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ABSTRACT Buffer allocation is an important research issue in the design and optimization of manufacturing
systems. One objective of buffer allocation is to maximize the throughput subject to the total buffer capacity
in manufacturing systems. Previous studies have proposed many approaches to solve the buffer allocation
problem, and tabu search has been proven to be effective in obtaining a near-optimal solution. To further
improve the computational efficiency, this study proposes a bottleneck detection-based tabu search algorithm
to efficiently solve the buffer allocation problem of manufacturing systems with sufficient solution quality.
In particular, the tabu search algorithm integrated with diversification strategies is proposed to maintain
satisfactory solution quality of the buffer allocation. The bottleneck detection cooperates with the variable
neighborhood structure to search for proper locations for allocating buffers, decreasing the computational
time of the buffer allocation. In addition, an existing throughput evaluation method is integrated with the
proposed approach to evaluate neighborhood solutions by calculating the manufacturing system throughput.
Numerical examples show that the proposed approach can obtain the near-optimal solution more efficiently
than the simple tabu search and adaptive tabu search algorithms. This study improves the computational
efficiency of buffer allocation in manufacturing systems without losing solution quality, contributing to
efficient resource reconfiguration and process management.

INDEX TERMS Buffer allocation, tabu search, bottleneck detection, computational efficiency.

I. INTRODUCTION
The buffer allocation problem (BAP) is one of the most
challenging problems in the design and optimization of man-
ufacturing systems. One objective of buffer allocation is to
maximize manufacturing system performance subject to the
total buffer capacity because buffers provide temporary stor-
age areas for parts and maintain their flow through machines
without blocking phenomena. However, reasonable buffer
allocation in a manufacturing system is difficult because
excessive buffer capacity causes system redundancy, while
insufficient buffer capacity leads to blocking.

Generative methods and evaluative methods are used coop-
eratively to solve the BAP [1]. Generative methods search
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for candidate buffer allocation solutions, whereas evaluative
methods evaluate the system performance corresponding to
candidate solutions. This process continues until the stopping
criteria are satisfied.

Commonly used evaluative methods consist of the exact
method [2], [3], decomposition methods [4]–[6], aggrega-
tion methods[7], [8], and simulation methods [9], [10]. The
exact method is only applicable to small-scale problems
because of its computational complexity. Simulationmethods
can obtain system performance with high accuracy; however,
long setting and simulation times limit their application in
solving the BAP, which requires a large number of evalua-
tions for candidate solutions. Decomposition and aggregation
methods can quickly approximate the system performance of
a manufacturing system with sufficient accuracy. Therefore,
they are widely used in integration with generative methods
to solve the BAP.
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Commonly used generative methods are divided into
four categories, including enumeration methods, dynamic
programming, search algorithms, and metaheuristics [11].
Enumeration methods search all feasible solutions to obtain
the optimal buffer allocation solution [12]. Wang et al. [13]
proposed a complete enumeration method to search for the
buffer allocation solution. Although their methods can obtain
the theoretical optimal solution, a long computational time is
typically needed, which limits its application for a large-scale
manufacturing system. Dynamic programming can obtain
the buffer allocation solution with a high solution quality
by decomposing the BAP into subproblems [14]. Previous
studies [12], [14] presented the advantage of dynamic pro-
gramming to solve the BAP. However, similar to enumera-
tion methods, dynamic programming is usually applied to
a manufacturing system with a small number of stations
because of its long computational time for large-scale prob-
lems. Search algorithms obtain a near-optimal solution by
searching for neighborhood solutions according to guidance
information [15]–[17]. The different guidance information,
such as bottlenecks, determines the effectiveness of search
algorithms. Cruze et al. [18] used the blocking probability to
search for bottleneck locations for buffer allocation. Exper-
imental results demonstrated the effectiveness of the search
algorithm based on the blocking probability. Gao et al. [19],
[20] presented a bottleneck indicator for guidance buffer allo-
cation and used the variable neighborhood search algorithm
to decrease the computational time. Their algorithms quickly
obtain near-optimal solutions; however, their solution quality
needs further improvement. Metaheuristic methods typically
exploit the search space using learning or evolutionary strate-
gies and have been widely used in recent years [21], [22].
Zhou et al. [23] presented a particle swarm optimization algo-
rithm to maximize the availability of a manufacturing system
by allocating buffers. Koyuncuoglu and Demir [24] pro-
posed two population-based algorithms to solve the BAP and
compared their solution quality. Generally, sufficiently good
buffer allocation solutions can be obtained by metaheuristics;
however, their solution quality and computational efficiency
may change violently for different problems. In addition to
the four kinds of commonly used algorithms, a new trend to
solve the BAP is to integrate one algorithm with another one
or other strategies to intensify the search process and obtain
better solution quality. Kose and Kilincci [25] proposed a
hybrid approach of a genetic algorithm and simulated anneal-
ing to improve the buffer allocation solutions of an open man-
ufacturing system. Weiss, Matta, and Stolletz [26] integrated
a rule-based local search algorithm with the new individual
lower bounds to allocate buffers into a manufacturing system
with limited supply.

The tabu search algorithm (TS) is a metaheuristic and
is widely used in solving optimization problems [27], [28].
Previous studies [29]–[33] applied the TS to optimize man-
ufacturing system resources and verified the effectiveness
of the TS in allocating buffers into manufacturing systems.
Furthermore, previous studies [34]–[36] have attempted to

integrate the TS with other algorithms to improve the solu-
tion quality of buffer allocation. Numerical examples demon-
strated the validity of their algorithms. Although previous
studies have verified the effectiveness of the TS in solving
BAPs of manufacturing systems, the computational time of
the TS was unsatisfactory[32]. Therefore, a bottleneck detec-
tion (BD)-based TS (BD-TS) is proposed to efficiently solve
the buffer allocation problem of a manufacturing system with
sufficient solution quality. The objective of buffer allocation
is to maximize the throughput of the manufacturing system
subject to the total buffer capacity. The TS continues to
search for candidate neighborhood solutions to obtain the
near-optimal solution of the buffer allocation to maximize the
throughput. Diversification strategies are proposed to main-
tain the solution quality of the TS. The BD, in cooperation
with the variable neighborhood structure, is proposed to guide
effective searching for candidate neighborhood solutions and
to decrease the computational time to obtain the near-optimal
solution. The performance of the BD-TS is investigated by
comparing it to the simple tabu search (STS) and adaptive
tabu search (ATS) based on numerical examples.

The contribution of the study is that we improve the
computational efficiency of the BAP without losing solution
quality, which facilitates the efficient design and optimization
of manufacturing systems in real applications.

The remainder of this paper is structured as follows.
Section 2 presents the problem statement. The methodology
is introduced in Section 3. Section 4 presents the experimental
design and comparison algorithms. Numerical results are
presented to test the effectiveness of the proposed approach
in Section 5. Section 6 provides some conclusions and future
work.

II. PROBLEM STATEMENT
A. ASSUMPTIONS
Amanufacturing system that consists of I stations in the study
is modeled as a stochastic model in Fig. 1. Each station has
a machine and a buffer. The assumptions in the study are as
follows:

• Materials in a manufacturing system are discrete jobs.
• External jobs enter a manufacturing system at an arrival
rate according to a Poisson process.

• Machines have unique performance that is denoted by
service rates.

• Buffers have finite capacity. The capacity consists of the
storage area of the buffer and machine. Because there is
at least one storage area in the machine and no buffer is
typically set in the first machine in a manufacturing sys-
tem, the first buffer capacity is always one, representing
the storage area for the first machine.

• Blocking after service (BAS) [37] is utilized to describe
job blocking behavior in the study. Here, the BAS
is defined as follows: the part upon completion of
service in a station cannot enter its subsequent station
when no available space exists in its subsequent sta-
tion. If the space in its subsequent station becomes
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available, the part in the station enters its subsequent
station.

B. NOTATIONS
To help understand the study contents clearly, some notations
in the proposed BD-TS are as follows:
• λi denotes the arrival rate at which jobs enter a manufac-
turing system from station i per unit time. ai denotes the
effective arrival rate.

• µi denotes the service rate at which jobs leave machine
i per unit time.

• i represents a station in a manufacturing system.
I denotes the number of stations.

• N denotes the total buffer capability in a manufacturing
system.

• Ki denotes the maximum capability of buffer i.
• θi denotes the throughput at which jobs leave a manu-
facturing system from station i per unit time.

• θINITIAL denotes the throughput after initialization.
• θBEST denotes the final best throughput.
• θMAX denotes the current maximum throughput after the
solution update.

• b̄ denotes a solution vector of the buffer allocation, and
b̄ = (b2, b3, · · · , bI ).

• bi denotes the allocated buffer capacity in buffer i.
• b̄BEST denotes the final best solution vector.
• b̄CURRENT denotes the current best solution vector.
• b̄TABU denotes the tabu solution vector.
• 5 denotes the set that stores neighborhood solution
vectors.

• p̄ denotes a configuration vector of blocking probability
at each station, and p̄ = (pb2 , pb3 , · · · , pbI ).

• pbi denotes the blocking probability in the case of bi
buffer capacity allocated in buffer i.

• p̄CURRENT denotes the current best configuration vector
of blocking probabilities.

• p̄BEST denotes the final best configuration vector of
blocking probabilities.

• p̄TABU denotes the tabu configuration vector of blocking
probabilities.

• j denotes an iteration. J is the maximum number of
iterations.

• jBEST denotes the convergence iteration number.
• t denotes the computational time.
• tBEST denotes the computational time when the whole
buffer allocation process stops.

• nnei denotes the number of neighborhood solutions. Nnei
is the maximum number of neighborhood solutions.

• p̄SUB1 denotes the subconfiguration vector of blocking
probability obtained from low blocking probabilities
in p̄CURRENT .

• p̄SUB2 denotes the subconfiguration vector of blocking
probability obtained from high blocking probabilities
in p̄CURRENT .

• PA denotes the probability that the location where buffer
capacity is decreased is selected in a buffer correspond-
ing to a blocking probability in p̄SUB1.

FIGURE 1. Manufacturing system involving I stations.

FIGURE 2. Solution process of the buffer allocation problem.

FIGURE 3. Two stations with BAS.

• PB denotes the probability that the location where buffer
capacity is increased is selected in a buffer correspond-
ing to a blocking probability in p̄SUB2.

• l denotes the tabu list.
• tt denotes the tabu tenure.
• ttCURRENT denotes the number of tabu moves in l.

C. DEFINITION OF THE BUFFER ALLOCATION PROBLEM
In this study, the objective of buffer allocation is to maximize
the throughput of a manufacturing system subject to the total
buffer capacity. The mathematical description is formulated
as follows:

Find b̄ = (b2, b3, · · · , bI ) to

maximize θI

Subject to
∑I

i=2
bi = N (1)

bi ≥ 1(2 ≤ i ≤ I ) (2)

bi is a nonnegative integer

where θI denotes the throughput of themanufacturing system.
Equation (1) shows the constraint for the total buffer capacity.
The total buffer capacity is allocated to I − 1 buffers because
b1 is always one according to the assumption. Equation (2)
shows the lower bound for each buffer allocation because
there is at least one storage space for the machine in a station.

III. METHODOLOGY
The buffer allocation problem is solved by both generative
methods and evaluative methods, as shown in Fig. 2. The
generalized expansion method (GEM) was proposed to cal-
culate the throughput of queueing network systems [38].
Previous studies [39], [40] have verified its effectiveness as
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an evaluative method. In this study, the GEM is utilized as
an evaluative method to calculate the throughput of a man-
ufacturing system. The BD-TS is proposed as a generative
method to search for the near-optimal solution of the buffer
allocation.

A. THROUGHPUT EVALUATION BY GEM
The GEM can accurately analyze the job flow process
through the blocking probabilities of stations in a manufac-
turing system. Therefore, the GEM is utilized to calculate
the throughput of the manufacturing system in the study. The
GEM includes the following four steps:
Step 1: Network reconfiguration. Fig. 3 shows an approxi-

mation model for the BAS between two stations. For a pair
of two stations in the manufacturing system, an artificial
buffer with infinite capacity is added between the two stations
to represent an additional delay due to blocking. Jobs upon
completion of service in machine i− 1 enter artificial buffer
h in the case of no available space in buffer i, with blocking
probability pbi . The jobs enter buffer i successfully with prob-
ability 1 − pbi . Here, pbi and 1 − pbi are used as routing
probabilities. The blocked jobs in the artificial buffer h enter
buffer i with probability 1 − p

′

bi after a delay. If buffer i is
still unavailable, the blocked jobs will remain in the artificial
buffer h with reroute probability p′bi and wait for another
delay. This process continues until the space is available in
buffer i.
Step 2: Parameter estimation. This step mainly calculates

the parameters pbi , p
′
bi , and visual service rate of the artificial

buffer µh (reciprocal of delay in artificial buffer h) using (3),
(4), and (5), respectively.

pbi =
(1− ρ)ρKi

1− ρKi+1
(3)

p′bi =

µi+1+µh
µh

−

λ
(
rKi2 −r

Ki
1

)
−(rKi−12 −rKi−11 )

µh

(
rKi+12 −rKi+11

)
−

(
rKi2 −r

Ki
1

)
−1

(4)

µh=µi+1 (5)

where ρ denotes the utilization of a machine; Ki denotes the
maximum capacity of buffer i; and r1 and r2 are roots to λ−
(λ+ µh + µi+1) x + µhx2 = 0
Step 3: Feedback estimation. This step approximates the

arrival rate λi+1 by solving (3)-(11).

λ = λi+1 − λh(1− p′bi ) (6)

λi+1 = ai(1− pbi ) (7)

z = (λ+ 2µh)2 − 4λµh (8)

r1 =

[
(λ+ 2µh)− z1/2

]
2µh

(9)

r2 =

[
(λ+ 2µh)+ z1/2

]
2µh

(10)

ρ =
ai
µh

(11)

Step 4: Throughput calculation. Based on Steps 1, 2, and
3, every pair of machines and their subsequent buffers in the
manufacturing system are analyzed until the arrival rate of
the final station λI is obtained. Then, the throughput of the
manufacturing system can be calculated by substituting λI ,
pbI and µI into (12) and (13).

θI = µI
ρI (1− ρ

KI+1
I )

(1− ρKI+1I )
(12)

ρI =
λI

µI
(13)

B. BD-TS
STS typically generates candidate neighborhood solutions
by randomly choosing two stations and changing the buffer
capacity of the two stations, which may lead to invalid and
unstable neighborhood solution generations and affect the
computational efficiency of TS. However, the BD-TS detects
possible bottleneck stations based on the proposed bottle-
neck indicator of each station. Then, candidate neighborhood
solutions are generated by increasing the buffer capacity in
the possible bottleneck stations while decreasing the buffer
capacity in the other nonbottleneck stations. By this method,
neighborhood solution generation becomes more effective.
The BD-TS framework is shown in Fig. 4. The essential steps
of the BD-TS, including parameter initialization, bottleneck
indicator calculation, neighborhood criterion by the BD, best
solution selection by the TS criterion, diversification strategy,
and stopping criterion, are presented in detail.

1) PARAMETER INITIALIZATION
All parameters of the BD-TS are initialized first. In particular,
an initial solution is generated by randomly allocating the
total buffer capacity N into I − 1 buffers. Here, the solution
refers to the solution vector of the buffer allocation for a
manufacturing system.

2) BOTTLENECK INDICATOR CALCULATION
The bottleneck is the station with the weakest work per-
formance in a manufacturing system. Because the buffer
capacity increment in the bottleneck can improve both its
performance and the throughput of the manufacturing sys-
tem, it is effective to allocate buffer capability based on
the bottleneck. To detect possible bottlenecks, the bottleneck
indicator is defined by the blocking probability, which shows
the degree of blocking at each station in a manufacturing
system. Therefore, the higher the blocking probability of a
station is, the more likely the station is to be the bottleneck
of the manufacturing system. In this study, we suppose that
the external arrival rate follows a Poisson distribution, and
the service rates of machines follow an exponential distribu-
tion. Therefore, according to the literature [41], the blocking
probability formulation can be calculated by:

pbi =
(1− ρi)ρ

bi
i

1− ρbi+1i

(14)
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ρi =
ai
µi

(15)

where ρi is the utilization of station i and ai is the effective
arrival rate of station i. By GEM, the effective arrival rate ai
of each station and the initial throughput θINITIAL of a manu-
facturing system can be obtained. Equations (14) and (15) are
used to calculate the blocking probabilities of stations and to
update p̄CURRENT and p̄BEST . Furthermore, θBEST is updated
by θINITIAL .

3) NEIGHBORHOOD SOLUTION CREATION BY THE BD
Neighborhood solution creation consists mainly of the selec-
tion of the search space and neighborhood structure and the
method of move representation. Here, the search space is the
range of feasible solutions, and the neighborhood structure
includes the selected feasible solutions. Furthermore, move
representation generates neighborhood solutions by changing
the buffer capacity allocation at two stations in a manufactur-
ing system. The vital design components in the TS, including
the search space, variable neighborhood structure, and move
representation, are presented in detail.

a: SEARCH SPACE AND VARIABLE
NEIGHBORHOOD STRUCTURE
BD-TS considers all the feasible solutions as the search
space in the study. Regarding the neighborhood structure,
BD-TS considers a subset of all feasible solutions. Because
the variable neighborhood structure is effective in decreasing
search time and improving buffer allocation efficiency [28],
the number of neighborhood structures is set as

nnei = I + ttCURRENT (16)

b: MOVE REPRESENTATION
The move in the BD-TS can be defined by

(b2, · · · bv, · · · , bw, · · · , bI )

→ (b2, · · · bv −1b, · · · , bw +1b, · · · , bI ) (17)

which means that the 1b buffer capacity decreased in buffer
v and that the same amount of buffer capacities increased
in buffer w. Here, v and w denote two different randomly
selected buffers. bv and bw are the capacities of the two
selected buffers. Furthermore,1b is a variable.We define that
1b = 1 in the regular process. However, if the diversification
strategy condition is met,

1b = randint(2, β) (18)

β = floor(
N

I − 1
) (19)

where randint(2, β) denotes a random integer in the range
of 2 and β; floor( N

I−1 ) denotes an integer that is no more
than N

I−1 .
A previous study [42] randomly selected move locations,

which led to unstable and invalid move representations and
solution updates. We select the move locations by the BD.
Based on the blocking probabilities of stations, possible

bottlenecks of a manufacturing system are detected. Then,
neighborhood solutions of the buffer allocation are generated
by increasing the buffer capacity in the possible bottlenecks
and decreasing the same buffer capacity in the other non-
bottleneck locations. Fig. 5 shows the move representa-
tion for the BD-TS. The specific process is described as
follows:
Step 1: Based on the blocking probabilities of stations,

I − 1 buffers in a manufacturing system are decomposed
equally into Group A with the subconfiguration vector of
blocking probability p̄SUB1 = {pk , · · · } and Group B with
the subconfiguration vector of blocking probability p̄SUB2 ={
pbl , · · ·

}
. If I − 1 is odd, I/2 buffers are in Group A;

otherwise, (I − 1)/2 buffers are in Group A. pbk in p̄SUB1 are
lower than pbl in p̄SUB2. The buffers in Group B are possible
bottlenecks in the manufacturing system.
Step 2: The buffer where capacity will be decreased is

decided by selecting the corresponding blocking probability
in Group A with probability PA and in Group B with prob-
ability 1 − PA. After the buffer is decided in Group A or
Group B, the specific buffer is randomly selected in Group
A or Group B. Here, a reselection operation is used to satisfy
constraint (2). Another buffer will be chosen if the selected
buffer capacity is lower than one. The value of PA is set to
60% and 70% in this study.
Step 3: The buffer where the same number of buffer capac-

ities will be increased is decided by selecting the correspond-
ing blocking probability in Group B with probability PB and
in GroupAwith probability 1−PB. After the buffer is decided
in Group A or Group B, the specific buffer is selected ran-
domly in GroupA or Group B. Here, the reselection operation
is used to satisfy that the buffer selected in Step 3 should not
be the same as the buffer selected in Step 2. The value of PA
is problem-dependent. The value of PB is set to 60% and 70%
in this study.

4) BEST SOLUTION SELECTION BY THE TS CRITERION
By GEM, the throughput and the blocking probability con-
figurations corresponding to all neighborhood solutions for
a manufacturing system can be obtained. The maximum
throughput among the obtained throughputs is used to update
θMAX . Then, θMAX is compared to θBEST , which updates
θBEST , b̄BEST , p̄BEST , b̄CURRENT , p̄CURRENT and l according
to tabu tenure and aspiration criteria.

a: TABU TENURE
Tabu tenure is the length of the tabu list, which has an impor-
tant effect on the solution quality of the TS [27]. To improve
computational efficiency, the dynamic rule for the tabu tenure
may be useful. Therefore, in the study, the tabu tenure can be
expressed as

tt = j (20)

Here, j is the number of iterations.
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FIGURE 4. Framework of the BD-TS.

b: ASPIRATION CRITERIA
In the study, we use the aspiration criteria to allow a move
even though the move is in the tabu list in the case of updating
the best solution.

5) DIVERSIFICATION STRATEGY
As indicated by Glover et al. [28], the diversification strat-
egy is helpful in the case of ‘‘humps’’ in the neighborhood
structure. There are two kinds of diversification strategies
used in this study. The first strategy extends the search space
by restarting the solution process, and the second strategy
helps explore more promising solutions by changing move
values. The specific contents of the two strategies are as
follows:
• If the best throughput has not been improved within a
certain number of iterations, a random restart will be

applied. The value of the iteration number is problem
dependent and set to one-sixteenth of the maximum
number of iterations according to the preliminary tests.

• If the best throughput has not been achieved in a certain
number of trials in the neighborhood structure, 1b will
be changed by (17), (18), and (19). The value of the
trials is problem dependent and set to one-fifth of the
neighborhood structure size according to the preliminary
tests.

6) STOPPING CRITERION
Commonly used stopping criteria include a fixed number of
iterations or fixed computation time; no better solution is
generated after a fixed number of iterations; and an objec-
tive throughput is met. The BD-TS stops if the number of
iterations reaches a fixed value or no better solutions are
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FIGURE 5. Move representation for the BD-TS.

obtained in a certain number of iterations, which were also
used in previous studies [24], [30], [31], [35]. The val-
ues of the two parameters are problem-dependent. The first
value is set to 20 times the station size in a manufacturing
system, while the second value is set to one-eighth of the
first value. These numbers are determined by the preliminary
tests.

IV. COMPUTATIONAL EXPERIMENT
To verify its effectiveness, the BD-TS is compared to the
STS [31] and ATS [31]. The vital settings of the STS and
ATS are as follows:

• The STS does not use any additional strategies or local
search methods; meanwhile, the ATS adopts intensi-
fication and diversification strategies. The intensifica-
tion strategy that decreases move values to search for
a more promising solution intensively is only used for
manufacturing systems with more than 20 stations. The
diversification strategy restarts the solution process if
no better solutions are generated in a certain number of
iterations and penalizes frequently performed moves.

• The number of tabu tenures in the STS is tt =
√
N nei,

where Nnei is the number of all neighborhood solutions
of the current solution. The number of tabu tenures in
the ATS is dynamic and is predefined as its maximum
andminimum values. If no better solutions are generated
in a move representation, the number of tabu tenures
increases by one; otherwise, the number of tabu tenures
decreases by one. The initial value of tt in the ATS is
problem dependent and set to

√
N nei.

• The STS and ATS consider all feasible candidate solu-
tions in the move representation.

• Move representations of the BD-TS, STS, and ATS are
the same. However, the move value of the STS is set
to one; meanwhile, the move value of the ATS depends
on the problem scale (%1 of the total buffer capacity)

and can be decreased to one using the intensification
strategy.

• To make the BD-TS, STS, and ATS more comparable,
the input parameters and stopping criteria of the three
algorithms are the same. The input parameters consist of
the external arrival rate, service rates of machines, and
machine number.

• The GEM is used to calculate the throughput of a manu-
facturing system and evaluate buffer allocation solutions
produced by the BD-TS, STS, and ATS.

Three experiments are included in the numerical exam-
ples to test the BD-TS for the buffer allocation problem in
manufacturing systems with small, medium, and large scales.
Table 1 shows the input parameters of the three experiments.

Each experiment consists of six input patterns, where five
replicate calculations are run. The average computational
time for the five replicate calculations is used to evaluate
the computational efficiency of the BD-TS, STS, and ATS.
The parameter for evaluating the computational efficiency
improvement is denoted by

ε =

∣∣∣∣ tBD−TS − tTStTS

∣∣∣∣ (21)

where tBD−TS denotes the average computational time of the
BD-TS for the five replication calculations and tTS denotes
the average computational time of the STS or ATS for the
five replication calculations.

Since the performance of a metaheuristic may be affected
by the choice of initial solutions, two kinds of initializa-
tion schemes are used in Experiment 1, including random
initialization (RI) and service rate initialization (SRI). The
RI generates an initial solution randomly, whereas the SRI
allocates larger buffer capacities into the stations with higher
service rates.

The order of service rates may also affect the performance
of the proposed BD-TS. Therefore, four kinds of the service
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rate order, including increasing order, decreasing order, aver-
age order, and random order, are tested in Experiment 1. Here,
the increasing order represents that the service rate increases
from the first station to the last one, whereas the decreasing
order converse. The average order means all service rates of
stations are identical. The random order allocates the service
rates of stations randomly.

The proposed BD-TS, STS, and ATS were all written
in Python 3.6 and executed for all experiments on a com-
puter with a 3.2 GHz Intel Core 4 Duo central processing
unit (CPU).

V. NUMERICAL RESULTS
A. SMALL-SCALE MANUFACTURING SYSTEM
1) COMPUTATIONAL EFFICIENCY ANALYSIS
Tables 2 and 3 and Fig. 6 show the results of the BD-TS, STS,
and ATS in Experiment 1. Tables 4 and 5 present the results
of the BD-TS, STS, and ATS for Pattern A in the case of
different initialization schemes and service rate orders. The
following conclusions can be drawn:

• TheBD-TS can improve the computational efficiency by
20%-70% compared to the STS and ATS, even though
PA and PB are set to different values, resulting from the
move representation conducted by the BD and the vari-
able neighborhood structure. The variable neighborhood
structure decreases the selected feasible solutions. The
BD detects possible bottlenecks where the buffer capac-
ity will be increased with high probability and guides the
TS to more efficiently search for better neighborhood
solutions. However, both the STS and ATS use all feasi-
ble solutions as the neighborhood structure. Therefore,
the BD-TS can obtain the near-optimal solution with less
computational time.

• The computational efficiency improvement increases if
a higher total buffer capacity is allocated into the manu-
facturing system. A higher buffer capacity corresponds
to a larger search space, which increases the difficulty
of searching for better neighborhood solutions. Because
of the advantage of allocating buffer capacity reason-
ably and decreasing the selected feasible solutions, the
BD-TS can achieve better computational efficiency.

• The initialization scheme affects the computational effi-
ciency of the BD-TS, TS, and ATS. Compared to the
SRI, the BD-TS, TS, and ATS take a longer compu-
tational time to obtain the buffer allocation solution in
the case of the RI. The RI may generate initial solutions
that may be far different from the near-optimal solution,
leading to more trials to obtain it. Furthermore, the
BD-TS achieves better computational efficiency than the
TS and ATS in the cases of the RI and SRI.

• In the cases of different service rate orders, the com-
putational efficiency of the BD-TS is the best in the
algorithms tested, although the service rate order can
cause fluctuations in the computational efficiency of the
BD-TS, TS, and ATS.

2) SOLUTION QUALITY ANALYSIS
• The BD-TS, STS, and ATS achieve the same near-
optimal solution, which shows that they have the same
solution quality, although the BD-TS achieves much
better computational efficiency than the STS and ATS.
Based on two diversification strategies, the BD-TS
enlarges the change value in themove representation and
searches for a further neighborhood solution, whereas its
solution process can be restarted if it is trapped in a local
optimal solution. Consequently, the solution quality of
the BD-TS has been improved, although its neighbor-
hood structure is a subset of all feasible solutions.

• For balanced manufacturing systems whose station ser-
vice rates are the same, the high throughput is usually
generated by allocating a relatively small amount of
buffer capacity in the first few stations, a relatively large
amount of buffer capacity in the final few stations, and
the other amounts of buffer capacity evenly into the other
stations. Because the external arrival rate is relatively
sufficient, the actual performance of the first few stations
is mainly affected by blocking phenomena. However,
the subsequent stations are more likely to encounter
both starving and blocking phenomena because of the
blocking phenomena in the first few stations. Therefore,
the subsequent stations require greater buffer capacities.
Because the final station is never blocked, it is a good
choice to enlarge the throughput by increasing the buffer
capacity of the final few stations and temporarily storing
more jobs in them. Then, the blocked jobs can enter
the machine of the final station directly and rapidly
leave the system upon completion of service pending
its space availability. Furthermore, the allocated buffer
capacities gradually increase from the first station to the
final station. This phenomenon becomes more apparent
with increasing external arrival rates.

• For unbalanced manufacturing systems whose station
service rates are different, both buffer capability and
service rates affect the actual performance of a station
considering starving and blocking in a manufacturing
system. If all stations have the same or balanced actual
performance, which means that no bottleneck effects
occur in the manufacturing system, the best throughput
will typically be generated. Therefore, greater buffer
capacities are allocated to stations whose service rates
are low to achieve balanced actual performance. How-
ever, the final station in an unbalanced manufacturing
system also has a relatively high buffer capacity
for the same reason as in balanced manufacturing
systems

B. MEDIUM-SCALE MANUFACTURING SYSTEM
1) COMPUTATIONAL EFFICIENCY ANALYSIS
Tables 6 and 7 and Fig. 7 show the results of the BD-TS, STS,
and ATS in Experiment 2. The following conclusions can be
drawn:
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TABLE 1. Input parameters of the three experiments.

TABLE 2. Throughput, buffer allocation solutions, and computational time of the BD-TS, STS, and ATS in Experiment 1.

TABLE 3. Computational efficiency improvement in Experiment 1.

• The BD-TS can still achieve better computational effi-
ciency than the STS and ATS, although the number of
stations increases. In addition, the computational effi-
ciency improves from 65%-90%, which is higher than
that in Experiment 1. This results from the increase in the
number of stations and the total buffer capacity, which
significantly enlarges the search space. The variable
neighborhood structure and the BD help decrease more
selected feasible neighborhood solutions.

• Compared to unbalanced manufacturing systems, the
BD-TS tends to have better computational efficiency
in balanced manufacturing systems in the case of a
lower total buffer capacity. Because of more obvious
bottlenecks in unbalanced manufacturing systems, more
iterations are required to increase buffer capacities in
the bottlenecks based on the move representation in
which only one buffer capacity is changed. This process
requires a longer computational time. However, in the
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TABLE 4. Throughput, buffer allocation solutions, and computational time of the BD-TS, STS, and ATS for Pattern A in the cases of different initialization
schemes and service rate orders.

TABLE 5. Computational efficiency improvement for Pattern A in the cases of different initialization schemes and service rate orders.

FIGURE 6. Average computational time of the BD-TS, STS, and ATS in
Experiment 1.

case of a higher total buffer capacity, more buffer capac-
ities are allocated into stations, and the phenomena of
the obvious bottlenecks in unbalanced manufacturing
systems decrease.

• The external arrival rate affects the computational effi-
ciency of the BD-TS. A higher arrival rate leads to more
jobs and blockings in the manufacturing system, which
increases the difficulty of detecting the possible bottle-
neck for the BD. Therefore, the BD-TS requires more
computational time to obtain a solution with sufficient
quality.

• In Experiment 1, the ATS and TS have close compu-
tational efficiency. However, the ATS generates better
computational efficiency than the TS in Experiment 2.
With the increase of total buffer capacity and station
number, the intensification and diversification strate-
gies of the ATS contribute to searching for promising
solutions in smaller solution areas and extending search
space. Consequently, the computational time of the ATS
decreases significantly.

2) SOLUTION QUALITY ANALYSIS
• The BD-TS, STS, and ATS achieve the same near-
optimal solution, although the number of stations in the
manufacturing system increases. This proves that the
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TABLE 6. Throughput, buffer allocation solutions, and computational time for the BD-TS, STS, and ATS in Experiment 2.

BD-TS can maintain the solution quality for a manufac-
turing system with a medium scale.

• For balanced manufacturing systems, the buffer allo-
cation tendency can still be described as a relatively
small amount of buffer capacity in the first few stations,
a relatively large amount of buffer capacity in the buffer
of the final few stations, and even distribution of the
remaining buffer capacity into the other stations.

• For unbalanced manufacturing systems, the service
rates of stations fluctuate only slightly considering
30 stations. The bottleneck effect due to the unbalanced
service rates is small, and there is no need to allocate
more buffer capacities into the stations whose service
rates are low. Therefore, the buffer allocation tendency
is similar to that for balanced manufacturing systems.

C. LARGE-SCALE MANUFACTURING SYSTEM
1) COMPUTATIONAL EFFICIENCY ANALYSIS
Tables 8 and 9 and Fig. 8 show the results of the BD-TS, STS,
and ATS in Experiment 3. The following conclusions can be
drawn:

• The BD-TS achieves better computational efficiency
than STS and ATS. The computational efficiency
improves from 70%-87%, which is close to that in
Experiment 2. This means that the upper limit of the
computational efficiency improvement for BD-TS is
approximately 90%. Furthermore, for the large-scale
problem, the computational time of the STS and ATS
is around one hour. This computational efficiency is
hardly acceptable in current industrial applications.
However, the computational time of the BD-TS is under
12 minutes. With the increase in the problem scale, the
advantage of the BD-TS will be more obvious.

• Similar to Experiment 2, the BD-TS tends to have bet-
ter computational efficiency in balanced manufacturing
systems in the case of a lower total buffer capacity.

FIGURE 7. Average computational time of the BD-TS, STS, and ATS in
Experiment 2.

However, in the case of a higher total buffer capacity, the
computational efficiency for unbalanced manufacturing
systems decreases because the BD-TS obtains the local
optimal solution, and the diversification strategymust be
used.

• Compared to Experiments 1 and 2, the search space of
the buffer allocation increases significantly. The BD-TS
becomes more easily trapped in a local optimal solu-
tion; meanwhile, diversification strategies are used more
frequently. This results in more iteration numbers and
longer computational time to obtain the near-optimal
solution. Therefore, the average computational time of
five replicate calculations of the BD-TS in Patterns A,
C, D, and F fluctuates obviously.

2) SOLUTION QUALITY ANALYSIS
• The BD-TS, STS, and ATS achieve the same
near-optimal solution for the large-scale problem.
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TABLE 7. Computational efficiency improvement in Experiment 2.

TABLE 8. Throughput, buffer allocation solutions, and computational time of the BD-TS, STS, and ATS in Experiment 3.

TABLE 9. Computational efficiency improvement in Experiment 3.

• For balanced manufacturing systems, the buffer alloca-
tion tendency is similar to Experiments 1 and 2. Because

the subsequent stations exhibit more starving and block-
ing phenomena than the previous stations, the allocated
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FIGURE 8. Average computational time of the BD-TS, STS, and ATS in
Experiment 3.

buffer capacity of the previous stations is lower than that
of the subsequent stations.

• For unbalanced manufacturing systems in Pattern A,
the buffer allocation tendency is the same as that of
balanced manufacturing systems. There are only three
buffer capacities at each station on average. Compared
to allocating the total buffer capacity evenly, allocating
more buffer capacities to stations with low service rates
may generate a larger bottleneck effect. Furthermore,
in Pattern B, the total buffer capacity increases. The
BD-TS tends to allocate fewer buffer capacities to sta-
tions with high service rates. However, to decrease the
starve phenomena, the first station has a relatively low
buffer capacity; meanwhile, to decrease the blocking
phenomena, the few final stations have a relatively high
buffer capacity.

D. DISCUSSION
Regarding the computational efficiency, which is the compu-
tational time required to obtain the near-optimal solution, the
BD-TS outperforms the STS and ATS for three experiments.
The BD detects possible bottlenecks of a manufacturing
system. Then, based on the possible bottlenecks, the BD
guides move representation to efficiently search for bet-
ter neighborhood solutions. Simultaneously, the variable
neighborhood structure significantly decreases the selected
feasible solutions. Furthermore, with the increase in the
manufacturing system scale, the computational efficiency
improvement of BD-TS increases. In addition, considering
that the BD is used mainly in the process of neighborhood
solution generation, it is possible to integrate the BD with
other metaheuristics and evaluation algorithms to increase
their computational efficiency. Regarding the solution qual-
ity, the BD-TS can achieve the same solution quality as
the STS and ATS for the buffer allocation of manufacturing
systems. Although the BD-TS only searches for a subset of all
feasible solutions, diversification strategies are used to escape
from the local optimal solution by enlarging the search scope
and restarting the solution process.

By comparing the results in Experiments 1, 2, and 3, the
computational efficiency of BD-TS changes with differentPA
andPB; however, its solution quality remains high. The values
of PA and PB are problem dependent. The high values of PA
and PB seem more advantageous in improving the compu-
tational efficiency according to the experiments, although it
is difficult to ascertain their specific setting strategy at this
stage.

VI. CONCLUSION AND FUTURE WORK
This study presented a BD-TS to efficiently solve the
buffer allocation problem of manufacturing systems. In the
BD-TS, diversification strategies were utilized to maintain
the solution quality, while the BD and variable neighborhood
structure were used to improve the computational effi-
ciency. To verify its effectiveness, the BD-TS was com-
pared to the STS and ATS in the numerical examples.
Numerical examples show that the BD-TS can improve
computational efficiency and achieve sufficient solution
quality, although its computational efficiency fluctuates
according to the setting of PA and PB. Moreover, the com-
putational efficiency improvement of the BD-TS increases
with increasing problem scale, indicating the better per-
formance of the BD-TS for large-scale manufacturing
systems.

The main contribution of this study is the proposed
approach to decrease the computational cost of the buffer
allocation of manufacturing systems to meet efficient design
requirements in real applications.

Even though the BD-TS improves the computational effi-
ciency for the buffer allocation problem, the values of PA
and PB require further study. The adaptive strategy to set
PA and PB is one of our future works. In addition, buffers
and service rates simultaneously affect the performance of
manufacturing systems. Therefore, another direction of future
work is to solve the simultaneous buffer and service rate
allocation problem of manufacturing systems.
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