
Received 16 May 2022, accepted 4 June 2022, date of publication 8 June 2022, date of current version 20 June 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3181493

Improving the Accuracy of Progress Indication
for Constructing Deep Learning Models
QIFEI DONG , XIAOYI ZHANG, AND GANG LUO
Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA

Corresponding author: Gang Luo (luogang@uw.edu)

The work of Gang Luo was supported in part by the National Heart, Lung, and Blood Institute of the National Institutes of Health under
Award R01HL142503.

ABSTRACT For many machine learning tasks, deep learning greatly outperforms all other existing learning
algorithms. However, constructing a deep learning model on a big data set often takes days or months.
During this long process, it is preferable to provide a progress indicator that keeps predicting the model
construction time left and the percentage of model construction work done. Recently, we developed the first
method to do this that permits early stopping. That method revises its predictedmodel construction cost using
information gathered at the validation points, where the model’s error rate is computed on the validation
set. Due to the sparsity of validation points, the resulting progress indicators often have a long delay in
gathering information from enough validation points and obtaining relatively accurate progress estimates.
In this paper, we propose a new progress indication method to overcome this shortcoming by judiciously
inserting extra validation points between the original validation points. We implemented this new method
in TensorFlow. Our experiments show that compared with using our prior method, using this new method
reduces the progress indicator’s prediction error of the model construction time left by 57.5% on average.
Also, with a low overhead, this newmethod enables us to obtain relatively accurate progress estimates faster.

INDEX TERMS Progress indicator, deep learning, TensorFlow, model construction.

LIST OF SYMBOLS

d e Ceiling function.
b c Floor function.
b e Nearest integer function.
a Scaling factor used in the inverse power

function.
b Exponent used in the inverse power function.
bmax Largest number of batches permitted to train

the model.
bl Lower bound of the validation error at any

validation point.
b̂l Estimate of bl .
bu Upper bound of the validation error at any

validation point.
b̂u Estimate of bu.
B Count of training instances used in every batch.
c Bias term used in the inverse power function.
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c0 Model construction cost that has been incurred
when we finish the work at the first original
validation point, excluding the progress
indicator’s overhead of calculating the
validation errors at the added validation points.

cj Count of validation instances that are
misclassified by the model and in the
actual validation set used at the j-th
validation point.

cv Cost to calculate the validation error at the first
original validation point.

C Upper threshold of the model construction cost
that has been incurred when we finish the work
at the fourth validation point.

ej The model’s generalization error at the
j-th validation point.

êj Validation error of the model at the
j-th validation point.

ẽj Validation error of the model at the
j-th original validation point.

f (q) A function of q.
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g Count of batches of model construction
between two successive original validation
points.

h(n) Present validation point’s sequence number on
the present piece of the validation curve.

lj Count of validation points that are on the j-th
piece of the validation curve.

L(θ | y) Likelihood function: the probability of y as a
function of the parameters θ .

me Largest number of epochs permitted to train
the model.

n Present validation point’s sequence number.
n0 Count of validation points added before the first

original validation point.
nj Count of validation points added between the

j-th and the ( j+ 1)-th original validation
points.

nv Count of original validation points required to
train the model.

p Patience.
pj Percentage increase in the model construction

cost that the progress indicator causes during
the period from when model construction starts
to the time we finish the work at the j-th
original validation point.

P1 Maximum allowed percentage increase in the
model construction cost that the progress
indicator causes during the period from when
model construction starts to the time we finish
the work at the first original validation point.

Pv Maximum allowed percentage increase in the
model construction cost that the progress
indicator causes during the period from when
model construction starts to the time we
finish the work at the vmax-th original
validation point.

q Constant regulating the decay rate of nj
(0 ≤ j ≤ vmax − 1) in the
exponential decay schema.

r0 Beginning learning rate adopted in the
exponential decay method.

rj Learning rate right before the j-th validation
point.

sk−1 Sequence number of the final validation point
that is on the prior piece of the validation
curve.

U Unit of work.
vk−1 At the final validation point appearing on

the prior piece of the validation curve, the
projected count of both original and added
validation points required to train the
model.

vmax Largest number of original validation points
permitted to train the model.

V Count of data instances that are in the full
validation set.

Vj Count of data instances that are in the actual
validation set used at the j-th validation
point.

Vmin Minimum number of data instances needed in
the randomly sampled subset of the full
validation set used at an added validation
point.

V ′ Uniform number of data instances that are in
the randomly sampled subset of the full
validation set used at each added validation
point.

w Count of validation points used to estimate a, b,
c, and λ.

w′ Largest number of validation points permitted
to estimate a, b, c, and λ.

xj Normalized number of batches of model
construction finished before the j-th
validation point.

z Constant regulating the decay rate of nj
(0 ≤ j ≤ vmax − 1) in the linear decay schema.

α The beta distribution’s first shape parameter.
β The beta distribution’s second shape parameter.
B(α, β) Normalization constant in the probability

density function of the beta distribution.
δ min_delta.
εj Random noise at the j-th validation point.
λ Ratio of the variance of the model’s

generalization error to the square of
the learning rate.

µj Mean of the model’s generalization error at the
j-th validation point.

µ′j Mean of the beta distribution linking to the
j-th validation point.

µ̃j Mean of a normal distribution linking to the
j-th validation point.

ρ Constant regulating the decay rate of the
learning rate in the exponential decay method.

σ 2
j Variance of the model’s generalization error at

the j-th validation point.
σ ′2j Variance of the beta distribution linking to the

j-th validation point.
σ̃ 2
j Variance of a normal distribution linking to the

j-th validation point.
τv Minimum number of validation points required

to employ the validation curve to re-estimate
the count of original validation points
required to train the model.

8() Cumulative distribution function of the standard
normal distribution.

I. INTRODUCTION
A. OUR PRIOR PROGRESS INDICATION METHOD FOR
CONSTRUCTING DEEP LEARNING MODELS
For many machine learning tasks such as image segmen-
tation, machine translation, video classification, and speech
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recognition, deep learning greatly outperforms all other exist-
ing learning algorithms [1]. However, even with a clus-
ter of graphics processing unit (GPU) or tensor processing
unit (TPU) nodes, it often takes days or months to con-
struct a deep learning model on a big data set [2]–[5]. Dur-
ing this long process, it is preferable to provide a progress
indicator that keeps predicting the model construction time
left and the percentage of model construction work done
as shown in Fig. 1. This improves the user-friendliness
of model construction. Also, the information supplied
by the progress indicator can be used to aid workload
management [6]–[8].

FIGURE 1. An example progress indicator for constructing deep learning
models.

Recently, we developed the first method to build sophis-
ticated progress indicators for constructing deep learning
models that permits early stopping [8]. This method com-
putes progress estimates for the model construction pro-
cess using information gathered at the validation points,
where the model’s error rate is computed on the valida-
tion set. Despite producing useful results, this method has a
shortcoming. Due to the sparsity of validation points, the
resulting progress indicators often have a long delay in
obtaining relatively accurate progress estimates. More specif-
ically, at the beginning of model construction, we come up
with a crude estimate of the model construction cost that is
usually inaccurate. At least three data points are needed to
estimate the three parameters of the regression function that
is used to predict the model construction cost. Consequently,
the predicted model construction cost is revised starting from
the third validation point, which is too late. Then a revision
is made only at each subsequent validation point, which
is infrequent. The combination of these two factors often
causes a long delay in gathering information from enough
validation points and obtaining relatively accurate progress
estimates.

For example, Goyal et al. [9] used eight Nvidia Tesla P100
GPUs to train the ResNet-50 convolutional neural network
on the ImageNet Large-Scale Visual Recognition Compe-
tition (ILSVRC) data set [10]. About 19 minutes passed
between two successive validation points [9], [11]. By the
time the progress indicator revised its predicted model con-
struction cost for the first time, 3 × 19 = 57 minutes had
elapsed. This is a long delay that takes up a non-trivial frac-
tion of the 29-hour model construction time [9].

B. OUR CONTRIBUTIONS
The objective of this research work is to overcome our prior
progress indication method’s [8] shortcoming of having a
long delay in obtaining relatively accurate progress estimates
for the deep learning model construction process. To obtain
relatively accurate progress estimates faster, in this paper we
propose a new progress indication method for constructing
deep learning models that judiciously inserts extra validation
points between the original validation points. The predicted
model construction cost is revised at both the original and
the added validation points. Consequently, comparedwith our
prior progress indication method [8], our new progress indi-
cation method starts revising the predicted model construc-
tion cost earlier and revises the predicted model construction
cost more frequently. This helps the progress indicator reduce
its prediction error of the model construction time left and
obtain relatively accurate progress estimates faster.

A good progress indicator should have a low run-time over-
head [6]. In our case, a large part of the progress indicator’s
run-time overhead comes from computing the model’s error
rate at the added validation points. To lower this part of the
run-time overhead, at each added validation point, we calcu-
late the model’s error rate on a randomly sampled subset of
the full validation set rather than on the full validation set.

To fill in the rest of our new progress indication method,
we need to solve three technical challenges. First, we need
to set 1) nj ( j ≥ 0), the count of validation points to be
added between the j-th and the ( j + 1)-th original validation
points, and 2) V ′, the uniform size of the randomly sampled
subset of the full validation set that will be used at each added
validation point. Through theoretical reasoning, we show that
nj should decrease as j increases. For this purpose, exponen-
tial decay works better than linear decay. V ′ is chosen to
control the total overhead of computing the model’s error rate
at the validation points added before the first original valida-
tion point, while keeping the randomly sampled subset of the
full validation set large enough for reasonably estimating the
model’s generalization error at each added validation point.

FIGURE 2. The validation curve = some random noise + a trend curve.

Second, the validation error is the model’s error rate cal-
culated on the actual validation set used at a validation
point. As in our prior paper [8], we use the validation curve
to predict when early stopping will occur. As shown in
Fig. 2, this curve shows the validation errors obtained over
time, is non-smooth, and can be regarded as the sum of
some zero-mean random noise and a smooth trend curve.

63756 VOLUME 10, 2022



Q. Dong et al.: Improving the Accuracy of Progress Indication for Constructing Deep Learning Models

The random noise’s variance depends on the size of the actual
validation set used at the validation point. The relationship
between these two numbers is previously unknown and dif-
ficult to be derived directly. However, we need to know
this relationship in order to use both the original and the
added validation points to predict when early stopping will
occur. Noting that the random noise’s variance is equal to
the validation error’s variance, we use an indirect approach
to derive this relationship. We first compute the conditional
mean and the conditional variance of the validation error
given the model’s generalization error [12], both of which can
be expressed using the model’s generalization error and the
size of the actual validation set used at the validation point.
Then we use the conditional mean, the conditional variance,
and the law of total variance [13] to compute the validation
error’s variance, which is expressed using the mean and the
variance of the model’s generalization error and the size of
the actual validation set used at the validation point.

Third, using the above-mentioned relationship and maxi-
mum likelihood estimation [13], we estimate the trend curve
and the variance of the random noise. To the best of our
knowledge, this is the first time that maximum likelihood
estimation is employed for progress indication. The likeli-
hood function is the product of multiple integrals, which
are difficult to be used directly for numerical optimization.
To overcome this hurdle, for each integral, we use the proba-
bility density function of a normal distribution to approximate
a key component of the integrand. In this way, we acquire a
simplified form of the likelihood function, which is easy to
use for numerical optimization.

We implemented our new progress indication method in
TensorFlow [14], an open-source software package for deep
learning. We present our performance test results for recur-
rent and convolutional neural networks. Our results show that
comparedwith using our priormethod, using this newmethod
reduces the progress indicator’s prediction error of the model
construction time left by 57.5% on average. Also, with a low
overhead, this new method enables us to obtain relatively
accurate progress estimates faster.

C. ORGANIZATION OF THE PAPER
The remaining sections of this paper are organized in the fol-
lowing way. Section II reviews our prior progress indication
method for constructing deep learning models. Section III
describes our new progress indication method for construct-
ing deep learning models. Section IV shows performance
test results by implementing our new method in Tensor-
Flow. Section V presents the related work. Section VI points
out some directions for future work. Section VII gives the
conclusion.

II. REVIEW OF OUR PRIOR PROGRESS INDICATION
METHOD FOR CONSTRUCTING DEEP LEARNING MODELS
In this section, we first introduce some notations and concepts
that will be used in the rest of the paper. Then we outline
our prior progress indication method for constructing deep

learning models. Finally, we compare our prior and our new
progress indication methods.

A. SOME NOTATIONS AND CONCEPTS
To control model construction, the user of the deep learn-
ing software specifies an early stopping condition and three
positive integers B, g, and me. During model construction,
we process all the training instances for one or more rounds,
also known as epochs. The deep learningmodel is constructed
in batches, each processing B training instances to calculate
parameter value updates to the model. We reach an original
validation point after finishing every g batches of model con-
struction. There, we first calculate the validation error, which
is the model’s error rate on the full validation set. Then we
assess whether the early stopping condition is fulfilled. If so,
we end model construction. me denotes the largest number
of epochs permitted to train the model. If the early stopping
condition remains unfulfilled by the time we finish the me-
th epoch, we end model construction at that time. Thus, the
largest number of batches permitted to train the model is

bmax = the count of data instances that are

in the training set × me/B.

The largest number of original validation points permitted to
train the model is

vmax = bbmax/gc,

where b c is the floor function, e.g., b4.4c = 4.
As in our prior work [8], the goal of this work is not to

deal with every early stopping condition that exists. Instead,
we focus on a commonly used early stopping condition [1],
[15] adopted in our prior work [8]. Through a case study
on the condition, we demonstrate that when early stopping
is permitted in constructing a deep learning model, it is
feasible to obtain relatively accurate progress estimates faster
by judiciously inserting extra validation points between the
original validation points. The early stopping condition uses
two pre-determined numbers: patience p > 0 and min_delta
δ ≥ 0. The condition is fulfilled when the validation error
drops by< δ for p original validation points in a row. In other
words, letting ẽj denote the validation error of the model at
the j-th original validation point, we end model construction
at the k-th original validation point when ẽk−p− ẽi is< δ for
each i between k − p+ 1 and k .

B. OUTLINE OF OUR PRIOR PROGRESS INDICATION
METHOD FOR CONSTRUCTING DEEP
LEARNING MODELS
In this section, we outline our prior progress indication
method. We begin with a crude estimate of the model con-
struction cost. The estimated model construction cost is mea-
sured by the unit of work U . Every U is the mean quantity
of work taken to process a training instance once in model
construction, by going once forward and once backwards over
the neural network. During model construction, we keep col-
lecting statistics and using them to refine the estimated model
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construction cost.We keepmonitoring the present model con-
struction speed, which is calculated as the number ofUs done
per second in the past 10 seconds. The model construction
time left is predicted to be the estimated model construction
cost left divided by the present model construction speed.
Every few seconds, the progress indicator is updated with the
most recent information. As we keep collecting more precise
information of the model construction task as it runs, our
progress estimates are inclined to become more and more
accurate.

1) CALCULATING THE MODEL CONSTRUCTION COST
The model construction cost is predominated by and is
approximately the sum of the cost to process the training
instances and the cost to calculate the validation errors. The
cost to process the training instances is

= the count of batches required to train the model

× the count of training instances in every batch

× the mean quantity of work taken to process a training

instance one time in model construction

= the count of batches required to train the model× B.

(1)

Let V denote the count of data instances that are in the full
validation set. Every data instance in the full validation set is
called a validation instance. Our prior work [8] shows that the
mean quantity of work taken to process a validation instance
one time to calculate the validation error is 1/3 unit of work.
The cost to calculate the validation errors is

= the count of original validation points required to train

the model× the count of data instances that

are in the full validation set

× the mean quantity of work taken to process a

validation instance one time to calculate the

validation error

= the count of original validation points required to train

the model× V/3. (2)

Let nv denote the count of original validation points
required to train the model. Recall that vmax denotes the
largest number of original validation points permitted to train
the model. g denotes the count of batches of model con-
struction between two successive original validation points.
If nv is < vmax , early stopping will occur before we reach
the vmax-th original validation point. In this case, the count
of batches required to train the model is = nv × g. If nv
is = vmax , early stopping will never occur. In this case,
the count of batches required to train the model is = bmax ,
the largest number of batches permitted to train the model.
In formulas (1) and (2), B, g, and V are known before model
construction starts. Hence, to predict the model construction
cost, we mainly need to project nv.

2) ESTIMATING THE COUNT OF ORIGINAL VALIDATION
POINTS REQUIRED TO TRAIN THE MODEL
When model construction starts, we project nv, the count
of original validation points required to train the model, to
be vmax , the largest number of original validation points
permitted to train the model. After model construction
starts, we use the validation curve to revise the esti-
mated nv. We deem the validation curve to be the sum of
some zero-mean random noise and a smooth trend curve
(see Fig. 2). We use an inverse power function

f (j) = aj−b + c [6], [16]–[19]

as the regression function to estimate the trend curve. Here,
a is >0, b is >0, c is >0, and j is the original validation
point’s sequence number. Since at least three data points
are needed to estimate the three parameters a, b, and c,
we do not refine the estimated nv before reaching the third
original validation point. At each original validation point
whose sequence number is ≥3 and at which the early stop-
ping condition is unfulfilled, we re-estimate nv by fitting the
regression function to the validation curve obtained so far,
using recorded data to estimate the variance of the random
noise, using the fitted regression function to estimate the
trend curve for future original validation points, and then
performing Monte Carlo simulation to project nv. During
the Monte Carlo simulation, we create multiple synthetic
validation curves through adding to the estimated trend curve
simulated random noise. We apply the early stopping condi-
tion to every synthetic validation curve to obtain a separate
simulated count of original validation points required to train
the model. No simulated number can be > vmax . Then we
compute a revised estimate of nv based upon the estimated
mode of these simulated numbers.

C. COMPARING OUR PRIOR AND OUR NEW PROGRESS
INDICATION METHODS
Tables 1 and 2 show the differences and the commonalities
between our prior and our new progress indication methods
for constructing deep learning models, respectively.

III. OUR NEW PROGRESS INDICATION METHOD FOR
CONSTRUCTING DEEP LEARNING MODELS
In this section, we present our new progress indication
method for constructing deep learning models. Our presen-
tation focuses on using deep learning for classification and
the steps related to estimating the trend curve, the variance
of the random noise, and the model construction cost based
upon the predicted count of original validation points required
to train the model. The approaches to conduct Monte Carlo
simulation to estimate the count of original validation points
required to train the model, to monitor the present model
construction speed, and to estimate the model construction
time left based upon the projected model construction cost
left and the present model construction speed are identical
to those used in our prior progress indication method for
constructing deep learning models [8] and are omitted.
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TABLE 1. The differences between our prior and our new progress
indication methods.

TABLE 2. The commonalities between our prior and our new progress
indication methods.

This section is organized in the follow way. Section III-A
provides an overview of our new progress indication method
for constructing deep learning models. Section III-B presents
our approach to insert extra validation points between
the original validation points. Section III-C shows how to
set V ′, the uniform size of the randomly sampled subset of
the full validation set that will be used at each added valida-
tion point. Section III-D derives the relationship between the
random noise’s variance and the size of the actual validation
set used at the validation point. Section III-E shows how
to estimate the trend curve and the variance of the random
noise for future validation points. Section III-F describes
how to determine Vmin, the minimum size needed for the
randomly sampled subset of the full validation set used
at an added validation point. Section III-G shows how to
estimate the model construction cost based upon the pre-
dicted count of original validation points required to train the
model.

In the rest of this paper, whenever we mention validation
points, we mean both original and added validation points,
unless original validation points or added validation points
are explicitly mentioned.

A. OVERVIEW OF THE NEW PROGRESS INDICATION
METHOD
This section provides an overview of the new progress indica-
tion method for constructing deep learning models. To obtain
relatively accurate progress estimates faster, we judiciously
insert extra validation points between the original validation
points. Using the validation errors obtained at both the origi-
nal and the added validation points that we have encountered
so far, we revise the predicted model construction cost at both
the original and the added validation points. Consequently,
compared with our prior progress indication method [8],
our new progress indication method starts revising the pre-
dicted model construction cost earlier and revises the pre-
dicted model construction cost more frequently. This helps
the progress indicator reduce its prediction error of the model
construction time left and obtain relatively accurate progress
estimates faster.

Our prior progress indication method [8] roughly approxi-
mates the model construction cost as the sum of two compo-
nents: the cost to process the training instances and the cost to
calculate the validation errors at the original validation points.
In addition to these two components, our new progress indica-
tionmethod adds a third component to themodel construction
cost: the cost to calculate the validation errors at the added
validation points. Our discussion of the model construction
cost focuses on these three dominating components.

As in our prior work [8], to predict the model construction
cost, we mainly need to predict nv, the count of original
validation points required to train the model. When model
construction starts, we estimate nv to be vmax , the largest
number of original validation points permitted to train the
model. We deem the validation curve to be the sum of some
zero-mean random noise and a smooth trend curve. Our new
progress indication method uses four parameters to estimate
the trend curve and the variance of the random noise (see
Section III-E). Since at least τv = 4 data points are needed to
estimate the four parameters, we refine the estimated nv only
when we reach a validation point whose sequence number
is ≥ τv and where the early stopping condition is unfulfilled.

A good progress indicator should have a low run-time
overhead [6]. In our new progress indication method, a large
part of the progress indicator’s run-time overhead comes from
computing the model’s error rate at the added validation
points. To lower this part of the run-time overhead, at each
added validation point, we calculate the model’s error rate on
a randomly sampled subset of the full validation set rather
than on the full validation set. The sampling is done without
replacement. The subset is usually much smaller than the
full validation set and could be biased. If we keep using the
same biased subset at each added validation point, the bias
could have a large negative impact on our estimation accuracy
of the trend curve, the variance of the random noise, and
subsequently the model construction cost. To address this
issue, we re-sample the full validation set to obtain a new
subset at each added validation point to calculate the model’s

VOLUME 10, 2022 63759



Q. Dong et al.: Improving the Accuracy of Progress Indication for Constructing Deep Learning Models

error rate. Each subset includes the same number V ′ of data
instances. At each original validation point, we use the full
validation set to calculate the model’s error rate.

The random noise’s variance depends on the size of the
actual validation set used at the validation point. We use an
indirect approach to derive the relationship between these
two numbers. Using this relationship, the validation curve
obtained so far, and maximum likelihood estimation [13],
we estimate the trend curve and the variance of the random
noise for future validation points. We use the Monte Carlo
simulation approach in our prior work [8] to predict nv, the
count of original validation points required to train the model.
Finally, we revise the predictedmodel construction cost based
upon the projected nv.

B. OUR APPROACH TO INSERT EXTRA VALIDATION
POINTS BETWEEN THE ORIGINAL VALIDATION POINTS
This section describes our approach to insert extra validation
points between the original validation points. We regard the
beginning of model construction as the 0-th original valida-
tion point, although the model’s error rate is not computed
there. For each pair of successive original validation points,
we insert extra validation points evenly between them. More
specifically, recall that g denotes the count of batches of
model construction between two successive original vali-
dation points. vmax denotes the largest number of original
validation points permitted to train the model. nj (0 ≤ j ≤
vmax − 1) denotes the count of validation points to be added
between the j-th and the ( j+ 1)-th original validation points.
When j = 0, n0 denotes the count of validation points to be
added before the first original validation point.We ensure that
nj is≤ g−1 for every j between 0 and vmax−1. Starting from
the j-th original validation point, we do

bkg/(nj + 1)e

batches of model construction to reach the k-th (1 ≤ k ≤
nj) of the nj validation points added between the j-th and the
( j + 1)-th original validation points. Here, be is the nearest
integer function, e.g., b4.4e = 4 and b4.6e = 5.

The rest of this section is organized in the following way.
Section III-B1 provides an overview of how we set nj (0 ≤
j ≤ vmax − 1), the count of validation points to be added
between the j-th and the ( j+ 1)-th original validation points.
Section III-B2 describes how to set n0, the count of validation
points to be added before the first original validation point.
Section III-B3 shows how to set q, the constant regulating the
decay rate of nj (0 ≤ j ≤ vmax − 1) in the exponential decay
schema.

1) OVERVIEW OF HOW WE SET nj (0 ≤ j ≤ vmax − 1)
This section provides an overview of how we set nj (0 ≤ j ≤
vmax − 1), the count of validation points to be added between
the j-th and the ( j+ 1)-th original validation points.

Recall that nv denotes the count of original validation
points required to train the model. Our initial estimate of nv
is usually inaccurate and is not refined until we reach the

fourth validation point. As we accumulate more data points
over time, our estimate of nv tends to become more accurate.
To refine our initial estimate of nv as soon as possible and
to obtain relatively accurate estimates of nv faster, we insert
more validation points for use at the early stages of model
construction than at the later stages of model construction.
In other words, we decrease nj (0 ≤ j ≤ vmax−1), the count of
validation points to be added between the j-th and the ( j+1)-
th original validation points, as j increases. Furthermore,
we want n0, the count of validation points to be added before
the first original validation point, to be reasonably large. This
is particularly the case when a sophisticated progress indi-
cator is most needed: the training set is large, many batches
of model construction are performed between two successive
validation points, and model construction takes a long time.

One could decrease nj either linearly or exponentially as j
increases. For our purpose, exponential decay works better
than linear decay. To compare these two decay schemata of nj
and show this, we consider two model construction processes
that have the same setting except for the decay schema used.
Recall that n0 denotes the count of validation points to be
added before the first original validation point. vmax is the
largest number of original validation points permitted to train
the model. Onemodel construction process uses the exponen-
tial decay schema, where

nj = bn0qje (1 ≤ j ≤ vmax − 1),

q (0 ≤ q < 1) is a constant regulating the decay rate of nj,
and 00 is defined to be 1. The other model construction
process uses the linear decay schema, where

nj = max(bn0 − jze, 0) (1 ≤ j ≤ vmax − 1)

and z is a constant >0 regulating the decay rate of nj. Given
the same mean cost of calculating the validation error at
each added validation point, the total cost of calculating
the validation errors at all added validation points is ∝ the
total count of validation points added between the original
validation points. To have the same total cost of calculating
the validation errors at all added validation points, in the two
model construction processes we insert the same total number
of validation points between the original validation points.
For a sufficiently large vmax , the total count of validation
points added between the original validation points is roughly∑+∞

j=0
n0qj = n0/(1− q)

and ∑bn0/zc

j=0
(n0 − jz) ≈ n20/(2z)

for the exponential decay schema and the linear decay
schema, respectively. Recall that we want n0 to be reasonably
large. Thus, we expect the n0 used in the linear decay schema
to be typically >2z/(1 − q). In this case, the n0 used in the
exponential decay schema is larger than the n0 used in the
linear decay schema. Adopting a larger n0 makes the early
stage of model construction include more added validation
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points, which is what wewant. Thus, we employ the exponen-
tial decay schema instead of the linear decay schema. In the
exponential decay schema, once n0 and q are set using the
approach given in Sections III-B2 and III-B3, respectively,
nj is known for each j between 0 and vmax − 1.

2) SETTING n0
In this section, we describe how to set n0, the count of vali-
dation points to be added before the first original validation
point. When setting n0, we try to fulfill the following two
requirements if possible:
1) Requirement 1: When we finish the work at the fourth

validation point, the model construction cost that has
been incurred is ≤ C units of work, where C is a
pre-set number >0. Requirement 1 is used to control
the amount of time that elapses before we refine our
beginning estimate of the model construction cost for
the first time at the fourth validation point. This amount
should not be too large.

2) Requirement 2: From when model construction starts
to the time we finish the work at the first original
validation point, the cost to calculate the validation
errors at the added validation points is ≤ c0P1. Here,
P1 is a pre-set percentage >0. c0 denotes the model
construction cost that has been incurred when we finish
the work at the first original validation point, excluding
the progress indicator’s overhead of calculating the
validation errors at the added validation points. That
is, c0 is = the cost to process the training instances
before we reach the first original validation point+ the
cost to calculate the validation error at the first original
validation point. Requirement 2 is used to control the
progress indicator’s overhead that has been incurred for
calculating the validation errors at the added validation
points when we finish the work at the first original
validation point. This overhead should not be too large.

These two requirements are soft requirements, as it may not
always be possible to fully fulfill both requirements.

We have two considerations when setting the value of C in
Requirement 1. On one hand, to prevent the user of the deep
learning software from waiting too long before our beginning
estimate of the model construction cost is refined for the first
time at the fourth validation point, we do not want C to be
too large. On the other hand, the smaller the C , the more
validation points need to be added before the first original
validation point, and subsequently due to Requirement 2,
the smaller the cost of calculating the validation error at an
added validation point can be. At each added validation point,
the cost to calculate the validation error is ∝ the size of
the randomly sampled subset of the full validation set used
to calculate the model’s error rate. If C is too small, this
subset will not be large enough for reasonably estimating
the model’s generalization error. This will lower the progress
indicator’s projection accuracy of the model construction
cost and is undesirable. To strike a balance between the two
considerations, we set C’s default value to 20,000 × the

number of GPUs, TPUs, or central processing units (CPUs)
used to train the model. This allows a non-trivial number
of batches of model construction to appear between two
successive validation points, as a batch of model construction
typically involves much<20,000/4= 5,000 units of work on
any GPU, TPU, or CPU.

We have two considerations when setting the value of P1
in Requirement 2. On one hand, we want P1 to be small so
that the progress indicator does not cause a large increase
in the model construction cost during the period from when
model construction starts to the time we finish the work at the
first original validation point. On the other hand, if P1 is too
small, at each added validation point, the randomly sampled
subset of the full validation set used to calculate the model’s
error rate will not be large enough for reasonably estimating
the model’s generalization error. This is undesirable. There
is also no need to make P1 too small. Recall that nj (0 ≤
j ≤ vmax − 1) denotes the count of validation points to be
added between the j-th and the ( j + 1)-th original validation
points. As nj decreases as j increases, the progress indicator’s
overhead of calculating the validation errors at the validation
points added before the first original validation point can be
amortized over time during model construction. To strike a
balance between the two considerations, we set the default
value of P1 to 5%.
Recall that c0 is the model construction cost that has

been incurred when we finish the work at the first original
validation point, excluding the progress indicator’s overhead
of calculating the validation errors at the added validation
points. n0 denotes the count of validation points to be added
before the first original validation point. We first compute c0
and then decide the value of n0.

a: COMPUTING c0
Recall that g denotes the count of batches of model construc-
tion between two successive original validation points. B is
the count of training instances in every batch. c0 is the sum
of two parts. The first part is the cost to process the training
instances before we reach the first original validation point

= the count of batches of model construction before the

first original validation point

× the count of training instances in every batch

× the mean quantity of work taken to process a training

instance one time in model construction

= g× B× 1

= gB.

Our prior work [8] shows that the mean quantity of work
taken to process a validation instance one time to calculate the
validation error is 1/3 unit of work. Recall that V is the count
of data instances that are in the full validation set. The second
part of c0 is cv, the cost to calculate the validation error at the
first original validation point. cv is

= the count of data instances that are in
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the full validation set

× the mean quantity of work taken to process a

validation instance one time to calculate the

validation error

= V/3.

Adding the two components, we have c0 = gB + V /3.

b: DECIDING THE VALUE OF n0
Recall that c0 is the model construction cost that has been
incurred when we finish the work at the first original val-
idation point, excluding the progress indicator’s overhead
of calculating the validation errors at the added validation
points. P1 is the maximum allowed percentage increase in
the model construction cost that the progress indicator causes
during the period from when model construction starts to the
time we finish the work at the first original validation point.
C is the upper threshold of the model construction cost that
has been incurred when we finish the work at the fourth
validation point. cv is the cost to calculate the validation
error at the first original validation point. n0 denotes the
count of validation points to be added before the first original
validation point.

When setting n0, we try to fulfill Requirements 1 and 2
mentioned above if possible. In attempting to fulfill Require-
ment 2, we can aim the cost to calculate the validation errors
at the n0 validation points added before the first original
validation point to be c0P1. There are two possible cases:

FIGURE 3. Decomposition of the model construction cost that has been
incurred when we finish the work at the first original validation point.

1) Case 1: The model construction cost that has been
incurred when we are just about to arrive at the first
original validation point is ≥ C (see Fig. 3). That is,

c0 + c0P1 − cv = c0(1+ P1)− cv
≥ C .

In this case, we show that if n0 is set to

d4[c0(1+ P1)− cv]/Ce

that is ≥4, Requirement 1 is fulfilled. Here, d e is the
ceiling function, e.g., d4.4e = 5. We note that:

a) The cost to calculate the validation error at each
of the n0 validation points added before the first
original validation point is c0P1/n0.

b) The cost to process the training instances that has
been incurred when we are just about to arrive
at the first original validation point is c0 − cv,
which is >0. With n0 validation points inserted
before it, the first original validation point is the
(n0+1)-th validation point. Thus, before we finish
the work at the first original validation point, the
cost to process the training instances between two
successive validation points is (c0 − cv)/(n0 + 1).

The fourth validation point is the fourth validation point
added before the first original validation point. The
model construction cost that has been incurred when
we finish the work at the fourth validation point is the
sum of two components:
a) 4c0P1/n0, the cost to calculate the validation

errors at the first four validation points added
before the first original validation point; and

b) 4(c0−cv)/(n0+1), the cost to process the training
instances before we reach the fourth validation
point.

Adding these two components, we get the model con-
struction cost that has been incurred when we finish the
work at the fourth validation point

= 4c0P1/n0 + 4(c0 − cv)/(n0 + 1)

< 4 c0P1/n0 + 4(c0 − cv)/n0
= 4[c0(1+ P1)− cv]/n0
= C × 4[c0(1+P1)−cv]/C/d4[c0(1+P1)−cv]/Ce

≤ C .

This verifies that Requirement 1 is fulfilled.
2) Case 2: The model construction cost that has been

incurred when we are just about to arrive at the first
original validation point is < C . That is,

c0(1+ P1)− cv < C .

In this case, if n0 is set to 4, the fourth validation point
is the fourth validation point added before the first
original validation point. The model construction cost
that has been incurred when we finish the work at the
fourth validation point is< that when we are just about
to arrive at the first original validation point, and thus
is < C . This shows that Requirement 1 is fulfilled.

Recall that g denotes the count of batches of model con-
struction between two successive original validation points.
At least one batch of model construction needs to occur
between two successive validation points. Thus, n0 cannot
exceed g− 1. To fulfill this, we set n0 to

min(d4[c0(1+ P1)− cv]/Ce, g− 1)

if c0(1 + P1) − cv is ≥ C . Otherwise, if c0(1 + P1) − cv
is < C , we set n0 to min(4, g− 1).
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3) SETTING q
In this section, we show how to set q, the constant regulating
the decay rate of nj (0 ≤ j ≤ vmax − 1) in the exponential
decay schema. Recall that vmax denotes the largest number
of original validation points permitted to train the model.
nj (0 ≤ j ≤ vmax−1) denotes the count of validation points to
be added between the j-th and the ( j+1)-th original validation
points. n0 denotes the count of validation points to be added
before the first original validation point. In the exponential
decay schema, nj = bn0qje (0 ≤ j ≤ vmax − 1).

Let pj (1 ≤ j ≤ vmax) denote the percentage increase in
the model construction cost that the progress indicator causes
during the period from when model construction starts to the
time we finish the work at the j-th original validation point.
When setting q, we try to fulfill the following requirement if
possible:

Requirement 3: pvmax is ≤ Pv, where Pv is a pre-set
percentage >0.

This requirement is a soft requirement, as it may not always
be possible to fully fulfill this requirement.

The increase in the model construction cost caused by
the progress indicator comes from calculating the validation
errors at the added validation points. Since the same number
of validation instances are used to calculate the validation
error at each added validation point, the cost to calculate the
validation error at an added validation point is a constant.
Thus, during the period from when model construction starts
to the time we finish the work at the j-th (1 ≤ j ≤ vmax)
original validation point, the increase in the model construc-
tion cost caused by the progress indicator is ∝

∑j−1
k=0 nk ,

the total count of validation points added before the j-th
original validation point. During the same period, the model
construction cost excluding the progress indicator’s overhead
of calculating the validation errors at the added validation
points is∝ j, as both the cost to process the training instances
between two successive original validation points and the
cost to calculate the validation error at an original validation
point are constants. As the ratio of the increase in the model
construction cost caused by the progress indicator to the
model construction cost excluding the progress indicator’s
overhead, pj (1 ≤ j ≤ vmax) is

∝

∑j−1

k=0
nk/j

=

∑j−1

k=0

⌊
n0qk

⌉
/j . (3)

As j increases, nj and subsequently pj strictly decrease.
Thus, Pv in Requirement 3 should be < P1, the maximum
allowed percentage increase in the model construction cost
that the progress indicator causes during the period from
when model construction starts to the time we finish the work
at the first original validation point. In addition, we have two
other considerations when setting the value of Pv. On one
hand, we want Pv to be small, as a good progress indicator
should have a low run-time overhead [6]. On the other hand,
the larger thePv, themore validation points we can add before

model construction finishes. This helps us obtain more accu-
rate progress estimates for the model construction process.
To strike a balance between these two considerations, we set
the default value of Pv to 0.5%.

Recall that when deciding the value of n0, we aim p1 to
be= P1 in attempting to fulfill Requirement 2. In the follow-
ing derivation used to set q, we regard p1 to be = P1. There
are two possible cases: 1) vmax is < P1/Pv and 2) vmax is ≥
P1/Pv. We discuss the two cases sequentially.

Case 1 (vmax is < P1/Pv)
We first discuss the case when vmax is < P1/Pv.

Recall that vmax denotes the largest number of orig-
inal validation points permitted to train the model.
nj (0 ≤ j ≤ vmax−1) denotes the count of validation points to
be added between the j-th and the ( j+1)-th original validation
points. q (0 ≤ q < 1) is the constant regulating the decay rate
of nj in the exponential decay schema. P1 is the maximum
allowed percentage increase in the model construction cost
that the progress indicator causes during the period from
when model construction starts to the time we finish the work
at the first original validation point. pj (1 ≤ j ≤ vmax) is
the percentage increase in the model construction cost that
the progress indicator causes during the period from when
model construction starts to the time we finish the work at the
j-th original validation point. We regard p1 to be = P1.
Formula (3) shows that pj (1 ≤ j ≤ vmax) is

∝

∑j−1

k=0

⌊
n0qk

⌉
/j .

For j = vmax , we have

pvmax ∝
∑vmax−1

k=0

⌊
n0qk

⌉
/vmax .

For j = 1, we have

p1 ∝ n0/1.

When q is 0, pvmax reaches its smallest value, which is ∝
n0/vmax and is = p1/vmax = P1/vmax . When vmax is < P1/Pv,
pvmax must be > Pv. Requirement 3 cannot be fully fulfilled.
To minimize pvmax and fulfill Requirement 3 as much as
possible, we set q to 0.

Case 2 (vmax is ≥ P1/Pv)
Next, we discuss the case when vmax is ≥ P1/Pv. When

vmax is = P1/Pv, we set q to 0 to let pvmax reach its smallest
value P1/vmax = Pv and fulfill Requirement 3. When vmax is
> P1/Pv, we proceed as follows.

Formula (3) shows that pj (1 ≤ j ≤ vmax) is

∝

∑j−1

k=0

⌊
n0qk

⌉
/j

≈

∑j−1

k=0
n0qk/j. (4)

For j = vmax , we roughly have

pvmax ∝
∑vmax−1

k=0
n0qk/vmax . (5)
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For j = 1, we have

p1 ∝ n0/1. (6)

Dividing each side of formula (5) by the corresponding side
of formula (6), we roughly have

pvmax/p1 =
∑vmax−1

k=0
qk/vmax . (7)

Regarding p1 to be = P1 and rearranging formula (7) lead to∑vmax−1

k=0
qk − vmaxpvmax/P1 = 0.

If we make the function of q

f (q)
def
=

∑vmax−1

k=0
qk − vmaxPv/P1

= 0,

we can have pvmax = Pv and fulfill Requirement 3. Recall that
P1 > Pv > 0. The following theorem holds.

Theorem: For any vmax > P1/Pv, f (q) must have a unique
root q in (0, 1).

Proof: For each k (1 ≤ k ≤ vmax − 1), qk is continuous
and strictly increasing on [0, 1]. Thus, f (q) is continuous and
strictly increasing on [0, 1].

f (0) = 1− vmaxPv/P1

is <0 because vmax is > P1/Pv.

f (1) = vmax − vmaxPv/P1

is>0 becauseP1 is>Pv. According to the intermediate value
theorem [20], f (q) must have a root in (0, 1). As f (q) is strictly
increasing on [0, 1], this root is unique.

For any q 6= 1, f (q) is

=
(
1− qvmax

)
/ (1− q)− vmaxPv/P1.

We use the bisection method to find f (q)’s unique root
in (0, 1) and set q to this root.

In summary, we set q to 0 if vmax is ≤ P1/Pv. Otherwise,
if vmax is > P1/Pv, we set q to f (q)’s unique root in (0, 1).

The Shape of pj as a Function of j
Recall that pj (1 ≤ j ≤ vmax) strictly decreases as j

increases. In this section, we show that pj decreases quickly
as j increases, indicating that the progress indicator usually
has a low run-time overhead.

When vmax is≤ P1/Pv, q is set to 0. Formula (3) shows that
pj (1 ≤ j ≤ vmax) is

∝

∑j−1

k=0

⌊
n0qk

⌉
/j

= n0/j.

For j = 1, we have

p1 ∝ n0/1.

Thus, pj = p1/j. This is a rapidly decreasing function of j.
Typically, the patience p in the early stopping condition
is≥2. When the early stopping condition is fulfilled, we have
encountered ≥3 original validation points (i.e., j ≥ 3) and pj
is ≤5%/3 ≈ 1.7% if p1 is = P1 = 5%.
When vmax is > P1/Pv, q is set to a number in (0, 1).

Formula (4) shows that pj (1 ≤ j ≤ vmax) is roughly

∝

∑j−1

k=0
n0qk/j

= n0(1− qj)/(1− q)/j

< n0/(1− q)/j.

Since p1 is ∝ n0/1, pj decreases faster than p1/(1 − q)/j as j
increases. Fig. 4 shows a typical shape of pj as a function of j.

FIGURE 4. A typical shape of pj as a function of j .

C. SETTING V ′

At each added validation point, we use a distinct randomly
sampled subset of the full validation set to calculate the
model’s error rate. Every subset contains the same number
of data instances. In this section, we show how to set V ′, the
count of data instances that are in the subset.

Our prior work [8] shows that the mean quantity of work
taken to process a validation instance one time to calculate
the validation error is 1/3 unit of work. The cost to calculate
the validation errors at the n0 validation points added
before the first original validation point is

= n0 × the count of data instances that are in the

randomly sampled subset of the full validation

set used at each added validation point

× the mean quantity of work taken to process

a validation instance one time to

calculate the validation error

= n0V ′/3.

Recall that c0 is the model construction cost that has been
incurred when we finish the work at the first original val-
idation point, excluding the progress indicator’s overhead
of calculating the validation errors at the added validation
points. P1 is the maximum allowed percentage increase in
the model construction cost that the progress indicator causes
during the period from when model construction starts to the
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time we finish the work at the first original validation point.
If we set

V ′ = bc0P1/n0/(1/3)e

= b3c0P1/n0e,

we have n0V ′/3 ≈ c0P1 fulfilling Requirement 2.
As described in Sections III-E1 and III-F, our estimation

method of the trend curve and the variance of the random
noise requiresV ′ to be≥ a thresholdVmin. Thismay occasion-
ally cause Requirement 2 to be not fully fulfilled. Moreover,
V ′ should be ≤ V , the count of data instances that are in the
full validation set. Given all the above considerations, we set

V ′ = min(max(b3c0P1/n0e,Vmin),V ). (8)

D. RELATIONSHIP BETWEEN THE RANDOM NOISE’S
VARIANCE AND THE SIZE OF THE ACTUAL VALIDATION
SET USED AT THE VALIDATION POINT
At each original validation point, the actual validation set
used is the full validation set. At each added validation point,
the actual validation set used is a randomly sampled subset
of the full validation set. Recall that we deem the validation
curve to be the sum of some zero-mean random noise and
a smooth trend curve. The random noise’s variance depends
on the size of the actual validation set used at the validation
point. The relationship between these two numbers is previ-
ously unknown and difficult to be derived directly. However,
we need to know this relationship in order to use both the
original and the added validation points to predict when early
stopping will occur. Noting that the random noise’s variance
is equal to the validation error’s variance, we use an indirect
approach to derive this relationship in two steps:
1) Step 1: Compute the conditional mean and the con-

ditional variance of the validation error given the
model’s generalization error [12], both of which can
be expressed using the model’s generalization error and
the size of the actual validation set used at the validation
point.

2) Step 2: Use the conditional mean, the conditional vari-
ance, and the law of total variance [13] to compute the
validation error’s variance, which is expressed using
the mean and the variance of the model’s generalization
error and the size of the actual validation set used at the
validation point.

In the following, we first define amodel’s generalization error
and then present the two steps sequentially.

A Model’s Generalization Error
For a classification task, a model’s generalization error is

defined as the probability that a data instance is misclassified
by the model [12]. A deep learning model’s generalization
error at any validation point is a random variable, as three
factors introduce randomness into the model construction
process. First, the model is trained in batches using stochas-
tic gradient descent [1]. Each batch processes B training
instances randomly chosen from the training set. Second, the

weights of the neural network model are frequently randomly
initialized [1]. Third, dropout [21] is often used in model
construction. When using dropout, in every batch of model
construction, we randomly omit some nodes along with their
connections of the neural network model.

Step 1: Compute the conditional mean and the conditional
variance of the validation error given the model’s general-
ization error

Let Vj (Vj ≥ 1) denote the count of data instances that
are in the actual validation set used at the j-th validation
point. If the j-th validation point is an original validation
point, Vj is = V , the count of data instances that are in
the full validation set. If the j-th validation point is an
added validation point, Vj is = V ′, the uniform number of
data instances that are in the randomly sampled subset of
the full validation set used at each added validation point.
Let ej (0 ≤ ej ≤ 1) denote the model’s generalization error
at the j-th validation point, cj denote the count of validation
instances that are misclassified by the model and in the actual
validation set used at the j-th validation point, and

êj = cj/V j (0 ≤ êj ≤ 1) (9)

denote the validation error of the model at the j-th validation
point. As an estimate of ej, êj is a discrete random variable.
A standard assumption used in machine learning is that

all data instances are independently and identically sampled
from an underlying distribution [12]. The probability that a
data instance is misclassified by the model is ej. Given ej, cj
follows a binomial distribution. Its probability mass function
is

P(cj|ej) =
(
Vj
cj

)
e
cj
j (1− ej)

Vj−cj . (10)

The conditional mean and the conditional variance of cj
given ej are E(cj|ej) = Vjej and Var(cj|ej) = Vjej(1 − ej),
respectively. From formulas (9) and (10), we have

E
(
êj | ej

)
= E

(
cj | ej

)
/Vj

= ej (11)

and

Var(êj|ej) = Var
(
cj | ej

)
/V 2

j

= ej(1− ej)/Vj. (12)

Step 2: Compute the validation error’s variance
Recall that Vj (Vj ≥ 1) denotes the count of data instances

that are in the actual validation set used at the j-th validation
point. êj denotes the validation error of the model at the j-th
validation point. ej denotes the model’s generalization error
at the j-th validation point. Let µj (0 ≤ µj ≤ 1) and σ 2

j
denote the mean and the variance of ej, respectively. Given
two random variables X and Y , the law of total variance [13]
is

Var(X ) = E[Var(X |Y )]+ Var[E(X |Y )].
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We have

Var(êj) = E[Var
(
êj | ej

)
]+ Var[E

(
êj | ej

)
]

= E[ej(1− ej)/Vj]+ Var(ej)

(plug in formulas (11) and (12))

= [E(ej)− E(e2j )]/Vj + σ
2
j

= [µj − (Var(ej)+ E(ej)2)]/Vj + σ 2
j

(as Var(X ) = E(X2)− E(X )2)

= (µj − σ 2
j − µ

2
j )/Vj + σ

2
j

= (µj − µ2
j )/Vj + (1− 1/Vj)σ 2

j . (13)

At the j-th validation point, the variance of the random noise
is = Var(êj) computed by formula (13).

E. ESTIMATING THE TREND CURVE AND THE VARIANCE
OF THE RANDOM NOISE FOR FUTURE VALIDATION
POINTS
Recall that we re-estimate the count of original validation
points required to train the model only when we reach a
validation point whose sequence number is ≥ τv and where
the early stopping condition is unfulfilled. In this section,
we show at such a validation point, how to estimate the
trend curve and the variance of the random noise for future
validation points. To do this, we need to only estimate for
each j ≥ 1, the mean µj and the variance σ 2

j of the model’s
generalization error at the j-th validation point. Once µj and
σ 2
j are obtained, the random noise’s variance at the j-th vali-

dation point can be computed by formula (13). Moreover, the
trend curve’s value at the j-th validation point is=µj. To show
this, recall that êj is the validation error of the model at the
j-th validation point. ej is the model’s generalization error
at the j-th validation point. We deem the validation curve to
be the sum of some zero-mean random noise and a smooth
trend curve. The trend curve’s value at the j-th validation point
is = E(êj). Given two random variables X and Y , the law of
total expectation [13] is

E(X ) = E[E(X |Y )].

We have

E(êj) = E[E
(
êj | ej

)
]

= E(ej) (plug in formula (11))

= µj.

We use maximum likelihood estimation [13] to estimate
µj and σ 2

j . To the best of our knowledge, this is the first
time that maximum likelihood estimation is used for progress
indication. We consider three cases: 1) a continuous decay
method is applied to the learning rate, 2) a constant learning
rate is adopted, and 3) a step decay method is applied to the
learning rate. The three cases are handled in Sections III-E1
to III-E3, respectively.

1) ESTIMATING µj AND σ2
j WHEN A CONTINUOUS DECAY

METHOD IS APPLIED TO THE LEARNING RATE
This section describes how to estimate for each j ≥ 1,
the mean µj and the variance σ 2

j of the model’s general-
ization error at the j-th validation point when the learn-
ing rate changes over time based upon a continuous decay
method. In such a decay method, the learning rate continu-
ously decreases over epochs. For instance, in an exponential
decay method, the learning rate adopted in the k-th epoch
(k ≥ 1) is r0e−(k−1)ρ . Here, ρ > 0 is a constant regulating
the decay rate of the learning rate. r0 > 0 is the beginning
learning rate. To estimate µj and σ 2

j , we need to estimate
only four parameters: a, b, and c used to model µj and
λ used to model σ 2

j . In the following, we introduce these four
parameters and then show how to estimate them.

a: a, b, AND c USED TO MODEL µj
As in our prior work [8], we use an inverse power function [6],
[16]–[19] to model the trend curve. Recall that the trend
curve’s value at the j-th validation point is = µj, the mean of
the model’s generalization error at the j-th validation point.
Thus, we have

µj = ax−bj + c, (14)

where a is >0, b is >0, c is >0, j is the validation point’s
sequence number, and xj is the normalized number of batches
of model construction finished before the j-th validation point

def
= the count of batches of model construction

finished before the j-th validation point / the

count of batches of model construction between two

successive original validation points.

To estimate µj, we need to estimate only a, b, and c.

b: λ USED TO MODEL σ2
j

The variance of the model’s generalization error varies with
the learning rate. The learning rate regulates how much the
weights of the neural network and therefore the model’s
generalization error change over time as well as due to
random variations. The larger the learning rate, the larger
the changes are likely to be. When the learning rate is 0,
neither the weights of the neural network nor the model’s
generalization error would ever differ from their initial values.
In this case, the variance of the model’s generalization error
is 0. Based upon this insight, we deem the standard deviation
and the variance of the model’s generalization error to be
approximately∝ the learning rate and its square, respectively.
Let λ > 0 denote the ratio of the variance of the model’s
generalization error to the square of the learning rate. Let
rj denote the learning rate right before the j-th validation
point. The variance of the model’s generalization error at the
j-th validation point is modelled by

σ 2
j = λr

2
j . (15)
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For each j ≥ 1, rj is known. To estimate σ 2
j , we need to

estimate only λ.
In our prior work [8], the same validation set was used

at each validation point. We regarded the variance of the
validation error to depend only on and be approximately
∝ the square of the learning rate. In this work, the count
of data instances that are in the actual validation set used
at the validation point varies by validation points. For-
mula (13) shows that the variance of the validation error
depends on the count of data instances that are in the actual
validation set used at the validation point. Thus, we can
no longer regard the variance of the validation error to
depend only on the square of the learning rate. Rather,
we regard the variance of the model’s generalization error to
depend only on and be approximately ∝ the square of the
learning rate.

c: OVERVIEW OF ESTIMATING THE PARAMETERS a, b, c,
AND λ

We use maximum likelihood estimation [13] to estimate the
parameters a, b, c, and λ. The likelihood function is the
product of multiple integrals, which are difficult to be used
directly for numerical optimization. To overcome this hurdle,
for each integral, we use the probability density function of
a normal distribution to approximate a key component of
the integrand. In this way, we acquire a simplified form of
the likelihood function, which is easy to use for numerical
optimization.

In the following, we show how to estimate the parame-
ters a, b, c, and λ in six steps. First, we present the likeli-
hood function as the product of multiple probabilities. Sec-
ond, we express each probability as an integral. Third, we
show how to approximate a key component of the integrand
of the integral. Fourth, we give a simplified expression of
the probability. Fifth, we describe the constrained numer-
ical optimization problem for maximizing the likelihood
function and estimating a, b, c, and λ. Finally, we discuss
the software package and its setting used to do numerical
optimization.

d: THE LIKELIHOOD FUNCTION
We employ the validation curve up to the present valida-
tion point to estimate the parameters a, b, c, and λ. These
parameters are then adopted to estimate the trend curve and
the variance of the random noise for future validation points
based upon formulas (13), (14), and (15). As an intuition,
the validation points long before the present validation point
may not well manifest the validation curve’s trend for future
validation points and could be unsuited for estimating a, b,
c, and λ. Like our prior work [8], to estimate a, b, c, and λ,
we employ the last

w = min(n,w′)

validation points rather than all the validation points that we
have reached so far. Here, n denotes the present validation

point’s sequence number.w′ is a pre-chosen window size with
a default value of 50.

Recall that êj denotes the validation error of the model at
the j-th validation point. We deem the validation curve to
be the sum of some zero-mean random noise and a smooth
trend curve. The trend curve’s value at the j-th validation point
is = µj. Let εj denote the random noise at the j-th validation
point. We have

êj = µj + εj.

We regard the random noises at distinct validation points to
be independent of each other. Formula (14) shows that µj
is a function of a, b, and c. The likelihood function that we
want to maximize and covers the validation errors at the last
w validation points is

L(a, b, c, λ|ên−w+1, ên−w+2, . . . , ên)

= P(ên−w+1, ên−w+2, . . . , ên; a, b, c, λ)

= P(µn−w+1 + εn−w+1, µn−w+2 + εn−w+2, . . . , µn
+ εn; a, b, c, λ)

= P(εn−w+1, εn−w+2, . . . , εn; a, b, c, λ)

=

∏n

j=n−w+1
P(εj; a, b, c, λ)

=

∏n

j=n−w+1
P(µj + εj; a, b, c, λ)

=

∏n

j=n−w+1
P(êj; a, b, c, λ). (16)

e: EXPRESSING P(êj ;a,b, c, λ) AS AN INTEGRAL
Recall that êj and ej (0 ≤ ej ≤ 1) are the validation error and
the model’s generalization error at the j-th validation point,
respectively. Using the law of total probability and Bayes’
theorem [13], we have

P(êj; a, b, c, λ)

=

∫ 1

0
P(êj, ej; a, b, c, λ)dej

=

∫ 1

0
P(êj|ej; a, b, c, λ)P(ej; a, b, c, λ)dej. (17)

Recall that µj and σ 2
j are the mean and the variance of

the model’s generalization error at the j-th validation point,
respectively. Formula (14) shows that µj is a function of a,
b, and c. Formula (15) shows that σ 2

j is a function of λ.
We regard ej to follow a normal distribution with mean µj
and variance σ 2

j . That is,

P(ej; a, b, c, λ) = P(ej;µj, σ 2
j )

=
1√
2πσ 2

j

exp

(
−
(ej − µj)2

2σ 2
j

)
. (18)

Recall that cj is the count of validation instances that are
misclassified by the model and in the actual validation set
used at the j-th validation point. Vj is the count of data
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instances that are in the actual validation set used at the j-th
validation point. We have

P(êj|ej; a, b, c, λ)

= P(cj/Vj|ej; a, b, c, λ) (plug in formula (9))

= P(cj|ej)

=

(
Vj
cj

)
e
cj
j (1− ej)

Vj−cj (plug in formula (10))

=

(
Vj
Vjêj

)
e
Vjêj
j (1− ej)Vj(1−êj)

(cj = Vjêj based upon formula (9)).

When maximizing the likelihood function, we can ignore the
positive constant

( Vj
Vjêj

)
and focus on

P(êj|ej; a, b, c, λ) ∝ e
Vjêj
j (1− ej)Vj(1−êj). (19)

Plugging formulas (18) and (19) into formula (17), we get

P
(
êj; a, b, c, λ

)
∝

∫ 1

0
e
Vjêj
j (1− ej)Vj(1−êj)

1√
2πσ 2

j

× exp

(
−
(ej − µj)2

2σ 2
j

)
dej. (20)

f: APPROXIMATING e
Vj êj
j (1− ej )

Vj (1−êj )

Formula (16) shows that the likelihood function is the prod-
uct of multiple integrals of the form given in formula (20).
This form is difficult to be used directly for numerical opti-
mization. To overcome the hurdle, for each integral, we use
the probability density function of a normal distribution to
approximate

e
Vjêj
j (1− ej)Vj(1−êj),

a key component of the integrand. This enables us to obtain
a simplified form of the integral, which is easy to use for
numerical optimization.

Recall that Vj is the count of data instances that are in the
actual validation set used at the j-th validation point. êj and
ej (0 ≤ ej ≤ 1) are the validation error and the model’s
generalization error at the j-th validation point, respectively.
When we reach the j-th validation point, both Vj and êj are
known.

e
Vjêj
j (1− ej)Vj(1−êj)

is ∝ a beta distribution’s probability density function [13]

xα−1(1− x)β−1/B(α, β),

where x = ej (0 ≤ x ≤ 1) is the variable,

α = Vjêj + 1,

β = Vj(1− êj)+ 1,

and B(α, β) is a normalization constant. The mean and the
variance of the beta distribution are

µ′j = α/(α + β)

= (Vjêj + 1)/(Vj + 2) (21)

and

σ ′2j = αβ/[(α + β)
2 (α + β + 1)]

= (Vjêj + 1)[Vj(1− êj)+ 1]/[(Vj + 2)2(Vj + 3)], (22)

respectively.
When α is≥10 and β is≥10, we can approximate the beta

distribution by a normal distribution that has the same mean
and variance as the beta distribution [22]. That is, we roughly
have

e
Vjêj
j (1− ej)Vj(1−êj) ∝

1√
σ ′2j

exp

(
−
(ej − µ′j)

2

2σ ′2j

)
. (23)

Usually, Vj is large enough to make α ≥ 10 and β ≥ 10.
For example, even if êj is as small as 0.02, having Vj ≥
450 is sufficient to make α ≥ 10 and β ≥ 10. Occasion-
ally for an j, which typically links to an added validation
point, Vj may not be large enough to make α ≥ 10 and
β ≥ 10. In this case, we employ the approach described in
Section III-F to increase Vj and make α ≥ 10 and β ≥ 10 if
possible. Regardless of whether α is ≥10 and β is ≥10,
we always use formula (23) to simplify the expression of
P
(
êj; a, b, c, λ

)
.

g: COMPUTING A SIMPLIFIED EXPRESSION OF
P
(
êj ;a,b, c, λ

)
Plugging formula (23) into formula (20), the integrand in
formula (20) is roughly

∝
1√
σ ′2j

exp

(
−
(ej − µ′j)

2

2σ ′2j

)
1√
2πσ 2

j

exp

(
−
(ej − µj)2

2σ 2
j

)

=
1√

σ 2
j + σ

′2
j

exp

(
−

(µ′j − µj)
2

2(σ 2
j + σ

′2
j )

)

×

 1√
2πσ̃ 2

j

exp

(
−
(ej − µ̃j)

2

2σ̃ 2
j

) , (24)

where

µ̃j = (σ 2
j µ
′
j + σ

′2
j µj)/(σ

2
j + σ

′2
j ) (25)

and

σ̃ 2
j = σ

2
j σ
′2
j /(σ

2
j + σ

′2
j ). (26)

In formula (24), the part in the square brackets is the probabil-
ity density function of a normal distribution with mean µ̃j and
variance σ̃ 2

j . The part outside the square brackets has nothing
to do with ej. Let 8(x) denote the cumulative distribution
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function of a standard normal distribution [13]. Plugging
formula (24) into formula (20), we roughly have

P
(
êj; a, b, c, λ

)
∝

1√
σ 2
j + σ

′2
j

exp

−
(
µ′j − µj

)2
2
(
σ 2
j + σ

′2
j

)
∫ 1

0

1√
2πσ̃ 2

j

× exp

(
−
(ej − µ̃j)

2

2σ̃ 2
j

)
dej

=
1√

σ 2
j + σ

′2
j

exp

−
(
µ′j − µj

)2
2
(
σ 2
j + σ

′2
j

)


×

[
8

(
1− µ̃j
σ̃j

)
−8

(
−µ̃j

σ̃j

)]
. (27)

h: MAXIMIZING THE LIKELIHOOD FUNCTION
According to formula (16), the log-likelihood function is∑n

j=n−w+1
ln P(êj; a, b, c, λ). (28)

Plugging formula (27) into formula (28) shows that to maxi-
mize the log-likelihood function, we only need to minimize

∑n

j=n−w+1

ln (σ 2
j + σ

′2
j

)
+

(
µ′j − µj

)2
σ 2
j + σ

′2
j

− 2ln
(
8

(
1− µ̃j
σ̃j

)
−8

(
−µ̃j

σ̃j

))]
. (29)

Plugging formulas (14) and (15) into formulas (25), (26), and
(29), we obtain the objective function to be minimized:

∑n

j=n−w+1

ln (λr2j + σ ′2j )+
(
µ′j − ax

−b
j − c

)2
λr2j + σ

′2
j

− 2ln
(
8

(
1− µ̃j
σ̃j

)
−8

(
−µ̃j

σ̃j

))]
, (30)

where

µ̃j = [λr2j µ
′
j + σ

′2
j (ax−bj + c)]/(λr

2
j + σ

′2
j ) (31)

and

σ̃ 2
j = λr

2
j σ
′2
j /(λr

2
j + σ

′2
j ).

This numerical optimization problem is subject to five
constraints: a > 0, b > 0, c > 0, λ > 0, and

ax−bn−w+1 + c ≤ 1.

Recall that xj denotes the normalized number of batches of
model construction finished before the j-th validation point.
To derive the last constraint, recall that w denotes the count
of validation points used to estimate a, b, c, and λ. n denotes
the present validation point’s sequence number.µj (0 ≤ µj ≤

1) is the mean of the model’s generalization error at the j-th
validation point. Formula (14) shows that

µj = ax−bj + c.

As j increases, xj strictly increases and hence µj strictly
decreases. µj is always >0. If

µn−w+1 = ax−bn−w+1 + c

is ≤1, µj is in [0, 1] for each j between n− w+ 1 and n.
In summary, we estimate a, b, c, and λ by minimizing

the objective function given by formula (30) subject to five
constraints: a > 0, b > 0, c > 0, λ > 0, and

ax−bn−w+1 + c ≤ 1.

i: THE SOFTWARE PACKAGE AND ITS SETTING USED TO DO
NUMERICAL OPTIMIZATION
We use the interior-point algorithm [23, Ch. 19], [24] imple-
mented in the software package Artelys Knitro [25] to solve
this constrained minimization problem. Typically, the esti-
mated a, b, c, and λ are roughly on the order of magnitude
of 0.1, 0.1 [17]–[19], 0.1, and 100, respectively. Accordingly,
when conducting numerical optimization, we initialize a, b,
c, and λ to 0.1, 0.1, 0.1, and 100, respectively.

During the constrained numerical optimization process,
one could allow the constraints to be violated [23, Ch. 15.4].
However, if the constraint

ax−bn−w+1 + c ≤ 1

is violated, µ̃j could be >1 for one or more j between n −
w + 1 and n (see formula (31)). If µ̃j is�1 and σ̃j is small,
numerical underflow could occur in computing

8
(
(1− µ̃j)/σ̃j

)
−8

(
−µ̃j/σ̃j

)
,

causing issues when we compute

ln(8
(
(1− µ̃j)/σ̃j

)
−8

(
−µ̃j/σ̃j

)
)

in formula (30). To avoid this issue, we set the bar_feasible
parameter in Artelys Knitro to either 1 or 3 to ensure that
the five constraints are always satisfied during the entire
constrained numerical optimization process [26].

2) ESTIMATING µj AND σ2
j WHEN A CONSTANT LEARNING

RATE IS ADOPTED
In this section, we describe how to estimate for each j ≥ 1,
the meanµj and the variance σ 2

j of the model’s generalization
error at the j-th validation point when a constant learning rate
is used. This case is a special case of applying an exponen-
tial decay method to the learning rate, when the constant ρ
regulating the decay rate of the learning rate is 0. We employ
the same approach in Section III-E1 to estimateµj and σ 2

j for
each j ≥ 1.
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FIGURE 5. When the learning rate changes over time based upon a step
decay method, the learning rate over epochs and an example validation
curve. (a) The learning rate over epochs. (b) An example validation curve.

3) ESTIMATING µj AND σ2
j WHEN A STEP DECAY METHOD

IS APPLIED TO THE LEARNING RATE
This section describes how to estimate for each j ≥ 1,
the mean µj and the variance σ 2

j of the model’s generaliza-
tion error at the j-th validation point when the learning rate
changes over time based upon a step decay method.

As Fig. 5(a) shows, in a step decay method, we cut the
learning rate by a pre-chosen factor that is >1 after a given
number of epochs. This factor could change over epochs in
a pre-determined fashion. Fig. 5(b) presents a correspondent
example validation curve. A decay point is defined as an
original validation point at which the learning rate is cut.
The decay points partition the validation curve into several
pieces. For every j ≥ 1, the first original validation point
on the ( j + 1)-th piece is the j-th decay point. When model
construction begins, both the learning rate used on and the
position of each piece are known.

As we move from one piece of the validation curve to the
next, both the learning rate and the variance of the model’s
generalization error change. We consider this when estimat-
ingµj and σ 2

j for each j ≥ 1. As in Section III-E1, to estimate
µj and σ 2

j , we need to estimate only the four parameters a,
b, c, and λ used to model µj and σ 2

j . There are two possible
cases: 1) the present validation point resides on the first piece
of the validation curve, and 2) the present validation point
resides on the k-th (k ≥ 2) piece of the validation curve.
We discuss the two cases sequentially.

Case 1 (The Present Validation Point Resides on the First
Piece of the Validation Curve)

When the present validation point resides on the first piece
of the validation curve, we adopt the method in Section III-E1
to estimate a, b, c, and λ.

FIGURE 6. Employing the method in Section III-E1 to estimate the trend
curve when one arrives at a validation point that is not far after the most
recent decay point.

Case 2 (The Present Validation Point Resides on the k-th
(k ≥ 2) Piece of the Validation Curve)
Next, we discuss the case of the present validation point

residing on the k-th (k ≥ 2) piece of the validation curve.
As shown in Fig. 5(b), because of the decay of the learning
rate at a decay point, the validation curve frequently drops
abruptly at this point as well as at the next few validation
points. As Fig. 6 shows, when one arrives at a validation point
that is not far after such a decay point, this drop could result
in an inaccurately estimated trend curve if the estimation
method in Section III-E1 were used.

To deal with this issue, we revise the estimation method in
Section III-E1. Let lj ( j ≥ 1) denote the count of validation
points that are on the j-th piece of the validation curve. Each
lj is known beforehand. Recall that at least τv = 4 data points
are needed to estimate a, b, c, and λ. Usually, lj is ≥ τv for
each j ≥ 1.

sk−1 =
∑k−1

j=1
lj

is the sequence number of the final validation point that is on
the prior piece of the validation curve. Let vk−1 denote the
count of both original and added validation points required to
train the model that is projected at the final validation point
on the prior piece. If the vk−1-th validation point resides on
the present k-th piece, vk−1 − sk−1 is this validation point’s
sequence number on the present k-th piece. Recall that n is the
present validation point’s sequence number. Let h(n) denote
the present validation point’s sequence number on the present
k-th piece. h(n) is ≤ lk . There are two possible scenarios
(see Fig. 7).

In the first scenario, h(n) is <min(τv, vk−1 − sk−1). In this
case, we do not have enough validation points to estimate a,
b, c, and λ. We reuse the most recently estimated count of
original validation points required to train the model. Since τv
is small, we often pass the phase of not updating the estimated
count of original validation points required to train the model
in a reasonably short period of time.

In the second scenario, h(n) is ≥min(τv, vk−1 − sk−1).
If vk−1 − sk−1 ≤ h(n) < τv, we project the next original
validation point as the final original validation point required
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FIGURE 7. The flowchart of estimating the count of original validation
points required to train the model when the present validation point
resides on the k-th (k ≥ 2) piece of the validation curve.

to train the model. Otherwise, if h(n) is ≥ τv, we revise
the method in Section III-E1 in the following two ways to
estimate a, b, c, and λ.

First, recall that xj denotes the normalized number of
batches of model construction finished before the j-th valida-
tion point. The trend curve’s value at the j-th validation point
is=µj. As shown in Fig. 5(b), if moved to the left by xsk−1 , the
present piece of the trend curve has approximately the same
form as an inverse power function. We adopt the same shifted
inverse power function

µj = a(xj − xsk−1 )
−b
+ c

rather than formula (14) to model µj.
Second, recall that w′ denotes the largest number of vali-

dation points permitted to estimate a, b, c, and λ. n denotes
the present validation point’s sequence number. h(n) denotes
the present validation point’s sequence number on the present
piece of the validation curve. We employ the last

w = min(h(n),w′)

validation points on the present piece of the validation curve
rather than the last min(n, w′) validation points to estimate a,
b, c, and λ.

F. DETERMINING Vmin
In this section, we show how to determine Vmin, the minimum
number of data instances needed in the randomly sampled
subset of the full validation set used at an added validation
point.

Recall that Vj ( j ≥ 1) is the count of data instances that
are in the actual validation set used at the j-th validation
point. êj denotes the validation error of the model at the j-th
validation point. At an added validation point, Vj is computed

by formula (8) that involves Vmin. In Section III-E1, we use
a normal distribution to approximate a beta distribution with
parameters

α = Vjêj + 1

and

β = Vj(1− êj)+ 1.

This approximation is reasonably precise if α is≥10 and β is
≥10 [22], which is equivalent to Vj ≥ 9/êj and Vj ≥ 9/(1 −
êj). If we know êj’s lower bound bl > 0 and upper bound
bu < 1, we can set Vmin to

9/min(bl, 1− bu)

to raise the chance of α being ≥10 and β being ≥10 for
each j ≥ 1. However, bl and bu are unknown beforehand.
To address this issue, we start from an initial estimate b̂l of bl
and an initial estimate b̂u of bu and set Vmin to

9/min(b̂l, 1− b̂u). (32)

Duringmodel construction, êj could fall out of [b̂l , b̂u] at some
added validation point, making it possible to have α < 10 or
β < 10. At any added validation point, if êj falls out of
[b̂l , b̂u], we lower b̂l or raise b̂u to make [b̂l , b̂u] include êj
and then re-compute Vmin to make it larger. At any original
validation point, if êj falls out of [b̂l , b̂u], we do not adjust b̂l
and b̂u because the full validation set is used and there is no
way to make Vj larger.
We have two considerations when setting the initial values

of b̂l and b̂u. First, the larger the b̂l and the smaller the b̂u,
the more likely êj will fall out of [b̂l , b̂u] at some added
validation point during model construction, which is unde-
sirable. Second, if b̂l is too small or b̂u is too large, the Vmin
computed by formula (32) will be too large. Consequently, Vj
could also be too large, undesirably increasing the progress
indicator’s run-time overhead. To strike a balance between
these two considerations, we set the initial values of b̂l and
b̂u to 0.02 and 0.98, respectively.
During model construction, if the validation error êj at an

added validation point is outside of [b̂l , b̂u], we proceed as
follows:

1) Step 1: If êj is > b̂u, we change b̂u to êj. If êj is < b̂l ,
we change b̂l to êj.

2) Step 2: Use formula (32) to re-computeVmin. If êj is= 0
or 1, which is unlikely to occur in practice, we set Vmin
to +∞.

3) Step 3: Use formula (8) to re-compute V ′, the uniform
number of data instances that are in the randomly sam-
pled subset of the full validation set used at each added
validation point.

4) Step 4: If the new V ′ differs from the old V ′, we re-
sample the full validation set to obtain a new subset
and re-compute êj, the model’s error rate on the subset.
The count of data instances that are in the subset is the
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new V ′, which will also be used at each added valida-
tion point after the present validation point.

5) Step 5: If êj is re-computed in Step 4 and the new êj is
outside of [b̂l , b̂u], we repeat Steps 1-4 until the new êj
is within [b̂l , b̂u].

In practice, we rarely need to change V ′ from its initially
computed value because 1) the initial [b̂l , b̂u] is wide and has
a high likelihood to include êj, and 2) if the initially computed
V ′ is > the Vmin re-computed in Step 2, no value change will
be made to V ′ in Step 3.

G. ESTIMATING THE MODEL CONSTRUCTION COST
BASED UPON THE PROJECTED COUNT OF ORIGINAL
VALIDATION POINTS REQUIRED TO TRAIN THE MODEL
After estimating the trend curve and the variance of the
random noise, we can project the model construction cost.
The Monte Carlo simulation method in our prior paper [8] is
used to estimate nv, the count of original validation points
required to train the model. Recall that V ′ is the uniform
number of data instances that are in the randomly sampled
subset of the full validation set used at each added validation
point. nj (0 ≤ j ≤ vmax − 1) is the count of validation
points to be added between the j-th and the ( j+1)-th original
validation points. q is the constant regulating the decay rate
of nj (0 ≤ j ≤ vmax − 1) in the exponential decay schema.
Our prior work [8] shows that the mean quantity of work
taken to process a validation instance one time to calculate the
validation error is 1/3 unit of work. The model construction
cost is the sum of three components:
1) The cost to process the training instances, which is

computed using formula (1).
2) The cost to calculate the validation errors at the original

validation points, which is computed using formula (2).
3) The cost to calculate the validation errors at the added

validation points

= the total count of validation points added before

the nv-th original validation point× the uniform

number of data instances that are in the randomly

sampled subset of the full validation set used at

each added validation point

× the mean quantity of work taken to

process a validation instance one time

to calculate the validation error

=

∑nv

j=0
nj × V ′/3

=

∑nv

j=0

⌊
n0qj

⌉
× V ′/3.

IV. PERFORMANCE
This section presents the performance test results of
our new progress indication method for constructing
deep learning models. TensorFlow is a commonly used
open-source software package for deep learning created by
Google [14]. We implemented our new method in

TensorFlow Version 1.13.1. In each test, our progress indi-
cators gave informative estimates and revised them every
10 seconds with minute overhead, fulfilling the progress indi-
cation goals of low overhead, continuously revised updates,
and reasonable pacing listed in our prior paper [6].

A. DESCRIPTION OF THE EXPERIMENTS
The experiments were performed by running TensorFlow
on a Digital Storm workstation. The workstation runs the
Ubuntu 18.04.02 operating system and has 64GB mem-
ory, one eight-core Intel Core i7-9800X 3.8GHz CPU, one
GeForce RTX 2080 Ti GPU, one 3TB SATA disk, and one
500GB solid-state drive. Every deep learning model was
constructed on an unloaded system and using the GPU.

We tested two standard deep learning models: the Gated
Recurrent Unit (GRU) model, a recurrent neural network,
used in Purushotham et al. [27] and the convolutional neu-
ral network GoogLeNet [28]. For every model, we tested
four standard optimization algorithms for constructing deep
learning models: root mean square propagation (RMSprop)
[29], classical stochastic gradient descent (SGD) [30],
adaptive gradient (AdaGrad) [31], and adaptive moment esti-
mation (Adam) [32]. For each (deep learning model, opti-
mization algorithm) pair, three learning rate decay methods
were tested: using an exponential decay method, a step decay
method, and a constant learning rate. We present the test
results for GoogLeNet using Adam and the GRUmodel using
RMSprop. The test results for the other (deep learning model,
optimization algorithm) pairs are similar and shown in the
Appendix [33]. There is one exception. For the step decay
method, we present the test results for GoogLeNet using
Adam. The test results for using RMSprop and the step decay
method to construct the GRUmodel are similar and shown in
the Appendix [33].

We employed two popular benchmark data sets shown in
Table 3: CIFAR-10 [34] and MIMIC-III [35]. GoogLeNet
was trained on CIFAR-10. In CIFAR-10, every data instance
is an image of size 32× 32. CIFAR-10 was split into a valida-
tion set and a training set as described in Krizhevsky [34]. The
GRU model was trained on a subset of the MIMIC-III data
set called ‘‘Feature Set C, 48-h data’’ to perform the ‘‘ICD-9
code group prediction’’ task in Purushotham et al. [27]. In the
subset, every data instance is a sequence of length 48. The
subset was partitioned into a validation set and a training set
as described in Purushotham et al. [27].

TABLE 3. The data sets that we used to test our progress indication
method.
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Except for the largest number of epochs permitted to
train the model and the learning rate decay method, all
the hyper-parameters were given their default values that
appeared in the open source code of GoogLeNet and the
GRU model [36], [37]. In particular, the count of training
instances in every batch was = 100 and 128 for the GRU
model and GoogLeNet, respectively. In each test, the begin-
ning learning rate was = 0.001. The patience p was = 11,
an integer randomly selected from [3, 25]. The min_delta δ
was = 0.00131, a number randomly selected from [0, 0.01].
The largest number of epochs permitted to train the model
was = 150. An original validation point was put at or near
the end of each epoch of model construction. Accordingly,
the count of batches of model construction between two
successive original validation points was 390 and 205 for
GoogLeNet and the GRU model, respectively.

Recall that vmax denotes the largest number of original
validation points permitted to construct the model. nj (0 ≤
j ≤ vmax − 1) is the count of validation points added between
the j-th and the ( j + 1)-th original validation points. n0 is
the count of validation points added before the first original
validation point. q is the constant regulating the decay rate of
nj (0 ≤ j ≤ vmax − 1) in the exponential decay schema. V ′ is
the uniform number of data instances that are in the randomly
sampled subset of the full validation set used at each added
validation point. For each of GoogLeNet and the GRUmodel,
Table 4 shows the n0, q, and V ′ set by the approach given in
Section III-B. In our experiments, V ′ never changed during
model construction.

TABLE 4. For each of GoogLeNet and the GRU model, the n0, q, and V ′
set by the approach given in Section III-B.

B. ACCURACY MEASURE
We used the average prediction error adopted in
Chaudhuri et al. [38] to gauge the progress indicator’s esti-
mation accuracy. The average prediction error is the ratio
of a numerator to a denominator (see Fig. 8). The area of
the region between a straight diagonal line and a curve is
the numerator. The straight line shows the real model con-
struction time left. The curve shows the progress indicator’s
estimate of the model construction time left over time. The
area of the triangle created by the straight diagonal line, the y-
axis, and the x-axis is the denominator. The larger the average
prediction error, the less accurate the estimates given by the
progress indicator.

C. COMPARISON OF THREE PROGRESS INDICATION
METHODS FOR CONSTRUCTING DEEP LEARNING MODELS
We compared the accuracy of the progress estimates provided
by three progress indication methods for constructing deep
learning models:

FIGURE 8. The areas of the regions employed to calculate the average
prediction error.

1) Method 1: This is our prior method [8].
2) Method 2: This is a hybrid of our prior and new meth-

ods.We use the approach in Section III-B to insert extra
validation points between the original validation points,
the approach in Section III-C to set the uniform number
of data instances that are in the randomly sampled
subset of the full validation set used at each added
validation point, the approach in our prior paper [8] to
predict the count of original validation points required
to train the model, and the approach in Section III-G
to estimate the model construction cost based upon the
projected number. We disregard the dependency of the
random noise’s variance on the size of the actual vali-
dation set used at the validation point. Instead, as in our
prior paper [8], we deem the random noise’s variance
to be approximately ∝ the square of the learning rate
with no reliance on the size of the actual validation set
used at the validation point.

3) Method 3: This is our new method shown in
Section III.

We conducted 24 tests, one for every combination of a deep
learning model, an optimization algorithm, and a learning
rate decay method. In each test, we constructed the deep
learning model five times, each in a distinct run. In each
run, we used each of the three progress indication methods
to provide progress estimates. For each test, Table 5 shows
the standard deviation and the mean of the average prediction
error over the five runs for each of the three methods. For
each test, the smallest mean of the average prediction error
over the five runs across the three methods is marked in bold
in Table 5.

1) COMPARISON OF METHODS 1 AND 3
In 20 of the 24 tests, method 3 beat method 1 and had
a smaller mean of the average prediction error over the
five runs. Method 1 outperformed method 3 in the other
two tests: 1) using Adam and a constant learning rate to
construct GoogLeNet, and 2) using AdaGrad and apply-
ing a step decay method to the learning rate to construct
GoogLeNet. The mean of the average prediction error over
all runs in all tests for method 3 is 0.48, which is 57.5% lower
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TABLE 5. For each of the 24 tests, the mean as well as the standard deviation of the average prediction error over the five runs for each of the three
progress indication methods.

than the corresponding mean of 1.13 for method 1. Thus,
compared with using our prior method [8], using our new
method reduces the progress indicator’s prediction error of
the model construction time left. Moreover, our new method
gave decently accurate estimates of the model construction
time left.
2) COMPARISON OF METHODS 2 AND 3
In 18 of the 24 tests, method 3 beat method 2 and had a
smaller mean of the average prediction error over the five
runs. Method 2 outperformed method 3 in the other five
tests: 1) using Adam and a constant learning rate to construct
GoogLeNet, 2) using RMSprop and applying a step decay
method to the learning rate to construct GoogLeNet, 3) using
AdaGrad and applying a step decay method to the learning
rate to construct GoogLeNet, 4) using SGD and a constant
learning rate to construct the GRU model, and 5) using SGD
and applying a step decay method to the learning rate to
construct the GRUmodel. Themean of the average prediction
error over all runs in all tests for method 3 is 0.48, which
is 20.0% lower than the corresponding mean of 0.60 for
method 2. Thus, considering the dependency of the random
noise’s variance on the size of the actual validation set used at
the validation point raises the progress indicator’s prediction
accuracy.

In Sections IV-D to IV-F and the Appendix [33],
we focus on the new progress indication method described in
Section III. Yet, for the model construction time left, we show
the estimates provided by both the old and the new progress
indication methods. Recall that in each of the 24 tests, we
constructed the deep learning model five times, each in a
distinct run. We randomly selected one of the five runs and
present the outputs of the progress indicator over time for that
run.

D. TEST RESULTS FOR ADOPTING A CONSTANT LEARNING
RATE
This section presents the test results for adopting a constant
learning rate.

1) TEST RESULTS FOR CONSTRUCTING GOOGLENET
In the test, we used the Adam optimization algorithm and a
constant learning rate to construct GoogLeNet. Fig. 9 depicts
the progress indicator’s estimated model construction cost
over time, with the dotted horizontal line showing the real
model construction cost. Before reaching τv = 4 validation
points within 39 seconds, the progress indicator estimated
the model construction cost based upon the largest number
of original validation points permitted to train the model,
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FIGURE 9. Model construction cost estimated over time (using Adam and
a constant learning rate to construct GoogLeNet).

FIGURE 10. Model construction speed over time (using Adam and a
constant learning rate to construct GoogLeNet).

FIGURE 11. Estimated model construction time left (using Adam and a
constant learning rate to construct GoogLeNet).

which diverged notably from the real count of original val-
idation points required to train the model. As a result, the
estimated model construction cost greatly differed from the
real model construction cost. After reaching four or more
validation points, the progress indicator refined the estimated
model construction cost for it to become more accurate over
time.

Fig. 10 depicts the model construction speed that the
progress indicator observed over time. This speed was rel-
atively stable during the whole model construction process.

Fig. 11 and 12 depict the remaining model construction
time estimated by the old and the new progress indication

FIGURE 12. Estimate of the model construction time left at the early
stage of model construction (using Adam and a constant learning rate to
construct GoogLeNet).

FIGURE 13. Finished percentage estimated over time (using Adam and a
constant learning rate to construct GoogLeNet).

methods over time, with the dashed line showing the real
model construction time left. Before 691 seconds, the old
method’s [8] estimate of the model construction time left dif-
fered notably from the real model construction time left. The
new method reached the stage of giving relatively accurate
estimates of the model construction time left much faster than
the old method.

Fig. 13 depicts the progress indicator’s estimate over time
of the finished percentage of model construction work. The
curve showing the estimated finished percentage is reason-
ably close to the diagonal dotted line linking the upper right
and the lower left corners.

2) TEST RESULTS FOR CONSTRUCTING THE GRU MODEL
In the test, we used the RMSprop optimization algorithm
and a constant learning rate to construct the GRU model.
We wanted to show that the estimates given by the progress
indicator can be decently accurate for distinct kinds of neural
networks.

Fig. 14 depicts the progress indicator’s estimated model
construction cost over time, with the dotted horizontal line
showing the real model construction cost. After we reached
τv = 4 validation points within 7 seconds, the estimated
model construction cost became decently accurate for the rest
of the model construction process.
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FIGURE 14. Model construction cost estimated over time (using RMSprop
and a constant learning rate to construct the GRU model).

FIGURE 15. Model construction speed over time (using RMSprop and a
constant learning rate to construct the GRU model).

Fig. 15 depicts the model construction speed that the
progress indicator observed over time. This speed was
relatively stable during the whole model construction
process.

Fig. 16 depicts the remaining model construction time
estimated by the old and the new progress indication meth-
ods over time, with the dashed line showing the real model
construction time left. The new method reached the stage of
giving relatively accurate estimates of the model construc-
tion time left much faster than the old method. In fact, the
new method’s estimate of the model construction time left
was decently accurate during the whole model construction
process.

Fig. 17 depicts the progress indicator’s estimate over time
of the finished percentage of model construction work. The
curve showing the estimated finished percentage is reason-
ably close to the diagonal dotted line linking the upper right
and the lower left corners.

E. TEST RESULTS FOR APPLYING AN EXPONENTIAL DECAY
METHOD TO THE LEARNING RATE
This section presents the test results for applying an exponen-
tial decay method to the learning rate. We set the constant ρ
regulating the decay rate of the learning rate to 0.05.

FIGURE 16. Estimated model construction time left (using RMSprop and a
constant learning rate to construct the GRU model).

FIGURE 17. Finished percentage estimated over time (using RMSprop and
a constant learning rate to construct the GRU model).

1) TEST RESULTS FOR CONSTRUCTING GOOGLENET
In the test, we used the Adam optimization algorithm and
applied an exponential decay method to the learning rate to
construct GoogLeNet. Fig. 18-21 depict the results for this
test. From 0 to 2,002 seconds, the model construction cost
estimated by the new progress indication method oscillated
and differed notably from the real model construction cost
most of the time. This difference led to inaccurate estimates
of the model construction time left and the percentage of
model construction work finished. After 2,002 seconds, the
new progress indication method gave more accurate progress
estimates. The new method reached the stage of giving rela-
tively accurate estimates of the model construction time left
much faster than the old method.

2) TEST RESULTS FOR CONSTRUCTING THE GRU MODEL
In the test, we used the RMSprop optimization algorithm and
applied an exponential decay method to the learning rate to
construct the GRU model. Fig. 22-25 depict the results for
this test, showing that our new progress indication method
gave decently accurate estimates during most of the model
construction process. The new method reached the stage of
giving relatively accurate estimates of the model construction
time left much faster than the old method.
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FIGURE 18. Model construction cost estimated over time (using Adam
and applying an exponential decay method to the learning rate to
construct GoogLeNet).

FIGURE 19. Model construction speed over time (using Adam and
applying an exponential decay method to the learning rate to construct
GoogLeNet).

FIGURE 20. Estimated model construction time left (using Adam and
applying an exponential decay method to the learning rate to construct
GoogLeNet).

F. TEST RESULTS FOR APPLYING A STEP DECAY METHOD
TO THE LEARNING RATE TO CONSTRUCT GOOGLENET
This section presents the test results for adopting the Adam
optimization algorithm and applying a step decay method
to the learning rate to construct GoogLeNet. We cut the
learning rate from 10−3 to 10−4 at the start of the 64-th epoch,
and subsequently to 10−5 at the start of the 115-th epoch.
In the test, early stopping happened on the first piece of the

FIGURE 21. Finished percentage estimated over time (using Adam and
applying an exponential decay method to the learning rate to construct
GoogLeNet).

FIGURE 22. Model construction cost estimated over time (using RMSprop
and applying an exponential decay method to the learning rate to
construct the GRU model).

FIGURE 23. Model construction speed over time (using RMSprop and
applying an exponential decay method to the learning rate to construct
the GRU model).

validation curve. Fig. 26-30 present the test results, which are
akin to those presented in Fig. 9-13.

G. SUMMARY OF THE PERFORMANCE TEST RESULTS
In summary, our experiments show that compared with using
our prior progress indication method, using the new method
reduces the progress indicator’s prediction error. Moreover,
the new method enables us to obtain relatively accurate
progress estimates faster with a low overhead.
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FIGURE 24. Estimated model construction time left (using RMSprop and
applying an exponential decay method to the learning rate to construct
the GRU model).

FIGURE 25. Finished percentage estimated over time (using RMSprop and
applying an exponential decay method to the learning rate to construct
the GRU model).

FIGURE 26. Model construction cost estimated over time (using Adam
and applying a step decay method to the learning rate to construct
GoogLeNet).

V. RELATED WORK
This section provides a brief review of the related work. Our
prior paper [6] provides a detailed discussion of the related
work.

A. SOPHISTICATED PROGRESS INDICATORS
Several research groups have proposed sophisticated progress
indicators for static program analysis [39], software
model checking [40], program compilation [41], database
queries [7], [38], [42]–[44], MapReduce jobs [45], [46],

FIGURE 27. Model construction speed over time (using Adam and
applying a step decay method to the learning rate to construct
GoogLeNet).

FIGURE 28. Estimated the model construction time left (using Adam and
applying a step decay method to the learning rate to construct
GoogLeNet).

FIGURE 29. Estimate of the model construction time left at the early
stage of model construction (using Adam and applying a step decay
method to the learning rate to construct GoogLeNet).

subgraph queries [47], and automaticmachine learningmodel
selection [48], [49]. In addition, for construction machine
learning models, we have created sophisticated progress
indicators for random forest, decision tree, as well as neural
network [6], [8], [50].

B. ESTIMATING THE CONSTRUCTION TIME OF DEEP
LEARNING MODELS
To estimate the running time of an epoch before the con-
struction of a deep learning model begins, Justus et al. [51]
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FIGURE 30. Finished percentage estimated over time (using Adam and
applying a step decay method to the learning rate to construct
GoogLeNet).

developed a meta learning approach that uses multiple fea-
tures of the computing resources, the present deep learning
model, and the training data set employed to construct another
deep learning model. That approach projects neither the
amount of time nor the count of epochs required to construct
a deep learning model.

To project the amount of time required to construct a deep
learningmodel before model construction begins, researchers
have developed multiple methods including meta learning
employing support vector regression [52], meta learning
employing Multivariate Adaptive Regression Splines [53],
meta learning employing polynomial regression [54], and
Bayesian optimization [55]. The estimates given by these
methods are not kept being refined, are often inaccurate, and
can diverge greatly from the real model construction time on
a loaded computer. In comparison, our progress indication
method for deep learning model construction keeps refining
its estimates and considers the load on the computer when
projecting the model construction time left.

C. COMPLEXITY ANALYSIS FOR CONSTRUCTING NEURAL
NETWORKS
Many researchers have studied the time complexity of con-
structing a neural network [56, Ch. 24], [57], [58]. How-
ever, the time complexity information gives no estimate of
the model construction time on a loaded computer and is
insufficient for us to develop progress indicators. Typically,
time complexity considers neither data properties that affect
the model construction cost nor the coefficients and the lower
order terms required to predict the model construction cost.
A good progress indicator should keep refining its estimated
model construction cost during model construction.

D. RELATIONSHIP BETWEEN THE VARIANCE OF A
MACHINE LEARNING MODEL’S ERROR RATE
AND THE DATA SET SIZE
For a toy machine learning model not used in the real world,
Hutter [59] derived the relationship between the variance of
the model’s generalization error and the training set size.

In comparison, for deep learning models used in the real
world, we derive the relationship between the validation
error’s variance and the validation set size.

VI. DIRECTIONS FOR FUTURE WORK
In this section, we outline some directions for future work.

This work does not give any upper bound for the progress
indicator’s projection errors of the model construction cost.
To derive such upper bounds in the future, we could
employ an approach that is akin to the approach used by
Chaudhuri et al. [60] for progress indication for executing
database queries.

Both our prior work [8] and this work use the same single
early stopping condition to do a case study to demonstrate
that it is feasible to build sophisticated progress indicators
for constructing deep learning models. Besides this early
stopping condition, many other early stopping conditions
exist [1], [61]–[63]. In the future, we plan to investigate how
our present progress indication techniques work for some
other popular early stopping conditions and whether our
present techniques require any changes to work well for those
conditions.

This work focuses on using deep learning for classification.
Deep learning can also be used for regression.We could adopt
the progress indication method given in our prior paper [8] to
handle deep learning regression models. However, as pointed
out earlier in this paper, this old method has a shortcoming
due to the sparsity of validation points. In the future, we plan
to investigate how to revise the new progress indication
method given in this paper to handle deep learning regression
models. When constructing a deep learning classification
model, the validation error given the model’s generalization
error follows a discrete distribution linked to a binomial
distribution. This is used in Section III-D to derive the rela-
tionship between the random noise’s variance and the size of
the actual validation set used at the validation point. In com-
parison, when constructing a deep learning regression model,
the validation error given the model’s generalization error
follows a continuous distribution. Accordingly, to enable the
new progress indication method to handle regression models,
we need to derive a different relationship between the random
noise’s variance and the size of the actual validation set used
at the validation point.

VII. CONCLUSION
In this paper, we propose a new progress indication method
for constructing deep learning models that permits early stop-
ping. By judiciously inserting extra validation points between
the original validation points and revising the predictedmodel
construction cost at both the original and the added validation
points, this new method could address our prior method’s
shortcoming of having a long delay in obtaining relatively
accurate progress estimates for the model construction pro-
cess. Our experimental results show that compared with using
our prior method, using this new method not only greatly
reduces the progress indicator’s prediction error of the model
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construction time left, but also enables us to obtain relatively
accurate progress estimates faster.
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