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ABSTRACT Deep learning-based language models (LMs) have transcended the gold standard (human
baseline) of SQuAD 1.1 and GLUE benchmarks in April and July 2019, respectively. As of 2022, the
top five LMs on the SuperGLUE benchmark leaderboard have exceeded the gold standard. Even people
with good general knowledge will struggle to solve problems in specialized fields such as medicine and
artificial intelligence. Just as humans learn specialized knowledge through bachelor’s, master’s, and doctoral
courses, LMs also require a process to develop the ability to understand domain specific knowledge.
Thus, this study proposes SciDeBERTa and SciDeBERTa(CS) as a pre-trained LM (PLM) specialized
in the science technology domain. We further pretrain the DeBERTa, which was trained with a general
corpus, with the science technology domain corpus. Experiments verified that SciDeBERTa(CS) continually
pre-trained in the computer science domain achieved 3.53% and 2.17% higher accuracies than SciBERT
and S2ORC-SciBERT, respectively, which are science technology domain specialized PLMs, in the task
of recognizing entity names in SciERC dataset. In the JRE task of the SciERC dataset, SciDeBERTa(CS)
demonstrated a 6.7% higher performance than baseline SCIIE. In the Genia dataset, SciDeBERTa achieved
the best performance compared to S2ORC-SciBERT, SciBERT, BERT, DeBERTa and SciDeBERTa(CS).
Furthermore, re-initialization technology and optimizers after Adam were explored during fine-tuning to
verify the language understanding of PLMs.

INDEX TERMS Deep neural network, domain specific language model, fine-tuning, natural language
processing.

I. INTRODUCTION
One of the recent views in language models (LMs) is that
increasing the model size and the training dataset size has a
positive effect on the accuracy performance of downstream
tasks [1]. Consequently, the size of LM and amount of train-
ing data are increasing exponentially. The model size of
Megatron-Turing NLG [2], GoPher [3] of DeepMind and
ERNIE 3.0 [4] are as large as 530B, 280 B and 175 B,
respectively. Recently, a model size of Google’s PaLM [5]
was 540 B.

Based on the standard benchmark SuperGLUE [6] for
LMs, the five models of SS-MOE [7], Turing NLR v5 [8],
ERNIE 3.0 [4], T5+UDG [9]], and DeBERTa [10] have
exceeded the human baseline as of 2022. These five models
have sizes of 269 B, 5.4 B, 10 B, 11 B, and 1.5 B, respectively.
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As shown in the benchmark results, such large LMs achieve
successful results in most NLP tasks in the general domain.
However, performance is limited in specialized domains
beyond the general one.

This study aims to develop a large-capacity LM that
has improved natural language understanding (NLU) perfor-
mance in the science technology domain. The most intuitive
method for domain-specific LMs is pre-trainingwith domain-
specific data. We initialize the pre-trained LM (PLM) with
parameters trained on the general domain, and then train con-
tinually on domain-specific data. SciBERT [11] and S2ORC-
SciBERT [12] are representative PLMs specialized in science
and technology based on BERT [13].We base our work on the
DeBERTa to consider not only the global context of the input
but also the local context. Also, DeBERTa has the smallest
model size among the top five models of the SuperGLUE
leaderboard; at 78 GB, its data size is also relatively small.
However, it has excellent performance in relation to its model
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size and training data size. We further analyze fine-tuning
optimization techniques of the NLU tasks in the science
technology domain.

The contributions of this study are as follows:
• We present SciDeBERTa and SciDeBERTa(CS), a PLM
specialized to the science and technology domain.
It has improved performance by continually training
the DeBERTa [10] with the science technology corpus;
S2ORC used for training is a dataset that covers broad
scientific and technological fields, so it is relatively less
biased to a specific field. SciDeBERTa (CS), which was
trained by continual learning only with Computer Sci-
ence(CS) domain abstract, confirmed good performance
in the information extraction task of SciERC composed
of the AI Society dataset. SciDeBERTa, trained by con-
tinual learning with S2ORCwhole domain abstract data,
confirmed good performance in information extraction
task of Genia dataset.

• The following machine learning techniques were
applied to the information extraction tasks in sci-
ence technology domain based on PLM to improve
performance.
– The re-initialization suppresses the parameter over-

fitting problem that occurs with task data that are
relatively smaller than the pre-training data. For
the base model size consisting of 12 layers, the
best performance in DeBERTa is achieved when
reinitializing the 10th layer. This is a different
result from BERT showing the best performance in
reinitialization in the 12th layer. We analyze and
present theoretically and experimentally the cause
of performance improvement through parameter
re-initialization.

– We analyze the most suitable optimizer for
information extraction tasks in the science and
technology domain by theoretically and experi-
mentally comparing AdamW [14], AdamP [15],
and RAdam [16], which are the latest optimiz-
ers proposed after Adam [17]. In the information
extraction task, we confirm that the effectiveness of
RAdam without the learning scheduler is superior
to that of AdamW and AdamP with slanted trian-
gular scheduler.

This paper is organized as follows. In Section II, we briefly
review the latest trends in PLMs, domain-specific PLMs, and
fine-tuning techniques for NLU tasks. Section III describes
the features of DeBERTa, which is the basis of SciDeBERTa,
and the training data for the scientific domain-specific PLM.
Section IV analyzes the re-initialization and optimization
techniques that were used in the fine-tuning stage to improve
the NLU performance. In Section V, we report the exper-
imental results of SciDeBERTa and fine-tuning techniques
introduced in Sections III and IV, followed by a conclusion
section.

II. RELATED WORK
In this section, we review the previous works on
domain-specific PLMs and efficient fine-tuning techniques
for natural language understanding.

A. RECENT TREND OF TRANSFORMER MODEL
We summarize the previous works on transformer-based [18]
advanced LMs and pre-training corpus for PLMs.

There are two mainstreams of transformer-based LMs:
BERT [13], which consists of encoder blocks, and GPT [19],
which consists of decoder blocks. BERT improves perfor-
mance specialized in NLU such as sentence and word clas-
sifications, whereas GPT improves performance specialized
in natural language generation. BERT uses two methods in
pretraining: masked language modeling (MLM), which pre-
dicts the randomly masked tokens in input sentences and
next sentence prediction (NSP), which matches the order of
sentences.

BERT-based PLMs have been enhanced into various
models with improved pre-training tasks. SpanBERT [20]
improved MLM to predict spans instead of tokens that
are relatively easy to solve. StructBERT [21] and ERNIE
2.0 [22] have changed the pre-training task to predict the
sentence order of several sentences instead of two sen-
tences. RoBERTa [19] separates each document and uses
doc-sentence to sample inputs from only one document to
improve context representation understanding by training
consecutive sentences in the same document.

B. LANGUAGE MODELING ON SCIENTIFIC TECHNOLOGY
DOCUMENTS
General LMs based on transformers solve downstream tasks
using two kinds of datasets in each training process. First,
a large amount of unlabeled text data is pretrained by self-
supervised learning, and the model acquires a universal lan-
guage representation. The trained knowledge is transferred
by fine-tuning a PLM to the target data. The target data is
labeled task data, and its size is relatively small compared to
the pre-training data.

In the pretraining step, a general domain corpus is used
for extracting knowledge that can be generally useful in NLP
tasks. BERT has been pretrained with 13 GB of plain texts in
total consisting of 800 M and 2,500 M words collected from
the BooksCorpus [23] and English Wikipedia, respectively.
XLNet [24] and RoBERTa [19] optimized BERT based on
the observation that BERT was underfitted. They trained a
model much longer with a larger batch size on more data.

The PLM shows an improved task performance when the
gap is small between the corpuses used in pretraining and
fine-tuning. The BooksCorpus and English Wikipedia data
used in pretraining the BERT have few noises (for example,
few spelling mistakes) and use formal writing style. There-
fore, the PLM trained on these data shows good performance
in most NLP task benchmarks and leaderboards that have
similar characteristics. However, these models find it difficult
to achieve good performance in social media conversations,
product reviews, and community posts, which have many
noises and are informal. This is particularly true if the target
domain include technical terms that do not belong to the
general language domain, such as financial, legal, biomedi-
cal, and scientific texts. Thus, TweetBERT, FinBERT, Legal-
BERT, BioBERT, PubMedBERT, and SciBERT have been
researched as specialized LMs that pretrain the BERT with
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a specific domain corpus instead of a general domain cor-
pus [11], [25]–[29].

The pretraining data of SciBERT, the representative PLM
in the science and technology field is composed of 82%
biomedical domain and 18% computer science domain with
3.2B tokens. The S2ORC [12] dataset, which was released
later, collected data in a more balanced manner in more
diverse fields of science and technology. Among the models
specializing in the science domains, S2ORC-SciBERT,which
has been pretrained with 16.4 B tokens, shows better perfor-
mance in processing tasks in the science and technology field
than SciBERT.

BioBERT [28] and PubMedBERT [29], which are state-
of-the-art models for biomedical NLP tasks, were both pre-
trained with biomedical domain text data collected from
PubMed and PubMed Central (PMC). PubMed and PMC
are databases developed and maintained by the National
Library of Medicine. PubMed provides citations of biomed-
ical journals together with abstracts, and PMC archives full-
text articles. BioBERT uses a continual pretraining method
that additionally pretrains the general BERT with biomedi-
cal articles from the general standpoint that the knowledge
provided by a general domain LM would still be useful in
biomedicine. In practice, continual pretraining works effec-
tively when there is a small amount of domain-specific data
for pretraining. PubMedBERT considers that PuMed and
PMC provide biomedical unlabeled text data sufficient to
pretrain a general LM: 33 million abstracts in PubMed and
7.6 million articles in PMC. Hence, PubMedBERT randomly
initializes all parameters of BERT and performs pretraining
completely with biomedical in-domain texts only. PubMed-
BERT pretrained from scratch showed a better performance
in some biomedical NLP tasks than BioBERT.

C. FINE-TUNING OF LANGUAGE MODELING
Various studies have been conducted to improve effectiveness
in the process of fine-tuning a PLM to downstream tasks of
a specialized domain. The most intuitive and widely used
solution is to use the optimization technique. BERT showed
improved performance compared to the conventional LM by
using BERTAdam, a modified version of the ADAM [13].
BERTAdam plays the role of a warm-up for the learning
rate by rescaling the learning rate for each epoch in place of
the bias correction of Adam [17]. It improved stable training
output without a separate warm-up for fine-tuning in the early
stages of training [30]. In the following research, Xiong et al.
used the Pre-Layer Normalization (pre-LN) neural network
that places the normalization layer of the transformer block in
front of the multi-head attention layer. The pre-LN structure
showed stable training output in the early steps without a sep-
arate warm-up [31], [32]. On the other hand, bias correction
plays the same role as warm-up in fine-tuning, and one study
showed stable results by doing warm-up at the beginning of
training and training for a long time [33]. TheAdaptiveModel
Initialization (Admin) suggests that the cause of the initial
instability of the PLM was the high dependency on resid-
ual connection [34]. Thus, additional parameters that adapt
to the variance of outputs were applied to reduce residual

FIGURE 1. SciDeBERTa pretraining procedure for science technology
domain.

dependency; it was concluded that determining the optimal
hyperparameter is more important than a warm-up.

One of the main problems in fine-tuning is the suppressing
of overfitting resulting from domain gap and difference in
size between the dataset for the pretraining of PLM and fine-
tuning. T. Zhang et al. introduced layer reinitialization of neu-
ral networks as a method to solve overfitting of fine-tuning
data learning for parameters over-fitted to pre-training data
through PLM in specific BERT [30].

This study focuses on the optimizers AdamW [14],
RAdam [16], andAdamP [15], which have improved themost
widely used Adam optimizer based on L2 regularization,
weight decay, and learning rate scheduler. The characteris-
tics of these three optimizers are compared and the optimal
algorithm for fine-tuning domain-specialized PLM is veri-
fied. Additionally, in the proposed study, the reinitialization
method to suppress overfitting considering the characteristics
of the SciDeBERTa model is explored through theory and
experiment.

III. SciDeBERTa: DeBERTa AND SCIENCE TECHNOLOGY
DATASET
We introduce SciDeBERTa, a PLM based on DeBERTa for
the science domain. Figure 1 shows the training process of
SciDeBERTa. We base our work on DeBERTabase. SciDe-
BERTa is first initialized by DeBERTa, which has been
pretrained with a general domain corpus. Next, additional
pretraining is performed with a dataset of the science domain.
Finally, the PLM is fine-tuned with the domain task data to
resolve downstream tasks.

A. DeBERTa CHARACTERISTICS
DeBERTa [10] shows excellent performance in relation to
its model size and training data size although it has the
smallest model size among the top models that exceeded
the human baseline in SuperGLUE. Therefore, the PLM
specialized in the science technology domain proposed in
this study is based on the DeBERTa base model. Similar to
BERT and RoBERTa, DeBERTa [10] is an LM pretrained
with a 78 GB of unlabeled English corpus collected from
EnglishWikipedia, BookCorpus, OpenWebText, and Stories.
DeBERTa has improved the performance of RoBERTa by
applying the two techniques of disentangled attention mech-
anism and enhanced mask decoder.
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Similar to most transformer-based LMs, the input repre-
sentation of RoBERTa [19] is the sum of the token and abso-
lute position embedding. DeBERTa uses a vector obtained by
concatenating relative position embedding to token embed-
ding as input. The attention weight of DeBERTa is obtained
by disentangled attention mechanism; the disentangled atten-
tion is calculated using the cross attention between the
queries and keys of the content (token) embedding of tokens
and the relative position embedding. This calculation of the
cross-attention score reflects the relative distance between
tokens and considers the dependency among tokens, which is
a local context that is difficult to reflect in the standard self-
attention mechanism.

Similar to BERT and RoBERTa, DeBERTa also uses abso-
lute position to consider the global context. The conven-
tional LM sums the absolute position embedding to the input
representation, but DeBERTa incorporates absolute position
embedding by adding it to the input of the last nth transformer
layers before the softmax layer, denoted as enhanced mask
decoder.

B. DATASET FOR PRE-TRAINING SciDeBERTa MODEL
SciBERT was pretrained using a corpus consisting of 82%
biomedical domain and 18% computer science domain.
In contrast, S2ORC-SciBERT was pretrained with BERT
using a relatively balanced distribution of data inmore diverse
fields of study. Even though it was trained for a more general
domain, S2ORC-SciBERT showed performance similar to
or better than SciBERT in biomedical and computer science
domain tasks. Based on these observations, SciDeBERTa
uses data from all fields of study provided by S2ORC for
additional pretraining so that it can be used for text mining
in the general science domain.

S2ORC provides both abstracts and full texts of scientific
papers. Unlike abstracts, full texts are not standardized and
contain considerable noise. Hence, if full texts are to be used
for training, the model needs to be trained with a larger
amount of data for a longer time to sufficiently understand the
knowledge contained in the texts. PubMedBERT [29] showed
an experiment result where the model pretrained with 12 GB
of abstracts had little difference in performance with a model
trained with 128 GB of abstracts and full texts if the training
timewas the same. For longer training, PubMedBERT trained
with full-text showed performance improvement on several
downstream tasks. Nevertheless, SciDeBERTa uses only the
abstracts of S2ORC in continual learning because perfor-
mance degradation may occur without sufficient data and
learning time, and field coverage should also be considered.

IV. FINE-TUNING WITH MULTIPLE INFORMATION
EXTRACTION TASKS
GLUE and SuperGLUE are representative benchmarks of
language understanding tasks. However, these benchmarks
consist of the general language corpus, thus they are unsuit-
able for use in the evaluation of LMs trained with science and
technology documents. One method for evaluating a PLM
trained with science and technology data is to extract the
knowledge information conveyed by the sentences. In other

words, named entity recognition (NER), relation extraction
(RE), and co-reference (Coref) resolution are performed as
tasks to extract knowledge information.

The NER can be classified as a token (span) classifica-
tion problem. There are two methods for relation extraction:
sentence classification that extracts relations from all sen-
tences (we call this method RE), and joint entity recognition
and relation extraction that extracts entities and their rela-
tions (we call this method JRE). Coref resolution identifies
the co-reference information among major entities or about
entities through synonyms. In this study, we evaluate the
fine-tuning performance through the NER, RE, JRE, and
Coref resolution tasks of the SciERC dataset [35] and NER
task of the Genia dataset [36].

Three tasks such as NER, JRE and Coref can be performed
individually. However, the performance of the fine-tuning
is improved by simultaneously performing three tasks.
DyGIE++ [37] generates a span after receiving the embed-
ding of a PLM as input, performs a weighted sum of losses
by performing three types of tasks, and updates the span
information according to the loss. It has been experimen-
tally proven that the performance of NER and JRE tasks
is improved when the span information is updated by con-
veying the Coref resolution information. This study verified
the improved performance by exploring re-initialization and
optimizer technology in NER, JRE and Coref tasks.

A. UPPER-LAYER RE-INITIALIZATION TO SOLVE
OVER-FITTING
In Section II-C, we mentioned the re-initialization of train-
ing parameters by the resolution to suppress the overfitting.
In order to decide which layer to apply re-initialization to,
we first review previous studies on the representation charac-
teristics by a layer of LMs.

Aken et al. revealed that it is the layer immediately before
the last that determines the performance applying the probing
method for each layer of BERT [38]. Clark et al. compared
and analyzed the magnitude of the attention value of the lay-
ers for a specific token [39]. The results proved that in the low
layer, the ‘‘CLS’’ token, which reveals the overall features of
sentences shows a large attention value; in the middle layer,
tokens such as ‘‘SEP’’ that classify two sentences show a
large attention value; and in the top layer, frequent words
such as ‘‘.’’ and ‘‘,’’ show a large attention value. The higher
the layer, the more the features of the detailed and frequent
tokens of the sentence are revealed. These research findings
indirectly reveal that data changes can be an overfitting factor.
The re-initialization of the top layer may resolve overfitting,
and this study verifies this through experiments.

Re-initialization is also beneficial for eliminating the
accumulated noise of residual connections. One block of a
transformer-based model is generally composed of a resid-
ual connection and a normalization layer after a multi-head
attention layer [19]. RadFord et al. successfully achieved
performance improvement through a structural change from
GPT [19] to GPT2 [40]. GPT2 [40] was composed of a
pre-LN (normalization layer before each block) structure
while increasing the number of layers compared to GPT and
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Algorithm 1 Adam [17]: Adaptive Moment Estimation
Input: α(lr);β1, β2; θ0(params); f (θ ); ε
Init: m0←0 1st moment; v0←0 2nd moment
Output: optimized parameter θt

1: for t = 1, . . . do
2: gt ← ∇θ ft (θt−1)
3: mt ← β1 · mt−1 + (1− β1) · gt
4: vt ← β2 · vt−1 + (1− β2) · g2t
5: m̂t ← mt/(1− β t1)
6: v̂t ← vt/(1− β t2)
7: θt ← θt−1 − α ·

m̂t√
v̂t+ε

8: end for

composing each block as a residual connection. Moreover,
additional layer normalization was applied even after the last
self-attention, and re-initialization was applied to the depth at
which residuals accumulate [40]. Composing a block of the
pre-LN structure and re-initializing high layers have the dual
effects of resolving the cumulative errors of the model and
resolving the difference in detailed tokens owing to the data
difference between the pre-training and fine-tuning dataset.

Combining the results of previous studies, the overfitting
layer is concluded as the upper layers in which the neural
network is repeatedly stacked [30]. However, in the case
of DeBERTa, the relative positional embedding is equally
stacked from the bottom to the top 3 layers, and in the case
of the last two layers, the absolute positional embedding
is applied in the same way as the existing BERT. As a
result, BERT and DeBERT have different neural network
characteristics. In the DeBERTa model, the overfitting layer
is contextually the top three layers, and the last two layers
can be interpreted as new layers. Experimental verification
results also support this. Contrary to the fact that the last layer
in BERT has a large overfitting effect upon reinitialization,
DeBERTa confirms that the reinitialization layer helps in
overfitting when the last 3rd layer is included.

B. EXPLORER OPTIMIZER
The Adam optimizer was developed in 2015 by combining
the advantages of the adaptive gradient optimizer (Adagrad)
and the root mean square optimizer (RMSProp) [17]. Adam
increases the step size of the less-visited places and reduces
the step size of the frequently visited places for balanced
movement as Adagrad updates the parameter, and applies the
exponential weighted moving average (EMA) of RMSProp
to give weight to the recent gradient value. The Adam algo-
rithm is shown in Algorithm 1. Lines 3 to 6 represent the
first moment estimate, the second moment estimate, the first
moment bias correction, and the second moment bias cor-
rection. When the equation in line 7 is differentiated, (1) is
obtained. This is a proportional update averagegradient

√
(averagegradient)2

,

which is a characteristic of Adagrad, and the normalization
value is bound by (2). The advantage of the Adam algorithm
is the presence of a scale-invariant bounded norm; it is argued

Algorithm 2 RAdam [16]: Rectified Adam

Input: αTt=1(lr);β1, β2; θ0(params); f (θ )
Init: m0←0 1st moment; v0←0 2nd moment,
ρ∞← 1/(1− β2)− 1 max length of the SMA
Output: optimized parameter θt

1: for t = 1, . . . ,T do
2: gt ← ∇θ ft (θt−1)
3: mt ← β1 · mt−1 + (1− β1) · gt
4: vt ← β2 · vt−1 + (1− β2) · g2t
5: m̂t ← mt/(1− β t1)
6: ρt ← ρ∞ − 2tβ t2/(1− β

t
2)

7: if the variance is tractable, i.e., ρt > 4 then
8: v̂t ← vt/(1− β t2)

9: rt←
√

(ρt−4)(ρt−2)ρ∞
(ρt−4)(ρt−2)ρt

10: θt ← θt−1 − αrt
m̂t√
v̂t

11: else
12: θt ← θt−1 − α · m̂t
13: end if
14: end for

that even if the gradient increases, the step size is bound, and
stable optimization descent is possible.

∇ t = −α ·
m̂t√
v̂t

(1)

∥∥∇ t∥∥∞ ≤
α ·

1− β1
√
1− β2

if (1− β1) >
√
1− β2

α otherwise
(2)

However, compared to SGD, Adam is weakly general-
izable because, in SGD, L2 regularization coincides with
weight decay; however, in Adam, the weight decay rate
becomes smaller than L2 regularization. Additionally, opti-
mizers usually add acceleration in the learning direction
along with momentum, but if the size of momentum increases
while less learning is done, learning will not reach the con-
vergence point stably.

To improve the Adam optimizer and to achieve a precise
regularization, AdamW separately applies weight decay and
L2 regularization [14]. Furthermore, when it is combinedwith
the learning rate scheduler, improved performance can be
obtained. For stable convergence, AdamP adjusts themomen-
tum according to the normalization state [15]. However, the
learning rate is delayed by approximately 8% owing to the
additional calculation of the normalization.

The RAdam algorithm is shown in Algorithm 2 [16].
RAdam replaces the EMA of Adam with the simple moving
average (SMA), which is widely used in economics, and
adjusts the various sizes of the rectification term, which
acts as the adaptive learning rate according to the Degree
of Freedom (DoF) ρ. Line 6 of Algorithm 2 is the DoF ρ,
which is the length of the SMA. If the variance is tractable
according to the condition of line 7, the rectification term in
line 9 adjusts the variance of the learning rate according to the
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TABLE 1. Entities and relations in SciERC and Genia dataset.

TABLE 2. Hyperparameters for pretraining SciDeBERTa with S2ORC.

TABLE 3. Hyperparameters for fine-tuning.

DoF ρ. Unlike variance, which is tractable, that is, if ρt ≥ 4,
it is updated as shown in line 12. RAdam has the advantage
of enabling stable training by replacingwarm-up, which plays
the role of variance reduction, with the variance adjustment
of the rectification term.

In Section V, the experiments showed that all three
models AdamW [14], AdamP [15], and RAdam [16]
showed improved training result that was stable compared to
Adam [17]. The three models AdamW, AdamP, and RAdam
showed similar performance. The improved performance was
confirmed because RAdam showed the advantage of stable
training without being affected by the learning rate and learn-
ing rate scheduler.

C. DATASET FOR FINE-TUNING
The tasks for the experiments are the NER, JRE and Coref of
SciERC and NER and Coref of GENIA.

SciERC is composed of annotated entity names, rela-
tions, and cross-references for the abstracts of 500 papers
from 12 AI conferences according to the ACL RD-Tec
2.0 [41]. The entity names and related information of the
SciERC dataset are not information about people and places
that are used for general purposes, but elements to verify the
knowledge information and system of scientific documents
and comprise elements as shown in Table 1. SciERC is com-
posed of 2,867 sentences; the total number of named entities
is 8,094, and the total number of relations is 6,319. In other

words, it is a relatively small dataset composed of less than
10,000 tagged entity names [35].

GENIA contains 2,000 abstracts from Medline arti-
cles [36]. It consists of a total of 18,545 sentences and
436,967 words. There are 96,293 entities, which are defined
in terms of hierarchical structure, and 35 fine-trained entity
categories. For ontology of Genia, please refer to Kim’s
thesis [36]. The subcategories are collapsed into five sin-
gle labels (DNA, RNA, protein, cell line and cell type) as
described in Table 1.

V. EXPERIMENTAL SETUP AND RESULTS
A. EXPERIMENTAL ENVIRONMENT AND
IMPLEMENTATION DETAILS
We used one node that connects eight units of A100 GPU
by the NVlink to pre-train the LM; the GPU RAM is 80 GB
each, for a total of 640 GB. For fine-tuning, we configured
the hardware of an Intel Core i7 machine with NVME SSD,
64 GB RAM, and two RTX 2080 GPUs; the GPU RAM
is 24 GB each, for a total of 48 GB. Table 2 shows the hyper-
parameters for pretraining of SciDeBERTa with S2ORC. The
hyperparameters for fine-tuning are shown in Table 3.We per-
form multi-task using DyGIE++ in fine-tuning. In SciERC,
the loss weight ratios of NER, JRE, and Coref for each target
task are (1.0, 0.0, 0.0) for NER, (0.2, 1.0, 1.0) for JRE, (0.5,
0.5, 1.0) for Coref, respectively. In Genia, only the target
task is different, and the ratio of NER and Coref is the same
as (1.0, 1.0).

Re-initialization, a technique for generalization, can be
expected to improve performance in small datasets, which is
the main cause of overfitting. This is the case with SciERC,
which is a small task with less than 10,000 entities. On the
other hand, there is almost no performance improvement
for data of a certain size like Genia. Therefore, we applied
re-initialization only to experiments on the SciERC task.
Experiments on reinitialization and optimization use the
DeBERTa model. The difference between SciDeBERTa and
DeBERTa is the difference in training data, and the neural
network structure is the same.

B. PERFORMANCE COMPARISON ACCORDING TO THE
PLM AND DATASET
Table 4 and Table 5 show the pretraining step information
and performance comparison results of PLMs specialized in
the science and biomedical domain. The evaluation metric is
average F1-score as described in equation (5) (i.e., in terms
of both precision and recall, as in equations (3) and (4)).
In equation (5), N is 5 in this study.

precision =
truepositive

truepositive + falsepositive
(3)

recall =
truepositive

truepositive + falsenegative
(4)

AverageF1 =
2
N

N∑
n=1

precision× recall
precision+ recall

(5)

In the NER task of SciERC, comparing the results of base
general domain LMs, DeBERTa, which improved BERT,
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TABLE 4. Summary of pretraining step.

TABLE 5. Test performances (F1-score) of SciDeBERTa and PLMs specialized in science and technology fields.

outperformed BERT even in the scientific domain task.
Among the LMs specialized in science and technology,
SciDeBERTa(CS) showed the best performance that was
3.53% higher than SciBERT, 2.17% higher than S2ORC-
SciBERT and 0.3% higher than SciDeBERTa. Since SciDe-
BERTa(CS) was trained on abstract data from academic
papers of computer science, it showed better performance
than SciDeBERTa trained with other science and technol-
ogy fields data in the SciERC dataset. In the SciERC JRE
task, SciDeBERTa(CS) showed 6.7% higher performance
than baseline SCIIE. However, In the SciERC Coref task,
DeBERTa showed the best performance, with a 1.9% higher
performance compared to SciDeBERTa(CS). In the SciERC
dataset, all three tasks of NER, JRE and Coref, SciDeBERTa
showed slightly lower performance than SciDeBERTa(CS).
However, NER and Coref tasks in GENIA dataset, which is
from medline articles, SciDeBERTa showed the best perfor-
mance compared to other models. In the NER task of the
GENIA dataset, SciDeBERTa showed 0.9% higher perfor-
mance than SciDeBERTa(CS) and 2.1% higher performance
than BERT. In the Coref task of the GENIA Dataset, SciDe-
BERTa demonstrated 0.7% higher performance than SciDe-
BERTa(CS) and 2.1% higher performance than BERT. As can
be seen fromTable 5, the above-mentioned terms are repeated
in the coref task as pronouns. For this task, DeBERTa showed
a difference of 1.6% to 4.3% compared to BERT, showing
good performance. And in the coref task, it can be seen
that DeBERTa trained as a general language model generally
performs better than SciBERT, S2ORC-SciBERT and SciDe-
BERTa trained as a science and technology model.

C. PERFORMANCE COMPARISON BY RE-INITIALIZATION
OF LAYERS
The models used in the experiments in Figure 2 and Figure 3
are all 12-layer base models, and the experiment was per-
formed five times and the average value was taken in

FIGURE 2. NER, RE task performance change by re-initialization applied
layer; PLM is SciBERT [11].

FIGURE 3. NER, JRE, Coref task performance change by re-initialization
applied layer; PLM is DeBERTa [10] and target task is JRE. The loss-weight
ratio of (NER, JRE, Coref) is (0.2, 1.0, 1.0).

consideration of variance due to random initialization. The
four kinds of tasks NER, RE, JRE, and Coref are used for
fine-tuning tasks on the SciERC dataset. Figure 2 confirms
that the last 12th layer re-initialization is most suitable for the
overfitting prevention effect through the layer reinitialization
method in SciBERT. Such result in re-initialization perfor-
mance according to layer is consistent with the explanation
in Section IV-A that more frequent words are expressed in
the higher layer than in the main flow of context. However,
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as Figure 3 shows, the layer that reveals the overfitting pre-
vention effect through re-initialization in theDeBERTamodel
is the 10th layer in the base PLM of 12 layers. As discussed
earlier in Section IV-A, DeBERTa uses the same relative posi-
tional embedding from the lowest to the 10th layer, and uses
absolute positional embedding for the 11th and 12th layers.
In the case of BERT, all 12 layers use absolute positional
embedding.

Figure 2 shows changes in the average F1 score for NER
and RE tasks. As depicted in Figure 2, the average F1
performance improved approximately by 0.99% through the
re-initialization of the last layer. Using the same method,
the improvement of the average F1 performance by approxi-
mately 1.85% can be confirmed through the re-initialization
of the last two layers for the RE task.

Figure 3 shows changes in the average F1 score for the
NER, JRE, and Coref tasks by using DyGIE++. When using
the DyGIE++ model, the target task is set as a JRE task.
The ratios of NER, JRE, and Coref tasks when calculating
loss are 0.2, 1.0, and 1.0, respectively. In Figure 3, the F1
score comparison of the reinitialization layer is based on
the JRE task. Although the initialization of other layers is
slightly more effective for NER and Coref, the JRE task is
the target task, so it was taken as the standard. In the case
where reinitialization was applied to the 10th layer (reinit10),
compared to the case where reinitialization was not applied
(base), NER, JRE, and Coref improved by 0.7%, 1.2%, and
2.4% F1 scores, respectively.

FIGURE 4. IE multi-task performance comparison according to optimizer;
PLM is DeBERTa [10].

D. COMPARISON OF INFORMATION EXTRACTION
PERFORMANCE CHANGES ACCORDING
TO OPTIMIZERS
We compared the performance of four types of optimizers
in the state of applying re-initialization to the 10th layer of
DeBERTa PLM by the DyGIE++ model, which performs
multi-task learning for 4 types of optimizers including Adam
during fine-tuning. All experiments were also performed five
times and the average value was taken in consideration of
variance due to random initialization. Figure 4 shows perfor-
mance of NER, JRE, and Coref for the SciERC dataset. The
weights for multi-task learning of NER, RE, and Coref are
0.2, 1.0, and 1.0, respectively. For the target task, we used the
150-dimension dropout 0.4 for two layers. Table 3 shows the

other hyperparameters. Figure 4 shows that RAdam without
a scheduler achieve the best performance compared to other
optimizers. In Figure 4, Adam, AdamW, and AdamP except
for RAdam used the slanted triangular scheduler, and after
RAdam, AdamP shows good performance. However, as pre-
viously mentioned in IV-C, AdamP has the disadvantage of
slowing down the learning rate by approximately 8%. For
AdamW, when the polynomial decay learning scheduler was
applied to warm-up five epochs instead of slanted triangular
scheduler, the same performance as AdamP was confirmed.
As described in the Figure 4, the performance of RAdam is
higher than Adam, AdamW and AdamP in all three kinds of
tasks, NER, JRE and Coref.

VI. CONCLUSION
This study proposed SciDeBERTa through training special-
ized in the science domain; the base model was DeBERTa
whose performance as a general LM benchmark has been
proven. It was experimentally verified that SciDeBERTa and
SciDeBERTa(CS) have improved performance compared to
SciBERT and S2ORC-SciBERT, which are suggested as con-
ventional LMs specialized in the science technology domain.
In particular, in the case of SciDeBERTa (CS) trained in
the CS domain among the science and technology domains,
improved performance was confirmed compared to SciDe-
BERTa trained in various science and technology domains on
the SciERC dataset. Furthermore, Xavier normalization was
used to re-initialize the PLM, and the RAdam optimizer was
applied as a method for overfitting resolution and optimiza-
tion to improve LM performance by fine-tuning the PLM. For
related research in the future, further tagging for the SciERC
dataset or data augmentation is necessary, considering that
the tagging of the SciERC dataset in the present model is
insufficient.
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