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ABSTRACT We explored mined block temporarily holding (MBTH), MBTH with enforce fork
(MBTH-EF), and intermittent MBTH-EF (iMBTH-EF) attacks to understand the effect of selfish mining
on winning rate and fairness from the pool operation perspective. The temporary holding time of the current
mined block provides a pool additional time to begin mining the next block early with MBTH attack. In this
situation, the winning probability increases for the next block, but the pool may risk losing the mined block.
One enhanced method to maintain the winning probability of the held block is to ensure the holding pool
sends out the mined block once it receives the mined block message from the other pools with theMBTH-EF
attack. The explored MBTH attacks differ from the existing selfish miner and pool attacks. The operations
and effects of the MBTH-EF attack are different from stubborn mining strategies and a self-holding attack
integrates selfish and stubborn mining attacks. We propose a mining competition solution that does not
involve actual hash calculation. It entails using one stochastic target hash value for batch racing simulation
to evaluate the holding threshold, holding periods, mining time, mining difficulty, pool sizes, and the rate of
fork occurrences according to the operation data of the Bitcoin system. Accordingly, the dynamic time-by-
time, block-by-block, and pool-by-pool simulations are adopted to study these attacks. We analyzed MBTH
and MBTH-EF attacks as well as evaluated the effects of the win rate on when and how long a block is held.
Because the periodic adjustment of mining difficulty reduces the holding effect, we further evaluated how an
intermittent MBTH-EF (iMBTH-EF) attack model balance the average mining time and mining difficulty
according to the mining difficulty adjustment of a stage. The effect of intermittent holding is examined on
the mining game win rate for a long-term competition. We also identified suitable attack detection methods
for the future work according to the simulation results.

INDEX TERMS Attackmodel, blockchain, consensus, fork, selfishmining, simulation, temporarily holding.

I. INTRODUCTION
In pool-age blockchain mining, the pool operator aggregates
mining results from individual miners by using a collab-
orative strategy [1]–[3]. The size of a pool is defined by
the aggregated computing power required to generate the
number of hash values per second (denoted as hash rate).
A large pool generates values with a high hash generation
rate; conversely, a small pool generates values with a low
hash generation rate. According to the historical operation
records of the Bitcoin system [4], the hash rate of the
largest pool, which exceeds 18.4% of the entire network,
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is approximately 1.5 times higher than that of the second-
largest pool (12.0%) [5]. If two or more pools cooperate as
an alliance, their shared computing power might be twice that
of any other pool. A high hash generation rate allows pools
to adopt mined block temporary holding (MBTH), MBTH
with enforce fork (MBTH-EF), and advanced intermittent
MBTH-EF (iMBTH-EF) attacks to increase their win rate and
revenue share. Thus, the present study analyzed the effects
of the pool size, holding threshold, holding time, and fork
occurrences on the win rate under MBTH, MBTH-EF, and
iMBTH-EF attacks.

The main purpose of an MBTH attack by a pool is to use
the partial mining time of the current competition period to
search for the target hash value of the next block. The attack
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FIGURE 1. Comparison between mining processes with and without an
MBTH attack.

pool takes the risk of holding a mined block for it to be
capable of directly mining the next block with the mined
target hash value and obtaining additional mining time for the
next block. A longer additional mining time leads to a higher
win probability for the next block. The holding of a block by
a pool affects the mining competition in the following several
blocks. Fig. 1 illustrates an example of an MBTH attack
executed by Pool A that compares normal mining processes.
Block 2 is won by Pool A because this pool has additional
mining time for this block than do other pools. However,
Block 4 is mined by Pool D during the holding time; thus,
Pool A incurs some risk to lose Block 4. In addition, Pool
A withholds Block 5; however, Pool B mines a block at the
same depth as Block 5 when the holding period is completed.
Therefore, a pool incurs some risk when it withholds a mined
block for a certain period because other contestants (miners
or pools) might mine a block at the same depth within the
holding time. The incentive of a mined block might be lost
if other pools successfully mine the block during the holding
period.

The main driving forces of the mining competition are
opportunity, computing power, and a block that broadcasts
all miners as the new head of the blockchain. The principal
elements of the mining competition are (1) transactions that
are generated and broadcast to all the miners, which collect
the transactions into a local data structure known as a block;
(2) the computing power at the disposal of the miners; and
(3) a protocol for extending the blockchain at every miner
such that the blockchains at all the miners are in consensus.
The opportunity factor refers to a set of transactions with a
field of nonce values that can be used to determine a hash
value. Each block has a block header whose fields provide
input to the crypto puzzle.

The term ‘‘mining’’ or ‘‘mine’’ in this work is involved the
repeated computation of the following double SHA-256 hash

function by a miner: s = SHA256(SHA256(n + h + s′ +
Target + Timestamp)), where the concatenation of strings
with symbol ‘+’ that includes a random nonce value n, the
Merkle root of the transactions contained in the block body h,
the previous block target hash value s′, Target, and timestamp.
If a miner firstly computes the hash values, which is small
than Target, the miner is said to have mined a block [6]–[10].
Otherwise, the nonce value is incremented and recomputed
until a target hash value is found for a block. In the pool
concept, a miner has mined a block that means the belonging
pool has mined a block. The hash value range provides the
opportunity to have tens of exponent values such that a
target hash value [which is smaller than the mining difficulty
threshold for proof-of-work (PoW) systems] can be mined to
win a block mining game. The opportunity factor allows a
small pool with low computing power to determine the target
hash value in a few seconds, whereas a large pool with high
computing power might take a long time to search the target
hash value. Given the stochastic nature of the mining game,
any pool can randomly win the mining game on the basis
of luck. A pool might not win the next block competition
even when an MBTH attack is executed. Furthermore, larger
number of pools compete the mining game results in larger
opportunity probability to win the game among pools so that
anMBTH attack is profitable compared to the honest mining.

The MBTH attack differs from the withholding attack
[10]–[20]. The MBTH attack enables a mining pool to mine
the next block directly according to its mined target hash
value and the time spent mining the current block. During
the holding period, other pools are still mining the already
mimed block. Although an MBTH attack aims to set the
holding time to be shorter than the time required by other
pools to determine the target hash values, the crypto puzzle
implies that the probability of mining a block is geometrically
distributed. However, we conducted a simulation of the
mining competition related to the computing power and
opportunity to determine the winning rate. The stochastic
nature of the searching time of contestants affects whether
the attack pool decides to hold the mined block, as described
in Section IV-C.

An MBTH attack should be adopted by a large pool;
however, this attack does not significantly increase the win
rate for large pools because setting the holding period is
difficult. If the holding period is excessively long, the mined
block might be lost; however, if the holding period is too
short, a win cannot be ensured in the mining game for the
next block. MBTH attacks do not provide a considerable
advantage to the holding pool because of the stochastic nature
of the mining process; thus, the effect of these attacks is
limited.

A large pool with high computing power can calculate
higher numbers of hash and nonce values per unit time than
can a small pool with low computing power [21]. Over a long-
term period, a pool with higher computing power has a higher
win rate and, on average, requires a shorter time to mine a
block [5]. Therefore, the risk of a pool losing a withheld block
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decreases if one or more other pools discover a block at the
same depth as the withheld block. In this situation, the attack
pool sends out the mined block by enforcing a temporary fork
within the time-differential broadcast delay. A temporary fork
occurs whenmultiple contestants mine a block approximately
simultaneously [6]. The time differential of approximation
caused by transmission through the peer-to-peer network that
results in the occurrence of a fork is determined within the
broadcast delay [22].

The blockchain determines the winners along the blocks
with the longest branch chains as the competition rule. In the
current version of the Bitcoin system, winners are determined
by the mined blocks along the longest chain comprising at
least six blocks [10], [18], [20]. However, the length of the
branch chain constitutes an incentive metric that provides a
higher winning probability to a larger pool. The enforce fork
attack is beneficial to a large pool when the holding pool
receives the mined block from any other pool. The large pool
uses its advantage to compete for n blocks to win the held
block back. The present study evaluated in detail the effects
of the MBTH-EF attack.

In an MBTH-EF attack, which is an improved version of
an MBTH attack, the loss of a mined block through a fork
chain competition is avoided. TheMBTH-EF attack increases
the win rate of an attack pool, even when the computing
resource share of the pool is less than 50%. This attack
maintains a holding period, which allows an attack pool to
begin mining the next block early; thus, the win probability
of the pool increases. Moreover, the mined block might not
be lost when a fork chain is formed; thus, the win rate of the
pool increases. However, an MBTH-EF attack results in an
increase in the frequency of fork occurrences. Furthermore,
this attack results in an increase in the mining time; thus, the
mining difficulty decreases, and contestants can mine blocks
in a short time, which increases the rate of losing the mined
block.

In the long term, the MBTH-EF attack causes the mining
difficulty to be underestimated because of the holding
times of mined blocks. The holding attack increases the
average mining time such that the mining difficulty tends
to decrease with continuous MBTH-EF attacks. The win
rate decreased with MBTH-EF attacks after several stages
of mining difficulty adjustment because these adjustments
reduced the mining difficulty and shortened the average
mining time. The rate of fork occurrences increased when
holding and fork attacks were continually used. This result
indicates that MBTH-EF attacks cannot be used to maintain
mining advantages over an extended period. Therefore, we
analyzed iMBTH-EF attacks in depth. These attacks are
initiated periodically according to the stages of mining
difficulty adjustment. We assessed the effects of iMBTH-EF
attacks on the average mining time, win rate, level of mining
difficulty, and frequency of fork occurrences for each stage
of mining difficulty adjustment.

An attack pool decides (1) whether to launch an attack,
(2) how long should the attack pool withhold a mined block

while maintaining an acceptable risk of losing the reward of
the withheld block, (3) the duration of the effect of early
mining on the win rate for the next block, (4) whether to
launch an enforce fork attack to reduce the loss rate of
mined blocks, and (5) whether to launch an iMBTH-EF attack
to determine the average mining time and temporary fork
occurrences in each stage of mining difficulty adjustment.
The pool size, mining time, mining difficulty, and rate of
fork occurrences affect the already mined block lost risk
and decisions of a pool regarding the holding threshold and
holding period.

We propose a stochastic target with batch racing for a
mined block MBTH-EF (called STBR-HF) algorithm to
simulate the effects of MBTH, MBTH-EF, and iMBTH-EF
attacks. STBR-HF simulation is designed by adjusting the
average lotto ball drawing rate for a yellow ball (i.e.,
the target ball). A single yellow ball is employed because
the mining space is independent of miners and pools. The
mining competition is complete when the first target hash
value is found. When multiple pools simultaneously mined
the target hash value, the broadcast time of the mined
block is controlled and a temporary fork chain is enforced.
Bitcoin operation log data [5], [23] were used to evaluate the
deviation between the conventional mining process and the
proposed solution. These attacks are worth being simulated
because they change the fairness competition, mining cost-
effectiveness, and the design goal of the system operation.

This paper proposes three novel types of attacks: MBTH,
MBTH-EF, and iMBTH-EF attacks. The main contributions
of this study are as follows:

1) This study analyzed the effect of the MBTH time on
the fairness of the mining competition and the win rate
by controlling the holding threshold and holding period
for the mined block.

2) This study develops an STBR-HF solution for sim-
ulating MBTH, MBTH-EF, and iMBTH-EF attacks
executed by tens of pools by using records generated
by the Bitcoin system.

3) This study examined the effects of adjustments in the
holding threshold and holding period, fork attacks, and
the pool size on the win rate.

4) This study investigated the effects of the execution of
MBTH-EF and iMBTH-EF attacks by amining pool on
the mining time, mining difficulty, frequency of fork
occurrences, and win rate. We also identified suitable
attack detection methods.

The remainder of this paper is organized as follows.
Section II presents a review of the existing relevant literature.
Section III describes the problem model and simulation pro-
cedures. The simulation results and discussion are provided
in Section IV. Conclusions are drawn in Section V.

II. LITERATURE REVIEW
Some studies have investigated the block withholding attack
from the perspective of miners. Dishonest miners withhold
information on full hash outputs—that is, the target hash
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values—instead of immediately sending the mined block
with target hash values to the pool operator. This action
results in the formation of an unfair reward mechanism [3],
[11]–[19], [24]. Block withholding is considered an attack
because the miner observes the reward with their computing
power share from the pool operator but does not report the
target hash outputs for the operator to win the reward in
the blockchain system. The effect of this attack behavior
is negligible because the probability of an individual miner
mining the target hash value is small. This probability is
small because the mining difficulty is adjusted in pool-age
blockchain mining.

Several studies have investigated the withholding problem
when a pool uses its computing power to attack other
pools [13]–[15], [17], [19], [20]. Probability theory has
been employed to investigate this problem in the context of
multiple pools. Moreover, how the attacked pools lose the
mining competition has been determined. Some studies have
examined the withholding attacks of a set of blocks to enforce
the blockchain system in the fork mode. Selfish miners hold a
branch of blocks and enforce fork attacks to win the rewards
of the blocks along the longest fork chain [3], [10], [18], [20],
[25]. The attacking pool possesses a sufficiently large α value
in the mining network to ensure that the blocks mined by it
exist in the main chain; otherwise, the win rate might be low.
Typically, α should be between 1/3 and 1/2.
Qin et al.. evaluated the computational power used by

a pool to attack another pool through block withholding.
They examined attack conditions through the consideration
of two-pool scenario and found that an attack was not
always beneficial for the attacking pool [26]. The researchers
executed a withholding attack with an almost optimal ratio of
computational power for attacking to maximize the reward
for the attack pool. In their solution, multiple mining pools
are not required and the attacking pool holds the mined target
hash values, which are belonged to the attacked pool.

Li et al.. proposed a method based on the detection of
anomalies in the properties of block statistic data to identify
selfish miners. They also detected mining cartels, which
comprise miners that secretly share real-time data with each
other [12]. This workmainly considered the scenario inwhich
a pool uses the MBTH attack to reduce the fairness of the
mining competition. Any pool can launch an attack that can
cause the wastage of other pools’ resources. Large pools
have an advantage in launching attacks because they have
high computing power, which results in a high probability of
successfully mining a block within a short period.

To increase the frequency of block withholding attacks by
selfish miners among multiple pools, Chen et al. proposed
an allocation algorithm for mining pool computing power
to increase pool revenue share. This algorithm allocates the
attack pool members to the target pool and executes block
withholding attacks on the other pools [16]. The researchers
extended the consideration of individual miners to that of
a set of miners. Lee and Kim addressed the problem of
selfish miners by adding the transaction creation time to the

transaction data structure [27]. The transaction creation time
should be reported to all contestants in a blockchain for any
pool to be capable of detecting whether a mined block is
withheld. The methods proposed in these two studies are
based on the concept of holding the mined block. Information
on whether a mining block is held should be reported to
other contestants. Motlagh et al. analyzed the effect of selfish
mining on Bitcoin network performance [10]. By contrast,
this specific type of withholding attack that considers
malicious miners in mining pools, which is a completely
different scenario where holding attack is launched by a
mining pool. The present study focused on the MBTH attack,
in which a mined target hash value is only transmitted to
its pool members and temporarily held by a certain pool.
The held mined block is broadcasted to other pools after the
selected holding period.

A pool can launch an MBTH attack when it has mined the
target hash value for the current competition period. When
this attack is executed, the pool holds a mined block and
does not send it to other contestants immediately so that
the current competition of the mined block is temporarily
incomplete. This mechanism differs from that of a selfish
mining attack [28], [29] and stubborn mining [30], [31].
Malicious miners launch selfish mining attacks to gain higher
block rewards than their fair share. The attacker keeps
discovered blocks secret and publishes the secret chain if it
has one block. The public chain catches up or it has more
than one block, and the lead is reduced to 1 [28]. Selfish
miners securely invalidate compliant miners’ competing
blocks. Over the short term, attackers with less than 25%
of the computational resources can still gain from selfish
mining. There is always a successful selfish mining strategy
that allows the earning of higher rewards relative to honest
mining, regardless of the size of the attacker [29]. However,
over the long term, the computing power of malicious miners
should be higher than the sum of the computing power of
all other contestants. In an MBTH attack, the mined block
in a given period is retained only if the attack pool discovers
the block earlier than a threshold time. An advanced MBTH-
EF attack controls the published time within a holding period
and allows the attacker to receive a block mined at a certain
depth by any other contestant. If the attack causes a fork
chain, any contestants can perform mining in any fork chain
and win a block from the fork chain. A fork chain with a
holding block possesses high computing power and many
contestant pools and has a high probability of winning fork
chain competitions.

Kartik et al.. [30] and Liu et al.. [31] have investigated
stubborn mining problems in which trail-stubbornness and
nontrivial combinations of stubborn mining strategies are
adopted to withhold or transfer blocks. The aforementioned
authors have modeled the lead, equal-fork, and trail-
stubbornness mining problems using Markov chains. Three
parameters, namely the computing power proportion of
the attacker (α), the proportion of honest miners (β), and
the fraction of honest miners that mine on the attacker’s
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fork chain (γ ), are used for modeling the aforementioned
problems. The present study differs from studies on stubborn
mining attacks in three ways. First, studies on these attacks
have considered whether to reveal the private chain and the
number of blocks that must be revealed; however, we revealed
the mined block according to the configured holding period,
and any pool could performmining at a certain depth. Second,
studies on stubborn mining attacks have assumed the winning
rate to be a linear function of the computing power; however,
we found that the winning rate is an exponential function
of the computing power. Third, a high value of γ (e.g., 0.9)
was adopted in the aforementioned studies to achieve a high
performance with stubborn mining attacks; however, in the
present study, we did not rely on γ to win the fork chain.
When the computing power proportion of the attacker (α)
is less than 50%, some risk is incurred to withhold one or
more blocks and one expects to win the following blocks. The
stubborn mining attack method cannot control the value of γ
to mine the attacker’s fork chain.

The proposed simulation solution differs from relevant
numerical analysis and Markov chain models proposed
in the literature [30]. These models exhibit limitations
related to (1) the number of contestants, (2) fork chain
evaluation, and (3) effect of the computing power proportion
on the win rate. Our simulation solution overcomes these
limitations and can be used to study the effects of various
variables, namely the holding threshold, mining time, mining
difficulty, holding period, pool size, and frequency of fork
occurrences, according to the operation data of the Bitcoin
system.

In a mining competition, a blockchain forks (splits) when
multiple contestants mine a block (i.e., determine target
hash values) at the same depth almost simultaneously [19].
In fork after withholding (FAW) attacks, a large attacking
pool has high win rates and withholds several successively
mined blocks. Moreover, an attack pool can broadcast the
held several blocks to cause fork chain attacks [11], [30].
Kwon et al. presented a FAW attack in which a larger
pool has a higher probability of eventually winning the fork
chain. A small pool might be fortunate to win a game;
however, a large pool has a high average win rate for several
blocks [11]. The researchers only addressed cases involving
two pools. By contrast, we examined the holding period under
a given threshold for several pools. The holding threshold
and holding period were set such that the rate of fork
occurrences was relatively low and the presence of FAW
attacks can thus be disguised. The delay by a miner or a
pool operator in broadcasting the mined target block to all
the other contestants reduced its risk of losing the current
mining game and changed the fairness of the block mining
process.

Self-holding attacks have been discussed in [17] and [32].
These attacks combine selfish mining and mined block
withholding. Malicious miners observe the reward from the
reporting block that satisfies the computing power share
threshold of the pool operator and not from the mined

block that satisfies the revenue threshold of the blockchain
system. A malicious miner or pool withholds several mined
blocks and then broadcasts them to the other contestants
to cause the formation of a fork chain on imperfect PoW
blockchain networks. Yang et al.. investigated an imperfect
PoW blockchain system that is subjected to a self-holding
attack. They designed a state-space model to reflect the
various behaviors of malicious miners in the system. The
probability of the occurrence of a three-branch fork is low;
therefore, the aforementioned model is limited to two fork
chains. The main differences between a self-holding attack
and the attacks proposed in this paper are presented in Table 1.
Moreover, the proposed simulation method differs from the
state-space model, and we adopted dynamic time-by-time,
block-by-block, and pool-by-pool simulations to analyze
MBTH-EF attacks.

Some works extended the selfish mining to consider the
revenue share effect on difficulty adjustment algorithms [24],
[33], [34]. Davidson and Diamond generalized the selfish
mining strategy to blockchains with variable difficulty to
measure profit among various cryptocurrencies. A strategy of
intermittent selfish mining is proposed to earn higher reward
than that achieved through honest mining at a relatively low
mining difficulty. If the mining difficulty is decreased, blocks
are mined more often, which enables miners or pools to earn
more Coinbase rewards. They also examined the revenue
share with several difficulty adjustment algorithms used for
several cryptocurrencies.

The mining difficulty is adjusted according to the total
computing power, which affects the block generation cycle
time [4], [35]. Zhang et al. analyzed the factors that
influence the mining difficulty and formulated a framework
for difficulty adjustment [36]. Kraft developed a method for
varying the difficulty [37]. Higher computing power results
in higher mining difficulty, which in turn necessitates the
use of higher computing resources on average to mine a
block. The block generation cycle time is not related to
the mining time. The present study analyzed the effect of
mining difficulty adjustment on the average mining time,
win rate, and fork occurrences caused by MBTH-EF attacks.
Thus, we advanced analyzes the effect on win rate caused by
iMBTH-EF attacks.

Table 1 presents a comparison between the present study
and previous state-of-the-art studies. This study fundamen-
tally differs from those in the literature. For example, the
‘‘withhold’’ attacks described in the previous studies involve
the miner holding the mined block and not broadcasting this
block to its pool operator [3], [11]–[20]. However, the pool
temperately holds the mined target block according to the
launch time threshold and holding period. The win rates
obtained in the present study and relevant previous studies
cannot be fairly compared. This study has examined the
broadcast delay of mined blocks under enforce fork attacks in
which the mined target hash values are held for a reasonable
amount of time. An MBTH-EF attack is unique in that
involves a miner immediately broadcasting a held block to
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TABLE 1. Comparison between related studies.

win back the block and avoid countermeasures when other
contestants mine blocks at the same height as the held block.
Selfish mining involves holding a set of blocks (a fork chain)
and winning the mining game by broadcasting one or more of
these holding blocks. Moreover, the MBTH-EF is extended
to analyze the mining difficulty adjustment effect on mining
time, winning rate, and the rate of fork occurrences.We do not
compare the evaluation results between the proposed attacks
and the selfish mining attacks because the main idea and
attack target are very different.

III. PROBLEM MODEL AND PROPOSED SOLUTION
This section describes MBTH, MBTH-EF, and iMBTH-EF
models and the proposed simulation algorithms designed for
evaluating the effect of these attacks on block mining.

A. MBTH MODEL
Small and large pools with low and high computing power,
respectively, might have similar probabilities of winning the
mining game for one block. However, in the long term, a pool
with higher computing power has a higher probability of
finding the target hash values first. Under similar rates of
opportunity, a larger pool has a higher probability of winning
a fork chain, which covers several mining blocks, with a
higher hash rate value. The holding threshold and holding
period are determined by individual pools. Any pool can
hold the mined target hash values to increase its winning
probability for the next block. The present study considered
two actions: (1) the holding pool loses the game and (2) the
holding pool immediately broadcasts its mined block to
enforce fork attacks when any other pool attempts to mine
the target hash values.

Fig. 1 displays a comparison between a normal situation
and the situation during MBTH attacks. Fig. 1(a) indicates
that in the original mining competition, mined blocks are
broadcast by a miner (who does not join a pool) or the pool
of the block to the other contestants. The blocks broadcasted
by the miner or pool are received by the other nodes after
transmission delays. These nodes use the data in a received
block’s header and block body to (1) validate the received
block and (2) check that the header yields a valid solution to
the crypto puzzle. The term Q denotes a set of mined blocks;
the time used to mine a block q (q ∈ Q) is denoted as tq;
and the mining time format is (min, s) for each pool. Pool A
mines the first block of the mining competition (Block 1) in
the shortest time and broadcasts it to all the other contestants.
After the other pools receive a copy of Block 1, they begin to
mine the next block (Block 2). The length of the competition
period for a block is influenced by the mining time. The
difference in the block discovery time between Pools B
and C is shorter than the broadcasting delay; therefore, the
blockchain splits. The blockchain split is propagated to all the
contestants. The fork competition is resolved when the next
block is mined. The contestants of the blocks in the longest
branch win the mining rewards after n blocks.
In the aforementioned mining scenario, Pool A launches

an MBTH attack if it mines Block 1 in a shorter time than
the holding threshold (e.g., 8 min, which is shorter than the
average Bitcoin mining interval). The mined block is held for
2 min by the miner (according to the average holding period),
and the mined blocks are then sent to the other pools. The
average holding period is set as 2 min for the sum of the
holding threshold and holding period to be 10 min, which is
the average Bitcoinmining interval. As displayed in Fig. 1(b),
Pool A holds the hash values for Block 1 between t1 and t ′1,
and this time interval is denoted as H . Pool A begins to mine
Block 2 at t1. At this time, Pools B, C, and D are still mining
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Block 1. At t ′1, Pool A broadcasts the held Block 1 to all the
contestants to maintain its winning state for Block 1. Pool A
begins to calculate appropriate hash values for the second
block (Block 2) 2 min before the other pools do. Thus, the
probability of Pool A winning the next block increases.

In a regular mining process, Pool B mines Block 2
[Fig. 1(a)]. However, when an MBTH attack is executed by
Pool A, it starts mining the second block (Block 2) 2 min
before the other pools do. The mining time of Pool A for
Block 2 is 6 min 10 sec, which is equal to the difference
between the actual mining time (8min 20 sec) and the holding
time (2 min). The aforementioned mining time is shorter
than the holding threshold; thus, Pool A launches a holding
attack for Block 3. However, in this case, the mining time
for Block 3 is longer than the holding threshold (e.g., 8 min).
Therefore, Pool A terminates the holding attack for Block 3.
Subsequently, Pool A launches a holding attack for Block 4
because its mining time for this block is shorter than the
holding threshold. However, Pool D mines Block 4 during
the holding time (e.g., mining times of 7 min 50 sec and
10 min for Pools D and A, respectively, with a holding period
of 2 min 10 sec). Consequently, Pool A loses Block 4 because
of Action 1. Pool A might take Action 2 to broadcast Block 4
immediately at t ′7, thereby causing a blockchain split. The
outcome of the subsequent mining race is determined by the
following n blocks.

All the contestants except the one that initiates an attack
end up wasting their computing power during the block
holding period if they cannot mine the next block during
this period [e.g., t2 −t1 in Fig. 1(b)]. This phenomenon is
attributable to the fact that a miner must observe a block
at depth n before appending a block at depth n+ 1 to its
blockchain. After a contestant broadcasts a mined block to
the other contestants, the other contestants stop mining their
candidate blocks and begin mining the next block at times
such as t2, t4, t6, and t8. However, under an MBTH attack,
the current block is broadcast several minutes after being
mined (denoted by H ). The other contestants end up wasting
resources by attempting to mine an already mined block
during the holding period (e.g., t1 − t ′1 or t3 − t

′

3). Moreover,
the other contestants are late in mining the next block.

B. FORK MODEL
The holding pool uses the broadcasting time deviation [22]
to hold the mined block and broadcasts the block only when
another pool has mined and broadcasted the mined block
[e.g., the holding of Block 4 in Fig. 1(b)]. In this situation,
if the holding pool loses the held block, it can take the
advantage of its high computing power to win back the held
block in the following several blocks because the fork chain
enables it to extend the number of competition blocks. The
blockchain system enters the fork phase, and the length of the
fork chain in the following n blocks determines the winners,
where n is set as six in the Bitcoin system. Fig. 2 presents
an example of forking in which Pools A and B mine Block
H+ 1 simultaneously. In this scenario, a set of branch blocks

FIGURE 2. Example of a fork chain operation.

{A, A. . .E} is reserved for the following blocks because the
length is the greatest according to the shortest time of the
latest block. The holding pool wins the competitions along
the branch chain, which covers several blocks, including
Block H+ 1.
In the example illustrated in Fig. 2, Block H is mined

at T0. A fork is generated at T0+ 10:10, and this fork causes
Pools A and B to broadcast Block H+ 1, which is the mined
block, within the broadcasting time. The other pools select a
subchain to mine the next block. We considered the scenario
in which a pool selects a fixed subchain, which includes a
mined block. Thus, Pools A and B do not use other subchains
from the ones they selected to increase their win rates for
Block H+ 1. The other pools are free to mine the selected
longest subchain to increase their winning probabilities in the
following several blocks. Pools E and F select one subchain
each when they receive the mined target hash value of Block
H+ 2 from Pool C at T0+ 19:50. However, Pool A mines
Block H+ 3 before Pool B does; therefore, Pools D, E, F, G
and shift, beginning to mine Block H+ 4 according to the
observed hash values from Pool A. Two pools mine Block
H+ 4 simultaneously such that a fork is generated in the
{A, A, A} subchain. The computing power is distributed
along three fork chains, which increases the average mining
time. Finally, Pool D mines Block H+ 6 at the earliest time
so that all the other pools continually mine Block H+ 7
along the {A, A, A, D, A, D} subchain. Other subchains
are eliminated according to the consensus mechanisms of the
Bitcoin system.

A large pool has a high probability of winning a subchain.
Therefore, Pool A enforces a temporary fork after it receives
the target hash value mined by other pools. As presented
in Fig. 2, Pool A wins Block H+ 1 but might lose Blocks
H+ 2 and H+ 3. The average mining time of Pool A is
shorter than those of the other pools; thus, Pool A has a
high probability of winning back held blocks after BlockH+
6. After Pool A wins back a held block, its probability of
winning the subchain increases due to the presence of fewer
contestants. Only five pools compete for Block H+ 4 on
the {A, A, A} subchain. We evaluated a long-term mining
competition in which a large pool has a high average win
rate for thousands of mining blocks by using the proposed
solution.
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FIGURE 3. iMBTH-EF on–off attack model with a stage of mining difficulty
adjustment.

C. IMBTH-EF MODEL
iMBTH-EF attacks are extensions of MBTH and MBTH-EF
attacks that cover several stages of mining difficulty adjust-
ment. A binary decision variable iMBTH-EF_flag is set as
‘‘on’’ or ‘‘off,’’ indicating initiation and noninitiation, respec-
tively, of MBTH and MBTH-EF attacks. Fig. 3 illustrates
the mining difficulty adjustment stage based on the average
mining rates of 2016 blocks. Given a block height H0 that
the adjusted mining difficulty is fixed for the following
2016 blocks in each stage. The decision variable of an
iMBTH-EF attack can be set at any time. We examined
the effects of an attack on the stages of mining difficulty
adjustment and the influences of this adjustment on the
average mining time, win rate, and fork occurrences.

We considered that S stages of mining difficulty
adjustment and a regular on–off cycle are used in iMBTH-EF
attacks. iMBTH-EF attacks involve the execution of
MBTH-EF attacks according to the mining difficulty. The
average mining time is overestimated under the execution
of holding attacks. In this situation, iMBTH-EF attacks are
launched to determine the average mining time and adjust
the mining difficulty for the next stage. We employed the
iMBTH-EF model to evaluate the win rate, mining time, and
fork occurrence effects on the normal and abnormal average
mining time and difficulty.

D. PROPOSED SOLUTION
In this study, the performance of different attacks was evalu-
ated through the simulation of a scenario inwhich a fork chain
is formed and an unlimited number of contestants. Although
the block mining time can be approximately modeled as
a random variable sampled from a homogenous Poisson
distribution [39], MBTH,MBTH-EF, and iMBTH-EF attacks
change the original block mining time. The proposed solution
is applied to a mining game is simulated with a set of
balls. Each ball represents a hash value that is not actually
calculated using the SHA-256 algorithm [40]. A sequence
of numbers on each ball represents the search sequence of
a block with a nonce value, a time stamp, and a set of
transactions. One yellow ball, which represents the target
hash value, and m−1 black balls, which represent unsatisfied

hash value, are considered. The repeated computation of the
SHA-256 function by a miner by using block contents is
an independent event in which two block contents might
have the same hash value. However, the probability of two
equivalent hash values being obtained from a large hash value
space is approximately 0; therefore, the sampled balls without
replacement in this study. The number of balls m represents
the mining difficulty that the larger the value of m, the
higher the mining difficulty. After several mining difficulty
adjustments, the deviation between the simulated results
obtained with the proposed algorithm and the historical data
of the Bitcoin system was less than 0.69%. The STBR-HF
algorithm was designed for a series of simulations.

The number of balls for each pool is initialized according to
the historical data for the previous n difficulty adjustments in
the Bitcoin system. Themining times in the proposed solution
and Bitcoin system are different because the mining space is
scaled down to one target hash value. The main reasons with
only one target hash value are that (1) a one-block mining
game ends once a pool receives mined block and (2) the time
complexity to determine the mining time for each miner or
pool is O(1), as proved in Lemma 1. The mining difficulty
of the Bitcoin system is varied by adjusting the number of
leading zeros according to the observed mining time for
each set of the last 2016 blocks. The adjustment function is
expressed as follows: new difficulty= old difficulty× actual
mining time for the last 2016 blocks/20160 min.

The aforementioned adjustment depends on the difference
between the actual mining time and average simulation
time; specifically, the adjustment ratio is equal to the ratio
between the actual mining time and the simulation time.
The aforementioned ratio is based on the same concept
as the mining difficulty adjustment equation, which relates
the historical mining time and mining difficulty records of
the Bitcoin system [23]. Algorithm 1 is a pseudocode for
adjusting themining difficulty tomaintain the averagemining
time 0 according to the normalized computing power cpq,
where the pool p ∈ P mines the block q ∈ Q. The number of
pools is denoted by |P|. Accordingly, the mining difficulty is
determined by the number of balls m. The simulation results
obtained with Algorithm 1 were compared with the historical
records of the Bitcoin system [23] to determine the deviation
between the simulated results and historical records of the
Bitcoin system.
Lemma 1: The time complexity is O(1), which is to

calculate the time taken by the pool to draw the yellow ball
(i.e., the target hash value).

Proof: The mining space for the SHA-256 function has
a size of approximately 1077, which represents a massive
space for the current mining speed of approximately 1020

hash rate. Even when the mining speed is increased to 1030

hash rate, the probability of two block messages generating
the same hash values is almost 10−47 ≈ 0. The mining
process with the SHA-256 function is sampled without
replacement, and the sampling events are independent and
nonidentically distributed. Accordingly, we propose the
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simulation of a stochastic mining process by using balls
with random sequential values. One yellow ball is randomly
distributed among black balls in each mining pool, and all
the balls are numbered sequentially to represent the order
of the mining process. The stochastic target ball with a
stochastic mining process will result in randomly sequential
ball values. Therefore, the mining time can be calculated as
the number of sequential draws of yellow balls δpq divided
by the hash rate cpq of each pool p ∈ P mines the block
q ∈ Q. The time complexity to determine the mining time
is O(1). �

tpq =

⌈(
α × δpq

)
cpq

⌉
,∀p ∈ P, q ∈ Q (1)

where the variable α denotes the weight of the gap adjustment
between the proposed simulation solution and the actual
Bitcoin system. The value of α is determined by conducting a
simulation with Algorithm 1 and adjusting the actual Bitcoin
system over J iterations.
Algorithm 2 is a pseudocode for the proposed STBR-HF

algorithm, which uses balls to simulate a mining game with
MBTH, MBTH-EF and iMBTH-EF attacks. The attacking
pool launches MBTH-EF attacks only when the iMBTH-
EF_flag decision variable is set as ‘on’. In the simulation
with Algorithm 2, the hash outputs and validation results are
assumed to be indicated by the number sequences on the balls
in a pool. The target valid ball, namely the yellow ball, might
be located at different positions because the message and
transactions listed in a block of the holding pool are different
from those listed in the blocks of other pools. A pool with
higher computing power can draw a larger number of balls
per unit time. If a ball drawn by a pool is valid, the pool wins
the reward. If a pool holds the mined block according to the
iMBTH-EF_flag, the mining time is equal to the mining time
minus holding time of previous block. When multiple pools
simultaneously draw the valid ball or when any other pool
mines the block during the holding period, the mining time of
the holding pool is changed to the mined time by other pool.
The attacking pool broadcasts its mined block after receiving
a block mined by any other pool. Therefore, a fork chain
is generated. Only the longest branch is retained when the
length of any branch is longer than n. Subsequently, the block
winner on the branch is determined. Successful metric win
rates wps are calculated according to the number of blocks
mined for each pool p ∈ P per stage s ∈ S. Once the winner
of a block is identified, the reward is calculated according to
the pool reward policies.

The main features of the proposed simulation solution
include: (1) the mining process for each hash value process
can be adopted for any size of computing power, (2) the
large mining space results in mining independent among
mining pools for various number of mining pools, (3) the
competition results are determined by one block helps to
evaluate relevant fork chain attack, and (4) the competition
process covers several mining difficulty stages to simulate a

Algorithm 1 Algorithm for Mining Difficulty Adjust-
ment
1 Input: a set of contestants P, the normalized computing power cpq, number of

evaluated blocks Q, rate threshold of fork chain r , and total balls m.
2 Output: the number of balls m, the number of rounds for each block wq.
3 Set the number of balls m based on the Bitcoin system
4 for j = 0 to J do // denote J the number of learning iterations
5 for q = 0 to Q do // to run each block q ∈ Q
6 for p = 0 to P do // each contestant p ∈ P
7 δqq ← m×random(0,1) //follow exponential or geometric

distribution

8 tpq ←
⌈ (
α×δpq

)
cpq

⌉
// calculate tpq time to find a yellow ball;

9

end for // p ∈ P
10 wpq ← min(tpq) // among contestants P;
11 at ← at + wq; // subtotal amount of mining time at .
12 if fork == FALSE then // not in fork chain status
13 if |wpq| == 1 then // only one winner in this block q
14 wp ← wp+ 1 // increase 1 successful block for winner p;
15 else
16 fork← TRUE
17 fork_len← 1 // the length of fork chains;
18 af ← |wpq| // record the number of fork chains;
19 mark_wpf ← assign p to fork chain f in wpq
20

end if
21 else // if fork == TRUE then
22 for f ∈ af do
23 if |wpq| > 1 and p ∈ mark_wpf then
24 af ← af + |wpq| // increase the number of fork

chains;
25 mark_wpf ← assign p to fork chain f in wpq
26 mark the winner p in fork chain f ;
27

end if
28

end for
29 fork_len← fork_len + 1
30 mark the winner p in fork chain f ;
31 if (fork_len > x) then // to determine winner if x >= 6
32 record the winner along the longest chain f
33 wp ← wp+ 1 // increase 1 successful block for winner p;
34 reset af , fork_len, fork // not in fork chain status
35

end if // fork_len > x
36

end if // fork == FALSE
37

end for // q ∈ Q
38

end for // j ∈ J
39 simulation_time← mining_time / |Q|
40 m← m×(1 - (simulation_time – actual_timej) / simulation_time)

long competition scenarios. These features can be adopted
to simulate control variables or functional extensions in a
PoW consensus mechanism so that the proposed algorithm
can be applied to other attacks with similar favors to these
attacks.

The limitations of the proposed solution are as follows:
• If the computing power proportion of a pool is
insufficient, the simulation error is high.

• A finite number of balls are included without replace-
ment in the simulation for a miner or pool to be capable
of identifying the target yellow ball within a finite time.
The proposed simulation solution is inapplicable in the
case of an extremely long mining time.
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Algorithm 2 STBR-HF
1 Input: a set of contestants P, number of evaluating blocks |Q|, normalized

computing power cpq, actual mining time 0 [23], computing power cpq [23],
number of balls m, and attacking pool ep.

2 Output: Win rate wp, rewards γp and rpi for pool p and miner i;
3 total_balls m =Mining_Difficulty_Adjustment (0, cpq) // call Algorithm 1;
4 iMBTH-EF_flag← TRUE // change over iMBTH-EF_flag to on or off
5 for s = 0 to S do // to run S mining adjustment stage;
6 for q = 0 to Q do // to run each block q ∈ Q
7 for p = 0 to P do // each contestant p ∈ P
8 δpq ← m×random(0,1) //follow exponential or geometric

distribution

9 tpq ←
⌈ (
α×δpq

)
cpq

⌉
//the number of time slots to find a yellow

ball;
10 If iMBTH-EF_flag == TRUE then
11 tpq = tpq–pre_block_holding_time(p).
12

end if
13

end for // p ∈ P
14 wθp ← min(tpq) // among contestants P;
15 if iMBTH-EF_flag == TRUE and ep /∈ wθp then
16 tpq ← tθp
17

end if
18 wθp ← min(tpq)
19 if fork == FALSE then // not in fork chain status
20 if |wpq| == 1 then // only one winner in this block q
21 wp ← wp+ 1 // increase 1 successful block for winner p;
22 else
23 fork← TRUE
24 fork_len← 1 // the length of fork chains;
25 af ← |wpq| // record the number of fork chains;
26 mark_wpf ← assign p to fork chain f in wpq
27

end if
28 else // if fork == TRUE then
29 for f ∈ af do
30 if |wpq| > 1 and p ∈ mark_wpf then
31 af ← af + |wpq| // increase the number of fork

chains;
32 mark_wpf ← assign p to fork chain f in wpq
33 mark the winner p in fork chain f ;
34

end if
35

end for
36 fork_len← fork_len + 1
37 mark the winner p in fork chain f ;
38 if (fork_len > β) then // to determine winner if β >= 6
39 record the winner along the longest chain f
40 wp ← wp+ 1 // increase 1 successful block for winner p;
41 reset af , fork_len, fork // not in fork chain status
42

end if // fork_len > β

43

end if // fork == FALSE
44

end for // q ∈ Q
45

end for // s ∈ S

46 wps ← wp/|Q|

IV. SIMULATION AND DISCUSSION
A series of simulations were conducted by varying the pool
size, temporary holding threshold, and holding period to
examine the effects of these factors on the win rate, mining
time, mining difficulty, and rate of fork occurrences.

TABLE 2. Evaluation environment and parameters.

A. SIMULATION ENVIRONMENT
The simulations were conducted using Google Colab as a
running platform and Python as a general-purpose program-
ming language. The web-based development environment
and the program is run on the cloud computing system
by using Nvidia K80, T4, P4, or P100 GPU processing
hardware. Table 2 presents the simulation parameters related
to the Bitcoin system [23]. We randomly selected a mining
difficulty adjustment stage with a block depth of 622 944
(between the depths of 546 336 and 645 120). The mining
difficulty is equal to 13.91T. The simulation solutionmatched
the number of balls ten times of mining difficulty 10 ×
13.91× 1012× 232, which is set as the initial number of balls.
This value was then iterated in Algorithm 1 to narrow the
gap between the simulated and actual mining difficulty of the
Bitcoin system. Finally, the mining difficulty was simulated
for the following series of evaluations. The computing power
of a pool is presented in [5] and the hash rate of the entire
network was 99.59 EH/s. The hash rate is evaluated as the
number of balls drawn per second by the complete system.
The average mined block broadcast delay (η), which has an
exponential distribution. The batch time is compared with the
broadcast delay to check whether the blockchain splits. The
blockchain splits when the batch time and broadcast delay are
equal. The batch time is aggregated to determine the mining
time for each block. A series of simulations were performed
using various parameters to investigate MBTH-EF attacks.
The main evaluation metric was the win rate. The win rate of
a pool is equal to the number of blocks won by a pool divided
by the total number of simulation blocks |Q|. We adopted
three metrics, namely the average mining time per difficulty
adjustment (over 2016 blocks), mining difficulty, and rate
of fork occurrence, to understand the effects of MBTH-EF
attacks.

Several control variables, including the pool size, holding
threshold, and holding period, were employed to evaluate
the effects of MBTH attacks. For example, we investigated
the effect of the win rate on pools of various sizes under
a fixed holding threshold and holding period. When the
holding threshold was fixed at a high level, the possibility
of executing an MBTH attack decreased. The holding period
was adjusted according to the time used for successfully
mining a block. A longer mining time led to a higher risk
of losing the mined block because the probability of the other
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FIGURE 4. Simulation time bias and computing power distribution.

contestants mining the block increased. A higher probability
of initiating a holding attack resulted in a lower holding
time for announcing the mined block. The mining difficulty
affected the influence of the mining time on the holding
attack.

B. EVALUATION OF BIAS IN THE PROPOSED SOLUTION
Fig. 4 displays the average simulation time, which is
comparable with the mining time in the actual mining records
of the Bitcoin system. The simulation bias for a blockchain
height of 546 336–645 120 was 0.69%; thus, the proposed
STBR-HF algorithm could accurately simulate the Bitcoin
system. The mining difficulty was regularly adjusted, and the
adjusted value was maintained for an average of 600 s with
the last 2016 blocks. The computing power of the top 20 pools
randomly varied by 5%, 10%, and 15% [5]. The results
indicated that computing power variations for an individual
pool did not significantly affect the mining time. Major
fluctuations in the mining time were caused by variations in
opportunity and in the network computing power.

Fig. 5 displays the evaluation results for successful block
mining by the top 17 mining pools. The other small pools are
included in the ‘‘Unknown’’ group. The 1-week evaluation
data for the top 17 pools indicated that small pools did not win
the game during the evaluation period. For the top 10 pools,
the difference in the number of mined blocks between the
simulation and system operation results was less than 8%.
The gap between the top 10 and top 17 pools was large
because the number of mined blocks was small. Overall,
the results indicate that the proposed simulation method is
only suitable for pools that can mine more than 30 blocks
within the given evaluation period. An acceptable difference
between the results of the proposed simulation method and
those of the actual Bitcoin system is ≤3%. The computing
power percentage of a pool or the number of mined blocks
should be sufficiently high to achieve such a low difference.

C. SIMULATION OF MBTH ATTACKS
Fig. 6 presents the simulation results regarding the win rates
of the pools that executed MBTH attacks. The rates of

FIGURE 5. Deviation between the simulation and system operation
results for the number of blocks mined by the top 17 pools in 1 week
(block heights of 649 642–650 683).

winning were determined when pools engaged in temporary
holding and won or lost blocks. The probability of executing
temporary holding is equal to the number of held blocks
divided by the number of simulation blocks. The probability
of executing temporary holding and winning is defined as the
number of blocks won after holding divided by the number
of simulation blocks. Moreover, the probability of executing
temporary holding and losing is defined as the number of
blocks lost after holding divided by the number of simulation
blocks. The win probability is the most crucial indicator of
pool revenue. Other probabilities, such as the frequency of
fork occurrences, are used to examine the effects of different
factors on the win probability and MBTH attacks.

Although small pools can initiate MBTH attacks, the
probability of such attacks is low because the win rates of
small pools are low and the average lengths of their holding
periods are short. Consequently, the aforementioned attacks
have a small effect on the following blocks. For a large pool,
the rate of mining time lower than the holding threshold and
win rate, which exert effects on the revenue share, are high.
However, the results displayed in Fig. 6 indicate that the
holding threshold and holding time do not significantly affect
the win rate. This result is obtained because of the stochastic
nature of the mining game, which may result in some pools
having a short mining time for the current block but a long
mining time for the next block and other pools having the
opposite—that is, a longmining time for the current block but
a short mining time for the next block. The holding period is
not easy to control for increasing the win rate. If the holding
period is excessively long, other pools might have a higher
probability of winning the held block. Figs. 6(a) and 6(b)
demonstrate the effect of the holding period on the win rate.
The win rate is unaffected by changes in the holding threshold
and holding period, which is partially attributable to the fact
that the rates of winning and losing are comparable under
MBTH attacks.

Although the computing size is four times larger than the
second pool, the improvement in thewin rate is not significant
because the original win rate is high when no holding attack
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FIGURE 6. Win rates of pools with varying computing power engaging in
MBTH attacks under different holding thresholds.

is launched. The increasing win rate is small although the
probability of executing temporary holding and winning

is considerably higher than those of executing temporary
holding and losing. The original winning probability of the
next block is approximately 0.85. Figs. 6(c) and 6(d) indicate
that the probability of winning a block, which might be lost
even when no attack is used, is low. In summary, a holding
attack should be adopted by a large pool. However, this attack
does not considerably increase the win rate for large pools.
MBTH attacks do not significantly affect the win rate because
setting the holding period is difficult. If the holding period is
overly long, the mined block might be lost; however, if the
holding period is overly short, a win cannot be ensured in the
mining game for the next block.

D. SIMULATION OF MBTH-EF ATTACKS
Simulations were performed to evaluate how MBTH-EF
attacks affect the win rate. The enforce fork is used when
the holding pool receives the block mined by any other pool.
Subsequently, the holding pool broadcasts its mined block to
launch an enforce fork attack. Fig. 7 presents the simulation
results for the evaluation of MBTH-EF attacks under varying
computing power allocations among five pools. The holding
threshold was set as 6000 s to ensure that the evaluated pool
always executed an MBTH attack. The holding period was
changed from 0 to 500 s. At a holding time of 0 s, no holding
attack was used; in other words, a general pool operation
was launched. The results obtained were the baseline for the
comparison of the evaluation metric settings. As shown in
Fig. 7(a), the win rate achieved with the MBTH-EF attack
was low even when the holding period was long. Fig. 7(b)
demonstrates that an increase in the holding time caused an
increase in the win rate. When the holding time increased,
the curve corresponding to executing a MBTH-EF attack
and winning flattened (denoted as ‘Using and win’) but
the rate of fork occurrences increased, which allowed the
holding pool to win back blocks mined by other pools.
Figs. 7(c) and 7(d) indicates that the computing power of the
holding pool was sufficient for achieving a high win rate. The
ratio of computing power to the whole network is not as high
as the win rate; however, the win rate of a pool increases
from 0.54 to 0.63 (a 16.67% additional revenue share) with a
computing power share of 45%, the highest in a set specifying
the computing power held by each unit {0.45, 0.175, 0.15,
0.125, 0.1}. The win rate increased when the rate of ‘Using
and win’ decreases, but the rate of ‘Using and lose’ increases.
Under a fork attack, these lost blocks failed and the holding
pool won back some mined blocks. If a large pool is four
times larger than the other pools, the increase in the win rate
under the aforementioned scenario exceeds 27%.

E. SIMULATION OF HOLDING AND ADJUSTMENT
Fig. 8(a) displays the variations in the holding time with the
average mining time for a fixed computing power allocation
among pools. Before mining difficulty adjustment, a longer
holding threshold and holding period resulted in a longer
average mining time. The average mining time decreased
with adjustments in the mining difficulty. The averagemining
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FIGURE 7. Win rates of five pools with varying computing power
allocations that executed MBTH-EF attacks.

FIGURE 8. Effects of MBTH-EF attacks in several stages of mining
difficulty adjustment.
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time approached 10 min when Algorithm 1 was employed.
When the holding strategy was used, the mining time was
longer than that when attacks were not launched. The mining
difficulty was lower than the actual total computing power
for the next stage when the MBTH-EF is launched in
this stage. Fig. 8(b) indicates that the mining difficulty
decreased following mining difficulty adjustments. After the
first difficulty adjustment, the mining difficulty decreased to
half of the initial difficulty.

Fig. 8(c) indicates that the win rate is higher than the pool
without attack when the threshold and holding period are long
(e.g., a holding period of 800 s). The win rate decreased after
several stages of mining difficulty adjustment because these
adjustments reduced the mining difficulty and shortened the
average mining time. As shown in Fig. 8(d), that the rate of
fork occurrences increased when holding and fork attacks
were continually used. This result demonstrates that such
attacks cannot be used to maintain mining advantages over
an extended period.

When a MBTH-EF attack is executed, the mining time
increases such that the mining difficulty does not exactly
reflect the computing power. Although lower mining diffi-
culty results in lower computing power, MBTH-EF attacks
are adopted by few pools when the other pools are continually
mining. Therefore, when using such attacks, the mining
time increases but the required computing resources do
not decrease. Furthermore, lower mining difficulty would
reduce the mining time of all pools other than the holding
pool. In this situation, the probability of winning a block
against the competition by using a MBTH-EF attack is
reduced.

F. SIMULATION OF INTERMITTENT ATTACKS
MBTH attacks increase the mining time per block, which
results in low mining difficulty. The average mining time for
each block is longer than the mining time that causes the
difficulty adjustment underestimate. Low mining difficulty
results in the availability of a short time for determining the
target hash value. Because of the short holding threshold and
holding period, the attacking pool exhibits a low win rate
after several difficulty adjustments. Thus, iMBTH-EF attacks
are adopted to maintain a high win rate intermittently during
mining difficulty adjustment.

Fig. 9 depicts the simulation results for the effects of
MBTH-EF attacks on the mining competition cycle for each
block during several stages of mining difficulty adjustment.
Fig. 9(a) indicates that the mining time decreased with the
execution of MBTH-EF attacks. MBTH-EF attacks lead to a
long mining time; however, the mining time is still shorter
than the mining time observed without MBTH-EF attacks
[Fig. 9(b)]. The aforementioned result is mainly ascribable
to mining difficulty adjustments. Therefore, the average
win rates are high at block heights of 2016, 6048, and
10 080. Fig. 9(c) indicates that iMBTH-EF attacks resulted

FIGURE 9. Effects of the attack mining competition cycle for each block
on various parameters under several stages of mining difficulty
adjustment.
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in high win rates under normal mining difficulty for the
stages between block heights of 2016–4031, 6048–8063,
and 10 080–12 095. These results are consistent with those
presented in Fig. 8(c). Fig. 9(d) indicates that the rate of
fork occurrences increased when iMBTH-EF attacks were
executed. The rate of fork occurrences was approximately
half the win rate achieved with MBTH-EF attacks when a
pool always used MBTH attacks, and the longest holding
period was 800 s. A long holding period resulted in an
approximate increase of 47% in the frequency of enforce fork
attacks, which increased the win rate by approximately 0.21.
Extended MBTH-EF and iMBTH-EF attacks significantly
increase the win rates within one and several periods of
mining difficulty adjustment, respectively. However, the
additional revenue is low when the computing power share
of a pool is higher than 90% because the win rate is already
higher than 0.9. The simulation results indicate that the ratio
of fork occurrences was almost zero when no pool launched
a MBTH-EF attack.

G. DISCUSSION
The objective of a pool in executing a block holding attack
is to compute the next block earlier than other pools can.
One method for determining whether a pool has adopted
an MBTH-EF attack is to check whether a difference
exists between the mining completion time for the previous
block and the transaction time included in the next block.
However, the log data of Bitcoin operation do not include
the transaction request time. The transaction request time is
the time when a user launches (or requests) a transaction.
However, the Bitcoin operation log data used do not include
the transaction request time.

If the checking of the mining completion time fails for one
mined block, one mined block does not affect the proposed
method that the statistical data are observed to cover a set
of mined blocks. If the checking of the mining completion
time fails for several mined blocks, the honest miners or
pools detect the malicious miner and reach consensus in not
accepting or ignoring the mined blocks, which form a stale
branch. The details of the proposed detection method are set
as future work.

A large pool has a high win rate when it initiates MBTH
attacks. Although other pools might successfully mine the
current block during the holding period, the enforce fork
attack provides a large pool with a high probability of winning
a fork chain. If a pool can mine a block early and hold this
block, it can obtainmore time than other pools can tomine the
next block; in other words, the holding pool can mine the next
block faster than the other contestants can. Consequently,
the next third block is still stay in extra early mining time
at a starting point. Numerous iterations are conducted until
the mining time exceeds the holding threshold. However,
as indicated in one of the experiments, this strategy does not
provide a considerable advantage to the holding pool because
of the stochastic nature of the mining process. A pool might
observe a mined block at heights of H and H+ 1 over a short

and long time, respectively; thus, the effect of MBTH attacks
is limited.

From the viewpoint of the blockchain system, MBTH
attacks result in an unfair mining competition. These attacks
can reduce the mining difficulty and thus the required
computing power. Moreover, they can cause the wastage of
computing resources by other contestants as they continue
to mine an already mined block held by the attacking
pool. Changing mining rules to ensure that a mined block
is immediately broadcast by the holding pool to all other
mining contestants constitutes a pivotal issue. A pool can
launch a holding attack to begin mining the next block
earlier than other pools can and to extend the number of
competition blocks with fork attacks. Such an attack may be
advantageous for large pools. However, it causes an unfair
mining competition and a wastage in the computing power
of the other pools, which aside from searching for an already
mined block begin searching for the next block later than the
holding pool does.

A pool that executes MBTH-EF attacks might broadcast
the mined block after it receives a mining message from
any other contestant. In this regard, a fork attack can reduce
the loss rate of held blocks. When MBTH-EF attacks are
executed, the blockchain system determines whether the held
block is one of the following x blocks. A large pool, which
has high computing power, has a high probability of winning
a fork chain. The frequency of fork occurrences is determined
to identify whether MBTH-EF attacks are initiated. This
rate varies considerably because of the massive hash space
and long mining time. The number of contestants is limited
because many miners are aggregated as one contestant in
pool-age blockchain mining. The ratio of fork occurrence is
calculated for each mining difficulty stage. If ratio is higher
than historical results in a stage, it means the attack might be
launched. Furthermore, the mining difficulty increases when
the computing power increases and the average mining time
approaches to ten minutes except a special event caused large
enough computing power decreased.

V. CONCLUSION
Pool-based mined block MBTH-EF attacks were analyzed
and evaluated herein. The STBR-HF algorithmwas employed
to understand the effects of these attacks on postponing
the announcement of the mined target block. A large pool
possesses high computing power for mining the target block
in a short time. Thus, such a pool has a high probability
of mining the target block. It can use a holding attack to
hold the mined block and begin mining the next block earlier
than other pools can. Although a larger pool does not have
a higher win rate for the next block, it has a higher win
rate for the following several blocks. Thus, when large pools
use fork chain attacks, they have a higher probability of
winning a set of blocks than do small pools. This study
also evaluated the effect of MBTH-EF attacks on the mining
competition. Themining difficulty adjustment process results
in a reduction in the mining difficulty. Consequently, the
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mining difficulty does not exactly correspond to the mining
time or the computing power for the entire network in each
phase of mining difficulty adjustment. The reduction in the
required mining time leads to a higher probability of a large
pool launching a block holding attack but a shortening of
the holding period. Advanced iMBTH-EF attacks maintain a
high win rate for the attacking pool during mining difficulty
adjustments. In a future study, we will examine how to
improve the fairness of the mining competition.
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