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ABSTRACT Partial discharge is a common fault type in the operation of power equipment. Recently, deep
learning methods have shown great potential in partial discharge (PD) diagnosis. These methods construct a
fitting relationship between input and output with mass training samples. Due to the scarcity of PD samples,
it is hard to train a classification model. Thus, it is challenging to apply traditional deep learning methods
for diagnosing PD. To overcome this issue, this paper introduces a siamese fusion network to diagnose
PD. This method comprises three main steps. First, an ultra-high-frequency (UHF) sensor generates two
spectrums from power equipment, including phase resolved partial discharge (PRPD) and phase resolved
pulse sequence (PRPS). Based on a few-shot learning strategy, a support set is constructed. There are four
different types of PD samples and a normal sample. Then, two siamese networks are employed to estimate
similarity scores between a test sample and support set samples. One network measures similarity scores in
PRPS, and the other measures similarity scores in PRPD. Based on similarity scores, initial diagnosis results
are generated. Last, a simple and effective decision fusion technique fuses initial diagnosis results. The
final diagnosis result can be generated by jointly exploiting complementary information in two spectrums.
With limited training samples, experimental results show that the proposed SFN method can achieve an
outstanding diagnosis performance, compared with several classical classification methods.

INDEX TERMS Partial discharge, fault diagnosis, power equipment, siamese network, few-shot learning,
pattern recognition.

I. INTRODUCTION
When power equipment operates for a long time, various
faults are inevitably produced. Among these faults, par-
tial discharge (PD) is a serious fault type [1]. If this fault
is not detected timely, the power equipment will deterio-
rate. Ultimately, PD will develop into a discharge break-
down or spark discharge, leading to tremendous economic
losses [2], [3].

To identify PD, some methods have been designed, such as
conventional pulse current, high-frequency current method,
ultra-high- frequency (UHF) method, acoustic emission (AE)
method, and dissolved gas analysis (DGA) method [4].
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Among these methods, conventional pulse current and DGA
methods fail to provide locations for PD sources, and the
acoustic method is not suitable to diagnose faults inside
power equipment. The UHF method is widely used for ana-
lyzing PD signals [5], which can diagnose the PD fault type,
location, and risk degree. After operators obtain UHF spec-
trums, they need to analyze each sample manually and decide
on PD types, according to the characteristics of PRPS and
PRPD. However, with the rapid development of power sys-
tems, the corresponding operation tasks are increasing. The
manual work has some disadvantages, such as low efficiency
and low detection rate. It is hard to meet the needs of an
intelligent power grid.

To overcome this problem, some deep learning methods
have been proposed. These methods [2], [6]–[16] construct
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a fitting relationship between input and output by using
lots of training samples. Then, they can distinguish different
PD fault types. Li et al.propose a convolution neural net-
work (CNN) [7] with a deep architecture to realize ultra-
high frequency (UHF) spectrums recognition in gas-insulated
switchgear (GIS). The work [11] introduces a CNN-based
PD classification system using transfer learning, which can
reduce the noise in PD samples. Wan et al. [9] use long short-
term memory (LSTM) and recurrent neural network (RNN)
to diagnose PD in GIS. A stacked denoising auto-encoder
method is proposed for PD diagnosis in different voltage
cables of insulators [8]. Moreover, some traditional machine
learning methods are proposed for PD diagnosis. For exam-
ple, a multi-kernel multi-class relevance vector machine [2]
is designed for PD diagnosis. Yang et al. [13] propose a low-
rank radial basis function network to diagnose PD signals,
by suppressing narrow-band noise. Qu et al. [14] combine
discrete wavelet transform and LSTM techniques to diagnose
PD faults. A fuzzy theory [15] has a simple model structure,
achieving a fast diagnosis performance. The classical support
vector machine (SVM) [16] also is applied in PD diagnosis.

It should be noted that previous works need a great num-
ber of PD samples to build classification models. However,
PD samples are usually very scarce, and it is hard to collect
sufficient samples. Thus, with limited training samples, these
methods fail to generate high PD diagnosis accuracy effec-
tively. The issue of how to use limited training samples for PD
fault diagnosis is still an open question. Recently, the siamese
network has been proved an efficient tool in image clas-
sification with limited training samples [17]. This network
estimates the similarity between two input data via using
a unique structure [11], [17]–[23]. Zhang et al.introduce a
dual-path siamese CNNmethod for image classification [18].
Gao et al.propose a siamese training structure for data
augmentation, improving classification performances [19].
A deep siamese framework with multitask learning is pro-
posed for classification [20]. He et al.develop a siamese resid-
ual network with 3-D filters for image classification [23].
Liu et al.investigate the siamese network to train a linear
classifier for image classification [11]. These methods have
an outstanding performance with limited training samples.

Inspired by the siamese network, the motivation of this
work is to diagnose PD with limited training numbers.
This paper introduces a siamese fusion network (SFN).
It consists of three main steps. First, an ultra-high-frequency
(UHF) sensor produces two spectrums from power equip-
ment, including phase resolved partial discharge (PRPD) and
phase resolved pulse sequence (PRPS). Based on a few-shot
learning strategy, a support set is constructed. There are four
different types of PD samples and a normal sample. Then,
two siamese networks are employed to estimate similarity
scores between a test sample and support set samples. One
network measures similarity scores in PRPS, and the other
measures similarity scores in PRPD. Based on similarity
scores, initial diagnosis results are generated. Last, a simple
and effective decision fusion method fuses diagnosis results.

FIGURE 1. The UHF partial discharge detection system.

By jointly capturing complementary information in different
spectrums, the final diagnosis result can be generated. The
main contribution of this work is as follows:

(1)With a new strategic perspective, PD diagnosis has been
modeled as a few-shot learning based classification problem.
With limited training samples, a siamese fusion network iden-
tifies PD fault types. To our knowledge, the siamese network
is applied in PD diagnosis for the first time.

(2) The proposed method fuses complementary infor-
mation of different spectrums. It is demonstrated that the
fusion of complementary features can result in an outstanding
improvement in diagnosis performance.

The rest of this work is organized as follows. Several partial
discharge types and the siamese network model are reviewed
in section II. The proposed SFN method is introduced in
Section III. Section IV presents the experimental results and
analysis. Conclusions are given in Section V.

II. RELATED WORKS
A. PARTIAL DISCHARGE TYPES
Ultra-high frequency (UHF) sensors can obtain electromag-
netic wave spectrumswith a frequency ranging from 300MHz
to 3GHz. The UHF sensor can sense and record the character-
istic information of the UHF partial discharge signal, includ-
ing amplitude, frequency, phase, etc. PRPS and PRPD spec-
trums are generated based on the above feature information.
The UHF sensor converts UHF signals into electrical signals.
Then, electrical signals are converted into the digital signal
through the UHF signal acquisition and processing unit. The
digital signal can be stored in the computer. Fig. 1 shows the
UHF partial discharge detection system [24].

Each PD type usually has distinctive characteristics in
PRPS and PRPD spectrums [25]. Specifically, PRPD can
reflect the relationship between multiple cycles, discharge
spectrum amplitude, and discharge frequency [26]. This spec-
trum is generated by using a wavelet transform or the Hilbert
yellow transform [27]. It can be served as a classification
basis for various discharge types. In addition, PRPS is a
3-dimensional distribution of discharge amplitudes, regard-
ing phase and power frequency cycle. This spectrum can cap-
ture local discharge information such as phase distribution.
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FIGURE 2. The spectrums of the free metal particle discharge.

There are corona discharge, suspended potential discharge,
free metal particle discharge, and insulation gap discharge.

Fig. 2 displays the spectrums of the free metal particle
discharge. In Fig. 2(a), the polarity is not obvious. In Fig. 2(b),
the power distribution range is distributed, and its discharge
interval is unstable. The spectrums of the suspended potential
discharge are shown in Fig. 3. The polarity is more obvious,
and its pulse is relatively stable. Besides, its discharge interval
presents the cycle distribution. Fig. 4 illustrates the spectrums
of the insulation gap discharge. It doesn’t have an obvious
polar effect, and the pulse amplitude is more dispersed. The
spectrums of the corona discharge are presented in Fig. 5.
Its polarity is obvious, and the pulse amplitude is dispersed.

FIGURE 3. The spectrums of the suspended potential discharge.

FIGURE 4. The spectrums of the insulation gap discharge.

B. SIAMESE NETWORK
The siamese network is a unique network architecture.
Traditional deep learning models aim to classify input

FIGURE 5. The spectrums of the the corona discharge.

FIGURE 6. The architecture of the siamese network.

images, and the siamese network focus on exploiting the
similarity between input images.

Specifically, a siamese network usually contains two same
sister networks. The last layers of the sister networks are
fed to a contrastive loss function, estimating the similarity
between two input images. The architecture of the siamese
network is shown in Fig. 6. Each image is fed to one of two
networks.

According to the reference work [17], the siamese network
is optimized by using a contrastive loss function. This loss
function can well express the matching degree of paired
samples. Besides, it can be used to train the model of feature
extraction. The loss function [17] is as follows:

(1− Y )
1
2
(Dw)2 + (Y )

1
2
[max(0,m− Dw)]2, (1)

whereDw is the Euclidean distance between the outputs of the
siamese networks. When Y = 1 (i.e. the samples are similar),
1
2 [max(0,m − Dw)]2 remains in the loss function. If the
Euclidean distance in the feature space is large, it indicates
that the current model is not good, and the loss is increased.
When Y = 0 (i.e. the samples are not similar), the loss
function is 1

2 (Dw)
2. The Euclidean distance of the feature

space is small, and the loss value will become larger.
The Euclidean distance is represented as follows:

Dw = ||Gw(X1)− Gw(X2)||, (2)

where X1 and X2 are two input data. Gw(X1) means the
output deep feature of X1, and Gw(X2) means the output deep
feature of X2.

III. THE PROPOSED SFN METHOD
Fig. 7 shows the flowchart of the proposed SFN method.
The SFN method consists of three main steps. First, based

VOLUME 10, 2022 62131



Z. Huang et al.: Partial Discharge Diagnosis With Siamese Fusion Network

FIGURE 7. The flowchart of the proposed SFN method.

on a few-shot learning strategy, a support set is constructed,
containing some labeled samples, such as four PD types and
a normal type. Each sample has PRPS and PRPD spectrums,
obtained by the UHF sensor. Then, two siamese networks are
employed to estimate the similarity between a test sample
and support set samples. One network measures the simi-
larity in PRPS, and the other measures similarity in PRPD.
According to two similarity scores, initial diagnosis results
can be generated. Last, a simple and effective decision fusion
method is designed to fuse initial diagnosis results. By jointly
exploiting complementary information, the final diagnosis
result is generated.

A. SUPPORT SET GENERATION
The UHF sensor is employed to obtain PRPD and PRPS
spectrums. A test sample Xt contains the PRPD spectrum
XPRPDt and the PRPS spectrum XPRPSt :

Xt = [XPRPDt ,XPRPSt ]. (3)

A support set is constructed, containing a few labeled
samples. It includes corona discharge, suspended potential
discharge, free metal particle discharge and insulation gap
discharge, and normal samples. Each type has one image. The
images in the support set Xs(i) also contain the correspond-
ing PRPD spectrum XPRPDs (i) and the corresponding PRPS
spectrum XPRPSs (i):

Xs(i) = [XPRPDs (i),XPRPSs (i)], (4)

where i = 1,2,3,4,5. Xs(1) represents the corona discharge
sample, Xs(2) means the suspended potential discharge sam-
ple. Xs(3) serves as the free metal particle discharge sample.
Xs(4) is the insulation gap discharge sample, and Xs(5) means
the normal sample.

B. SIAMESE NETWORK-BASED SIMILARITY ESTIMATION
In this step, two siamese networks are employed to estimate
the similarity between the test sample and support set sam-
ples. One siamese network measures the similarity of the
PRPD spectrum, and the other estimates the similarity of the
PRPS spectrum.

In Fig. 8, each siamese network has two VGG-16 mod-
els with the same network structure and shared parameters.

FIGURE 8. The siamese network used for similarity estimation in PRPS.

The VGG-16 model has multiple convolution layers, a sig-
moid activation function, a mean-pooling layer, and a fully
connected layer. The test sample and support samples are
served as two inputs images, capturing the deep feature infor-
mation. The input spectrums are subjected to the VGG-16
model, and the output deep information can be obtained:

Ot = G(Xt ), (5)

where G(Xt ) represents a step that uses the VGG-16 model
to extract the deep feature information from the test sample
Xt . Ot is the output deep information of Xt , including two
elements:

Ot = [OPRPDt ,OPRPSt ]. (6)

Similarly, G(Xs(i)) means a step that adopts the VGG-16
model to capture the deep feature information from support
set samples Xs(i). It is represented as follows:

Os(i) = G(Xs(i)), (7)

where Os(i) means the output deep information of Xs(i), and
it contains two elements:

Os(i) = [OPRPDs (i),OPRPSs (i)], (8)

where OPRPDs (i) represents the output of OPRPDs (i) and
OPRPSs (i) represents the output ofOPRPSs (i). Due to the advan-
tage of generalization ability, the VGG-16 model is adopted
to exploit the deep information.

Eq. (2) measures the PRPD similarity score:

EPRPD(i) = ||OPRPDt ,OPRPDs (i)||. (9)
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FIGURE 9. Part of PD samples.

TABLE 1. The details of the experimental date set.

Similarly, the PRPS similarity score is defined as follows:

EPRPS (i) = ||OPRPSt ,OPRPSs (i)||. (10)

The value of the output results is normalized to [0, 1].

C. DECISION FUSION BASED PD DIAGNOSIS
Since the UHF signal is complex and various, a single spec-
trum fails to reflect the UHF signal fully. The diagnosis
accuracy with a single spectrum fails to obtain outstanding

performances effectively. The PRPD and PRPS spectrums
can reflect the UHF signal from different views since the
two spectrums are from the same test sample. There is strong
complementary information in the PRPD and PRPS spec-
trums. To exploit the complementary information in different
signals, a simple and effective decision fusion technique is
adopted to utilize two similarity scores:

E(i) = EPRPD(i)+ EPRPS (i) (11)
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TABLE 2. Classification accuracies (%) obtained by different methods on the PRPD spectrum.

TABLE 3. Classification accuracies (%) obtained by different methods on the PRPS spectrum.

E(i) is the sum of two similarity scores. EPRPD(i) is the
PRPD similarity score between the test sample and support
set samples. EPRPS (i) is the PRPS similarity score between
the test sample and support set samples. By jointly utilizing
complementary information, the proposed method can gen-
erate more accurate diagnosis performance. Specifically, the
lowest scores can be generated as follows:

Emin = Softmin[E(i)] (12)

where i= 1,2,3,4,5. Softmin is the lowest score in results. The
output result is the corresponding PD category in support set
samples.

IV. EXPERIMENTS AND DISCUSSION
A. EXPERIMENTAL SETUP
AchallengingUHF data set is collected to evaluate the perfor-
mance of the SFN method. A UHF sensor is used to generate
the experimental data set. It is produced by the document
management system (DMS) company in the UK. This sensor
detects the partial discharge of GIS equipment in 220kV
substations, which are in Hunan Province, China. The data set
contains 320 images, provided by the State Grid Corporation
of China. Some PD samples are shown in Fig. 9. The details
are shown in Table 1. In this data set, the corona discharge
has 60 images, and the suspended potential discharge has
35 images. The free metal particle discharge has 50 images,
and the insulation gap discharge has 45 images. The normal
sample has 130 images. Among them, 50 labeled samples are
randomly chosen for training and the rest 270 labeled samples
are used for testing. The classification process is repeated
10 times. The average result is calculated as the final result.
The details can refer to [31].

Three classical methods are employed for comparing,
including SVM [16], VGG-16 [28], and AlexNet [29] mod-

els. For the SVMmethod, the parameters c and σ are tuned by
fivefold cross-validation, (c, σ ) = (12, 18). For the VGG-16
and AlexNet methods, the parameters are set based on the
reference works [28], [29].

B. EXPERIMENTS ANALYSIS
In experiments, the overall accuracy (OA) and average accu-
racy (AA) [31]–[33] are adopted to judge the diagnosis per-
formance. They are widely used evaluation indexes in image
classification [33]. Table 2 shows the classification accu-
racy obtained by different methods on the PRPD spectrum.
OA of the SVM, VGG-16 and AlexNet models are 35.19%,
44.81%, and 45.19% respectively. It demonstrates that tradi-
tional models fail to generate outstanding classification per-
formance with limited training numbers. The SFN-WO and
SFN methods are at least 36.27% higher than the other three
compared methods. It has great improvement scores in PD
fault diagnosis. Specifically, for the corona discharge class,
the classification accuracy has improved from 42.27% to
82.08%. For the free metal particle discharge class, the classi-
fication accuracy has improved from 30.23% to 87.56%. The
performance of the SFN-WO method is slightly lower than
the SFN method. The reason is that, by training limited PD
samples, the SFN method has a more robust generalization
ability in PD signal extraction, compared with the SFN-WO
method. Besides, Table 3 illustrates the classification accu-
racy obtained by different methods on the PRPS spectrum.
OA of the SVM, VGG-16, and AlexNet models are 35.92%,
49.42%, and 46.01% respectively. The SFNmethod is at least
34.28% higher than the other three compared methods.

Moreover, the influence of the number of samples for
training on the diagnosis performance is discussed. Different
numbers of samples are randomly selected from data sets to
constitute the training and test sets. Fig. 10 presents the varia-
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FIGURE 10. The variation tendencies of OA (%) for the PRPS spectrum.

FIGURE 11. The effect of decision fusion.

tion tendencies of diagnosis accuracies for PRPS spectrums.
Diagnosis results of the proposed SFN method are based
on different spectrums and the fusion scheme. The training
numbers of each class is varying from 10 to 20. For SVM,
VGG-16 and AlexNet methods, the diagnosis performance
has slight improvement. For SFN methods, the diagnosis
performance has improved from 83.70% to 87.56%.

Furthermore, for the proposed SFN method, the diagnosis
results from the single spectrum (PRPS or PRPD) also are
compared with the SFN method. SFN-PRPS and SFN-PRPD
are served as two compared methods. Fig. 11 shows the diag-
nosis accuracy of different methods. The proposed method
can obtain the highest detection accuracy, 88.38%. It is higher
than other diagnosis methods, 83.70%, and 85.56%. The rea-
son is that two spectrums can capture characteristic informa-
tion from different respects. The diagnosis result reflects its
statistical characteristic from the UHF signal. The proposed
SFN method can fuse two diagnosis results, and avoid some
miss classification with the single spectrum. Therefore, the
fused results can produce a more robust diagnosis result with
limited training numbers.

V. CONCLUSION
This paper has introduced a siamese fuse network for partial
discharge diagnosis with limited training numbers. First, the

UHF sensor generates two spectrums from power equipment,
including PRPD and PRPS. Based on a few-shot learning
strategy, a support set is constructed. There are four different
types of PD samples and a normal sample. Then, two siamese
networks are employed to estimate similarity scores between
a test sample and support set samples. One network measures
similarity scores in PRPS, and the other measures similarity
scores in PRPD. Last, a simple and effective decision fusion
technique fuses diagnosis results. Experiments performed on
the PD data sets demonstrate that our method outperforms its
counterparts in terms of classification accuracy with limited
training numbers.

The proposed method could still be applied in other fields
(such as insulator fault detection, tree barrier detection,
and mountain fire detection). Thus, designing the proposed
method for other applications is a challenging but interesting
future work.
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