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ABSTRACT The development of non-contact patient monitoring applications for the neonatal intensive
care unit (NICU) is an active research area, particularly in facial video analysis. Recent studies have
used facial video data to estimate vital signs, assess pain from facial expression, differentiate sleep-wake
status, detect jaundice, and in face recognition. These applications depend on an accurate definition of
the patient’s face as a region of interest (ROI). Most studies have required manual ROI definition, while
others have leveraged automated face detectors developed for adult patients, without systematic validation
for the neonatal population. To overcome these issues, this paper first evaluates the state-of-the-art in
face detection in the NICU setting. Finding that such methods often fail in complex NICU environments,
we demonstrate how fine-tuning can increase neonatal face detector robustness, resulting in our NICUface
models. A large and diverse neonatal dataset was gathered from actual patients admitted to the NICU across
three studies and gold standard face annotations were completed. In comparison to state-of-the-art face
detectors, our NICUface models address NICU-specific challenges such as ongoing clinical intervention,
phototherapy lighting, occlusions from hospital equipment, etc. These analyses culminate in the creation
of robust NICUface detectors with improvements on our most challenging neonatal dataset of +36.14,
+35.86, and +32.19 in AP30, AP50, and mAP respectively, relative to state-of-the-art CE-CLM, MTCNN,
img2pose, RetinaFace, and YOLO5Face models. Face orientation estimation is also addressed, leading to
an accuracy of 99.45%. Fine-tuned NICUface models, gold-standard face annotation data, and the face
orientation estimation method are also released here.

INDEX TERMS Face detection, neonatal dataset, NICU, complex care scenes, convolutional neural
networks, face orientation.

I. INTRODUCTION

sleep-wake detection from facial expression analysis

Many neonatal non-contact monitoring approaches utilize
the patient’s facial area as a region of interest (ROI) for
diverse tasks including estimation of patient heart rate (HR)
or respiration rate (RR) [1]-[6], assessment of pain from
facial expression [7]-[9], detection of jaundice [10], [11],
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[12], [13], or face recognition to prevent baby swapping or
abductions [14], [15]. In these studies, facial ROI selection is
often a manual or semi-automated process (e.g., [1]-[3], [5]),
or relies on face detection methods developed for adult faces
(e.g., [6]) that have not been validated on neonates, especially
in complex care scenes.

When estimating HR from facial video data,
Fernando et al. [1] manually extracted the patient’s face to
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track the changes in skin pixels using adaptive bandpass fil-
tering and principal component analysis. Klaessens et al. [2]
extracted regions of the face for subsequent HR esti-
mation using the Eulerian video magnification (EVM)
technique [16]; although it is not discussed in detail, it appears
that facial ROI were manually selected. Kyrollos et al. [6]
also used EVM on facial video data, but for RR estimation.
They leveraged the RetinaNet model [17] for automatic face
detection. However, the automatic face detection was limited
to within-patient testing and therefore the generalizability
of their model is untested. Villarroel ef al. [3] automatically
detected video segments where patient skin is visible
and manually identified a ROI (face, head, or neck) for
subsequent HR estimation using independent component
analysis. They later trained a multi-task convolutional neural
network (CNN) for patient detection and skin segmentation
to automatically detect the patient and all visible skin area for
HR estimation [4]. Since they only performed skin detection,
it is unclear how face detection would perform for their
application given the varying amounts of visible skin during
occlusions from beddings or hospital equipment.

More recently, Huang et al. [S] manually detected the
patient’s face in video recordings for HR estimation. They
discussed how challenging and inaccurate an automated
face detector would be, considering the variations in patient
posture and camera perspectives. Hence, a manual approach
was used on the first video frame and a tracking algorithm
would perform detection on subsequent frames. Other studies
have adopted this approach (manual ROI detection followed
by automated tracking) for continuous video-based face
detection [18]. This approach can be reliable for short
videos [5], or with robust tracking systems [18]; however,
laborious manual ROI definition must be repeated at the start
of each video and when tracking fails due to occlusions or
excessive patient motion.

Khanam et al. [19] aimed to overcome this manual task
by training a neonatal face detector as a preprocessing ROI
detection step for subsequent HR/RR estimation based on
colour and motion variations, respectively. They discussed
the challenges faced in utilizing a state-of-the-art face
detection model due to occlusions, baby poses, and complex
hospital settings. Moreover, these models are pretrained on
adult populations, often including only a few or no baby
images. They then leveraged 473 images collected from
online available sources to finetune the YOLOv3 model [20]
for neonatal face detection. They unfortunately did not report
the performance of their face detector preprocessing step,
focusing instead on evaluating the proposed HR/RR methods.
Khanam et al. discussed the need to obtain a larger neonatal
image dataset to improve their method’s reliability.

Neonatal facial expression recognition is another important
task for assessing patient status. Lin et al. [21] aimed to
recognize when a 0-2 year old infant is happy, sad, or normal,
directly from facial video data. Data were collected by
asking parents to capture and submit images and videos
of their children using smartphones. For videos, one image
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was extracted every 30 frames and a similarity matching
algorithm (SSIM) [22] was used to remove near-identical
images. As an image preprocessing step to standardize the
face orientation, they used the Dlib and OpenCV visual
libraries for face detection and cropping where the image was
rotated at 90°, 180°, and 270° until a face was detected. They
however did not report the performance of their face detector
nor of their rotation experiment.

Several studies have also examined patient faces for
neonatal pain assessment [7]-[9]. Brahnam e? al. [8] detected
painful events from images of swaddled newborns. Images
were carefully preprocessed to extract the facial area (i.e.
images were rotated for standardized face orientation, images
were cropped to only include the patient’s face). It is unclear if
these preprocessing steps were performed programmatically
or manually. They later automatically detected faces from
video recordings using a Discriminative Response Map
Fitting (DRMF) model [23] to analyze the temporal pattern of
facial expression during painful procedures [9]. In this latter
study, video recordings of occlusions from moving limbs
were included. No results from the performance of the face
detection step were reported.

Salekin et al. [7] also used video recordings for pain
assessment evaluated through facial expression, body move-
ment, and crying sound analysis. They leveraged the pre-
trained YOLOvV3 model for face and body detection as a
preprocessing step before analyzing facial expression and
body motion. No results on the performance of the face/body
detectors were reported; they directly evaluated the pain
assessment methods from the face, body, and sound data
streams. These pain detection studies all share common
key points: face detection as a preprocessing ROI detection
step followed by feature extraction for facial expression
estimation; implementation using a dataset of newborns
recorded at a close distance such that the face fills the
majority of the frame, with minimal occlusions, and no dark
environment.

Neonatal face detection has been applied for jaundice
detection that seeks to quantify the yellowing of the skin
[10], [11]. These studies use image processing approaches
based on the YCbCr color space for skin segmentation [10],
followed by a manual ROI detection step to identify a specific
facial region [11].

Several recent studies have used face video analysis
for sleep-wake state detection in neonates based on their
facial expression or opening of the eyes [12], [13], [24].
To detect faces, Mukai et al. [12] first rotated images to
standardize the face orientation pointing North (unclear if
done programmatically or manually), then used the OpenFace
library to detect and align faces [25]. They did not report
performance of the face detection step; however, they
discussed how facial occlusion from bed sheets and lighting
variations impeded the accuracy of the detected face, and
thereby impeded the classification of sleep-wake cycles. They
discussed how neonatal face detection is a difficult task that
requires additional research and development.
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Face Detection Difficulty

FIGURE 1. Face detection difficulty from Complex NICU Scenes.

In comparison to relatively standard cameras used in previ-
ously mentioned studies, Awais et al. [13] recorded patients
with the Fluke TiX580 camera which can capture multiple
color palettes. To that end, they leveraged the camera’s unique
specifications by detecting faces based on pixel intensities
in the CIELAB (Commission Internationale de 1’eclairage,
L*a*b*) color space. Studies relying on pixel-intensity based
approaches for face detection can be useful for specific
neonatal monitoring applications; however, skin-tone-based
face detection performance can be limited for dark skin
patients, different lighting conditions, or for images including
the patient’s full body and bed environment (as opposed to a
close up facial view).

Another sleep monitoring study was recently conducted
on baby manikins by Khan [24], where they created a smart
home baby monitor device that detects sleeping postures and
notifies the caregiver. Four different events were detected
including facial coverage due to prone position, patient
removing the blanket, frequent motion, and awake detection.
For the latter, they used the Multi-Task Cascaded Neural
Network (MTCNN) to detect the face, regression trees to
detect a 68-point facial landmarks including 6 landmarks
surrounding the eyes, and computed the eye aspect ratio to
detect when the eyes are continuously open (i.e. baby is
awake). Facial coverage due to prone position was detected
from nose detection; however, they did not use the MTCNN
and regression tree approach since this technique is severely
impacted by facial occlusions. Instead, they opted for a
pose detection model made of a body skeleton connected
to facial landmarks. A prone position is determined by
the absence of the connected facial landmarks. Their study
was entirely trained and largely tested on baby manikins.
They did obtain a few additional images of real babies
and infants collected from online available sources to test
their methods. Although results were promising on these
few images, they discussed how new challenges may arise
from real babies with varying facial occlusions, or more
complex sleeping poses. The authors emphasized the need
to collect such a challenging real-life dataset, to acquire
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reliable labelled data, and to retrain a pretrained model
accordingly.

Neonatal face recognition applications are evaluating new-
borns’ facial features to properly identify patients in hospital
as a prevention measure to baby swapping or abduction.
Bharadwaj et al. [15] performed manual face detection given
that existing detectors failed to identify newborn faces.
To overcome this issue, Awais et al. [14] leveraged the color
palettes from the Fluke TiX580 camera for automatic face
detection and reported an accuracy of 98.5%. Their dataset
used controlled head movements ( —45° to 45° in yaw
head tilt), close camera distance (0.25-0.36 m), and excluded
occlusions from limb movements to obtain best quality data
for face recognition. The present paper explores a different
task by systematically evaluating face detection in a variety
of complex NICU scenes for diverse neonatal monitoring
studies.

Among all the video-based neonatal monitoring research,
numerous approaches to face detection were adopted as
a preprocessing step for their specific application using
different NICU datasets. It is unclear if the various proposed
methods would be reliable in a complex clinical setting
when the camera is sometimes placed far from the patient,
where the face may be occluded due to ventilation support
or other reason, lighting conditions vary widely and change
frequently, patient pose can vary, and the scene may capture
ongoing clinical interventions. Some of these complex
scenes are depicted in Fig. 1. In many previous studies,
these challenges are acknowledged and a manual ROI
detection method was adopted (e.g., [1]-[3], [5], [8], [11],
[18]). In other cases, studies used a state-of-the-art model
pretrained on an adult population for ROI detection without
rigorous validation on neonatal patients in complex NICU
environments (e.g., [6], [7], [9], [12], [13]). In rarer cases,
studies have trained a facial ROI detector using neonatal
datasets including only a few of the mentioned challenges
to obtain a more reliable ROI for their specific neonatal
application [14], [19]. It is however unclear if such models
are robust and generalizable since extensive evaluations of
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such detectors under varying NICU conditions have not been
reported.

These important limitations in neonatal face detection
motivates the current study in which we (1) rigorously
determine conditions where pretrained state of the art face
detection models perform accurately and where they fail in
complex NICU scenes, and (2) create an improved neonatal
face detection model robust to these identified challenges
using transfer learning. This paper addresses these needs
through the following contributions:

1) Demonstrated limitations of the state-of-the-art pre-
trained face detection models for neonatal face detec-
tion during realistic patient monitoring conditions by
utilizing three different neonatal studies presenting
different patients and environments.

2) Created two neonatal face detection models (NICU-
face) by finetuning the most performant pretrained face
detection models on exceptionally challenging NICU
scenes.

3) Proposed a simple but reliable face orientation esti-
mation approach as a required preprocessing step in
neonatal face analysis applications.

4) Provided high quality face annotations for two publicly
available benchmark neonatal datasets to promote
continued development of the state of the art in neonatal
face detection.

This study not only explores the limits of state-of-the-art
face detection models, but also overcomes the limitations
of neonatal face detection in a clinical setting. A plethora
of non-contact neonatal monitoring applications will likely
benefit from the robust NICUface detectors presented here.

Il. BACKGROUND

A. OBJECT DETECTION

In the last few years, object detection models have improved
in both speed and accuracy. Notably, as part of state-of-the-art
two-stage object detectors, the R-CNN family has seen var-
ious versions including the R-CNN [26], Fast R-CNN [27],
and Faster R-CNN [28]. Each edition demonstrates advances
in implementing a CNN where region proposal methods
suggest areas of the image where an object of interest is
suspected to reside, followed by object localization using
bounding box regression.

Instead of relying only on selected proposed regions of
the image, the You Only Look Once (YOLO) family of
object detectors looks at the entire image and simultaneously
generates class probabilities within each predicted bounding
box [20], [29], [30]. The object of interest corresponds
to the highest probability region, thus only requiring to
“look once” at the image before making a prediction. Such
one-stage object detectors have gained popularity due to
their fast computation, especially in real-time applications.
Redmon et al. created three versions of this YOLO archi-
tecture from 2015 to 2018, by incrementally improving the
model’s speed and accuracy [20], [29], [30]. In the past
couple of years, other researchers have extended Redmon’s
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work to achieve even better and faster real-time performance
with YOLOv4 [31] by using “‘bag-of-freebies” (methods
used during training) and ‘‘bag-of-specials’ (post-processing
methods used during inference). Among them, significant
detection improvement were noticed using a new mosaic data
augmentation which creates a tile of four training images
thereby helping the model detect small objects while reducing
the required mini-batch size during training. Compared the
mean square error (MSE) used in YOLOV3 for bounding box
regression, YOLOv4 uses a complete IOU (CIOU) loss which
compares the predicted and ground truth bounding boxes
area by considering the distance between each center points
and aspect ratio, in addition to evaluating their overlap from
traditional IOU. Compared to the four previous versions,
Glenn Jocher [32] introduced YOLOvVS implemented on
PyTorch instead of Darknet framework, thereby allowing
the implementation of models of various sizes including
small and lightweight ones for easy deployment to mobile
devices. YOLOVS also introduces a Focus Layer made up
of YOLOV3’s first three layers to reduce layers, parameters,
and CUDA memory, while improving speed during forward
propagation and backpropagation. Overall, YOLOVS is
fastest, more lightweight, and more accurate among the entire
YOLO family.

Other prominent recent object detectors include the
single-stage object detector RetinaNet which introduces
a new Focal Loss optimization that focuses on extreme
foreground-background class imbalance during training [17],
the EfficientDet [33] model that uses the EfficientNet [34]
classifier as a backbone for model scaling, and the DEtection
TRansformer (DETR) network that leverages a CNN and
transformer encoder-decoder architecture to perform end-to-
end object detection with bipartite matching for generating
direct predictions [35].

To train these above-mentioned detectors, research groups
have often relied on the PASCAL VOC dataset [36] and/or
the COCO dataset [37]. These two object detection bench-
mark datasets were created for various object recognition
challenges including classes such as person, cat, bicycle, etc.

B. FACE DETECTION

Detecting the facial area is often performed in three different
ways: the detection of the entire face enclosed within a
bounding box (face detection), the detection of the geometric
structure of the face outlined by specific landmarks (face
alignment), or the detection every pixel pertaining to the
person’s face (face segmentation). All of these applications
are depicted in Fig. 2. Facial alignment is typically applied
using 5-point landmarks including the center of left eye,
center of right eye, tip of nose, left corner of mouth, and
right corner of mouth [38], [39]. In other cases, finer facial
structure is extracted with 68-point landmarks including
eyebrow line, eye contour, length and width of nose, upper
and lower lip contour, and jawline [40]. In face segmentation,
the whole face is either segmented as a whole [41] or is
segregated into different facial regions (e.g., eyes, nose,
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FIGURE 2. Face detection techniques.

mouth, skin, hair) [42]. Face alignment and segmentation are
particularly useful in further facial analysis applications such
as face recognition or facial expression detection; however,
they are more difficult tasks to achieve compared to detecting
bounding boxes. Only face detection results from bounding
box predictions are investigated quantitatively in this study,
while facial alignment methods are evaluated qualitatively.

1) BENCHMARK DATASETS
To train and evaluate face detection models, several bench-
mark face image datasets are available.

Face detection benchmark datasets include:

« WIDER FACE [43]: Images include faces with vari-
ations in scale, pose, occlusion, expression, makeup,
and illumination (393,703 annotated faces from 32,203
images). Different subsets are included as Easy,
Medium, and Hard data, based on the increasing level
of difficulty to detect the face due to varying scale,
occlusion, and pose.

« FDDB [44] (Face Detection Dataset and Benchmark):
Images including faces with variations in occlusions,
poses, resolution, and out-of-focus faces (5,171 anno-
tated faces from 2,845 images).

Face alignment benchmark datasets include:

o AFLW [45] (Annotated Facial Landmarks in the Wild):
Real-world images including faces with variations in
pose, lighting, expression, ethnicity, age, and gender
(25,993 annotated faces from 21,997 images).

e 300-W [46] (300 Faces-In-The-Wild): In-the-wild
images from indoor and outdoor scenes including
variations in identity, expression, illumination, pose,
occlusion, and face size (600 annotated faces from
399 images).

2) FACE DETECTION AND ALIGNMENT METHODS

Among state-of-the-art face detection and alignment
models, the Multi-Task Cascaded Convolutional Network
(MTCNN) [38] has a cascaded CNN architecture of three
different networks: (1) A Proposal Network (P-Net) where
several facial regions in the image are proposed as candidates;
(2) A Refinement Network (R-Net) where all candidate
regions are rejected or retained for further analysis by
the following network; (3) An Output Network (O-Net)
where remaining candidates are further refined to obtain a
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final selected region corresponding to the face region with
landmarks. At each stage, bounding box regression vectors
and non-maximum suppression are computed to obtain
corresponding outputs. This model was trained on three
different datasets (WIDER FACE, FDDB, and AFLW) and
performs joint face detection and alignment with resulting
5-point landmarks.

As opposed to MTCNN’s regression-based approach, the
Convolutional Experts Constrained Local Model (CE-CLM)
uses a model-based approach where the appearance of facial
landmarks are computed to obtain an output [40]. Traditional
CLMs use local detectors to model each facial landmark
and shape them from constrained optimization techniques.
Although this approach can be robust to occlusions or subject
pose (especially faces in profile), it is severely impeded by
complex variation in facial appearance such as facial hair,
makeup, or accessories. Most of these complex variations
should not occur in NICU-based data, thus warrants further
exploring for a neonatal population. The Convolutional
Experts Network (CEN) can model such variations using a
mixture of experts.

The CE-CLM framework can be considered a three-fold
process; first, a face detector is applied to obtain landmark
positions (CLM); second, each landmark is accurately
localized (CEN); and third, all landmarks are properly aligned
using point distribution models to create a 68-point facial
landmarks. CE-CLM can use different model architectures
for its backbone including cascade detectors, tree-structured
models, and more recently the MTCNN model. The CE-CLM
model was trained on four different datasets (300-W, 300-
VW, IIB-FL, and Menpo Challenge), that were selected due
to the presence of challenging environment such as varying
lighting, occlusions, different image quality, varying poses,
profile faces, and video data [40].

Addressing the estimation of facial pose, the img2pose
model [47] proposes a 6-degree-of-freedom (6DoF) model
for each detected face in an input image. Compared to
common face detectors, the img2pose does not rely on face
bounding boxes or facial landmarks. Instead, it first aligns
the 6DoF facial model to the 3D face pose and then projects
the model onto the image to obtain a bounding box as a
by-product. The authors propose various settings of size
and shape for fitting the box around the person’s face. The
img2pose model leverages the Faster R-CNN detector [28]
(with ResNet-18 as a backbone [48]) to propose areas in the
image as candidates for face locations. From these proposed
regions, features are extracted for face classification and
6DoF face pose regression. The img2pose model is trained
and tested on the WIDER FACE dataset for 2D face detection
evaluation.

Aiming to obtain dense face localisation, the RetinaFace
model [49] is a single-stage detector that uses a multi-task
network for face classification, face box regression, 5-point
facial landmark regression and 1k 3D vertices regression. The
RetinaFace model uses the ResNet-50 model as a backbone
for generating a feature pyramid, applies a context module
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to each pyramid level to increase the receptive field to help
detect smaller faces, and uses different anchor sizes at each
level to detect faces of varying sizes. A multi-task loss
is computed as a linear combination of the loss of each
corresponding task. Deng et al. demonstrated that each of
these tasks can contribute to one another. The RetinaFace
model is trained and tested on the WIDER FACE dataset
for face detection evaluation, with an emphasis on the Hard
subset.

Most recently, the YOLOSFace [39] has redesigned the
YOLOVS [32] object detection model into a face detector.
Important modifications were implemented such as adding a
5-point landmark regression head to obtain facial alignment,
reducing the kernel sizes in the spatial pyramid pool-
ing (SPP) block to enable detection of smaller faces, replacing
YOLOVS’s Focus layer with a Stem block to improve
generalization and reduce computational complexity, and
tailoring the data augmentation techniques to face detection.
Qi et al. have provided different YOLOS5Face models based
on various YOLOVS backbones for computer or mobile
device applications. The overall loss function of YOLO5Face
extends from YOLOvV5 as a compound loss of bounding
box location regression loss, confidence loss, classification
loss, plus a Wing loss for the added landmark regression.
YOLOS5Face used WIDER FACE to train and test the face
detection task.

In this paper, we use the MTCNN, CE-CLM, img2pose,
RetinaFace, and YOLOS5Face pretrained face detection
models. These models were selected due to their variety in
architecture, different adult-based datasets used during their
development, different landmark regression approaches for
obtaining a sparse 5-point or dense 68-point facial landmark,
and different approaches for obtaining face bounding boxes.
In total, this collection represents a broad cross-section of the
state of the art in face detection models.

IIl. DATASETS
This section describes the three neonatal datasets used in this
paper. A summary of the datasets is provided in Table 1.

A. CHEO
This section describes the image data collection and prepa-

ration for face detection from video data collected at the
Children’s Hospital of Eastern Ontario (CHEO).

1) DATA COLLECTION

As part of an overarching non-contact neonatal monitoring
research, about 153 hours of video recordings and physi-
ologic data were collected from 33 newborns admitted at
the NICU of CHEO. A depth-sensing camera, the Intel
RealSense SR300, was placed above the patient to capture
color, depth, and near-infrared data for up to 6 hours per
patient during continuous neonatal monitoring. Only RGB
data was used in this study. Each patient was recorded in one
of the three different bed types: incubator, crib, and overhead
warmer. Given the purely observational design of this study,
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video data captured challenging scenes including complex
patient poses, facial occlusions from hospital equipment
and free-moving limbs, diverse lighting conditions, clinical
interventions, routine care procedures, and varying camera
view points. This study was approved by the Research Ethics
Boards of both the hospital and Carleton University (CU-
117311, CU-107193). Unfortunately, we are not able to
publicly release the CHEO dataset due to restrictions from
the hospital’s Research Ethics Board.

2) DATA EXTRACTION

One image was extracted per 30 seconds of video data. This
provided substantial variation during events (e.g., clinical
intervention, patient motion) but insufficient variety when the
patient is at rest. Therefore, images were further filtered to
eliminate highly similar images.

3) IMAGE HASHING

To remove visually similar images, an average hash method
was used. Each image was resized to 8 x 8, grayscaled, and
the average of this new image is computed. Each pixel is
then compared to the calculated average to compute a bit
value (e.g., set to 1 if above the average, and 0 otherwise)
and all bits are extracted sequentially to form a 64-bit integer
as the image hash. Images were then hierarchically clustered
using hamming distance to compare hash values and only one
image from each cluster was retained such that no two images
had a hamming distance < 5.

4) DATA CURATION

The CHEO image set was subdivided into “‘optimal”,
“challenging”, and ‘“‘negative” data subsets. The “optimal”’
subset (CHEO,,,) includes images where the patient’s face
is clearly visible, with high lighting, no facial occlusion,
clear frontal view, close distance from the camera (max
60 cm), no ongoing phototherapy treatment, no ongoing
clinical intervention, and no blur due to patient motion.
The ‘““challenging” subset (CHEO.;,) included the opposite
cases from the “optimal” subset. The ‘“‘negative” set was
excluded from further analysis and contained those images
where the face of the patient is not visible, such as complete
facial occlusion, face out of frame, patient absent from bed,
or complete darkness making it impossible to visualize the
patient’s face for a human observer.

5) STANDARDIZED FACE ORIENTATION

The camera is typically at a fixed position and orientation
for the entire recording session, but the orientation varied
between patients. As a preprocessing step, all images were
rotated such that the head is at the top of the image (referred
to as the “North” orientation).

6) FACE ANNOTATION
Faces within each image were manually annotated. Bounding
boxes captured the area from forehead to chin and ear to
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TABLE 1. Description of datasets.

Dataset Tot Imgs Unique Imgs Patients Age Resolution Avg. BBox Area  Viewpoint
COPE 288 183 27 18h - 3d 3008 x 2000 23% Close up face
NBHR 889 565 257 0-6d 640 x 480 15% Close up face
CHEO,ptimal 2,048 111 16* 4 -64d 640 x 480 8% Full body
CHEOchaitenging 11,517 1,855 33 4 -64d 640 x 480 3% Full body
Total 14,742 2,714 317 18h - 64d - - Multiple views

*Subset of patients from the entire CHEO dataset, including only images representing optimal conditions (see text).

ear, and only visible parts were selected in cases of partial
occlusions.

B. COPE

The Infant Classification of Pain Expressions (COPE) dataset
was obtained from Brahnam et al. [50], [51] where their
research focused on neonatal pain assessment. The database
contains 288 images of 27 newborn faces in the NICU,
collected during a painful procedure (e.g., heel lancing),
vs non-painful ones (e.g., light puff of air on the nose, friction
from rubbing alcohol).

To finalize data preparation, standardized face orienta-
tion, image hashing, and face annotation were performed
similarly as described in Section III-A.

The face annotations created here are available at
github.com/GreenCUBIC/NICUface and researchers are
invited to inquire with Brahnam et al. [50], [51] for access
to the original image dataset.

C. NBHR

The newborn baby heart rate estimation database (NBHR)
was obtained from Huang ef al. [S] where they collected
synchronized video recordings and physiologic signal for
non-contact neonatal heart rate estimation. The database
includes 9.6 h of facial videos collected among 257 patients,
with photoplethysmograph (PPG) signals, heart rate values,
and oxygen saturation levels.

The dataset consisted of 1130 videos, where for each video,
the first frame was extracted as an image. To finalize data
preparation, standardized face orientation, image hashing,
and face annotation were performed similarly as described
in Section III-A.

The face annotations corresponding to the NBHR extracted
images and the detailed image extraction protocol are avail-
able at github.com/GreenCUBIC/NICUface and researchers
are invited to inquire with Huang et al. [5] for access to the
video dataset.

IV. METHODS

This section describes the pretrained models used in this
study, in addition to supplemental analysis of complex scenes
(Section IV-A). Finetuned models are then created using the
best pretrained networks to create our NICUface models
(Section 1V-B). Evaluation of all face detection models is
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presented (Section I'V-C), followed by the description of our
face orientation estimation methods.

A. DATA ANALYSIS FROM PRETRAINED MODELS
1) PRETRAINED MODELS

Five pretrained models are used here: MTCNN, CE-CLM,
img2pose, RetinaFace, and YOLO5Face.

a: MTCNN

The pretrained MTCNN model is tested without modification
on our neonatal datasets(see Section II-B-2 and [38] for
further details).

b: CE-CLM

The CE-CLM can use different face detectors as a backbone
of the CEN network to obtain landmark positions. This
paper leverages the MTCNN model for the CEN backbone.
Predictions differ from the MTCNN model in that they are
further refined and also include the 68-point face alignment.

c: img2pose

The pretrained img2pose is tested without modification (see
Section II-B-2 and [47] for further details), and using the
bounding box setting encapsulating the face from forehead
to chin.

d: RetinaFace
The pretrained RetinaFace was used with a ResNet-50
backbone model, as described in Section II-B-2 and [49].

e: YOLO5Face
The YOLOS5Face model was used with the ‘“large” Stem
block since this was shown to be one of the most accurate
by Qi et al [39]. The YOLOVSI6 is not used here since
they reported that, while the P6 block addition improved
performance on the WIDER FACE’s Easy and Medium
subsets, it can decrease the performance on the Hard subset
(which more closely resembles our data).

The five pretrained models were tested in MATLAB using
an NVIDIA GeForce GTX 1070 GPU, and with Python using
a Tesla P100-PCIE-16GB.

2) COMPLEX NICU SCENES
Complex scenes are further analyzed by evaluating face
detection performance under various clinical challenges.
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TABLE 2. Train & test sets.

Split Train Test

1 COPE + NBHR CHEO,p¢
2 COPE + CHEO,ypt + CHEO,, NBHR
3 NBHR + CHEO,p¢ + CHEO,, COPE
4 COPE + NBHR + CHEOopt + CHEO.j,_gr1  CHEO.p_p1
5 COPE + NBHR + CHEOopt + CHEO.p,_gr2  CHEO.p_p2
6 COPE + NBHR + CHEOOPt + CHEOC}L7€F3 CHEOC}LFB

avg(4:6) — CHEO,},

Using the CHEO,;, dataset, we extract challenging cases
based on varying levels of occlusions, viewpoints, and
lighting. In terms of occlusions, they can occur when the
patient is sucking on a soother, from the nurse’s hand or arm
during a clinical intervention, when the patient is wearing a
phototherapy eye mask during treatment, from a ventilation
support device, or from free-moving limbs or beddings.
Viewpoints are considered to be challenging when the camera
is positioned at a far distance from the patient (>1m); when
the patient is being held in the bed; or when the face is only
visible in profile view, from a near-top view, or from near-
back view when the patient is in prone position. Lighting
conditions are challenging during dimly lit periods (e.g.,
patient sleeping or reduced sensory input environments) or
during phototherapy treatment. To evaluate these complex
scenes, the best performing pretrained models (RetinaFace
and YOLO5Face) are tested on each challenging case before
being finetuned. Previous neonatal monitoring applications
have discussed how challenges from clinical scenes can pose
a problem to the face detection performance. This paper
quantifies the impact of these individual complex scenes.

B. FINETUNED MODELS

We create the NICUface detectors from finetuning pretrained
RetinaFace and YOLOSFace models. For both models,
models were trained and evaluated on different patient subsets
to quantify model generalization, as described in Table 2.
Note that the same 16 patients from CHEO,,,; were present
in CHEO,,, only with different challenging scenes. Split
1 therefore only trained on COPE + NBHR and tested
on CHEO,y, to maintain testing this dataset with entirely
different patients that were not seen during training. For the
CHEOQ, data, given its variety of challenging conditions, the
17 unique patients in this dataset (not present in CHEO,;)
were divided into three folds. Each fold contained a pro-
portional amount of complex scenes, especially considering
low lighting and patients on ventilation support. The final
reported performance on the CHEO,;, dataset is reported
as the average of these three folds for the pretrained and
finetuned models to provide a fair comparison.

1) NICUface-RF

The RetinaFace model was finetuned using a ResNet50
backbone and the RetinaFace weights. Finetuning occurred
over 10 epochs with a batch size of 8 with an initial learning
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rate of 0.001 with a warmup to 0.1 at epoch 1 and then
0.1 decay for epochs 2 and 5. Anchors were matched to an
object when the intersection over union (IOU) was larger than
0.45 and to the background when the IOU was less than 0.3.
Training data were augmented with random horizontal flip
and photo-metric colour distortion. The loss function was
not changed from the original RetinaFace model; however,
during training landmark regression error was ignored by
setting all landmark inputs in the training data to -1. Only
bounding box error was used.

2) NICUface-Y5F

The YOLOS5Face model was finetuned using the YOLOvSI
weights, trained over 10 epochs with batch size of 16, initial
learning rate of 0.0032 and final learning of 0.12, optimized
using stochastic gradient descent with 0.5 momentum in
the first 2 epochs and momentum of 0.843 after, and an
IOU threshold of 0.2 during training. The loss function of
NICUface-YS5F is similar to the loss function of YOLOS5Face
as,

loss = 10SSpox + 108Scons + 10SScls + Mjand - 10SSjana (1)

where [0ssp,y is the bounding box regression 10ss, [05Scons
is the confidence loss, loss.s is the classification loss, and
l0sSianq 18 the landmark regression loss with weighting factor
Aland - This Ajg,q Was set to only 0.005 to pay less attention to
the landmarks given the unsupervised landmark localisation.
Similarly to YOLOS5Face, the [osscons and losscs were
optimized using the cross-entropy loss function. In terms
of data augmentation, YOLOSFace reported that Mosaic
augmentation and removal of up-down flipping improved
their performance, but only on the Hard WIDER FACE subset
without ignoring small faces or random cropping. Given the
difficulty of our neonatal dataset we also applied Mosaic and
removed up-down flipping.

The training set was divided into two sets of data used
during training and validation stages where different patients
were used for training and validation. As can be seen in
Table 2, each face detector was tested on a completely
different dataset from that used to train the models.

C. FACE DETECTION EVALUATION

For face detection performance of pretrained and finetuned
models, all models are evaluated using the average pre-
cision metrics with varying intersection over union (IOU)
requirements. The AP is calculated with IOU > 0.5 as a
standard evaluation metric (AP50), while the mAP captures
the mean over AP with I0U=0.5:0.05:0.95 to reward
models producing more specific bounding boxes. The facial
landmarks are not evaluated quantitatively here since no
gold standard landmark annotations were performed on
our neonatal datasets; however, landmarks are reviewed
qualitatively to generally assess the performance of the face
alignment task and to identify challenging cases where the
alignment would fail.
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In evaluating all models, we opted to only output the
prediction with the highest confidence score. This approach
is feasible since only one face is assumed to be present
in each image. Given the difficult task of finding neonatal
faces in complex scenes, this approach allows low confidence
predictions of the patient’s face to still be considered while
ignoring other irrelevant false predictions in the scene.

We also look at cases where we decrease the 10U
threshold to 0.3 (AP30) to include slightly overestimated or
underestimated bounding boxes around the face. Although
most object detectors report AP with IOU of at least 0.5,
recent applications leveraging these detectors have opted for
lower IOU threshold in cases where the objects are small and
hence the AP/mAP metric would be drastically impacted by
marginal errors [52], [53].

D. FACE ORIENTATION ESTIMATION

In many neonatal monitoring applications, a preprocessing
step is required where images are rotated to standardize the
orientation of the face. Having the patient’s face oriented
North facilitates the face detection and alignment task, and
this rotation step is often performed manually (laborious)
or programmatically through trial and error by rotating the
image at 90° increments until a face is detected (unreliable
if a face is detected at non-North direction without providing
confidence from this orientation). We therefore propose a face
orientation estimation approach where the image is rotated
in four 90° increments. The “North™” face orientation is
predicted as the direction that produces the most confident
bounding box, the most coherent facial landmark positions,
or both:

1) FACE ORIENTATION ESTIMATION BASED ON FACE BOX
CONFIDENCE SCORE

From the detected bounding boxes in all four directions,
we predict that the North-facing orientation should have the
highest confidence score.

2) FACE ORIENTATION ESTIMATION BASED ON FACIAL
LANDMARK POSITION

From the detected 5-point facial landmarks in all four
directions, we predict that the North-facing orientation should
have landmarks positioned in manner where the nose is below
the eyes. We measure the Nose-to-Eye-Line Angle (NELA)
which measures the angle of a line that originates at the nose
landmark and intersects the inter-ocular line at 90°. A North-
facing orientation would result in a NELA of 90° (£ 45° to
account for minor pose variations). This method is illustrated
in Fig. 3.

3) FACE ORIENTATION ESTIMATION BASED ON COMPLETE
FACIAL DETECTION

Given the strength and weaknesses of each technique
presented above, a final and more comprehensive face
orientation estimation approach is presented by leveraging
both the face box confidence scores and the facial landmark
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FIGURE 3. Face orientation estimation from landmark position.

positions. The North orientation is determined by selecting
the detection with the highest confidence score that also has
a valid NELA.

V. RESULTS AND DISCUSSION

This section assesses the state of the art in face detection
for neonatal patients in NICU environments. Experiments
cover neonatal face detection challenges from multiple
experiments with different pretrained models, datasets, and
complex NICU scenes (Section V-A to V-C). Face orientation
estimation is then evaluated (Section V-D).

A. PRETRAINED MODELS AND NEONATAL DATASETS
Among all pretrained models presented in the top half of
Table 3, MTCNN performs worst, and interestingly, the
CE-CLM model using MTCNN as a backbone detector
performs better in comparison. The fact that landmark
positions are refined in the CE-CLM model before applying
the denser 68-point distribution model strongly suggests the
advantage of the CEN layers in the localisation task. Figure 4
depicts results from all models with increasing level of scene
complexity from left to right, and increasing performance of
each model from top to bottom. Bounding box predictions
are labelled as correct IOU>50, Green), partial (I0U>30,
Yellow), or incorrect (IOU<30, Red). As illustrated in
Fig. 4, some false negatives with MTCNN have become
true positives with CE-CLM for the COPE dataset (with
correct detection and decent facial alignment despite the
partial occlusion by blanket), for the NBHR dataset (with
partial detection and misaligned facial landmarks due to
profile view), and for the CHEO,,, dataset (with partial
detection and proper facial alignment). For the CHEO,,
dataset, no detection is obtained with MTCNN and CE-CLM
for most scenes, except for a few with very minor occlusions
and viewpoints where all facial landmarks are visible (e.g.,
patient imaged from a far distance).

While CE-CLM revealed improved results compared
to MTCNN, the value of generating 68-point landmarks
is likely to be application-dependent. For example, such
fine-detailed facial structure is not needed for HR estimation
or jaundice detection (which primarily look at the skin),
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TABLE 3. Face detection results.

COPE NBHR

CHEOoptimal CHEOchallenging

Model AP30 AP50 mAP AP30 AP50

mAP AP30 AP50 mAP AP30 AP50 mAP

MTCNN
CE-CLM
img2pose
RetinaFace

YOLOSFace

NICUface-RF
NICUface-Y5F

but it would be highly relevant for pain assessment or
sleep-wake detection (which primarily look at the facial
expression). This could open a door to retraining an 5- or 68-
point landmark distribution model suitable for the neonatal
population with 5 or 68 salient facial features observed in
newborns, respectively.

Overall, the pretrained RetinaFace and YOLOS5Face
methods outperform all other approaches, with consistent
detection (near 100% in AP30 and AP50) for the COPE,
NBHR, and CHEO,,,, datasets. For these three datasets, all
detections are correct, with proper facial alignment despite
the minor occlusions or the patient being viewed in profile.
In a complementary manner, RetinaFace performs best on
NBHR, CHEO,,,, and CHEO,, while YOLOS5Face performs
best on COPE, as demonstrated in Table 3.

Given that the pretrained RetinaFace and YOLOS5Face
models consistently outperformed the MTCNN and CE-CLM
methods across all datasets, the MTCNN and CE-CLM
methods were not investigated further. Similarly, the
img2pose results are significantly worse than RetinaFace
and YOLOS5Face on COPE, NBHR, and CHEQO,,; datasets.
However, at first glance, results for img2pose on the difficult
CHEO,;, dataset appear to be on par with RetinaFace, and
YOLOS5Face. Performance of these three methods across
each individual complex scene are investigated in detail in the
following section, before implementing the ultimate solution:
NICUface.

Across all models, a consistent pattern exists in dataset
performance with COPE > NBHR > CHEO,,; > CHEO,.
This pattern agrees with a qualitative assessment of the level
of difficulty among our datasets in analogous fashion to the
WIDER FACE dataset’s easy, medium, and hard subsets [43].
Our COPE data represent our “‘easy” subset with close
up facial views, NBHR has “medium” difficulty with
close up faces and more challenging poses and occlusions,
CHEO,y; is “medium-hard” where the image includes
the full body and bed environment. Finally, CHEO,, is a
“hard” dataset as it includes the entire bed environment and
complex scenes, such as low lighting, ventilation support,
pose variation, etc. Considering that the performance of all
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models is significantly reduced on the CHEO,;, dataset, the
complex scenes therein are further analyzed in Section V-B.
The datasets are then leveraged for the implementation of
NICUface using the best competing pretrained models in
Section V-C.

B. COMPLEX NICU SCENES

Among all datasets, CHEO,;, had the lowest face detection
performance for all models due to the complexity of scenes
included therein. The increasing level of difficulty among
these complex scenes is presented in Table 4 and Fig. 1 with
varying levels of occlusions, viewpoints, and lighting. Both
RetinaFace and YOLOS5Face demonstrated a similar pattern
of performance across the complex scenes. Mouth occlusions
from a soother are not as challenging as partial occlusions
from the nurse’s arm/hand or from beddings. Near complete
facial occlusions from the ventilation support remain the most
challenging occlusion-based scenes. Among viewpoints, far
distance and profile view performed best, but near-top view
or prone position are most challenging given that only a small
portion of the face is visible. From lighting environment,
a low lighting environment doesn’t affect the model as
severely as the phototherapy light. Note that the phototherapy
eye mask is also an occlusion-based challenge; however,
we dimmed the blue-colored lighting more important to this
unique scenario.

Interestingly, even though img2pose performed similary to
RetinaFace and YOLOS5Face on the overall CHEO,;, dataset,
closer inspection of the performance of each model across
each of the NICU-specific challenges (see Table 4) reveals
that img2pose is only largely outperforming the other two
methods on the “‘near top view”’ scenario; in all other cases,
img2pose under-performs. For this reason, combined with its
inferior performance on the easier datasets (COPE, NBHR,
and CHEOy,,), img2pose was not considered further in this
study.

Having established the limits of the state of the art in face
detection for complex NICU scenes, we turn our attention to
addressing the remaining NICU-specific challenges through
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FIGURE 4. Face Detection Results from all neonatal datasets, pretrained models, and NICUface models.Increasing level of scene complexity is
demonstrated from left to right. Increasing performance of each model is presented from top to bottom. Predictions are labelled as correct (I0U>50,

Green), partial (I0U>30, Yellow), or incorrect (I0U<30, Red).

TABLE 4. Face detection from complex NICU scenes (AP30 on CHEO,,
with RetinaFace & YOLO5Face).

Challenge img2pose  RetinaFace ~ YOLOS5Face  #Imgs
OCCLUSIONS

soother 83.72 99.50 96.58 24
intervention 52.99 60.96 64.48 88
bedding/self 50.18 61.29 53.95 286
ventilator 14.18 20.33 3.04 195
VIEWPOINT

far distance 59.35 67.90 84.17 134
profile 56.95 68.83 69.96 47
near top view 83.32 40.45 42.24 24
prone position 0 7.34 1.11 18
LIGHTING

low lighting 37.01 75.93 41.39 36
phototherapy 41.93 33.93 33.33 19

finetuning the most promising pretrained models (RetinaFace
and YOLO5Face), leading to the NICUface models.

C. NICUface

In this section, we report on the performance of the NICU-
face models, where we have finetuned the top-performing
RetinaFace and YOLOS5Face models for NICU-specific
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challenges (see Table 2 for datasets used for finetuning and
evaluation). From the results of the pretrained models, it was
established that the RetinaFace and YOLOS5Face already
performed very well across COPE, NBHR, and CHEO,,
datasets. Given the near-perfect performance of these models
across these datasets, it is unsurprising that comparable
results were obtained with the NICUface models, with near
100% AP30 and AP50 values among these three datasets.
The advantage of fine-tuning becomes apparent on the
CHEOQ,;, dataset, where the NICUface models demonstrated
large improvements on this challenging data. NICUface-
RF showed an increase of +33.65, +30.67, and +17.74 in
AP30, AP50, and mAP respectively compared to RetinaFace.
NICUface-YS5F showed an increase of +37.83, +39.40, and
+33.10 in AP30, AP50, and mAP respectively compared to
YOLOS5Face. Between both NICUface models, NICUface-
YSF slightly outperformed NICU-RF on CHEO,, with a
difference of +2.49, +8.25, and +18.08 in AP30, AP50, and
mAP, respectively.

Asiillustrated in Fig. 4 and in Table 5, the NICUface models
showed robustness to the presence of ventilation support and
patients in near-back view when in prone position, while
pretrained models were impaired by these scenes. Given that
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TABLE 5. Face Detection from Complex NICU Scenes (AP30 on CHEO,
with NICUface-RF and NICUface-Y5F).

Challenge NICUface-RF ‘ Challenge NICUface-Y5F
profile 100 profile 100
soother 100 soother 99.23
near top view 100 near top view 98.24
bedding/self 98.79 bedding/self 97.57
low lighting 89.61 far distance 97.02
far distance 89.01

low lighting 87.42
prone position 76.08 prone position 79.42
ventilator 55.80 ventilator 65.87
phototherapy 0 phototherapy 0

these two complex scenes are the two most challenging ones,
NICUface-RF demonstrates impressive performance with an
improvement in AP30 of +68.74 and +35.47 for the prone
position and ventilation support, respectively. NICUface-
YSF also improves drastically with AP30 of 478.31 and
+62.83 for the prone position and ventilation support,
respectively.

Moreover, both models are highly complementary to
one another. NICUface-RF presents strengths in detecting
patients in low lighting conditions (with 413.68 improve-
ment in AP30), while NICUface-YS5F is better at detecting
smaller faces (with +12.85 improvement in AP30). These
conditions are illustrated in Fig. 4, where NICUface-RF
was able to rectify RetinaFace’s false positive by correctly
detecting the face of the patient under very low lighting.
In the same scenario, YOLOS5Face also made an incorrect
prediction but NICUface-YSF was not able to rectify this
error. On the other hand, during a clinical intervention, the
face of the patient captured from a far distance was detected
with NICUface-YSF, while NICUface-RF avoided a previous
false positive but overestimated the bounding box area. This
improvement is still remarkable, given that it was now able to
make a detection in the general location of the face, however
it fails to reach the precision of NICUface-YSF. Future
work could investigate this complementary pairing through
an ensemble network combining both models’ strengths
into one.

Among all evaluation metrics, the AP30 is the most reliable
measure of model performance for neonatal monitoring
applications. In our case, the frequent presence of small
faces in the CHEO dataset warrants evaluating with a smaller
threshold than the standard AP50. As seen in Table 1,
our most challenging dataset has an average bounding box
area that only makes up 3% of the image. In such cases,
NICUface would tend to slightly overestimate the bounding
box area which would severely affect the AP metric, despite
the relevant prediction. Slight overestimation is not an issue
for monitoring applications requiring the entire face for
facial expression analysis in pain assessment, sleep-wake
cycle detection, or face recognition. Slight underestimation
is also not an issue when small facial ROI can be sufficient
in some applications such as HR estimation or jaundice
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detection relying on visible skin patches. Due to high level
of facial occlusions in the NICU, some non-contact neonatal
monitoring applications have opted for different techniques
to only obtain visible facial area (e.g., skin segmentation).
The AP30 metric is therefore a most reliable measure since
lowering the IOU threshold permits considering slightly
overestimated or underestimated predictions which can still
be useful in a wide array of neonatal applications.

Note that for RetinaFace and YOLOS5Face, lightweight
models suitable for detections on embedded or mobile
devices were also implemented using MobileNet-0.25 and
ShuffleNet backbone models, respectively. These pretrained
models were not investigated here since in our application,
we are not limited in compute power, so these lightweight
models are not particularly useful. Future work could
however use these models for the implementation of other
neonatal monitoring applications (e.g., in home monitoring
or in intelligent monitoring applications from smartphones).

Training the NICUface models took approximately 1 hour
for each of the six cross validation sets (sets are listed in
Table 2). However, since training can typically be done
offline, when considering methods for real-time deployment
our biggest consideration is the inference time required
to process a single image. For the NICUface models,
inference time is currently ~2 s per image. However, it is
expected that this time could be further reduced through
careful optimization, the use of low-cost face tracking with
periodic de novo detections, or the use of more powerful
dedicated hardware should more frequent face detections be
required.

Among all neonatal monitoring applications presented
in Section I, Awais ef al. [14] represents the only study
performing automatic face detection and reporting its perfor-
mance (to the best of our knowledge). They achieved 98.5%
accuracy using the Fluke TiX580 camera for intensity-based
face detection on patients with 0 degree head tilt (i.e., frontal
view). In comparison, NICUface-RF and NICUface-Y5F
achieve 100% on our COPE dataset which most closely
compared to their dataset. For more challenging scenes,
NICUface-RF still performs remarkably well with 100%,
99.1%, and 73.87% for NBHR, CHEO,,,, and CHEO.,
respectively. NICUface-Y5SF also performs well with our
most challenging data with 100%, 88.29%, and 83.77% for
NBHR, CHEO,,;, and CHEO;, respectively.

For both NICUface models, the blue-colored light during
phototherapy treatment (in addition to the facial occlusion
from the eye mask) posed a challenge for face detection.
Interestingly, their pretrained counterparts were able to detect
a few images when the nose and face were visible, resulting
in an AP30 of ~ 33% for both. NICUface-YSF shows
promise with very small detections from the visible skin
in a few images, however with an IOU < 0.3. To address
this challenge, a pre-processing technique is proposed to
reduce the blue hue. The detection of ongoing phototherapy
treatment (compared to patients under natural lighting) is a
problem previously solved by Souley Dosso et al. [54], and
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we leverage that work to address face detection during this
complex scene in the following section.

1) FACE DETECTION ON PHOTOTHERAPY PATIENTS
This proposed technique to address face detection on
phototherapy patients can be performed in three simple steps:
1) Detect phototherapy images
2) Apply blue filtering for phototherapy images
3) Face detection using NICUface

a: PHOTOTHERAPY DETECTION

The phototherapy classification presented in [54] is leveraged
here to differentiate phototherapy images from those captured
in natural lighting during inference.

b: BLUE FILTERING

The phototherapy classification in [54] demonstrated how
the Red, Green, and Blue channels in the natural images are
almost uniformly distributed. In comparison, phototherapy
images are heavily weighted with blue-colored pixels,
relative to red-colored pixels. This important knowledge is
exploited here to perform a color space transformation on
the phototherapy images to equalize the colour channels. Our
“Blue Filtering” method scales pixel intensities of the red
and blue channels to match the pixel intensities of the green
channel to equalize the image as

] T w & w h ]
Scalegr = < ZZGU_ZZR’J 2
| i=1 j=1 i=1j=1 |
1
Scaley = —— ZZBU_ZZG’/ 3)
L= 1 j=1 i=1 j=1
R = min (255, R; + Scaleg) @
Bj; = max (0, B — Scalep), ®)

where Scaleg measures the scaling factor using Gj; and Rj;,
the Green and Red channels, respectively, for pixels at the i
position among image width (w), and j” position among the
image height (h). R;; represents the updated Red channel in
the “‘equalized-phototherapy” image, as illustrated in Fig. 5.
Given that the Scaleg value is added to each pixels, the
updated Rl’-‘j caps all pixels exceeding 255 as an intensity of
255. Similar steps are performed to obtain an updated Blue
channel Bj; by scaling down the pixels by Scalep, and capping
all pixels inferior to O as an intensity of 0. Note that this Blue
Filtering approach follows the intuition from [54] where the
Blue channel is over-expressed and the Red channel is under-
expressed, thereby scaling them to match the Green channel
aiming to equalize the image. Scaling the Red and Green
channel to match the Blue channel would produce a similar
outcome (as well as scaling the Blue and Green channel to
match the Red channel).

As we can see in Fig. 5, the predominant blue hue is
successfully reduced, especially in areas of visible skin. Other
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FIGURE 5. Blue filtering of phototherapy images. The average of each
corresponding RGB channel are sparse in the phototherapy image, and
thereby attempts to narrow the gaps across channels in the
equalized-phototherapy image simulating the natural light condition.

surfaces still have a slight blue tint; this is apparent in areas
known to be truly white, such as the bedding or eye mask.

c: FACE DETECTION WITH NICUface AND BLUE FILTERING
During inference, the phototherapy detection is applied
directly on the image to differentiate between lighting envi-
ronments. Images deemed to represent ongoing phototherapy
are processed using the Blue Filtering method and NICUface
detects the face in the modified image. Images deemed to
reflect natural lighting are unchanged. To validate this face
detection approach on phototherapy patients, the 19 images
from the only patient in our CHEO,;, dataset are used and
evaluated with AP30 metric. This method is validated using
the best performing face detectors (RetinaFace, YOLOS5Face,
NICUface-RF, and NICUface-Y5F).

Face detection results are demonstrated in Table 6.
For the state-of-the-art models, results in AP30 improved
by +2.47 and +16.22 for RetinaFace and YOLOS5Face,
respectively, with Blue Filtering. The benefit of Blue Filtering
is more apparent with the NICUface models where AP30
is increased by +50.00 and +41.49 for NICUface-RF and
NICUface-YS5F, respectively.

These results show great promise in the use of
pre-processing methodologies for color-based challenges
in other machine vision applications, without requiring
retraining an entire model. This is particularly useful in cases
when obtaining new data can be difficult or expensive.

D. FACE ORIENTATION ESTIMATION

Since the face detection algorithms performed best on the
COPE dataset, we use it with one of the best perform-
ing pretrained models, YOLOS5Face, to evaluate our face
orientation estimation approach. The COPE dataset and its
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FIGURE 6. Sample face orientation predictions with face detection confidence score (conf) and NELA.

TABLE 6. AP30 face detection results on phototherapy patients.

Model | Without BlueFiltering ~ With BlueFiltering
RetinaFace 33.93 36.40
NICUface-RF 0 50.00
YOLOSFace 33.33 49.55
NICUface-Y5F 0 41.49

FACE ORIENTATION ESTIMATION
Confidence Score NELA

West 16 West 28 6 3

© ©
§ South § South . 11 51 8 9
East| 19 East 44 10 13 - 2
North North West South East none
Predicted Predicted

FIGURE 7. Face Orientation Predictions from YOLO5Face Confidence
Scores and NELA with COPE dataset

annotations are artificially rotated at 90°, 180°, and 270°
to create sets of images with the face oriented North, West,
South, and East. As observed in Table 7 and Fig. 5-D, the
face orientation estimation approach based on the confidence
scores alone predicts “North” as the North-facing face
orientation 80.88% of the time, and “West” or ‘“East”
otherwise. It never predicts “South”. The face orientation
estimation based solely on landmark positions performed less
accurately (50.97% precision for “North™) since the South
orientation is heavily misclassified as North. Compared to
the confidence score based approach, this NELA method can
detect other orientations (West, South, East) based on the
NELA (at 180°, 270°, 360°/0°, respectively). However, if no
face is detected, it cannot make a prediction (predicts none),
while the confidence score approach is unaffected by this
limitation.

The fused approach leverages strengths from both face
confidence scores and NELA, and outperforms the individual
approaches with 99.45% precision.

62906

TABLE 7. Face Orientation Estimation (COPE + YOLO5Face) using face
detection confidence score (conf), NELA, or both.

Orientation ~ AP30 | Conf NELA  Conf+NELA
North 100 80.88  50.97 99.45
West 96.09 - 87.43 -
South 93.08 - 72.86 -
East 92.67 - 91.20 -

In ideal cases depicted in Fig. 6-A, the score-based
and NELA-based methods are both effective. With more
variations in facial expression, the NELA-based technique
can be affected by the localisation of each landmark,
as demonstrated in 6-B. In many cases, it forces the position
of the landmarks to face North, no matter the actual
orientation. In other cases, it predicts ‘“West” or ‘“East”
appropriately, but the “South” orientation is often predicted
to be “North”. With patient occlusions, the score-based
technique can be affected by a reduced face detected
confidence, as demonstrated by 6-C. The combination of both
confidence and NELA led to the best performance.

It is important to note that even if the detector finds a
face in all orientations, facial alignment might be unreliable,
and therefore not suitable for facial expression analyses.
The top panel of Fig. 6-D demonstrates this, where the
highest confidence score is properly detected from the North
orientation compared to South. As for the landmarks, the
North orientation produces a correct NELA at 87°, while
the South produces an incorrect NELA at 78° given that the
location of eyes- and mouth-landmarks are incorrect. Our
proposed face orientation estimation approach is simple but
reliable when assuming that only one face is present in the
image. Additional faces might affect the desired patient’s
detection confidence score, as seen in the bottom panel of
Fig. 6-D, where the detector found the face of the clinical staff
from their ID. Despite this interesting detection, the patient’s
North-facing orientation still produced the highest scoring
confidence and our proposed face orientation estimation
method remains robust to the incorrect ID detection.
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Standardizing the face orientation is an important prepro-
cessing step in neonatal monitoring applications since it is
often performed manually or as a trial-an-error approach.
It is important to note that the South-facing orientation
might be irrelevant for most adult-based detectors leveraging
mostly upright standing or lying adults; however, in neonatal
monitoring this direction is important since the patient could
be repositioned in the bed, especially in cribs. The face
orientation estimation model proposed here could therefore
be of value to these studies.

VI. CONCLUSION

This paper evaluated the state of the art in (adult-trained)
face detection models for complex NICU patient scenes.
While these models leveraged challenges from an adult
population including facial hair, makeup, and accessories,
our neonatal population present entirely different and unique
challenges such as phototherapy light, hospital equipment,
clinical intervention with nurse’s hands holding the face, and
soother usage.

MTCNN, CE-CLM (with MTCNN backbone), img2pose,
RetinaFace, and YOLOS5Face performed adequately for
simple scenes, where the patient face was clearly visible,
in bright light, forward facing, unoccluded, and of reasonable
size proportional to the image. However, these methods failed
to robustly identify patient faces in complex scenes involving
phototherapy lighting, ventilation support, near top view
when held in the bed, and near back view when in prone
position.

This study addressed these important shortcomings with
the NICUface models by finetuning highly performant
RetinaFace and YOLOS5Face pretrained models. Our pro-
posed NICUface models outperform previous state-of-the-
art models for neonatal face detection and are robust to
many identified complex NICU scenes. The most challenging
scenes (prone position and ventilation support) showed
exceptional improvement, demonstrating the effectiveness
of finetuning state-of-the-art face detectors for our neonatal
population. A solution for addressing the blue hue images
from patients undergoing phototherapy treatment was also
effective for detecting neonatal faces from this complex
scene. On our most challenging dataset, both NICUface
models are highly complementary where NICUface-YS5F
works best on smaller faces and NICUface-RF on light-
ing environment. This paper therefore strongly suggests
leveraging both NICUface models in neonatal monitoring
applications for various goals.

All gold standard face annotation data, finetuned NICU-
face models, and face orientation estimation method are
provided here at github.com/GreenCUBIC/NICUface. It is
hoped that the annotation data may be used by other groups
to continue to advance the state of the art in neonatal face
detection, while the finetuned NICUface models and face
orientation estimation will be useful to groups requiring face
ROI for a variety of non-contact neonatal patient monitoring
applications.
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