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ABSTRACT In autonomous cars accurate and reliable detection of objects in the proximity of the vehicle is
necessary in order to perform further safety critical actions which depend upon it. Many detectors have been
developed in the last few years, but there is still demand for more reliable and more robust detectors. Some
detectors rely on a single sensor, while some others are based upon fusion of data from multiple sources.
The main aim of this paper is to show how image features can contribute to performance improvement of
detectors which rely on pointcloud data only. In addition it will be shown, how lidar reflectance data can
be substituted by low level image features without degrading the performance of detectors. Three different
approaches are proposed to fuse image features with point cloud data. The extended networks are compared
with the original network and tested on a well-known dataset and on our own data, as well. This might
be important when the same pretrained model is to be used on data generated by a lidar using different
reflectance encoding schemes and when due to the lack of training data retraining is not possible. Different
augmentation techniques have been proposed and tested on the KITTI dataset as well as on data acquired
by a different lidar sensor. The networks augmented with image features achieved a recall increase of a few
percent for occluded objects.

INDEX TERMS Autonomous driving, environment perception, image features, neural networks, object
detection, sensor fusion.

I. INTRODUCTION
In the field of autonomous driving and intelligent infrastruc-
tures the environment perception stands for a safety critical
task where different type of static and dynamic objects must
reliably and robustly be detected and localized under various
circumstances, such as different weather conditions, limited
sensing resolution of applied sensors, partial occlusions, etc.

Efficient sensing under different weather conditions might
easily be handled by utilizing different type of sensors jointly
(lidar, RADAR, Camera, thermal vision). Most often camera
and Lidar sensors are used in sensor fusion algorithms
[1], [2]. For various applications, camera and radar pairing is
also common [3], [4], while there are also cases where radar
and lidar data are considered for fusion. [5].

Lidar sensors are not affected by day and night lighting
conditions, they can also reliably operate under various lim-
ited visibility conditions. Radar sensors are also unaffected
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by light and weather conditions such as fog and dust, they can
sense longer distances than Lidars, however their resolution
compared to Lidars is considerably lower. Cameras perform
poorly under limited visibility conditions, although thermal
imaging cameras can compensate for such limitations. [6]

Individual application of certain sensors might strongly be
limited by their low spatial resolution as in case of lidars
for instance (depending on the displacement, number of
channels and the field of view different sparse patterns can
be observed on the generated pointcloud). Even the most
advanced lidars are not able to capture objects being at longer
distances (> 150 m) with good enough resolution which
makes the detection task in such cases even more difficult.
At distances more than 150 the number of rays crossing the
body of an average sized vehicle is to low for its reliable
detection (even in case of lidars having the highest available
resolution).

There are numerous cases when long range detection
of vehicles is required in order to perform the given task
efficiently, such as for instance prediction of potentially
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dangerous traffic situations or scenarios in order to avoid
accidents and increase road safety [7]; digital twin generation
of longer road sections, where the range of detectability
influences also the minimal number of sensors to be deployed
in order to cover a given road section. This factor plays
significant role first of all due to cost, energy consumption
and maintenance related reasons in future intelligent infras-
tructure and road networks [8].

Multi-modal approaches are a promising alternative to
handle (to some extent) problems caused by the sparsity of
lidar pointclouds. For example by combining information
from camera images (which obviously have much larger
resolution than lidars) with pointcloud data (which on
the other hand have good depth resolution) the detection
performance as well as the reliability might be improved
(compared to camera only or lidar only approaches).

The main contribution of this paper is represented by the
proposed pointcloud augmentation techniques incorporated
into a selected baseline lidar based detector model and by
the evaluation and analysis of the impact of certain image
features on 3D object detection performance compared to
the lidar only detection case where the training of neural
networks as well as the inference is solely performed
on pointclouds. It is also examined how certain types of
image features under different conditions (various scenarios
including partially occluded, close and distant vehicles, data
acquired by various lidar types) contribute to the performance
improvement of lidar only based solutions by transforming
the pointcloud into a ‘‘clever’’ pointcloud by applying the
proposed augmentation techniques.

The paper is organized as follows:

• in Section II the related work including the brief
overview of the state of the art solutions of sensor fusion
is described;

• Section III summarises the problem addressed by the
point cloud augmentation algorithms presented;

• Section IV presents the proposed point cloud augmenta-
tion algorithms;

• Section V analyses the results achieved by using
augmentation networks;

• Finally Section VI reports conclusions.

II. RELATED WORKS
Many methods appeared in the literature in the last few years
(first of all machine learning based approaches) to tackle
the detection problem especially in lidar pointclouds. Let
us categorize the methods developed for object detection
into two classes, i.e. approaches which operate on lidar
pointclouds only and approaches utilizing camera images
together with lidar pointclouds.

A. LIDAR ONLY APPROACHES
Lidar only approaches are efficient for short range detection,
however at longer distances the density of lidar points is
significantly reduced, which makes it difficult to detect

objects reliably. By utilizing lidars the vehicle or pedestrian
detection task might be performed under various weather
conditions efficiently. Building on the PointNet design
developed by Qi et al. [9], VoxelNet [10] was one of the
first methods to perform true end-to-end learning in this
area. VoxelNet creates voxels, applies a PointNet to each
voxel, followed by a 3D convolutional middle to consolidate
the vertical axis, after which a 2D convolutional detection
architecture is applied. While the performance of VoxelNet is
robust, inference time is too slow for real-time deployment.
Recently, SECOND [11] improved the inference speed
of VoxelNet, but 3D convolutions remain a bottleneck.
The bottleneck was solved by PointPillars [12] which is
still one of the most computationally efficient architecture
(according to the KITTI benchmark site [13]) designed for
3D object detection task in lidar pointclouds. In PointPillars
the 3D points are organized into columns (pillars) and
transformed into a sparse tensor of learnt abstract features
which are then processed by further convolutional layers to
get detections in form of 3D bounding boxes. A different
concept for object detection in pointclouds is proposed by the
authors of the so called Self-Ensembling Single-Stage object
Detector (SE-SSD) where they focus on exploiting both
soft and hard targets by introducing two Single-Stage object
Detector (SSD) networks being in a ‘‘student’’ ‘‘teacher’’
relation. [14]. The Semantic Point Generation (SPG) method
proposed in [15] aims to recover missing parts of foreground
objects by generating semantic points whichmight be utilized
by pointcloud based object detectors directly to enhance
detection.

B. CAMERA AND LIDAR BASED APPROACHES
In order to extend the range of detectability of objects and
increase reliability, joint application of different sensor types
is highly welcome. The authors in [1] proposed amulti-modal
approach by fusing information from lidar pointclouds and
semantic-rich stereo images. They bridge the resolution gap
between the lidar and Camera by introducing so called
virtual points. Another multi-modal approach is proposed
in [2] where the the lidar points are augmented by semantic
information being extracted from images in form of pixel
categories resulted by semantic segmentation of the image.
In the so called EPFNet [16] the authors enhance lidar points
with semantic image features in a point-wise manner without
any image annotations. In the work [17] the pointcloud of
occluded objects is handled by learning object shape priors
based on which the shape of the complete object might be
estimated. Authors in [18] consider geometric consistency
between detections in the image and the pointcloud, meaning
that 2D bounding boxes and the projected 3D bounding
boxes of detections must be consistent as well as the so
called semantic consistency which is related to the category
of objects. The RPN model proposed in [19] performs
multi-modal fusion on high resolution feature maps in order
to generate more reliable 3D object proposals for multiple
object classes.
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In this paper a camera-lidar fusion for object detection
is proposed, which is based on augmenting the lidar points
with corresponding image patterns as well as by individual
pixel data. We will show how fusion strategies of this kind
affect the performance of the baseline detector. The proposed
fusion models enable real-time application (the frame rate
of the detector is kept at 20 fps which is the frame rate
of lidar sensors available today). The effectiveness of the
proposed augmentation techniques is evaluated on the KITTI
dataset as well as on further real world data collected by
the authors. It is also shown how such augmentations may
improve the performance of the selected baseline network
when performing the inference on pointclouds generated by
different lidar sensors.

C. FUSION RADAR WITH CAMERAS OR LIDAR
In sensor fusion radars are also well considered sensors,
first of all due to their longer range, cost efficiency and
applicability even under limited visibility conditions. The
so called AssociationNet [3] generates a pseudo-image from
radar pins, 2D bounding boxes and the original RGB camera
image which is fed into a neural network to learn high-level
semantic representations. Camera-radar fusion might be
applied at object level, as well [4].

Thermal imaging cameras operate well even under limited
visibility conditions, they can jointly be utilized with Lidars
to achieve more accurate object detection. In [20] for instance
the authors use such combination of sensors while in [21]
radar sensor is also included. Researchers at the University
of Berlin have presented a solution where radar and Lidar
detections are fused aimed for highway applications [22].

III. PROBLEM DESCRIPTION
There have many object detectors been proposed during
the last few years operating on various types of sensory
data (lidar pointcloud, camera image, radar pointcloud, etc.).
Here our main goal is to show how the performance of an
object detector operating on pointclouds only might further
be improved by low level fusion with camera images. We will
also show how a network trained on data acquired by a
specific sensor performs on pointcloud data acquired by
comparable sensors of other vendors and what improvement
in detection performance might be expected when fusion is
applied. Here under fusion we mean camera-lidar fusion, i.e.
fusing image pixels with pointcloud data.

Here we would like to point out the impact of sen-
sor specific data patterns - produced by different lidar
sensors - on detector performance (due to beam angles,
resolution and sensitivity varying from sensor to sensor).
Obviously some performance degradation of detectors might
be expected due to sensor specific pointcloud patterns and
reflectivity profiles representing the objects. We would like
to show how camera-lidar fusion performed at lower level of
abstraction may contribute to the reduction of performance
degradation. Since there are many types of lidar sensors and
many setups exist (each causing different pointcloud patterns

to appear on surfaces of objects), collecting training data for
each specific setup and sensor type individually is energy and
time consuming. Instead of retraining the network on sensor
or setup specific training datasets, we aim at improving its
robustness by applying lower level fusion of pointclouds with
image pixel data.

As baseline model we have chosen the PointPillars [12]
object detector (operating on lidar pointclouds) which has
remarkable performance considering its speed and precision
of detections (according to the KITTI 3D object detection
benchmark). Although some newer detectors managed to get
higher precision but they have still much lower frame rate
than PointPillars. We have trained the baseline model as
well as the fusion capable network on the KITTI training
dataset [23].

A. DIFFERENCE IN POINTCLOUD PATTERNS
The pointcloud patterns formed on object surfaces differ from
manufacturer tomanufacturer of lidar sensors (by considering
the same scenario and sensor placement), whichmay strongly
influence the performance of networks trained for a specific
lidar sensor but applied on data acquired by a different
one. The following figure shows two pointcloud patterns
corresponding to two different lidar sensors (both sensors
were modeled in accordance with their specification sheets
by the dSpace SensorSim sensor simulator)(see Fig. 1). Let
us call these sensors as sensor-A and sensor-B. In Figs. 1a
and 1b vehicles being 25m apart from the sensor origin can
be followed while in figs. 1c and 1d the vehicles were set
to be 15m away from the sensor origin. The height of the
lidar sensor for both scenarios was set to be 1.73m (according
to the test vehicle of the Karlsruhe Institute of Technology
[[13], [23]]). The orientation of vehicles was 45◦ wrt.
longitudinal axes of the lidar. The aim of this simulation is
to point out the differences between pointcloud patterns. One
may observe that the density of points as well as the formed
pointcloud patterns differ in both cases. Another factor to
be considered is the difference in reflectivity profile of lidar
sensors The performance of the trained detector obviously
degrades when running on data acquired by a different lidar
sensor. Another important aspect here is the intensity profile
of lidars, which may also differ from vendor to vendor and
therefore it stands for an additional limiting factor for the
usability of pretrained neural networks (trained on specific
lidar data) in case of different lidars. Each manufacturer
handles the reflection of the laser beam differently, from
which the reflectivity value is calculated by the sensor.

In the upcoming sections we will show how the lidar
reflectivity information influences the performance of the
baseline model and how image pixel information may
contribute to the performance improvement of detectors
compared to lidar reflectivity values.

IV. PROPOSED POINTCLOUD AUGMENTATION
In order to combine data from different sensors to generate
higher level features to enhance the performance of detectors
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FIGURE 1. Difference between two 64 channel lidar sensors. Sensor-A
corresponds to the one used in the KITTI dataset [23], while sensor-B
models a sensor from different manufacturer. Images (a) and (b) show
the pointclouds when the objects are located 25m from the sensor origin.
Images (c) and (d) show the case when the vehicles are located 15m from
the sensor origin. Significant difference can be recognized in the density
of points thus in the formed patterns.

we proposed a data driven sensor fusion approach where
the fusion itself is done by neural network architectures,
as well as in IMF-DNN architecture [24]. The data acquired
by the lidar is combined with image features (see later in this
section) which is applied during training as well as inference.
The other class of fusion algorithms, where mathematical
models are used to generate detections is called model-based
fusion [25].

A. THE SELECTED BASELINE MODEL
We selected the PointPillars convolutional neural network
proposed by authors in [12] as the baseline model in order to
apply and evaluate the impact of our proposed augmentation
techniques on detection performance. The main components
of the PointPillars are the so called Pillar Feature Network,
the Backbone, and the Single Shot Detector (SSD) head [26].
It converts the raw pointcloud to a stacked pillar tensor and
a pillar index tensor. Then a feature encoder uses the stacked
pillars to learn a set of features to form a so called 2D pseudo-
image serving as input for the Backbone convolutional neural
network. Based on the generated features the detection
head predicts 3D bounding boxes of objects present in the
scene [12]. Starting from this baseline model our aim was to
include image pixel information into the process of pseudo
image creation in order to force the network to learn higher
level features from pointcloud and image data jointly. For
transforming the augmented input into a higher level feature
vector (see Fig.2) a fully connected layer has been applied
similarly as in [ [9], [10]]. The next section (IV-B) gives a
deeper insight into the extended architecture as well as the
alternatives used for image–pointcloud fusion.

B. EXTENDED PILLAR FEATURE NET
The idea of using image features comes from the fact
that when using different brands of lidars, we cannot fully

align the reflectivity values. Another problem that arises
is that pretrained models may be sensitive to internal
sensor parameters, such as the angle or pitch of the beams.
As extensions to the original baseline model, three different
architectures have been proposed to increase the robustness
against the influence of varying sensor parameters.

Let pi = [ui, vi]T stand for the pixel coordinates of the
projection of a 3D point Pi = [Xi,Yi,Zi]T from the lidar
pointcloud onto the camera image plane using the pinhole
camera model as follows:

p̃i = K[R|t]P̃i, (1)

where p̃i and P̃i stand for the homogeneous coordinates of
pi and Pi, respectively, K denotes the camera matrix (which
contains the focal length fx and fy expressed in terms of pixel
width and height, respectively; principal point coordinates
x0, y0 and the axis skew s), R the rotation matrix and t the
translation vector corresponding to the transformation from
the lidar frame to the camera frame. Let ILi and I cami stand
for the reflected laser beam reflectivity and the image pixel
intensity of Pi and its projection pi, respectively.

Let us point out that in the baselinemodel [12], we augment
each lidar point Pi in the pillar it is contained in, as follows:

P∗i = [Xi,Yi,Zi, ri,Xi −M j
x ,Yi −M

j
y,Zi −M

j
z,

Xi − C j
x ,Yi − C

j
y], (2)

where Mj
= [M j

x ,M
j
y,M

j
z] and Cj

= [C j
x ,C

j
y,C

j
z] denote

the mean of points falling in the jth pillar and the center
of the pillar, respectively. Considering the above original
augmentation we have incorporated image pixel information
into P∗i as follows:

Let P∗∗i denote the reduced version of the augmented point
P∗i , where ri is not included. The following cases have been
considered:

1) Each P∗∗i is augmented by vi (1P1P)
2) Each P∗∗i is augmented by the intensity vector formed

from a N × N neighborhood of pi (1P25P)
3) Each P∗∗i is augmented by the normalized intensity

vector formed from a N × N neighborhood of pi
(1P25PN)

4) Each P∗i is augmented by ri and vi (1P1P)
5) Each P∗i is augmented by ri and the intensity vector

formed from the intensities of a N × N neighborhood
of pi (1P25P)

6) Each P∗i is augmented by ri and the intensity vector
formed from the normalized intensities of a N × N
neighborhood of pi (1P25PN)

During our experiments we set N = 5. Together with the
original baseline models (with and without considering ri)
eight networks corresponding to the above cases were trained,
evaluated and tested. Each of these networks was trained
and tested on the same splits of the KITTI [13] dataset.
The original training data (7481 snapshots) was split by
random selection into 3212 training, 3269 validation and
1000 test samples. After evaluating the networks on the test
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FIGURE 2. The PointPillars baseline model [12] and the extended pillar feature network where each 3D point is projected onto the camera image plane
from where a single intensity value or the intensities in form of a vector from a N × N neighborhood of the image pixel is taken for augmentation. K1 and
K2 stand for the number of elements in the augmented and in the aggregated feature vector respectively.

FIGURE 3. 1P1P architecture, where each 3D point Pi is augmented with
the intensity of the image pixel corresponding to the projection of Pi .

FIGURE 4. The 1P25P network where each 3D point Pi is augmented by
the intensities of the 5 × 5 neighborhood of pi .

set, we tested their performance on KITTI RAW [23] data as
well as on data collected by us using a lidar different from
the one used in KITTI. Unfortunately, there is no ground
truth for raw and custom dataset, so we cannot determine the
accuracy of the detections for those cases, but we can draw
useful conclusions from the number of true/false detections.
In the following chapters let us describe the structure of the
extended feature network in detail.

FIGURE 5. The 1P25PN network where each 3D point pi is augmented by
the normalized intensities of the 5 × 5 neighborhood of pi .

The modified architectures extend the PFN (Pillar Feature
Network) network of the baseline model. The modified
network is of size (9 + K , 64), where the 9 features in the
original input are augmented by K = 1 or K = 25 image
features, while the output size is 64. The augmentation is
performed as follows:

1) THE 1P1P NETWORK
First, the original network was modified by attaching to each
point Pi in the pointcloud the intensity value (taken from the
HSV color space) of the pixel corresponding to the projection
of Pi in the camera image (see Fig.3). In order to project a 3D
point onto the camera image plane the camera and the lidar
must be calibrated first, i.e. the intrinsics and extrinsics must
be estimated. For this purpose the calibration approaches in
[[14], [27]] have been used.
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FIGURE 6. Mean Average Precision (mAP) values for each trained weights, saved during training. The 1st row reflects the results for the case when lidar
reflectivity was considered, the 2nd row shows the results when lidar reflectivity was omitted. The 1st column shows the mAP values computed on the
‘‘Easy’’, the 2nd column shows the mAP values for the ‘‘Moderate’’, and the 3rd column shows the mAP values for ‘‘Hard’’ objects. These categories are
defined by the KITTI benchmark site.

TABLE 1. PointPillars parameters used for training.

2) THE 1P25P(N) NETWORK
Second approach a vector of 25 pixel intensities is attached
to each lidar point Pi. Let us denote this vector by vi, which
contains the intensity values of the 5× 5 sized neighborhood
of the projection pi. Let us denote this neighborhood by Ui.
vi can be expressed as vi = Vec(Ui). In order to ensure
accurate comparison across Ui we normalized the elements
of Ui to have zero-mean and unit-variance (see Fig.5).
However we have also tested the case when non-normalized
neighborhood intensities are used for augmentation (see
Fig. 4). By including neighborhood related information to the
features of each 3D point, the network during training may
‘‘utilize’’ spatial image information, as well.

V. RESULTS
A. EVALUATION OF RESULTS ON A SEPARATED TEST SET
The performance of the detectors was tested on a separated
test set containing 1000 training images from the KITTI 3D
Benchmark. The metrics used for comparison here are the
precision, recall and the mean Average Precision (mAP).

FIGURE 7. Number of detected objects on the same KITTI raw data
scenario, with (top) and without lidar reflectivity values (bottom).

The latter is calculated by averaging AP values over
multiple Intersection over Union (IoU) thresholds used by
COCO [28], [29].

Two groups of detectors (each using the same baseline
model but different augmentation) were compared. The

VOLUME 10, 2022 61039



M. Csonthó et al.: Significance of Image Features in Camera-LiDAR Based Object Detection

FIGURE 8. Detection results on the first sequence of the KITTI raw scene. First row: PointPillars, second row: 1P25P architecture. Lidar reflectivity values
are also included.

FIGURE 9. Detection results on the first sequence of the KITTI raw scene. First row: PointPillars, second row: 1P1P architecture. The lidar reflectivity
values are omitted.

FIGURE 10. Detection results on the second sequence of the KITTI raw scene. First row: PointPillars, second row: 1P25P architecture. Lidar reflectivity
values are also included.

first group uses all data from the lidar sensor, i.e. the
pointcloud as well as the reflectance value for each lidar

point. In the second group of networks the reflectance
was omitted in order to eliminate the influence of differ-
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FIGURE 11. Detection results corresponding to the second sequence of the KITTI raw scene. First row: PointPillars, second row: 1P1P architecture. Lidar
reflectivity values are omitted.

FIGURE 12. KITTI 3D object detection evaluation metric for each network architecture. The individual rows depict the recall-precision curves
for the original PointPillars, the 1P1P, the 1P25P and the 1P25PN networks, respectively. The 1st column corresponds to the recall-precision
curve for the case when the lidar reflectivity was also considered while the 2nd column reflect the case when the lidar reflectivity was
omitted. The 3rd and 4th column correspond to cases when the detection threshold was set to 70% with lidar reflectivity included and
omitted, respectively.

ent reflectance encoding schemes being used across lidar
manufacturers. Obviously in this case the network is forced

to learn from reduced data however our goal here is to
substitute the reflectance value by image pixel intensities
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FIGURE 13. Cars detected in two snapshots from our custom dataset.
Lidar reflectivity was also included. The 1st column of the 1st row shows
the detections resulted by the original PointPillars network, the 2nd
column of the 1st row reflects the results corresponding to the 1P1P
network. In the 1st column of the 2nd row the detections obtained by the
1P25P network can be followed. The 2nd column of the 2nd row shows
the detections resulted by the 1P25PN network.

and show their impact on the performance of trained
detectors.

During training, the weights for all considered networks
were saved at every 5000 steps for which the mAP metric
was calculated on the test set (with available groundtruth)
for each category (easy, moderate, and hard) according to
the KITTI benchmark site [13](see Fig. 6). One can see that
in case when the reflectance is included, the image based
augmentation has no remarkable effect on the mAP (less than
1% difference). On the other hand when the reflectance is
omitted, the image augmentation caused observable increase
in themAP. The largest contribution of image pixel intensities
to mAP improvement can be observed in case of hard objects,
i.e. when the number of rays reflected from the surface of
objects is small.

The training of detectors was stopped after a certain
number of steps which in case of the original and 1P1P
detectors was roughly 300000 steps while in case of the
1P25P(N) networks roughly 600000 steps. We expected that
more steps will be required for training a more complex
network, but none of the considered networks produced
remarkable improvement after 300000 steps. Each network
was trained on the same splits of the KITTI dataset. To train
the models, the hyperparameters used by the baseline model

FIGURE 14. Cars detected in two snapshots from our custom dataset.
Here the lidar reflectivity was omitted. The columns of the 1st row show
the detections resulted by the original PointPillars and 1P1P network,
respectively. The columns of the 2nd row show the detections resulted by
the 1P25P and the 1P25PN networks, respectively.

have been considered. The values of the most relevant
hyperparameters are given in Table 1.

B. TEST RESULTS ON KITTI RAW DATA SCENARIO
In this section, we selected the weights from the detectors
that performed best in the evaluation process. Depending
on whether the reflectance was included or omitted the
1P1P and 1P25P networks showed the best performance
(see Figs.12 and 6). The selected weights were used to run
through the network the ‘‘0104’’ drive data from the KITTI
RAW dataset recorded on 26.09.2011 [23]. Although due
to the absence of groundtruth data, the previously applied
metrics were not calculated here, Figs. 8–11 reflect a
remarkable improvement in the detector’s performance.

In Fig. 8 a sequence of 5 frames can be seen. The top
row shows the detections resulted by the original architecture
while the bottom row shows the detections obtained by the
1P25P network. Here the lidar reflectivity values have also
been taken into account. One may observe that there is no
significant difference between the number of the detected
objects for this sequence, thus the contribution of image
features to the overall detection performance is negligible in
this particular case.

Fig. 9 shows the same sequence of 4 frames. The top
row shows the detections of the original architecture and the
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FIGURE 15. Detected vehicles in our custom dataset. The lidar reflectivity values were also included. The same four samples were given as
input to the networks to compare their responses. The individual rows correspond to the responses of the original PointPillars, the 1P1P,
the 1P25P and the 1P25PN networks, respectively.

bottom row shows the detections of the 1P1P network. In this
series, the lidar reflectivity values were omitted from both the
original as well as from 1P1P network. As one may observe
the 1P1P network was able to detect more distant or occluded
cars with a confidence larger than 70%, thus in this case the
contribution of image features to performance improvement
is remarkable.

Figure 10 shows another sequence, also consisting of
5 frames. The top row shows the detections of the original
architecture and the bottom row shows the detections of
1P25P network. In this series, the lidar reflectivity values
have been taken into account. There is no remarkable
difference between the performance of the two networks. The
same set of vehicles is detected by both networks, even in
terms of orientation and location accuracy they are nearly of
the same quality. Thus, by using image pixel intensity besides
the lidar reflectivity, the performance improvement of the
network is negligible.

In Fig. 11 the top row shows the detections resulted by
the original architecture while the bottom one shows the
detections yielded by the 1P1P network. Here the lidar
reflectivity values were omitted. The number of objects
detected by the 1P1P network compared to the original one
(with reflectance omitted) has increased significantly. The
confidence limit was set to 70%. The original network was
able to detect nearby vehicles confidently, but in case of
distant or occluded cars it did not perform as reliably as the
1P1P network did with image features. Significant increase
in the number of true positive detections can be observed in
case of the 1P1P network.

This section showed a comparison of the original and the
1P1P network for the case when lidar reflectivity values were
taken into account, and the 1P25P network for case when
the reflectivity was omitted. Here we considered these two
networks only because according to Fig. 12 they proved to
perform remarkably better than 1P25PN.

C. DETECTOR PERFORMANCE ON OUR CUSTOM
RECORDED DATA
We recorded our custom dataset with a different type of lidar
sensor and camera than the one used by the KITTI vision
benchmark suite. From numerous recordings, two groups
were selected to test the contribution of image features on the
detection performance. The confidence limits of detections
were set to 70% and 75%. The networks were tested on the
same snapshots.

1) THE FIRST SCENARIO FROM OUR CUSTOM DATASET
Fig. 13 shows the detections when the lidar reflectivity
was taken into account on the same short series of record-
ings. The confidence limits of the detections were set to
75%. The results show no difference in the number of
detected objects in this case. There are some cases where
the detectors (original, 1P1P, 1P25P, 1P25PN) recognize
different vehicles but the overall performance has not been
improved.

The detectors were also tested on these recordings by
omitting the lidar reflectivity (see Fig. 14). The results
show that the modified networks detect more vehicles
on these frames. The reason behind this might be the
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FIGURE 16. Detected vehicles in our custom dataset. Lidar reflectivity values were not used by the networks in this case. The same four
samples were given to the networks to compare their responses. The individual rows correspond to the responses of the original
PointPillars, the 1P1P, the 1P25P and the 1P25PN networks, respectively.

low number of points for each vehicle due to occlusions.
As it can be seen the 1P25P and the 1P25PN networks
detected most of the vehicles, while the original network
(by omitting the lidar reflectance) provided fewer detentions.
Neither of the detectors was able to detect all vehicles in
this scene.

2) THE SECOND SCENARIO FROM OUR CUSTOM DATASET
Similarly to the first scenario, the detectors were evaluated
with and without considering the lidar reflectance (see
Fig. 15) and Fig. 16). The same phenomenon can be observed
as in case of the first scenario. By including the reflectivity
values the performance did not change. On the other hand by
omitting reflectivity values the modified architecture proved
to be more effective.

D. HARDWARE SETUP AND CALIBRATION
For recording the stream of image-pointcloud pairs a
Hikvision DS-2CD2063G0-I camera having 6MP resolution
and an Ouster OS-1 Uniform 64 channel lidar sensor was
used. The calibration of the camera was performed by the
method proposed by Zhang [30]. The Camera-lidar extrinsics
have been estimated by the method proposed in [27].

The detector works by projecting the lidar points
onto the camera plane, thus in addition to an accurate
calibration, it is essential to precisely synchronize the
acquisition of data in order to determine the correct
pixel intensity value corresponding to a given 3D point.
The importance of time synchronisation is illustrated
by Liu et. al. in Matter of time [31]. Inaccurate syn-

chronization may affect the performance of the detector
significantly.

VI. CONCLUSION
Reliable environment sensing is one of the most important
tasks for self-driving vehicles. The most common types of
available object detectors are the lidar only, camera-only and
the camera-lidar based detectors. In this paper a low level
camera-lidar fusion was proposed based on augmentation of
pointcloud data by image features to improve the perfor-
mance of lidar only based detectors. It was shown how pixel
intensity patterns (compared to 3D spatial data) contribute to
the reliability of detections especially in those cases when
distant objects (represented by lower number of points in
the pointcloud) have to be detected. The augmentation is
performed by attaching reshaped image intensity patterns
to each projected 3D point in the pointcloud. The network
retains 20 FPS, which corresponds to the highest frame rate
of available lidar sensors. The accuracy of the detector was
evaluated and tested on the KITTI dataset as well as on
custom data.
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