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ABSTRACT Statistically thinned array antennas are usually employed to form single-beam radiation
patterns. In this work, the possibility to adopt such type of antennas to obtain multiple-beam patterns is
successfully explored. In particular, two schemes are proposed and compared. In the first one, multiple-
beam patterns are realized by considering each beam corresponding to a different feeding network. In the
second scheme, multiple-beam behavior is achieved by a single feeding network. A key question addressed
in this manuscript is given by the analysis of the statistical deviation of the synthesized radiation pattern,
as compared to the reference one. To this end, the up-crossing method is employed. In particular, the
assumption of symmetric thinned arrays leads to analytical results, but avoids the adoption of the simplified
hypothesis which usually give inaccuracy. The proposed approach is verified by a Monte Carlo analysis, and
shows very good agreement between empirical data and theoretical predictions.

INDEX TERMS Statistically thinned arrays, phased antenna arrays, nonuniformly-spaced arrays, density-
tapered arrays, multi-beam applications.

I. INTRODUCTION
Statistically thinned arrays give a type of random array
obtained by removing/turning off some elements from the
so-called reference filled array, according to a probabilistic
law which depends on the amplitude taper of the original
reference array [1]–[4]. This type of array is appealing, as it
requires a reduced number of elements (with respect to the
reference array) to achieve the same resolution, with the peak
side-lobe level mainly influenced by the residual elements
after thinning operation. Moreover, no amplitude-tapering is
needed, so that T/R modules can be used in their optimised
configuration [1], [5]. Thinned arrays can be usefully adopted
in a variety of applications, including satellite communica-
tions, radio-astronomy, ground-based high frequency radars,
and interference cancellation by adaptive beam-forming.
They can be generally adopted in all applications primarily
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requiring high resolution and low secondary lobes, rather
than high gain [6]–[8]. They could be also exploited in the
framework of mm-waves communications [9]–[11].

Thinning operation can be typically realized by the adop-
tion of specific optimisation procedures [12]–[18]. In spite of
better performance, these approaches generally entail a high
computational cost, which can become cumbersome for large
antenna arrays [8].

In this paper, statistically thinned arrays (STA) are con-
sidered. They are treated in terms of excitation coefficients
typically given by binomial random variables. Other schemes
assuming different levels for excitations have been also
proposed in the literature [19]. Even if they provide a
better approximation for the desired array factor, a more
complicated feeding network is however required by this
latter strategy.

The array factor of STA is a stochastic process which
needs to be characterised by resorting to the probability
theory. A statistical characterization is relatively easier in the
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presence of a high number of antenna elements, when the
Central Limit Theorem (CLT) can be applied [3]. This is just
the case where the reduction in the number of elements is
more relevant. An accurate statistical characterization of a
thinned array is generally difficult to obtain. Nonetheless,
an a priori estimation of the array pattern (such as in terms
of the peak side-lobe level) as a function of the array features
and the thinning level, is highly desirable. To satisfy this need,
several results have been produced over the years in literature,
starting from the papers [1] and [3]. Recently, in [20], more
accurate results have been presented for the case of symmetric
thinned arrays. In particular, the up-crossingmethod has been
used, but avoiding simplified assumptions which degrade the
accuracy.

Statistically thinned arrays are generally adopted for
single-beam applications, with possible linear phase excita-
tion if a beam steering feature is required. However, many
practical cases exist which impose the presence of simultane-
ous multiple beams [6]. Therefore, in this contribution, STA
is applied to realize multiple-beam patterns. Two schemes
are proposed. In the first one, each beam is associated to a
different feeding network; hence, simultaneous independent
beams can be obtained. The second scheme relies on a single
feeding network, so the beams are no longer independent.
In both cases, the approach developed in [20] is adopted to
estimate the achievable performance in terms of two parame-
ters, namely the array factor variance and the ‘‘distance’’ error
between the statistical array factor and the reference one. The
former is a local measure of the array factor dispersion around
the reference array; the latter provides a ‘‘global’’ metric.
In particular, by assuming symmetric STA, the mentioned
performance parameters are obtained analytically, even if
they account for the non-stationarity of the array factor,
often neglected in other studies. Monte Carlo analysis is
applied to successfully validate the theoretical predictions.
Furthermore, we are dealing with the array factor only and no
mutual coupling is assumed between antenna elements [21].
In any case, since thinned arrays are usually obtained from
periodic lattices, they still allow a more adequate control of
mutual coupling than aperiodic arrays. [4].

The work is organised as follows. Section II contains the
fundamental concepts on single-beam statistically thinned
arrays. In Section III, the two thinning schemes for
multiple-beam array factors are outlined, while in section IV
they are tested and validated by numerical analysis. Conclu-
sions and potential future developments are finally reported.
In addition, the paper includes an appendix section to support
the theoretical derivations.

II. SYMMETRIC STATISTICALLY THINNED ARRAYS
For the sake of argument, we briefly report some basic con-
cepts regarding statistically thinned arrays. Let us consider
a linear array of N isotropic radiators arranged along the
x axis within the segment [−L/2,L/2], L being the array
aperture in terms of wavelength (refer to Fig. 1).N is assumed
to be even, and the elements are half-wavelength spaced at

FIGURE 1. Geometry of a generic symmetric array.

xn = −x−n = 0.25 + (n − 1)0.5, with n = [1, 2, . . . ,N/2]
(i.e., there is no element in the position x = 0). Moreover,
the amplitude coefficients are chosen so that A−n = An. The
corresponding array factor can be written as

Fref (u) = 2
N/2∑
n=1

An cos[2πxn(u− u0)] (1)

where u = cos θ and u0 = cos θ0, with θ and
θ0 being the observation and the steering angles, respectively.
Accordingly, the visible space is given by the interval [−1, 1].
Fref (u) is the so-called reference filled array factor, to be
approximated by the thinned array.

Herein, we address the case of symmetric thinned arrays,
which are obtained by thinning only half the array, and then,
for each remaining element, by locating further elements in
the position −xn. The corresponding thinned array factor is
given by [20]

F(u) = 2C
N/2∑
n=1

Fn cos[2πxn(u− u0)] (2)

where {Fn}
N/2
n=1 are independent Bernoulli random variables.

In particular, Pr {Fn = 1} = 1 − Pr {Fn = 0} = Fn = pn
(Pr {·} is a probability measure, while the term Fn represents
the mean of Fn). Also, 0 ≤ pn = α An/maxn{An} ≤ 1, with
0 < α ≤ 1 being the thinning factor. Indeed, for α = 1,
natural thinning is obtained. C = maxn{An}/α. Note that,
since an uniform arrangement has been considered, F(u) is a
periodic function.

Since the {Fn}
N/2
n=1 are random variables,F(u) is a stochastic

process whose mean and variance are respectively given
as [20]

µ(u) = Fref (u) (3)

σ 2(u) = P(u)− F2
ref (u)

= 4
N/2∑
n=1

(
max{An}An/α − A2n

)
cos2[2πxn(u− u0)]

(4)

where P(u) = F2(u) is the power-pattern of the (symmetric)
thinned array, and P(u) gives its mean.
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If the number N is sufficiently large, by virtue of the
Lyapunov Central Limit Theorem [22], F(u) is Gaussian (for
each u), that is F(u) ∼ N

[
Fref (u), σ 2(u)

]
. Furthermore,

sinceF(u) is periodic,µ(u) and σ (u) are periodic as well [20].
Under these conditions, the cumulative distribution function
(cdf ) of the array factor magnitude (and consequently of the
power-pattern) is easily found to be expressed as [20], [23],
[24]

P {F(u) ≤ ξ} = Q
[
−
ξ + µS (u)
σS (u)

]
− Q

[
ξ − µS (u)
σS (u)

]
(5)

in which Q(x) = (1/
√
2π )

∫
∞

x e−x
2/2 dx [25]. It can be

shown that eq. (5) can be written in a closed-form [23],
by exploiting the condition that for positive arguments the
Q-function can be written in a closed-form with very small
errors [25].

The number of active elements Nt = 2
∑N/2

n=1 Fn is a
Gaussian random variable as well, with mean and vari-
ance equal to (α/max{An})µ(0) and (α/max{An})2σ 2(0),
respectively [20].

It must be remarked that the above simple results are
achieved due to the assumption of symmetric configurations.
For general asymmetric arrays, the distribution of the array
factor magnitude can be expressed in terms of a generalised
non-central chi-square distribution with two degrees of
freedom [26]. In this case, no closed-form can be obtained.
Anyway, symmetric and asymmetric thinned arrays return the
same mean array factor and the average of Nt . Furthermore,
the difference in the achievable performance are not so
relevant, as shown in [20].

III. MULTI-BEAMS STATISTICALLY THINNED ARRAYS
In this section, two schemes for obtaining a thinned array
factor consisting of multiple beams are introduced. Basically,
they are obtained by adapting the general statistical thinning
approach outlined in the previous section. For convenience,
such schemes are addressed in the sequel as scheme 1 and
scheme 2.

The starting point is the definition of the multiple-beam
reference array factor

FrefM(u) =
N/2∑

n=−N/2

AnBne2jπxnu (6)

with Bn =
∑M

m=1 e
−2jπxnum . It is seen that Fref (u) consists

of M identical beams which are steered at the directions um.
Since A−n = An (and real) and B−n = B∗n, it is useful to
arrange (6) as

FrefM (u) = 2
N/2∑
n=1

Ãncos(2πxnu− φn) (7)

with Ãn = An|Bn| and −φn = 6 Bn, or equivalently as

FrefM(u) = 2
N/2∑
n=1

An [an cos(2πxnu)+ bn sin(2πxnu)] (8)

with

an =
M∑
m=1

cos(2πxnum) (9)

bn =
M∑
m=1

sin(2πxnum) (10)

A. SCHEME 1
By this scheme, thinning is achieved as follows

FM1 (u) =
M∑
m=1

2C
N/2∑
n=1

Fn cos[2πxn(u− um)]


= 2C

N/2∑
n=1

Fn [an cos(2πxnu)+ bn sin(2πxnu)]

(11)

It is noted that by this scheme all the M beams share
the same random coefficients {Fn}

N/2
n=1, which are the same

as in (2). This means that the actual excitation coefficients
pertaining to the multiple-beam reference array factor have
not been employed in defining the binomial random variables
and that, simply, all the beams are thinned in the same
way. This scheme, however, allows to obtain independent
steerable beams, in the sense that each beam can correspond
to a different chain of phase shifters and therefore to a
different signal [27]. Hence, this scheme can be exploited for
simultaneous transmission of multiple signals.

The mean and variance of the above array factor are

µM1 (u) = FrefM (u) (12)

and (13), as shown at the bottom of the next page,
with PM1 (u) being the power-pattern related to scheme 1.

According to the CLT, FM1 ∼ N
[
FrefM (u), σ 2

M1
(u)
]
.

Moreover, the probability distribution of Nt is the same as
the single-beam case. Therefore, by this thinning scheme,
introducing additional beams does not change the distribution
of the actual number of antenna elements that remains after
the thinning. Finally, as in the classical single-beam case, the
array factor ‘‘statistically’’ tends to the reference one when
the number of elemental radiators increases.

B. SCHEME 2
In this case the multi-beam nature of the array factor is
directly considered in thinning procedure. More in detail, the
binomial random variables F̃n are now set according to the
amplitude coefficients Ãn in (7), that is Pr {F̃n = 1} = F̃n =
p̃n = α Ãn/max{Ãn} = 1 − Pr {F̃n = 0}. The resulting
thinned array factor hence writes as

F̃M2 (u) = 2C̃
∑N/2

n=1 F̃n cos(2πxnu− φn) (14)

in which C̃ = max{Ãn}/α.
This scheme can be obtained by feeding the antenna

elements with a single chain of phase shifters, which

60232 VOLUME 10, 2022



G. Buonanno et al.: Statistically Thinned Array Antennas for Simultaneous Multibeam Applications

provide the N phases {φn}. Therefore, while M × Nt
phase shifters are needed for scheme 1, here, only Ñt =
2
∑N/2

n=1 F̃n phase shifters are required, with Ñt being still a
Gaussian random variable with mean 2

∑N/2
n=1 p̃n and variance

4
∑N/2

n=1 p̃n(1 − p̃n). Note that Ñt 6= Nt . What is more, for
scheme 2 the average number of active radiators depends
on the number of beams. Also scheme 2 allows to obtain
multi-beam array factors without amplitude tapering, though
the excitation coefficients are different from the ones
pertaining to scheme 1. However, by this scheme, the beams
are not independent.
FM2 (u) has again a Gaussian distribution with mean

µM2 (u) = FrefM (u) (15)

and variance

σ 2
M2

(u) = PM2 (u)− F
2
refM (u)

= 4
N/2∑
n=1

An

[
max{Ãn}

α
− Ãn

]
cos2(2πxnu− φn)

(16)

C. GLOBAL CHARACTERISATION
A rough array factor characterization, and hence a com-
parison between the two schemes, can be given in terms
of the distribution of the array factor magnitude, which,
as remarked above, is easy to obtain for the symmetric
case. However, the mean and variance of the array factor
provides only local information, i.e., for each different value
of u. A global metric, instead, should be linked to the
distance (in a probabilistic sense) between the actual and the
reference array factors. To this end, as in [20], we consider
the normalised standardised error, ε(u) = [FMi (u) −
FrefM (u)]/σMi (u) (i = 1 for scheme 1 and i = 2 for
scheme 2). In particular, performance is estimated in terms
of ε(u) magnitude supremum (with u implied)

Pr
{
S = max

u∈[−1,1]
{|ε|} ≤ ξ

}
= Pr

{
|FMi − FrefM | ≤ ξ σ

a
a
Mi
∀ u ∈ [−1, 1]

}
(17)

By setting H = maxu∈[−1,1]{|FrefM (u)|}, (17) is equiva-
lently recast as

Pr {S ≤ ξ}

= Pr
{
|FMi − FrefM |

H
≤ ξ

σMi

H
, ∀ u ∈ [−1, 1]

}
(18)

Equation (17) gives a measure of the error over the
whole visible space, including the beam regions. Indeed,

Pr {S ≤ ξ} = p% entails that, with a probability of p%, ε(u)
lies between FrefM (u)− ξ σMi (u) and FrefM (u)+ ξ σMi (u),
for each u. In this sense, FrefM (u)−ξ σMi (u) and FrefM (u)+
ξ σMi (u) can be considered as generalised p-percent level
curves [20].

It can be verified that the magnitude of the coefficient of
variation [28], |CV (u)| = |σMi (u)/µMi (u)|, is relatively
higher in the region of secondary lobes. Accordingly, it is
expected that (18) is mainly contributed by the error in such
a region, whereas FMi (u) ≈ FrefM (u) in correspondence of
the main beams.

Finding a closed-form solution for the S-distribution is
a very complicated problem. However, for the symmetric
thinned arrays under concern, the up-crossing method can be
conveniently employed and it has proved to work remarkably
well [24].

Let Nξ be the number of times |ε(u)| up-crosses (i.e.,
crosses with positive slope) the level ξ . Accordingly, a first
result is Pr {S ≤ ξ} = 1 − Pr {Nξ ≥ 1} ≥ 1 − Nξ

(assuming that |ε(u)| is below ξ at u = −1), where the
Markov inequality, Pr {Nξ ≥ 1} ≤ Nξ has been exploited
and Nξ is the mean of the number of up-crossings. Hence,
a lower bound for the S-distribution is obtained. However,
if Nξ is modeled as a Poisson random variable [30], the
S-distribution as can be analytically estimated as [24]

Pr {S ≤ ξ} ≈ Pr {|ε(−1)| ≤ ξ} e−Nξ (19)

where Pr {|ε(−1)| ≤ ξ} can be calculated from (5). Here,
the final crucial issue is the computation of N ξ . This can be
achieved as follows [22]

Nξ =

∫ 1

−1
du
∫
∞

0
γ f|ε||ε|′ (ξ, γ ; u) dγ (20)

in which f|ε||ε|′ (ξ, γ ; u) is the joint probability density
function of |ε(u)| and its first derivative. Since ε(u) is a
real stochastic process, it follows that the determination of
the up-crossings of |ε(u)| is equivalent to the simultaneous
study of the up-crossings of ε(u) and −ε(u). Moreover, since
ε(u) is a Gaussian process [3], then ε(u) and its derivative
ε′(u) = dε(u)/du are jointly Gaussian [22] (of course, the
same holds true for−ε(u) and its derivative). Eventually, (20)
can be written as (see [20] for details)

Nξ =
1
π

∫ 1

−1
σε′ (u) du

=
1
π

∫ 1

−1

√√√√√σ 2
F ′Mi

(u)− {σ ′Mi
(u)}2

σ 2
Mi

(u)
du (21)

σ 2
M1

(u) = PM1 (u)− F
2
refM (u)

= 4
N/2∑
n=1

{[
max{An}

α
An − A2n

]
× [an cos(2πxnu)+ bn sin(2πxnu)]2

}
(13)
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FIGURE 2. Performance analysis of scheme 1 for N = 200 and with ≈ 70% of remaining elements (natural thinning⇔ α = 1),
depending on the number of beams. (a) Magnitude of the reference array factor along with the magnitude of an array factor
realisation. (b) Normalised standard deviation of the array factor. (c) S-distributions.

in which σε′ (u) is the standard deviation of ε′(u), σF ′Mi
(u)

is the standard deviation of dFMi (u)/du (see Appendix),
σ ′Mi

(u) = dσMi (u)/du. Note that in (21), we exploited the
Bravais-Pearson correlation coefficient between ε(u) and its
derivative is zero, for each u [20].
It is worth stressing once again the role of symmetric

arrays assumption. As shown above, for the case at hand,
S-distribution can be accurately determined and is relatively
simple to compute since only a one-dimensional integration
is required to obtain Nξ . Also, Pr {|ε(−1)| ≤ ξ} can be
calculated in an extremely simple way. The same does not
hold true for asymmetric thinned arrays. In fact, in this
case, to get tractable expressions, the real and imaginary part
of ε(u) and their derivatives are considered as being four
independent stationary Gaussian processes, with the real and
imaginary part of ε(u) (resp. the real and imaginary part of
ε′(u)) having the the same variance [31]. These are strong
assumptions that generally lead to unreliable results [23].

IV. NUMERICAL ASSESSMENT
In this section, a numerical analysis is presented to check the
theoretical findings and compare the proposed statistically
thinned array schemes.

To this end, each realisation (sample function [22]) of the
stochastic thinned array factor is obtained by employing a
sample step in the variable u of 1/(10L), which is 5 times
finer than the sampling step required by the bandwidth of the

power pattern. In particular, 2000 realisations are employed
in the following examples.

Each beam of the reference array factor is obtained by
sampling a Taylor n-bar current distribution with n = 5 and
side-lobe level equal to −25 dB [21]. Thus, the coefficients
{An} are related to the samples of the corresponding current
distribution [4]. Furthermore, as stated above, elemental
radiators are half-wavelength spaced.

In order to check the behavior of statistically thinned arrays
as the number of beams varies, we consider four reference
array factors. The first one consists of a single (that is,M = 1)
Taylor beam centered at u = u1 = 0, for which{

a(1)n = 1
b(1)n = 0

(22)

This single-beam case can be considered as a kind of
touchstone for the other cases. The second case concerns two
Taylor beams pointing at u1 = 0 and u2 = 0.5, respectively,
which corresponds to set{

a(2)n = 1+ cos(2πxn0.5)
b(2)n = sin(2πxn0.5)

(23)

The third reference array factor presents three Taylor
beams at u1 = 0, u2 = 0.5 and u3 = −0.2 and thus{

a(3)n = 1+ cos(2πxn0.5)+ cos(2πxn0.2)
b(3)n = sin(2πxn0.5)− sin(2πxn0.2)

(24)
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FIGURE 3. Performance analysis of scheme 1 for N = 200 and with ≈ 50% of remaining elements (α = 5/7), depending on the
number of beams. (a) Magnitude of the reference array factor along with the magnitude of an array factor realisation. (b) Normalised
standard deviation of the array factor. (c) S-distributions.

and, finally, the last one has four Taylor beams at u1 = 0,
u2 = 0.5, u3 = −0.2 and u4 = −0.8, thence with{
a(4)n = 1+ cos(2πxn0.5)+ cos(2πxn0.2)+ cos(2πxn0.8)
b(4)n = sin(2πxn0.5)− sin(2πxn0.2)− sin(2πxn0.8)

(25)

We would like to point out that here we just consider linear
arrays for the sake of simplicity and for the computational
burden purposes. However, the derived theoretical tools and
the proposed thinned models can be easily generalised to
deal with more general curved arrays. Also, they can be used
for planar arrays while considering the cuts of the stochastic
array factors, with a similar methodology as done in [1].

A. SCHEME 1
We consider three cases. Case 1 refers to N = 200 and
α = 1 (natural thinning), case 2 to N = 200 and α = 5/7
(thinning at 50% percent) and case 3 toN = 280 and α = 5/7
(average number of active elements equal to that of case 1).
Although N may seem excessive for linear arrays, it is worth
remarking that in the literature linear thinned arrays with
elements till 2 × 104 [3] have been considered in order to
study the properties of statistically thinned arrays.

Results concerning case 1 are shown Fig. 2. In this natural
thinning case the average number of active elements is equal
to 70% of the maximum number N = 200. Fig. 2a shows
the magnitudes (in dB) for the four reference array factors

discussed above and the magnitudes of realisations of thinned
array factors, all normalised with respect to their supremum.
As can be seen, the side-lobes of |F(u)|/max{|F(u)|} increase
with the number of beams. This trend was already observed
for random aperiodic arrays [24], [29]. However, the main
lobes of the actual and reference array factors are very similar.
The above results are consistent with the variance behaviours
reported in Fig. 2b. Indeed, as the number of beams increases,
the variance levels become higher. This entails a greater
dispersion around the actual reference array. Fig. 2c shows
the comparison between the empirical and the theoretical
S-distributions (obtained by exploiting eq.(19)). As can be
seen, those curves almost overlap and hence the theoretical
estimation works very well.

It is interesting also to understand how the performance
changes when the average of the actual number of elements,
Nt , varies having fixed N or when the average of Nt is fixed
and N increases. The next two examples just allow to shed
some light on this question.

For case 2 a more severe thinning is imposed so that the
average number of radiators after the thinning is lower than in
the previous case. Indeed, now the mean ofNt is equal to 100,
whereas in the previous case it was 140. Results concerning
this case are reported in Fig. 3. As expected, previous
considerations still apply. However, now the side-lobe level
is in general increased; this is consistent with the variance
behaviours that are higher than the corresponding previous
cases. This basically confirms that the actual number of
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FIGURE 4. Performance analysis of scheme 1 for N = 280 and with ≈ 50% of remaining elements (α = 5/7), depending on the
number of beams. (a) Magnitude of the reference array factor along with the magnitude of an array factor realisation. (b) Normalised
standard deviation of the array factor. (c) S-distributions.

FIGURE 5. Scheme 1, four-beam case, N = 200, α = 1. Experimental (blue
line-CST simulation) and theoretical (red line) directivity, in the azimuth
plane, of a statistically thinned linear array of cylindrical half-wavelength
dipoles. Half wavelength spacing is considered between antenna
elements. The dipoles are parallel to the z axis of the orthogonal
Cartesian reference system, while the array axis coincides with the x axis.
The operating frequency is equal to 1 GHz .

elements plays a crucial role in controlling the dispersion of
the array factor realisations, [1], [20], [23]–[26]. The point is
that such a dispersion can be precisely estimated through the
analytical S-distributions (see Fig. 3c).
In the last example (case 3), the maximum number of

antenna elements is increased at N = 280, while the thinning
is kept at 50%. This way, the mean ofNt is the same as case 1.
Results are shown in Fig. 4. While the trend is of course the
same as the previous cases, it is seen that the performance

is in between the one of case 1 and 2 (see, for example, the
variance behaviours in 4b). This entails that the achievable
performance is not only affected by the average number
of elements in the array (after the thinning), as it is often
stated in the literature. However, our theoretical estimations
of S-distributions works remarkably well and hence gives a
general tool to foresee the performance by accounting for all
the relevant problem parameters.
As a further validation, scheme 1 was also tested using

CST Studio Suite. In particular, Fig. 5 shows the comparison
between the CST return and the theoretical directivity, in the
azimuth plane, of a linear array of cylindrical half-wavelength
dipoles arranged parallel to the z axis of the orthogonal
Cartesian system, while the array axis coincides with the
x axis. Moreover, N = 200, α = 1, M = 4, the operating
frequency is 1GHz and the spacing between antenna elements
is half a wavelength. As can be seen, an excellent matching
is observed.

B. SCHEME 2
For the analysis of scheme 2, we consider two cases, N =
200 and N = 280, both under natural thinning conditions.
Note that now, the average number of active radiators depends
not only on α but also on the number of beams (in general,
on the current distribution). Figs. 6 and 7 report the results for
such cases. It is seen that, as N increases, the performance
improves. As remarked above, this is a general trend that
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FIGURE 6. Performance analysis of scheme 2 for N = 200 and in the natural thinning case (α = 1), depending on the number of
beams. (a) Magnitude of the reference array factor along with the magnitude of an array factor realisation. (b) Normalised standard
deviation of the array factor. (c) S-distributions.

holds true also for scheme 2. However, with respect to
scheme 1, by comparing Figs. 2 and 6, it is seen that a
worsening occurs. Hence, scheme 1 is better but requires a
more complex overall feeding network.

C. DISCUSSION
From previous results, it can be noted that the S-distributions
look nearly identical, regardless of the number of beams
and the average number of retained elemental radiators.
This, of course, does not mean that the distance between
the statistically thinned array and the reference one is the
same in all the cases. This is because S-distributions refer to
standardised processes. Indeed, what they actually measure
is the probability that the array factor is globally within a
strip (around the reference one) that depends on the standard
deviation, σMi (u), which in turn depends on the case under
consideration. Also, as argued above, since the error is mainly
related to the side-lobe regions, the S-distribution gives an
estimation of the peak level of secondary lobes.

Statistically thinned arrays are particularly suited for large
antenna arrays which are populated by a high number of
elements. In these cases, the statistical dispersion around
the reference array factor can be made very low [3].
In this regard, we point out that, while the considered
linear arrangement is chosen for computational convenience,
the theory and the results can be easily adapted to deal
with the one-dimensional cuts of a two-dimensional array
factor.

Finally, in order to give a general picture of the achievable
performance, the results shown above are summarized in
Table 1. This table reports the rounded mean value of the
number of active elements, Nti , and the normalised standard
deviation of the array factor, averaged over u, σ̃Mi =

(1/2)
∫ 1
−1[σMi (u)/max{|FrefM(u)|}] du (i = 1 for scheme

1 and i = 2 for scheme 2). The addressed cases are
distinguished by indicating (N , α). Looking at the table, the
following conclusions can be drawn:
• For a given thinning factor, the variance decreases as the
number of active elements increases;

• For a given average number of active elements, natural
thinning performs better (compare σ̃M1 for the cases
(200, 1) and (280, 5/7);

• While for scheme 1 the expected value of the number
of active elements is always the same (regardless of the
number of beams), this is not the case for scheme 2;

• With the same number of beams, N and α, scheme 1 is
more efficient than scheme 2;

• σ̃Mi allows to roughly estimate the peak level of the
secondary lobes.

Concerning the last point, consider, for example, the case
in Fig. 2. Here, the highest level of the secondary lobes,
for the (200, 1)-two beams sub-case (of scheme 1), is about
−15 dB. Hence, the peak side lobe level is actually in between
2.5× σ̃M1 = 2.5× 0.0574 −→ −16.86 dB and 4× σ̃M1 =

4 × 0.0574 −→ −12.78 dB (see Table 1 for the value of
σ̃M1 ). Since Pr {S ≤ 2.5} ≈ ε (with ε being a very small
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FIGURE 7. Performance analysis of scheme 2 for N = 280 and in the natural thinning case (α = 1), depending on the number of
beams. (a) Magnitude of the reference array factor along with the magnitude of an array factor realisation. (b) Normalised standard
deviation of the array factor. (c) S-distributions.

TABLE 1. (Rounded) expected value of active elements, Nti
, and mean value (with respect to u) of the normalised standard deviation of the array factor,

σ̃Mi , relative to the examples shown above (i = 1 for scheme 1, i = 2 for scheme 2). The vector (200,1) means N = 200 and α = 1 and the same holds
for the other vectors. The acronym n.b. stands for number of beams.

positive real number) and Pr {S ≤ 4} ≈ 1, 2.5× 0.0574 and
4 × 0.0574 could be seen as the (statistical) minimum
and maximum value of the highest level of the secondary
lobes, respectively, if σ̃Mi can be considered nearly constant
for u ∈ [−1, 1]. A more precise characterization can be
obtained by considering lower and upper level curves, that
is LC(u) = 2.5× [σMi (u)/max{|FDESM (u)|}] and UC(u) =
4×[σMi (u)/max{|FDESM (u)|}], that with probability almost
equal to 1, contain the peak of secondary lobes for
u ∈ [−1, 1].
It is worth mentioning that Table 1 also reports cases with

N = 5000, borrowed from [4], which clearly show that
performance improves with the number of radiators.

V. CONCLUSION
Statistically thinned arrays have usually been studied for
single-beam array factor, considering only a linear phase-shift
for beam steering.

Here, we have introduced two statistically thinned array
schemes for simultaneous multiple-beam generation. In par-
ticular, we have analytically characterized the achievable
performance in terms of how the resulting array factor
statistically deviates from the reference one. To this end, the
array factor variance, which gives local information, and the
supremum of the standardised error magnitude, which gives
global information (i.e, over the whole visible space), have
been derived and linked to the parameters of the problem,
such as number of elements in the reference array, level of
thinning, number of beams, etc.

The numerical analysis showed that increasing the number
of beams leads to an increase of the distance between
the thinned and the reference array factors. Whereas,
performance improves as the number of active antenna
elements increases. What is more, is that the theoretical
findings are in excellent agreement with the outcome of the
Monte Carlo numerical analysis. Hence, the obtained results
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can be actually employed as a tool to set in advance the
thinning strategy. In particular, the number of beams can be
determined beforehand by checking if it is compatible with
the desired performance.

APPENDIX A
For scheme 1, it is easy to prove that themean of the derivative
of the array factor, F ′M1

(u) = dFM1 (u)/du, is µF ′M1
(u) =

dFM1 (u)/du = dFrefM (u)/du, while the variance is

σ 2
F ′M1

(u) =
[
dFM1 (u)/du

]2
−
[
dFrefM (u)/du

]2
= 16π2

N/2∑
n=1

{[
max{An}

α
An − A2n

]
× [xnbn cos(2πxnu)− xnan sin(2πxnu)]2

}
(26)

For scheme 2, the mean of the derivative of the array
factor, F ′M2

(u) = dFM2 (u)/du, is also equal to µF ′M2
(u) =

dFrefM (u)/du and the variance is

σF ′M2
(u) =

[
dFM2 (u)/du

]2
−
[
dFrefM (u)/du

]2
= 16π2

N/2∑
n=1

[
max{Ãn}

α
Ãn − Ã2n

]
× x2n sin2(2πxnu− φn) (27)
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