of movies with length, L as action, a,

else
select the movie items by a; = argmax,(Q(s;, a)) to compose P list of movies with length, L as
action, a;
forp=1toP
for a = recommendation list, A
Evaluate each movie list recommendation by precision (2), diversity (3), novelty (4)
Use Pareto filtering select the final optimal movie list as new_A to user
end for
end for
end if
else

if ¢ > random generated number then
Select random movie items with to compose a single movie list with length, L as action, a;

else
Select the movie items by a; = argmax ,(Q(s;, a)) to compose a movie list with length, L as
action, ay
end if
end if

Set next state, s;41 to current state, s;
for a = recommendation list, new_A
Evaluate each movie list recommendation by precision (2), diversity (3), novelty (4)
if using weighted sum technique as optimization then
r = (wp X precision + wg X diversity + wy X novelty)

else
r = precision + diversity + novelty
end if
Store experience (s, a;, 1, S;+1) in D
end for

Sample random minibatch of transition from memory

if the next state user is new user

Sety; = i
Ve rj+y max Q (¢j+1. aj+1;07)  otherwise

Perform gradient descent step on (y; — O(¢;, aj;9))2 w.r.t parameter 6 in network
Copy weight parameter from evaluation Q-network into target network, Q
if £ > &,,;, then
& multiply with e-decay rate
end if
end for
end for
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Algorithm 2

Input: Group of latent feature input arranged according to timestamp.

Output: List of movie items

1 Initialize parameters and replay memory D to capacity N
2 Initialize weights for the Q-networks, Q and target network Q
3 for epoch =0to M
4 for r+ =1, T in a batch do
5 Observe input state, s, which is latent features
6 if ¢ > random generated number then
7 Select random movie items with probability € to compose P list of movies with length, L as action, a;
8 else
9 Select the movie items by a; = argmax ,(Q(s;, a)) to compose P list of movies with length, L as
action, ay

10 end if

Set next state, s;1] to current state, s;

forp=1toP
13 for a = recommendation list, A
14 Evaluate each movie list recommendation by precision (2), diversity (3), novelty (4)

Use Pareto filtering select the optimal movie list to user
15 r = precision + diversity 4+ novelty
16 Store experience (s, ar, 1, St+1, h) in D
end for

end for
17 Sample random minibatch of transition from memory
18 Copy weight parameter from Q-network into target network, Q
19

Set 7 if the next state user is new user
= ri+y maxQ (¢j+l,aj+l;0_) otherwise

20 Perform gradient descent step on (y; — Q(¢;, a;;0))* w.r.t parameter 6 in network
21 if ¢ > &,,;, then
22 & multiply with e-decay rate
23 end if
24 end for
25 end for

effectiveness of the reward function. This limitation is also
exhibited by GA as the designing process of fitness function
is daunting. Besides that, the learning rate hyperparameter
value is set to static along the training which may lead to
longer time to converge, however, larger learning rate will
cause dramatic effect of learning a sub-optimal set of weights.
Hence, dynamic learning rate should be considered.

VI. CONCLUSION

This work presented two DRL approaches, DQNMORS and
recDQNMORS, capable of tackling MO problem in RS envi-
ronment. These algorithms are proposed to optimize three dif-
ferent objectives or metrics, which are precision, novelty, and
diversity. From the comparison of optimization methods, the
Pareto method was observed to outperform the scalarization
method. The DQNMORS approach was further investigated
by incorporating user latent features as side feature, and
the results show that the additional feature input improved
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the recommendation performance. Furthermore, DQNMORS
was appended with LSTM layer and transformed to recDQN-
MORS for dealing with learning sequential input data, which
regular neural network has difficulty to capture. Although
recDQNMORS results have not achieved better precision
than DQNMORS owing to ineffective input representation
for agent, the ability of optimization is exhibited, and it
achieved better result in terms of novelty and diversity.

As for future direction, more advanced DRL approaches
can be investigated in terms of robustness and complex-
ity. For instance, multiple networks DRL approach such as
Actor—Critic has the potential to increase efficiency since
it has double networks to learn value and policy functions.
This work sets a benchmark for DRL-based approach in
RS application for future research in this topic. Optimizing
more than one objective concurrently will endure at least one
objective, and it is still a main challenge. Lastly, the sequential
rating input required a better technique to capture significant
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TABLE 5. Result for average mean, minimum, and maximum precision of 10 sample users by all the proposed algorithms and the benchmark results.
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3 0 0 1 0 0 6 0 0 1 0 0 7 0 0 8 0 o | ™ 0 0 0 0 0
. 027 [ 7010 [ 040 | 015 [ 0.00 [ 020 | 0.02 [ 0.00 [ 0.10 [ 0.04 [ 0.00 | 030 [ 0.07 | 0.00 | 0.30 | 0.04 | 000 [0.10 | ;'\ 7[70.00 [ 010 [ 001 | 0.00 | 0.10
3 0 0 5 0 0 3 0 0 8 0 0 1 0 0 8 0 o | ™ 0 0 0 0 0
5 048 [7030 [ 070 [ 063 | 0.40 | 0.90 | 0.58 [ 030 | 0.80 | 0.16 | 0.00 | 060 | 0.12 | 0.00 | 0.50 | 0.14 | 0.00 [ 030 | ;"\ <c”| 0.00 [ 040 | 017 | 0.10 | 040
1 0 0 4 0 0 7 0 0 3 0 0 2 0 0 0 0 o |V 0 0 0 0 0
B 054 [ 030 [ 080 [ 0.57 | 040 [ 0.70 | 049 | 030 | 080 [ 029 | 0.00 [ 070 [ 0.27 | 010 [ 0.50 [ 027 [ 0.00 | 050 | e "[ 000 | 060 | 020 | 0.00 [ 050
5 0 0 9 0 0 1 0 0 3 0 0 2 0 0 2 0 o | ™ 0 0 0 0 0
; 079 [7060 [ 1.00 [ 091 | 0.80 [ 1.00 | 0.65 [ 040 [ 0.90 [ 038 [ 0.00 | 070 [ 031 [ 0.00 [ 0.70 [ 035 [ 000 [ 070 | ;,xo7[ 020 [ 0.70 | 024 | 0.00 | 040
9 0 0 2 0 0 3 0 0 5 0 0 1 0 0 2 0 o | ™ 0 0 0 0 0
s 050 | 7030 [ 070 [ 060 | 0.40 | 0.80 | 029 [0.10 [ 0.50 [ 0.17 | 0.00 | 050 [ 0.33 | 0.00 | 0.50 | 0.17 | 0.00 [ 060 | ;\s3 | 0.00 [ 0.40 | 008 | 0.00 | 030
9 0 0 0 0 0 0 0 0 8 0 0 3 0 0 2 0 o |~ 0 0 0 0 0
0 0.08 [ 0.00 [ 0.10 [ 0.07 [70.00 [ 0.10 | 0.00 | 0.00 [ 0.00 [ 0.00 | 0.00 [ 0.10 [ 0.01 | 0.00 [ 0.10 [ 0.00 [ 0.00 | 010 [ o0 "[70:00 | 0.00 [ 0.02 | 0.00 [ 020
1 0 0 1 0 0 0 0 0 4 0 0 0 0 0 8 0 o | ™ 0 0 0 0 0
o | 039 [ 020060 [0.82 [ 0.60 | 1.00 | 0.65 | 040 [ 090 | 022 [ 0.10 [ 0.50 | 030 [ 0.10 [ 0.60 [ 030 | 0.00 | 050 | (,ex [ 010 [ 040 [ 0.14 [ 0.00 | 0.40
7 0 0 2 0 0 8 0 0 2 0 0 5 0 0 8 0 o | ™ 0 0 0 0 0
Avera | 041 [ 023 [ 058 [ 0.50 [ 033 [ 0.65 [ 036 | 017 [ 056 | 019 | 0.03 [ 0.50 [ 0.2 [ 005 [ 046 | 017 [ 0.02 [ 037 [, .o | 004 | 035 [ 012 [ 0.01 [ 031
ge 8 0 0 0 0 0 8 0 0 1 0 0 6 0 0 4 0 o | 0 0 6 0 0
TABLE 6. Result for average mean, minimum, and maximum novelty of 10 sample users by all the proposed algorithms and the benchmark resuits.
PMOEA + ProbS PMOEA + PMOEA + DQNMORS_ws_m | DQNMORS pfm | o \viope of g | FecDONMORS pf_ | recDQNMORS pf_
CF_User CF_Item _u _u m_u m
User
Mea Min Ma | Mea Min Ma | Mea Min Ma | Mea Min Ma | Mea Min Ma | Mea Min | Max Mea Min | Max Mea Min | Max
n X n X n X n X n X n n n
) 191 | 1.68 | 225 | 2.08 | 1.79 | 2.39 | 261 | 2.29 | 3.24 | 296 | 1.68 | 427 | 3.56 | 1.71 | 3.74 | 2.53 | 1.81 | 3.70 | 2.67 | 2.02 | 3.51 | 3.60 | 251 | 5.09
5 4 2 7 5 4 8 2 0 8 4 | 4 1 6 3 5 5 0 8 7 5 7 2 6
) 198 | 176 | 241 | 2.61 | 2.23 [ 297 | 3.19 | 2.81 | 3.67 | 337 | 1.82 | 571 | 3.20 | 1.49 | 5.16 | 2.71 | 1.84 | 4.59 | 2.95 | 1.73 | 3.92 | 3.44 | 251 | 5.09
9 1 1 6 6 3 3 2 9 2 6 3 6 7 1 5 5 5 9 4 2 0 2 6
5| 210 | 183 [ 267 | 258 | 225 | 293 | 348 | 3.08 | 401 | 316 | 1.69 | 494 | 354 | 147 | 3.83 | 247 | 192 | 371 | 317 | 205 | 563 | 366 | 251 | 615
0 8 5 7 9 4 3 1 4 1 5 6 1 4 5 2 3 7 2 3 6 3 2 5
4 | 210|189 | 244 | 242 | 215|303 | 3.07 | 263 | 400 | 3.02 | 174 | 427 | 268 | 1.66 | 400 | 242 | 1.86 | 357 | 3.01 | 205 | 421 | 3.66 | 278 | 5.57
1 1 1 4 1 8 5 1 8 8 3 4 8 3 0 7 9 1 4 4 9 0 4 1
5 1.87 | 1.66 | 2.14 | 221 | 1.98 | 2.45 | 2.75 | 234 | 3.18 | 3.19 | 1.73 | 525 | 2.82 | 1.58 | 421 | 2.46 | 1.81 | 4.13 | 339 | 220 | 4.86 | 339 | 2.51 | 4.89
3 9 8 0 1 9 9 1 8 4 3 5 4 7 8 6 8 1 6 8 2 8 2 6
p 194 | 1.67 | 228 | 234 | 211 | 275 | 3.00 | 2.41 | 3.51 | 3.10 | 2.00 | 427 | 3.57 | 1.67 | 3.63 | 2.56 | 1.81 | 3.93 | 2.80 | 1.82 | 5.85 | 3.56 | 2.51 | 5.13
3 2 9 7 4 1 1 0 1 3 2 4 8 2 9 1 5 7 4 2 4 2 2 2
; 199 | 170 | 2.52 | 220 | 1.98 | 2.66 | 3.50 | 3.15 | 3.85 | 3.04 | 1.76 | 4.13 | 3.19 | 1.80 | 3.90 | 2.48 | 2.03 | 4.10 | 2.92 | 201 | 417 | 3.64 | 2.51 | 6.15
9 0 5 8 5 9 3 1 2 4 0 5 9 8 1 2 9 4 2 8 4 3 2 6
¢ 195 | 157 | 273 | 230 | 2.03 | 2.64 | 3.24 | 272 | 3.75 | 2.96 | 1.75 | 3.89 | 2.71 | 1.64 | 488 | 2.49 | 1.81 | 3.83 | 298 | 2.01 | 3.92 | 346 | 2.69 | 5.09
6 6 9 4 2 8 2 7 4 5 9 6 7 6 0 2 5 3 1 6 2 0 4 6
0 177 | 149 | 219 | 1.78 | 1.63 | 2.03 | 248 | 2.12 | 2.89 | 299 | 1.60 | 3.85 | 3.50 | 1.51 | 3.77 | 2.51 | 1.95 | 3.68 | 3.11 | 2.05 | 5.63 | 3.44 | 2.51 | 4.89
8 9 9 0 3 8 9 6 9 7 0 1 2 1 3 5 7 2 9 6 6 7 2 6
o | 190 | 1.60 | 2.17 | 250 | 2.32 | 290 | 3.58 | 3.28 | 3.87 | 3.02 | 187 | 427 | 2.83 | 157 | 444 | 2.50 | 181 | 400 | 301 | 202 | 609 | 3.69 | 251 | 6.12
1 1 7 9 4 7 1 8 3 3 5 4 0 5 3 7 5 6 7 7 7 8 2 1
Avera | 195 | 1.68 | 238 | 2.30 | 2.05 | 2.68 | 3.10 | 2.68 | 3.60 | 3.08 | 1.76 | 448 | 3.16 | 1.61 | 415 | 251 | 1.87 | 3.92 | 3.01 | 2.00 | 478 | 3.55 | 2.55 | 5.42
ge 7 9 6 7 1 1 4 6 2 6 8 9 5 5 9 7 1 7 6 2 4 8 8 2
latent information in order to enhance sequential decision- APPENDIX A
making. DQNMORS ALGORITHM
See Algorithm 1.
APPENDICES
Appendices A and B present the algorithms of the proposed
DQNMORS and recDQNMORS, respectively, followed by APPENDIX B
experiment results of all proposed algorithms against bench- recDQNMORS ALGORITHM
mark in Appendices C, D, and E. See Algorithm 2.
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TABLE 7. Result for average mean, minimum, and maximum diversity of 10 sample users by all the proposed algorithms and the benchmark results.

PMOEA + ProbS PMOEA + PMOEA + DQNMORS _ws m | DQNMORS pfm | 1oy ORS_pf_m recDQNMORS_pf_ | recDQNMORS_pf_
CF_User CF_Item _u _u - m_u m
User
Mea Min Ma | Mea Min Ma | Mea Min Ma | Mea Min Ma | Mea Min Ma | Mea Min Ma | Mea Min | Max Mea Min | Max
n X n X n X n X n X n X n n
. 2.53 | 179 | 3.80 | 3.09 | 2.00 | 423 | 3.20 | 1.82 | 417 | 584 | 315 | 7.63 | 5.03 | 3.22 | 681 | 479 | 2.89 | 6.84 | 537 | 3.03 | ;o0 | 455 | 165 | 8.54
1 7 9 8 0 2 0 8 8 2 1 8 3 2 9 8 9 0 1 6 ’ 9 0 2
) 225 | 1.78 | 2.84 | 2.01 | 1.10 | 2.87 | 1.34 | 0.51 | 2.41 | 581 | 2.93 | 824 | 478 | 2.88 | 6.98 | 5.64 | 2.85 | 812 | 535 | 270 | 10.01 | 5.13 | 3.01 | 6.97
6 6 8 6 8 3 7 0 9 5 3 3 5 8 4 3 8 7 2 8 3 9 6 4
3 330 | 217 | 449 | 2.02 | 1.35 | 254 | 1.85 | 1.03 | 2.84 | 559 | 3.10 | 858 | 543 | 3.66 | 858 | 5.14 | 1.51 | 7.52 | 526 | 1.52 8552 4.79 1.04 | 7.36
7 7 4 8 8 5 2 1 6 8 5 6 2 6 6 1 3 2 4 6 : 4 1 5
4 3.17 | 1.51 | 404 | 2.80 | 2.10 | 3.62 | 3.25 | 242 | 4.12 | 599 | 2.10 | 851 | 501 | 3.13 | 6.87 | 5.07 | 3.11 | 850 | 5.67 | 3.75 8737 535 | 3.69 | 836
5 9 8 5 2 2 6 9 6 1 6 0 3 8 1 0 0 3 2 9 . 4 4 3
5 290 | 1.80 | 377 | 298 | 179 | 452 | 3.01 | 213 | 416 | 579 | 292 | 7.64 | 505 | 339 | 701 | 5.15 | 2.33 | 818 | 526 | 273 | (o0, | 525 | 301 | 829
3 6 0 7 7 8 1 3 4 9 3 0 2 9 1 9 0 2 3 8 - 6 6 3
6 3.00 | 212 | 3.64 | 3.05 | 205 | 455 | 2.65 | 142 | 3.82 | 5.66 | 4.14 | 834 | 519 | 320 | 7.66 | 5.16 | 3.58 | 773 | 540 | 270 | oo\ | 479 | 1.06 | 823
2 5 2 6 1 1 7 7 3 0 7 5 4 1 5 2 3 2 2 6 : 1 2 5
7 276 | 1.77 | 3.53 | 291 | 2.15 | 356 | 1.90 | 0.66 | 3.64 | 576 | 3.75 | 8.63 | 569 | 3.81 | 945 | 522 | 1.64 | 7.61 | 550 | 3.16 3.449 4.87 1.11 8.37
5 9 2 6 1 8 6 6 7 1 0 2 9 3 1 7 3 6 5 6 ’ 9 3 2
g 3.05 | 218 | 375 | 3.05 | 173 | 2.03 | 225 | 141 | 3.01 | 5.52 | 2.51 | 8.54 | 560 | 3.47 | 7.67 | 484 | 274 | 6.88 | 5.61 | 3.03 | ¢ o | 519 | 301 | 812
5 4 4 3 5 2 3 4 0 3 0 6 5 3 9 4 6 8 3 6 . 6 6 4
9 339 | 254 | 424 | 291 | 179 | 3.78 | 2.66 | 1.52 | 3.65 | 574 | 3.80 | 8.34 | 543 | 3.84 | 775 | 5.62 | 257 | 772 | 521 | 1.52 | .o | 471 | 3.01 | 823
9 2 0 7 6 4 7 9 6 7 5 5 3 7 6 6 9 3 6 6 R I 6 4
10 285 | 1.72 | 3.70 | 3.45 | 259 | 4.64 | 2.11 | 1.35 | 2.96 | 5.82 | 3.88 | 7.79 | 5.46 | 3.67 | 7.63 | 5.19 | 2.76 | 7.64 | 5.45 | 1.36 | 1022 | 490 | 3.01 | 872
7 4 3 0 7 5 7 2 4 3 6 9 6 5 8 8 0 7 7 2 1 8 6 6
Avera | 292 | 194 | 3.78 | 2.83 | 1.87 | 3.63 | 242 | 143 | 3.49 | 575 | 3.23 | 822 | 527 | 343 | 7.64 | 518 | 2.60 | 7.67 | 541 | 2.55 8.504 495 | 236 | 8.12
ge 5 4 4 3 9 8 7 2 3 6 2 9 1 2 6 7 2 8 2 6 ) 9 4 3
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See Table 5. N recommendation—Analysis and evaluation,” ACM  Trans.
Internet Technol., vol. 10, no. 4, pp.1-30, Mar. 2011, doi:
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