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ABSTRACT In low earth orbit (LEO) satellite communication systems, the limited energy supply capacity
and the difficulty in obtaining channel state information (CSI) are the practical challenges. Motivated by
this, we focus on the design of robust hybrid beamforming to maximize the energy efficiency of LEO
satellite communication systems. Assuming that the LEO satellite transmitter adopts the massive multi-
input multi-output (MIMO) technology, considering the CSI errors caused by propagation delay and Doppler
shift, under the constraints of transmit power and quality of service (QoS), a robust energy-efficient hybrid
beamforming scheme is proposed. Since that there are no explicit expressions for the ergodic user rate
and the ergodic signal-to-interference-plus-noise ratio, the approximate values with closed-form expressions
are adopted. Then, we invoke the semidefinite programming (SDP) algorithm to transform the nonconvex
quadratic constrained quadratic programming (QCQP) problem equivalently, and an inner and outer nested
iterative algorithm combining quadratic transformation fractional programming (QTFP) and concave convex
process (CCCP) is utilized to transfer a nonconvex problem into a convex problem. Meanwhile, we adopt a
penalty function algorithm to solve the rank-one constraint in semidefinite programming algorithm. Finally,
we invoke the normal form distance minimization (NFDM) algorithm and the alternating optimization
(AltOpt) algorithm to jointly solve the digital beamforming matrix and analog beamforming matrix in hybrid
beamformer. Numerical results validate that our proposed robust approach significantly outperforms the
conventional one.

INDEX TERMS Low earth orbit satellite communication systems, massiveMIMO, energy efficiency, robust,
hybrid beamforming.

I. INTRODUCTION
Low earth orbit (LEO) satellite communication systems
have the advantages of wide coverage, full connectivity, low
latency, and large capacity in the field of satellite com-
munications [1], which have recently become a research
hotspot [2]. LEO satellite communication systems would
become effective supplements to terrestrial mobile communi-
cation systems, which can solve the communication problems
in remote areas, oceans, space, deserts and other areas that
cannot be covered by terrestrial mobile communication sys-
tems. In addition, when terrestrial communication facilities
are damaged by natural disasters, such as earthquakes and
floods, LEO satellite communication systems can serve as an
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emergency communication means. At present, the construc-
tion and development of LEO satellite communication sys-
tems have received attention and investment from major
countries.

With the growth of the number of mobile terminals and
the improvement of the demand for communication perfor-
mance, high communication rate and low power consumption
have become important reference indicators for the future
communication system design. In particular, for LEO satel-
lite communication systems, the energy supply capacity is
limited. To extend the service life of satellites and strengthen
the stability of the system, it is necessary to pay attention to
the optimization of energy efficiency (EE), EE has become
an important perspective for the researches of LEO satellite
communication systems [3]. In [4], considering channel state
information (CSI) errors, the authors investigated a robust
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digital beamforming algorithm of multi-beam LEO satellite
IoT, with the optimization objective of minimizing the total
power consumption. In [5], based on the statistical CSI, a
beamforming algorithm for maximizing resource efficiency
of the massive multiple-input multiple-output (MIMO) sys-
tem was investigated, and the trade-off between system spec-
tral efficiency (SE) and EE was considered in the scheme.
In [6], considering CSI errors, a robust beamforming design
for maximizing resource efficiency of multi-beam satellites
was investigated. In [7], based on the statistical CSI, a hybrid
beamforming design for EE maximization of LEO satellite
communication systems was studied, but the authors did not
take the CSI errors into consideration. In [8], based on the per-
fect CSI, a digital precoding design of multi-beam satellites
was studied, with the optimization objective of maximizing
EE, considering the constraints of the transmit power and
quality of service (QoS). In [9], considering the CSI errors,
with the optimization objective of minimizing the total power
consumption, a robust sequential optimization algorithm was
proposed, which implemented the digital precoding design
of multi-beam satellites while ensuring the EE constraints of
each group of users. In [10], considering the CSI errors, the
authors investigated a robust zero-forced precoding design for
multi-beam satellites to improve system EE.

In this paper, we propose a transmission scheme with
full frequency reuse (FFR) for LEO satellite communication
systems [11], which will introduce severe inter-beam inter-
ference. Massive MIMO beamforming technology is a core
technology of 5G [12], which can provide the rich spatial
freedom, support the space division multiple access (SDMA)
and multiplexing of time-frequency resources, and greatly
reduce the inter-beam interference. Therefore, we focus on
the hybrid beamforming design for LEO satellite communi-
cation systems equipped with the Massive MIMO transmis-
sion technology.

It is worth noting that the following issues need to be
considered in the beamforming design for LEO satellite com-
munication systems:
• Due to the Doppler shift caused by the high mobility
of LEO satellites, the channel estimation pilot pollu-
tion caused by the high channel dimensions of Massive
MIMO transmission technology, and the channel phase
perturbations caused by the long propagation delay
between satellites and terminals, it is complex and dif-
ficult to obtain the instantaneous and accurate CSI [13].
Therefore, the robust beamforming design based on the
imperfect CSI has important practical significance.

• The hardware cost and system complexity of the digital
beamforming architecture are high, and the volume and
weight are large, so it is not suitable for LEO satellite
communication systerms. Although the hardware cost
of the hybrid beamforming architecture based on the
partial connection structure is low, the system capacity
is lower than that of the full connection structure, which
can not meet the future high-speed rate communication
requirement. Therefore, we comprehensively consider

the factors of energy efficiency and system capacity,
the hybrid beamforming architecture based on the full
connection structure is a cost-effective choice [14].

• Due to the limited energy supply capacity on the LEO
satellites, the transmit power constraint of the transmitter
should be considered. And the QoS of various terminals
are different, the signal-to-interference-plus-noise ratio
(SINR) constraint of each user should be taken into
account.

In conclusion, aiming at maximizing the EE, we focus on
the robust energy-efficient hybrid beamforming design for
LEO satellite communication systems. The major contribu-
tions of the current work are summarized as follows:
• We introduce Massive MIMO transmission technology
into LEO satellite communication systems. And assum-
ing that the satellite transmitter is equipped with a
uniform plane array (UPA), we establish the downlink
model of LEO satellite communication systems.

• Weestablish theMassiveMIMOchannelmodel for LEO
satellite communication systems by incorporating the
LEO satellite signal propagation properties. Meanwhile,
we analyze the effects of propagation delay and Doppler
shift on the CSI.

• Due to the CSI errors, the ergodic user rate and ergodic
SINR can not be expressed explicitly. To this end,
we adopt the explicit tight approximations of the two
ergodic expressions.

• For the quadratic constrained quadratic programming
(QCQP) optimization problem, to simplify the prob-
lem modeling, we adopt the semidefinite program-
ming (SDP) algorithm to transform the optimization
problem equivalently.

• To solve the problem of sum-of-ratios fractional pro-
gramming form and the nonconvex characteristic in the
objective function, we propose an inner and outer nested
iteration algorithm combining quadratic transformation
fractional programming (QTFP) and concave convex
process (CCCP) to transfer the objective function into a
concave function. Then, we adopt the convex optimiza-
tion algorithm to solve the problem.

• To handle the rank-one constraint problem existing
in the SDP algorithm, we adopt a penalty function
algorithm.

• To obtain the digital beamforming matrix and the ana-
log beamforming matrix in the hybrid beamformer,
we adopt the low-complexity alternating optimiza-
tion (AltOpt) algorithm on the basis of the normal form
distance minimization (NFDM) algorithm.

• Simulation results show that the robust algorithm pro-
posed in this paper has a fast convergence speed and a
significant performance gain compared with the conven-
tional non-robust algorithm.

• For LEO satellite communication systems, we introduce
the Massive MIMO transmission technology, which can
improve the spatial resolution, spectral efficiency and
energy efficiency. Meanwhile, aiming at the influence
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of CSI errors, we propose a robust method, which can
improve the reliability of the communication system.
Therefor, the proposed method can be suitable for the
high-frequency band, high bandwidth, high-speed rate
and high mobility communication scenario.

Note that The major notations adopted in the paper is listed
in Table 1 for ease of reference.

TABLE 1. Notations list.

II. SYSTEM MODEL
As depicted in Fig.1, we take the downlink of the LEO
satellite communication system as the research scenario, and
the LEO satellite is equipped with a UPA composed of M =
MX × MY antennas, where MX and MY are the numbers of
antennas on the x- and y-axes, respectively. The system serves
K single-antenna users simultaneously. In this paper, the UPA

FIGURE 1. The downlink model of the LEO satellite communication
system.

adopts the hybrid beamforming architecture based on the full
connection structure. According to the characteristic of the
fully connected hybrid beamforming architecture, the number
of RF links of the UPA (NRF ) should be greater than or equal
to the number of users, i.e., NRF ≥ K . And when NRF = 2K ,
the spectral efficiency of the hybrid beamforming system is
comparable to that of the digital beamforming system [14].
In this paper, we mainly investigate the hybrid beamforming
design under the NRF = K condition.
The data streams at the LEO satellite transmitter are first

processed by the digital beamformer for baseband processing,
and then mapped to the UPA through the RF links for analog
beamforming. Let WBB ∈ CK×K

= [wbb1,wbb2, . . . ,wbbK ]
and WRF ∈ CM×K

= [wrf 1,wrf 2, . . . ,wrfK ] be the digital
beamforming matrix and the analog beamforming matrix,
respectively. Furthermore, the analog beamformer is imple-
mented with phase shifters, which can only adjust the phases
of the signals. So all non-zero elements of WRF need to
satisfy the unit modulus constraints, i.e.,

∣∣(WRF )i,j
∣∣ = 1. The

received signal of the kth user is denoted as:

yk = hHk wbbkwrfkxk +
∑

i 6=k
hHk wbbiwrfixi + nk ,

∀k ∈ [1, 2, . . . ,K ] (1)

where hk ∈ CM×1 represents the downlink channel vector
from the UPA to the kth user, xk represents the transmit signal
for the kth user, which satisfies E {xk} = 0,E

{
|xk |2

}
= 1,

∀k ∈ K . nk denotes the additive white Gaussian noise of the
kth user, which follows the distribution of nk ∼ N (0,N0).

To facilitate analysis, let B ∈ CM×K
= WRFWBB =

[b1, b2, . . . , bK ] be the hybrid beamforming matrix, let bk =
wbbkwrfk be the hybrid beamforming vector of the kth user.

III. CHANNEL MODEL
Considering the channel characteristics of Massive MIMO
LEO satellite communication systems [15], [16], in this
paper, we exploit statistical channel state information (sCSI).
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The downlink channel vector from the LEO satellite trans-
mitter to the kth user at instant t and frequency f can be
represented by [17]

hk (t, f ) =
Lk∑
l=1

gk,l · exp{j2π (tfk,l − f τk,l)}

· ak,l,hk (t, f ) ∈ CM×1 (2)

where f represents the carrier frequency, Lk represents
the number of channel propagation paths of the kth user,
gk,l, fk,l, τk,l, ak,l represent the complex gain, Doppler shift,
propagation delay, and UPA array response vector of path l,
respectively. In the following, we mainly focus on three fac-
tors: Doppler shift, propagation delay, and array response.

A. DOPPLER SHIFT
The Doppler shift fk,l can not be ignored, which is mainly
composed of the Doppler shift f leo

k,l
caused by the satellite

movement and the Doppler shift f ut
k,l

caused by the terminal
movement [18]. In practical communication systems, the
Doppler shift is usually estimated by the frequency offset
estimation method, and then Doppler shift precompensation
is implemented [19]. The frequency offset estimation is gen-
erally divided into two stages: coarse estimation and fine
estimation. During the coarse estimation stage, the user termi-
nals calculate the Doppler shift at each moment based on the
LEO satellite ephemeris and their own position information.
As depicted in Fig. 2, the calculation formula is defined as:

f r
k,l
= f

v
c

sin(θl − α)√
(R+HR )2 + 1− 2(R+HR ) cos(θl − α)

(3)

where c, f represent the speed of light and carrier frequency,
respectively, v represents the vector of satellite motion veloc-
ity, θl represents the angle between the satellite motion direc-
tion and the signal propagation path l, R,H represent the
earth’s radius and orbital altitude, respectively, α represents
the elevation angle of the user associated with path l. The
coarse estimation can address the problem of large Doppler
shift caused by the relative motion between the LEO satellite
and user terminals. During the fine estimation stage, the
users further calculate the Doppler shift f pk,l by extracting
and analyzing the pilot sequence. In conclusion, the value of
Doppler shift estimation can be expressed as: fk,l = f rk,l+f

p
k,l .

Due to ephemeris errors, pilot estimation errors, and other
factors, the Doppler shift estimation is usually inaccurate.
After Doppler shift precompensation, there will still be resid-
ual Doppler shift, which can result in channel errors. The
Cramer-Rao lower bound (CRLB) [20] of the Doppler shift
for satellite communication systems can be expressed as:

CRLB(f ) =
1

SNR
3

2π2T 2N (N 2 − 1)
(4)

where SNR represents the signal-to-noise ratio, N ,T repre-
sent the pilot symbol length and bit pulse length, respectively.
According to the pilot overhead in the communication frame

FIGURE 2. Schematic diagram of Doppler shift coarse estimate of the LEO
satellite.

structure of LEO satellite communication systems, we can
obtain the Cramer-Rao lower bound, which can be used as
the variance σ 2

f of residual Doppler shift after precompensa-
tion, and the maximum residual Doppler shift is randomly
generated by using the variance and zero mean. Let the
channel errors caused by residual Doppler shift be pf =
[pf1 , pf2 , . . . , pfK ]

T , pfk = [pfk,1 , pfk,2 , . . . , pfk,M ]
T , which fol-

low the distribution of Jacks [21].

B. PROPAGATION DELAY
Due to the large distance between the LEO satellite and user
terminals (LEO satellite orbital altitude: 300km-2000km),
the propagation delay is much larger than that of terrestrial
mobile communication systems. To facilitate analysis, let
τmin
k = min{τk,l}, τmax

k = max{τk,l} represent the mini-
mum propagation delay and the maximum propagation delay,
respectively. Due to the long propagation delay of LEO satel-
lite communication systems, it is almost impossible to obtain
the instantaneous and accurate CSI. To receive the signal
correctly, the delay precompensation with τpc = βτmin

k +

(1 − β)τmax
k , (0 ≤ β ≤ 1) value is usually carried out at the

receivers. However, due to the randomness of propagation
delay variation, there are still residual errors after compensa-
tion, which will lead to channel phase perturbations [22]. Let
the channel phase errors caused by residual propagation delay
be eθ = [eθ1 , eθ2 , . . . , eθK ]

T , eθk = [eθk,1 , eθk,2 , . . . , eθk,M ]
T ,

which follow the distribution of real Gaussian, i.e., eθk ∼
N
(
0, σ 2

θk

)
[23], σ 2

θi
represents the variance of channel phase

errors.

C. ARRAY RESPONSE
The array response vector of the UPA in (2) can be expressed
as [24]:

ak,l , axk,l ⊗ ayk,l = ax
(
φxk,l

)
⊗ ay

(
φ
y
k,l

)
∈ CM×1 (5)

axk,l , ax
(
φxk,l

)
=

1
√
MX

[1, exp{−jπφxk,l}, . . . ,

exp{−jπ (MX − 1)φxk,l}] ∈ CMX×1 (6)
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ayk,l , ay
(
φ
y
k,l

)
=

1
√
MY

[1, exp{−jπφyk,l}, . . . ,

exp{−jπ (MY − 1)φyk,l}] ∈ CMY×1 (7)

where ⊗ represents Kronecker product, φxk,l = sin(ϕk,l)
cos(γk,l), φ

y
k,l = cos(ϕk,l), ϕk,l, γk,l represent the angles with

respect to the x- and y-axes associated with the propagation
path l of the kth user, respectively. The calculation of the
azimuth (ϕk,l) and elevation (γk,l) angles can be given by the
LEO satellite ephemeris information and terminal location
information. According to the ephemeris information and
terminal location information, we can obtain the LEO satellite
position information X leo ∈ R3 and the terminal position
information Xut ∈ R3, both measured from Earth’s center.
Then, the azimuth (ϕk,l) and elevation (γk,l) angles can be
calculated by

(
X leo−Xut
‖X leo−Xut‖

)
. In the high mobility communica-

tion scene, according to the LEO satellite trajectory and the
general law of terminal motion, we can calculate the spatial
angle information of the next moment at insatnt t to avoid the
expiration of the information.

In conclusion, the channel vector hk (t, f ) can be further
expressed as:

hk (t, f ) = gk (t, f ) · a(k, l) · exp
{
j2π [tf leok,l − f τ

min
k ]

}
(8)

where gk (t, f ) represents the downlink channel gain of the kth
user, which can be expressed as

gk (t, f ),
L∑
l=1

gk,l
{
j2π [t(fk,l − f leok,l

)− f (τk,l − τmin
k )]

}
(9)

The statistical characteristic of gk (t, f ) depends on the prop-
agation environment, for the LEO satellite communication
scenario, the link power loss mainly includes the free space
path loss and the atmospheric absorption loss. The free space
path loss LPfs can be given by

LPfs = 20(log10(d)+ log10(f )+ log10(
4π
c
)) (10)

where d represents the the traveled distance, c represents the
speed of light. The atmospheric absorption loss LPat can refer
to the reference [42].

Because of line of sight (LoS) transmission in LEO satellite
communication systems, gk (t, f ) can be modeled by Rician
fading [25]. Let the Rician factor be kk and the power be
E
{
|gk (t, f )|2

}
= λk . Therefor, gk (t, f ) follows the distri-

bution of independently and identically real-valued Gaussian
with mean

√
kkλk

2(kk+1)
and variance λk

2(kk+1)
.

Considering the influence of residual Doppler shift and
residual propagation delay in the channel estimation, let the
estimated channel vector be ĥk and the actual channel vector
be hk . Then, we model the actual channel vector hk as:

hk = ĥk � qθk � pfk = diag(diag(ĥk )qθk )pfk (11)

where � represents Hadamard product, pfk represents the
channel error vector caused by residual Doppler shift,

qθk represents the channel error vector caused by residual
propagation delay, which can be expressed as:

qθk = exp{jeθk } (12)

Then the actual channel phase of the kth user at t1 can be
expressed as:

θk (t1) = θk (t0)+ eθk (13)

where θ = [θ1, θ2, . . . , θK ]T represent the channel phase
components with the elements independently and uniformly
distributed between 0 and 2π .

IV. PROBLEM FORMULATION
Aiming at maximizing the EE, we investigate the robust
energy-efficient hybrid beamforming design for LEO satellite
communication systems. The EE can be denoted as the ratio
of system rate to total power consumption.

A. SYSTEM RATE
The SINR of the kth user in the system can be calculated
according to (1), i.e.,

SINRk ,

∣∣bHk hk ∣∣2∑
i 6=k

∣∣bHi hk ∣∣2 + N0

, ∀k ∈ K (14)

According to the analysis of the channel model in the
previous section, the actual CSI of the LEO satellite commu-
nication system is a constantly changing random process, and
it is not feasible to obtain the instantaneous and accurate CSI.
To this end, we adopt the statistics averaging method for the
system rate modelling [26], and the ergodic capacity of the
LEO satellite communication system can be expressed as:

R ,
K∑
k=1

∫
∞

0
B log2(1+ SINRk )P(SINRk )d(SINRk )

=

K∑
k=1

E[B log2(1+ SINRk )] (15)

where B represents the channel bandwidth, and P(SINRk )
represents the probability of SINRk .

B. SYSTEM POWER CONSUMPTION
The power consumption of the LEO satellite communica-
tion system includes transmit power consumption and circuit
hardware power consumption. The total power consumption
can be expressed as:

Ptotal ,
K∑
k=1

‖bk‖22 + P0 (16)

where the first term is the power of the kth user radiated by the
transmitting antennas, which should meet the transmit power
constraint of the LEO satellite communication system, i.e.,

K∑
k=1

‖bk‖2 ≤ PT (17)
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The second term P0 represents the power consumption of
circuit hardware, such as the transmitting antennas in the LEO
satellite communication system. In this paper, the LEO satel-
lite transmitter adopts a hybrid beamforming architecture
based on full connection, and each user terminal is configured
with a single antenna. Thus, P0 can be expressed as [27]:

P0 = Pt + KPr + Psyn (18)

Pt = NRFMPps + NRFRRFC + PLO + PBB (19)

PRFC = PADC + Pmixer + PLPF + PBBA (20)

Pr = PRFC + PLO + PBB (21)

where Pt represents the power consumption of the
LEO satellite’s antenna array, Pr represents the power
consumption of the user’s antenna, and Psyn repre-
sents the basic power consumption of the LEO satel-
lite, PPS ,PLO,PBBA,PDAC ,Pmixer ,PLPF ,PBBA represent the
power consumption of phase shifter, local oscillator, pre-
coder, digital to analog converter, mixer, low-pass filter, and
baseband amplifier, respectively.

C. PROBLEM MODELING
In conclusion, the system EE can be defined as:

EE ,
R

Ptotal
=

K∑
k=1

E[B log2(1+ SINRk )]

K∑
k=1
‖bk‖22 + P0

(bits/Joule)

(22)

Considering the constraints of transmit power and QoS,
and taking EE maximization as the optimization goal, the
optimization problem can be modeled as:

Q1 : max
{bk }K1

EE =
B

K∑
k=1

E
{
log2(1+

∣∣bHk hk ∣∣2∑
i6=k

∣∣bHi hk ∣∣2+N0
)
}

K∑
k=1
‖bk‖22 + P0

(23)

s.t. E{SINRk} ≥ rk , ∀k ∈ [1, 2, . . . ,K ], (24)
K∑
k=1

‖bk‖22 ≤ PT . (25)

where rk represents the SINR constraint threshold of the
kth user.

V. ROBUST HYBRID BEAMFORMING DESIGN
It is worth noting that the ergodic user rate and ergodic SINR
would not allow explicit expressions, to handle this challenge,
we invoke the explicit tight approximations of them. To sim-
plify problem Q1, we adopt SDP algorithm to transform
the optimization problem equivalently. We can observe that
optimization problem is a general nonconvex sum-of-ratios
fractional programming problem, to this end, we propose an
inner and outer nested iterative algorithm combining QTFP

and CCCP. In addition, it is worth noting that there is a
rank-one constraint in SDP algorithm, which can be handled
by adopting the penalty function algorithm. Finally, we adopt
low complexity NFDM algorithm and AltOpt algorithm to
jointly solve digital beamforming matrix and analog beam-
forming matrix.

A. APPROXIMATED ERGODIC USER RATE AND ERGODIC
SINR
We can observe that both the ergodic user rate and the
ergodic SINR in (15) and (14) do not admit explicit expres-
sions, to handle this problem, some researches use Monte
Carlo method [28] for statistical simulation, which might be
not practical due to the high computational complexity and
huge demand for storage memory. To handle this challenge,
we invoke the approximation R̄k of ergodic user rate and the
approximation SINRk of ergodic SINR as follows [29]:

Rk ≈ R̄k , log2(1+
E
{∣∣bHk hk ∣∣2}

E
{∑

i 6=k

∣∣bHi hk ∣∣2}+ N0

)

(26)

SINRk ≈ SINRk ,
E
{∣∣bHk hk ∣∣2}

E
{∑

i 6=k

∣∣bHi hk ∣∣2}+ N0

(27)

It should be noted that the approximations in (26) and (27)
are both very tight and have been theoretically analyzed and
numerically verified in previous works [29].

B. SDP ALGORITHM
We can observe that the objective function and con-
straints (24), (25) in problem Q1 involve the second power
of bk , thus, problem Q1 is a typical nonconvex quadratic
constrained quadratic programming (QCQP) problem [30].
To handle this challenge, we adopt the SDP algorithm [31],
and then transform the optimization variables {bk}Kk=1 into{
W k , bkbHk

}K
k=1

, the new variable W k should satisfy the

constraints of W k�0 and rank(W k ) = 1. Then, the approxi-
mation ergodic user rate R̄k in (26) can be written as:

R̄k = B log2(1+
E {Tr(HkW k )}

E
{∑

i 6=k Tr(HkW i)
}
+ N0

)

= B log2

(
1+

Tr(E{HkW k})∑
i 6=k Tr(E{HkW i})+ N0

)

= B log2

(
1+

Tr(H̄kW k )∑
i 6=k Tr(H̄kW i)+ N0

)
(28)

where Hk ∈ CM×M denotes the instantaneous channel cor-
relation matrix of the kth user and H̄k ∈ CM×M represents
the long term channel correlation matrix of the kth user,
as follows:

H̄k=E{Hk},E{hkhHk }=diag(ĥk )QθkP fkdiag(ĥ
H
k
) (29)
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where Qθk represents the expectation of the autocorrelation
matrix of the channel error vector qθk caused by the residual
propagation delay, P fk represents the expectation of the auto-
correlation matrix of the channel error vector pfk caused by
the residual Doppler shift. Qθk can be written as:

Qθk =E
{
qθkq

H
θk

}
=E

{
[ejek,1 , ejek,2 , . . . , ejek,M ]T [ejek,1 , ejek,2 , . . . , ejek,M ]

}
=E


1 · · · ejek,1e−jek,M
...

. . .
...

ejek,M e−jek,1 · · · 1


=


1 · · · E

{
ejek,1e−jek,M

}
...

. . .
...

E
{
ejek,M e−jek,1

}
· · · 1

 (30)

It can be observed that the diagonal elements in Qθk
are all one, the elements in row m and column n on the
non diagonal line can be written as E

{
ejek,me−jek,n

}
=

E
{
ejek,m

}
E
{
e−jek,n

}
.

E
{
ejek,m

}
=

∞∫
−∞

ejē
1

√
2πσθk

e
−

ē2

2σ2
θk dē

= e−
σ2
θk
2

∞∫
−∞

1
√
2πσθk

e
−

(
ē−jσθk

)2
2σ2
θk dē = e−

σ2
θk
2

(31)

Thus, the elements in matrix Qθk can be given by[
Qθk

]
m,n =

{
1, m = n

e−σ
2
θk , m 6= n

(32)

Besides, pfk follows the distribution of Jacks, and its auto-
correlation matrix P fk can be expressed as:

P fk = E{pfkp
H
fk } = J0(2π fVT ) (33)

where f represents the carrier frequency, VT represents the
sum of the round-trip delay of the communication link and
the duration of the communication frame.

In conclusion, Q1 can be equivalently transformed into

Q2 : max
{W k }

K
1

B
K∑
k=1

log2

(
1+

Tr
(
H̄kW k

)∑
i 6=k Tr

(
H̄kW i

)
+N0

)
K∑
k=1

Tr (W k)+ P0

(34)

s.t. Tr
(
H̄kW k

)
≥ rk

(∑
i 6=k

Tr
(
H̄kW i

)
+ N0

)
(35)

K∑
i=1

Tr (W k) ≤ PT (36)

W k�0, ∀k ∈ [1, 2, . . . ,K ] (37)

rank(W k ) = 1 (38)

To facilitate analysis, we equivalently transform the
denominator term in (34),Q2 can be equivalently transformed
into (39), as shown at the bottom of the page.

C. QTFP ALGORITHM
We can observe thatQ3 is a sum-of-ratios fractional program-
ming problem, to this end, we adopt the quadratic transfor-
mation method. According to the quadratic transformation
theory [32], problem Q3 is equivalent to

Q4 : max
{Wk}

K
1

B

2y

(
K∑
k=1

(Uk (W )− Vk (W ))

)1/2

− y2
(

K∑
k=1

Tr (W k)+ P0

))
s.t. (35),(36),(37),(38) (40)

where y is the introduced auxiliary variable, and Uk (W) and
Vk (W) are the introduced auxiliary functions as follows:

Uk (W ) = log2

(
Tr

(
K∑
k=1

H̄kW k

)
+ N0

)
(41)

Vk (W ) = log2
(
Tr
(∑

i 6=k
H̄kW i

)
+ N0

)
(42)

y(τ ) =

√
B
(
Uk
(
W (τ )

)
− Vk

(
W (τ )

))
K∑
k=1

Tr
(
W (τ )

k

)
+ P0

(43)

where τ represents the iteration index. During optimization,
we optimize the original variablesW = {W1,W2, . . . ,WK }

by updating the auxiliary variable y iteratively.

D. CCCP ALGORITHM
We can observe from (41) and (42) that Uk (W ) and Vk (W )
are both concave functions of W , so Q3 is a difference of
convex (DC) programming [33]. To handle this challenge,
we invoke the CCCP algorithm to address this DC program-
ming. The CCCP algorithm is a monotonically decreasing

Q3 : max
{W k }

K
1

B
K∑
k=1

(
log2

(
Tr
(

K∑
k=1

H̄kW k

)
+ N0

)
− log2

(
Tr
(∑

i 6=k H̄kW i

)
+ N0

))
K∑
k=1

Tr (W k)+ P0

s.t. (35), (36),(37),(38) (39)
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global optimization method, which can be used to solve
nonconvex optimization problems [34]. The basic idea is to
replace Vk (W ) in (42) with its first-order Taylor expansion
V te
k (W ) at the current iteration firstly, according to the prop-

erties of the Taylor expansion, V te
k (W ) is the upper bound

of Vk (W ), i.e., Vk (W ) ≤ V te
k (W ). Then, we solve this

convex optimization problem with an initial feasible point,
and continue to the next iteration. Thus, problem Q4 can be
transformed into

Q5 : max
{W k }

K
1

B

2y

(
K∑
k=1

(
Uk (W )− Vte,(µ)

k (W )
))1/2

− y2
(

K∑
k=1

Tr (W k)+ P0

))
s.t. (35),(36),(37),(38) (44)

where τ represents the iteration index, the first-order Taylor
expansion V te

k (W) in the iteration can be expressed as:

Vte,(µ)
k (W ) = Vk

(
W (µ)

)
+

∑
i 6=k

Tr


(
∂Vk

(
W (µ)

)
∂W i

)T
(
W i −W

(µ)
i

)}
(45)

∂Vk
(
W (µ)

)
∂W i

=

(
H̄k
)T

ln 2 ·
(
Tr
(∑

i 6=k H̄kW
(µ)
i

)
+ N0

) (46)

After transformation, the objective function in problem Q5
is transformed into a concave function, which can be solved
by convex optimization method. The basic idea is to initialize
the feasible solution W (µ=0), use the auxiliary variable y
in the iteration, and bring it into Q5 for iterative solution,
until the convergence condition or the maximum number of
iterations is reached.

E. PENALTY FUNCTION ALGORITHM
1) ALGORITHM APPLICATION ANALYSIS
It is worth noting that there is a rank-one constraint in
problem Q5, to solve this problem, some references adopt
semidefinite relaxation (SDR) algorithm [35], which directly
removes the rank-one constraint. Then, based on the obtained
optimization variables, this algorithm randomly generates
a hybrid beamforming matrix pool satisfying the rank-one
constraint by Gaussian randomization method or eigenvalue
decomposition method, and selects the local optimum as
the approximate solution. However, the performance of the
approximate solution of SDR algorithm may be far worse
than that of the optimal solution, especially under the high-
dimensional matrix. To handle this challenge, we invoke the
penalty function algorithm [43], [44].

Motivated by the fact that rank (W k) = 1 ⇔ Tr (W k) −

λmax (W k) = 0, we adopt the nonsmooth method to convert
the rank-one constraint (38) to

Tr (W k)− λmax (W k) ≤ 0 (47)

where λmax (W k) represents the maximum eigenvalue of
matrix W k . For any W k�0, we note thatTr (W k) −

λmax (W k) ≥ 0 always holds true. Therefor, (47) is equivalent
to Tr (W k) − λmax (W k) = 0. It means that matrix W k has
only one nonzero eigenvalue, i.e.,

W k = λmax(W k )wk,maxwHk,max (48)

where wk,max is the unit eigenvector corresponding to the
maximum eigenvalue λmax (W k). Thus, problem Q5 can be
transformed into

Q6 : max
{W k }

K
1

B

2y

(
K∑
k=1

(
Uk (W )− Vte,(µ)

k (W )
))1/2

− y2
(

K∑
k=1

Tr (W k)+ P0

))
s.t. (35), (36),(37),(47) (49)

It is essential to point out that if Tr (W k) − λmax (W k)

is small enough, the matrix W k can be approximated to
λmax(W k )wk,maxwHk,max, i.e. W k ≈ λmax(W k )wk,maxwHk,max.
If the error meets the established accuracy requirement,
we can think that the matrix W k satisfies the rank-one con-
dition. Therefor, to achieve this goal, our main work is to
make Tr (W k) − λmax (W k) as small as possible. To tackle
this difficulty, we exploit the penalty function algorithm to
incorporate the constraint (47) into the objective function.
Then, problem Q6 can be transformed into

Q7 : max
{Wk}

K
1

B

2y

(
K∑
k=1

(
Uk (W )− Vte,(µ)

k (W )
))1/2

− y2
(

K∑
k=1

Tr (W k)+ P0

))

− ξ

K∑
k=1

(Tr (W k)− λmax (W k))

s.t. (35), (36),(37) (50)

where ξ is a penalty factor large enough to obtain small
value of Tr (W k)− λmax (W k). Clearly, the problem Q7 is to
maximize the original objective function (49) and minimize
the value of Tr (W k) − λmax (W k). By setting the reason-

able initial penalty factor ξ and feasible solution
{
W (0)

k

}K
k=1

,
we can obtain that Tr (W k) − λmax (W k) ≈ 0 after repeated
iterative calculation, which means that W k has only one
non-zero eigenvalue, and the rank-one constraint (38) is
satisfied [45].
It is worth noting that Tr (W k) is a linear function of

W k , and λmax (W k) is convex in W k . Tr (W k) − λmax (W k)

is convex in W k . Meanwhile, the function λmax (W k) is
nonsmooth, which may lead to the non-convexity of the prob-
lemQ7. To this end, we replace λmax (X) in (50) with its first-
order Taylor expansion λtemax (W k) at the current iteration.
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The sub-gradient property of λmax (X) can be expressed as
∂λmax(W k )
∂W k

= wk,maxwHk,max, so we have

λmax (W k) ≥ λmax
(
W k,0

)
+

〈
wk,maxwHk,max,W k −W k,0

〉
,

∀W k�0 (51)

where 〈A,B〉 = Tr(AHB).
Then, substituting the transformation in (51) into problem

Q7 to relax the function λmax (W k), we can get the optimiza-
tion problem as follows

Q8 : max
{W k }

K
1

B

2y

(
K∑
k=1

(
Uk (W )− Vte,(µ)

k (W )
))1/2

− y2
(

K∑
k=1

Tr (W k)+ P0

))

− ξ

K∑
k=1

(
Tr (W k)− λmax

(
W (µ)

k

)
−

〈
w(µ)k,maxw

(µ)H
k,max,W k −W

(µ)
k

〉)
s.t. (35), (36),(37) (52)

where W (µ)
k is the solution of problem Q8 obtained in the

µth iteration.

2) ALGORITHM CONVERGENCE ANALYSIS
To ensure the effectiveness of the penalty function algorithm,
we analyze the convergence of the algorithm. Let the optimal
solution of problem Q8 after the µth iteration beW (µ+1) and
the value of the objective function be F

(
W (µ+1)), we can

obtain:

F
(
W (µ+1)

)
= B

2y( K∑
k=1

(
Uk

(
W (µ+1)

)
−Vte,(µ+1)

k

(
W (µ+1)

)))1/2

− y2
(

K∑
k=1

Tr
(
W (µ+1)

k

)
+P0

))
−ξ

K∑
k=1

(
Tr
(
W (µ+1)

k

)
− λmax

(
W (µ+1)

k

))
≥ B

2y( K∑
k=1

(
Uk

(
W (µ+1)

)
−Vte,(µ+1)

k

(
W (µ+1)

)))1/2

− y2
(

K∑
k=1

Tr
(
W (µ+1)

k

)
+ P0

))

− ξ

K∑
k=1

(
Tr
(
W (µ+1)

k

)
− λmax

(
W (µ)

k

)
−

〈
w(µ)k,maxw

(µ)H
k,max,W

(µ+1)
k −Wµ

k

〉)

by(47)
≥ B

2y

(
K∑
k=1

(
Uk
(
W (µ)

)
− V te,(µ)

k

(
W (µ)

)))1/2

− y2
(

K∑
k=1

Tr
(
Wµ

k

)
+ P0

))
− ξ

K∑
k=1

(
Tr
(
W (µ)

k

)
− λmax

(
W (µ)

k

))
= F

(
W (µ)

)
(53)

which demonstrates the effectiveness of iterative penalty
function algorithm.
Therefor, by giving the reasonable initial penalty factor ξ

and feasible solution
{
W (0)

k

}K
k=1

, we can iterate a convergent

result
{
W (µ)

k

}K
k=1

as an improved solution of (49) through
solving (52).
In conclusion, the optimization algorithm of variables
{W }Kk=1 can be decomposed into two-layer nested itera-
tions and then solved alternately, which can be described as
follows:

Algorithm Outer Iterative Algorithm
Input: Initial feasible positive semidefinite matrices{
W (τ=0)

k

}K
k=1

, outer iteration index τ = 0, threshold

ε1 = 10−3, energy efficiency EE (τ ).
1. Repeat

2. For fixed
{
W (τ )

k

}K
k=1

, update y(τ ) by (43).

3. For fixed y(τ ), substituting y(τ ) into (52), obtain the solu-

tions
{
W (µend )

opt

}K
k=1

by inner iterative algorithm.

4. Update
{
W (τ+1)

k

}K
k=1
=

{
W (µend )

opt

}K
k=1

, set τ = τ + 1.

5. Calculate EE (τ+1) by (43).
6. Until

∣∣EE (τ+1) − EE (τ )∣∣ ≤ ε1.
7. Obtain the solutions

{
Wopt

}K
k=1 =

{
W τend

k

}K
k=1.

Output:
{
Wopt

}K
k=1.

F. JOINT DESIGN ALGORITHM OF DIGITAL
BEAMFORMING MATRIX AND ANALOG
BEAMFORMING MATRIX
In this paper, the final optimization solutions we need to
obtain are the digital beamforming matrix and the analog
beamforming matrix in the hybrid beamformer, we have
obtained the optimization variables

{
Wopt

}K
k=1 through

the calculation in the previous section. In this section,
we need to recover the hybrid beamforming matrix B∗opt from{
Wopt

}K
k=1. Then, the digital beamforming matrix WBB and

the analog beamforming matrix WRF can be obtained based
on the B∗opt . In conclusion, the optimization algorithm of
variablesWBB andWRF can be decomposed into two phases,
which can be described as follows:
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Algorithm Inner Iterative Algorithm
Input: Inner iteration index µ, penalty iteration index m,
thresholds ε2 = 10−3, ε3 = 10−3 penalty factor ξ = 2,
energy efficiency EE (µ).
1. Repeat

Initial feasible positive semidefinite matrices{
W (µ=0)

k

}K
k=1
=

{
W (τ=0)

k

}K
k=1

and y(µ).
2. Repeat
3. Initial feasible positive semidefinite matrices{

W (m=0)
k

}K
k=1
=

{
W (u=0)

k

}K
k=1

4. Calculate themaximum eigenvalue λmax

(
W (m)

k

)
of each

W (m)
k and the corresponding eigenvector w(m)k,max.

5. Obtain the solutions
{
W ′k

}K
k=1 by (52) based on convex

optimization method.

6. Update
{
W (m+1)

k

}K
k=1
=
{
W ′k

}K
k=1.

7. if
{
W (m+1)

k

}K
k=1
≈

{
W (m)

k

}K
k=1

, then
8. set ξ = 2ξ ;
9. else
10. set m = m+ 1;
11. end.
12. Until

∣∣∣Tr (W (m)
k

)
− λmax

(
W (m)

k

)∣∣∣ ≤ ε3.
13. Calculate EE (µ+1) by (43), set µ = µ+ 1.
14. Until

∣∣EE (µ+1) − EE (µ)∣∣ ≤ ε2.
15. Obtain the solutions

{
W (µend )

opt

}K
k=1

.

Output:
{
W (µend )

opt

}K
k=1

.

1) DESIGN OF HYBRID BEAMFORMING MATRIX B∗opt
To obtain B∗opt , we adopt the eigenvalue decomposition
(EVD) algorithm [36], which can be formulated as:

min
bk

∥∥∥W k,opt − bkbHk
∥∥∥2
F

(54)

where the optimal solution b∗k can be given by multiply-
ing the maximum eigenvector of W k,opt by the root of the
maximum eigenvalue, the maximum eigenvector and maxi-
mum eigenvalue can be obtained by EVD algorithm. Then,
we can obtain the hybrid beamforming vectors of K users,
i.e., B∗opt =

{
b∗k
}K
k=1.

2) JOINT DESIGN OF DIGITAL BEAMFORMING MATRIX WBB
AND ANALOG BEAMFORMING MATRIX WRF
In this phase, we need to calculate the digital beamforming
matrixWBB and the analog beamforming matrixWRF based
on B∗opt . We can observe that this problem is a joint optimiza-
tion problem of two matrix variables, which can be regarded
as a matrix decomposition problem with power and constant
modulus constraints. To handle this problem, we invoke the
low complexity algorithms, i.e., NFDMalgorithm andAltOpt

algorithm [37], which can be formulated as:

P1 : min
WRFWBB

∥∥∥B∗opt −WRFWBB

∥∥∥
F

(55)

s.t.
∣∣(WRF )i,j

∣∣ = 1 (56)

‖WRFWBB‖
2
F ≤ PT (57)

Note that the columns of the unconstrained optimal digital
beamforming matrix are mutually orthogonal in order to mit-
igate the interference between the multiplexed streams [38].
Inspired by this conclusion, we impose a similar constraint
that the columns of the digital beamforming matrix WBB
should be mutually orthogonal, i.e.,

WBB = ρWDD (58)

WBBWH
BB = (ρWDD) (ρWDD)

H
= ρ2IK (59)

where WDD is a unitary matrix with the same dimension
asWBB.
By (58) and (59), the objective function in (55) can be

further recast as:∥∥∥B∗opt −WRFWBB

∥∥∥2
F

=

(
Tr
{(
B∗opt −WRFWBB

)H}(
B∗opt −WRFWBB

))2

= Tr
((

B∗opt
)H
−WH

BBW
H
RF

)(
B∗opt −WRFWBB

)
= Tr

((
B∗opt

)H
B∗opt −

(
B∗opt

)H
WRFWBB

−WH
BBW

H
RF

(
B∗opt

)H
+WH

BBW
H
RFWRFWBB

)
= Tr

((
B∗opt

)H
B∗opt

)
− 2Tr

((
B∗opt

)H
WRFWBB

)
+Tr

(
WH

BBW
H
RFWRFWBB

)
=

∥∥∥B∗opt∥∥∥2F − 2ρ<
(
WDD

(
B∗opt

)H
WRF

)
+ ρ2 ‖WRFWDD‖

2
F (60)

when ρ =
<Tr

(
WDDB∗optWRF

)
‖WRFWDD‖

2
F

, the objective function in (60)
can obtain the minimum value, i.e.,

min
WRF ,WBB

∥∥∥B∗opt −WRFWBB

∥∥∥2
F

=

∥∥∥B∗opt∥∥∥2F −
{
<Tr

(
WDDB∗optWRF

)}2
‖WRFWDD‖

2
F

(61)

It is worth noting that it is challenging to deal with
the product-form problem in the objective function in (61).
To handle this challenge, we choose to add the constant

term
(

1
2‖WRF‖

2
F
− 1

)∥∥∥B∗opt∥∥∥2F + 1
2 to the lower bound of the

objective function in (61). Then, multiply it by the positive
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constant term 2 ‖WRF‖
2
F . So we have

∥∥∥B∗opt∥∥∥2F × 2 ‖WRF‖
2
F −

{
<Tr

(
WDDB∗optWRF

)}2
‖WRFWDD‖

2
F

× 2 ‖WRF‖
2
F +

[(
1

2 ‖WRF‖
2
F

− 1

)∥∥∥B∗opt∥∥∥2F + 1
2

]
× 2 ‖WRF‖

2
F

=

∥∥∥B∗opt∥∥∥2F − 2<Tr
(
WDDB∗optWRF

)
+ ‖WRF‖

2
F

= Tr
(
WH

RFWRF

)
− 2<Tr

(
WDDB∗optWRF

)
+Tr

(
WDD

(
B∗opt

)H
B∗optW

H
DD

)
=

∥∥∥B∗optWH
DD −WRF

∥∥∥2
F

(62)

In conclusion, the problem P1 can be recast as:

P2 : min
WRF ,WDD

∥∥∥B∗optWH
DD −WRF

∥∥∥2
F

(63)

s.t.WH
DDWDD = IK (64)∣∣(WRF )i,j

∣∣ = 1 (65)

To handle the problem P2, we adopt the AltOpt algorithm.
The basic idea is as follows:
• Initializing a feasible analog beamforming matrixWRF
with random phase.

• Based on the fixed WRF and (63), the calculation of
WDD can be modeled as:

min
WDD

∥∥∥B∗optWH
DD −WRF

∥∥∥2
F

⇒ max
WDD
<Tr

(
WDDB∗optWRF

)
s.t. (64) (66)

According to the definition of the dual norm and the Hölder’s
inequality, <Tr

(
WDDB∗optWRF

)
can be further recast as

<Tr
(
WDDB∗optWRF

)
≤

∣∣∣Tr (WDDB∗optWRF

)∣∣∣ ≤ ∥∥∥WH
DD

∥∥∥
∞

·

∥∥∥∥(B∗opt)H WRF

∥∥∥∥
1

=

∥∥∥∥(B∗opt)H WRF

∥∥∥∥
1
=

K∑
k=1

χk (67)

where {χk}Kk=1 represents the firstK non-zero singular values

of
(
B∗opt

)H
WRF . According to (66) and (67), we can get

that WDD = VUH
1 , U1 and V are the left and right unitary

matrices, which are obtained by singular value decomposi-

tion (SVD) of matrix
(
B∗opt

)H
WRF , i.e.,

(
B∗opt

)H
WRF =

U1
∑

VH .
Based on WDD, according to (63) and (65), the

phases of matrix WRF can be extracted from the

phases of matrix B∗optW
H
DD, i.e.,

arg (WRF ) = arg
(
B∗optW

H
DD

)
(68)

• Step 2 and step 3 are calculated alternately, until the
convergence level or the maximum number of iterations
is reached.

• Finally, we obtain the optimal W∗RF and W∗DD,
W∗BB = ρW

∗
DD.

Algorithm Joint Design Algorithm of Digital Beamforming
Matrix and Analog Beamforming Matrix

Input: Matrices
{
Wopt

}K
k=1, initialize a feasible analog

beamforming matrixW (δ=0)
RF , iteration index δ = 0, threshold

ε4 = 10−3.
1. Obtain the maximum eigenvectors and corresponding

eigenvalues of eachW k,opt by EVD of
{
Wopt

}K
k=1.

2. Calculate B∗opt by (54).
3. Repeat

4. For fixed W (δ)
RF , SVD of

(
B∗opt

)H
W (δ)

RF ,

i.e.,
(
B∗opt

)H
W (δ)

RF = U(δ)1
∑

VH ,(δ).

5. For fixed U(δ)1 and V(δ), calculateW (δ)
DD = V(δ)UH ,(δ)

1 .

6. For fixedW (δ)
DD, calculateW

(δ+1)
RF by (68).

7. Until
∥∥∥B∗optWH ,(δ)

DD −W (δ)
RF

∥∥∥2
F
≤ ε4.

Output:W∗RF ,W
∗
BB = ρW

∗
DD.

VI. COMPLEXITY AND CONVERGENCE ANALYSIS
A. COMPLEXITY ANALYSIS
Themajor complexity of the proposed algorithm is composed
of nested iterative optimization and matrix decomposition,
and both involve iterative optimization. The number of itera-
tions depends on the predetermined convergence threshold,
which is usually small. The complexity of the inner itera-
tion algorithm mainly comes from the CCCP algorithm and
the penalty function algorithm. In inner iterative algorithm,
problem Q8 is solved iteratively until it converges to the
locally optimal solution. Then, the result obtained by the
inner iteration algorithm is substituted into the outer iterative
algorithm, to calculate the value of energy efficiency. Next,
we update the variable yand continue to next iteration until
the outer iterative algorithm converges to obtain the solution.
To sum up, the complexity of proposed nested iterative opti-
mization algorithm is approximately O(IoIiIpKM3

+ KM ),
where Io, Ii and IP are the numbers of iterations required in
outer iterative algorithm, inner iterative algorithm and penalty
function algorithm, respectively. The values of Io, Ii and Ip are
related to the predetermined convergence thresholds. In the
joint design algorithm of digital beamforming matrix and
analog beamforming matrix, the complexity mainly comes
from alternating optimization in matrix decomposition. In the
hybrid beamforming system, the dimension of the analog
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beamforming matrix is much higher than that of the dig-
ital beamforming matrix. Therefor, the complexity of the
algorithm is predominated by the analog beamforming part.
In each iteration of the AltOpt algorithm, the update of the
analog beamforming matrix is realized by a phase extrac-
tion operation of the matrix B∗optW

H
DD, whose dimension

is M × K . Therefor, the complexity of the matrix decompo-
sition is approximately O(ImMK ), where Im is the number of
iteration required in joint design algorithm of digital beam-
forming matrix and analog beamforming matrix. The value
of Im is related to the predetermined convergence threshold.
To sum up, the complexity of the proposed algorithm is
approximatelyO(IoIiIpKM3

+KM+ ImMK ), we can see that
the level of complexity is not high.

B. CONVERGENCE ANALYSIS
In this section, we analyze the convergence of the proposed
algorithm. In this paper, we mainly analyze the convergence
of the inner and outer nested iterative algorithm, which affects
the convergence of the proposed algorithm. In the inner iter-
ative algorithm, problem Q8 is a typical convex optimization
problem, which can be iteratively solved. And the CCCP
algorithm is a monotonically decreasing global optimization
method, due to the characteristics of the CCCP algorithm, the
inner iterative algorithm can be proved to be convergent [41].
For outer iterative algorithm, the optimization problem sat-
isfies the convergence conditions mentioned in Section V-B
of literature [32]. In addition, for the AltOpt algorithm, the
optimization problem we proposed satisfies the convergence
conditions mentioned in [37]. To sum up, the convergence of
the proposed algorithm can be guaranteed.

TABLE 2. Simulation Parameters.

VII. SIMULATION RESULTS
In this section, we illustrate the performance of our pro-
posed robust algorithm in the Massive MIMO LEO satellite
communication system through numerical simulations. It is
assumed that the variances of the channel errors are identi-
cal for different users, which are expressed as σ 2

θk
= σ 2

θ ,

σ 2
fk = σ 2

f . Without loss of generality, the SINR constraints
are set to randomly generated between 0 ∼ 5dB for all users,
e.q, rk ∈ (0 ∼ 5dB). In addition, the values of the adopted the
other system parameters are listed in Table 2 [27]for clarity.

FIGURE 3. Convergence trajectory comparison of EE relative to different
error parameters.

FIGURE 4. Comparison of the SE performance between the proposed
robust algorithm and the conventional one. Results are presented versus
the transmit power threshold for different system parameters.

Fig. 3 shows the convergence trajectory comparison of the
proposed robust algorithm, versus the number of iterations for
varying channel error variances. In this simulation, we set two
different groups of channel error parameters, i.e., σ 2

θ = 1,
σ 2
f = 2, σ 2

θ = 0.1, σ 2
f = 0.5. Let total transmit power be

PT = 30W . Meanwhile, we compare the proposed robust
algorithm with the traditional non-robust algorithm. In addi-
tion, we take the EE under the perfect CSI as a comparison
and reference. We can observe from the numerical results
that the proposed algorithm can converge to stationary values
within very few numbers of iterations, and its performance is
better than the traditional non-robust algorithm. And the per-
formance gains become more significant with larger variance
of the channel errors.

Fig. 4 shows the SE performance of the proposed robust
algorithm, the channel error parameters are set as above.
We can observe from the numerical results that when the
channel errors are small, the SE of the proposed algorithm
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FIGURE 5. Comparison of the EE performance between the proposed
robust algorithm and the conventional one. Results are presented versus
the transmit power threshold for different system parameters.

FIGURE 6. Comparison of the EE performance achieved by different
algorithms (penalty function algorithm, Gaussian randomization
algorithm, eigenvalue decomposition algorithm).

is close to that under the perfect CSI. And performance of the
proposed algorithm is better than the traditional non-robust
algorithm.

Fig. 5 shows the change trajectory of EE versus the transmit
power threshold PT , the channel error parameters are set as
above. We can observe from the numerical results that the
proposed robust algorithm is better than the conventional
non-robust algorithm under different transmit power thresh-
old. We can see that the EE values initially increase and
then decreased as PT increases. This is because the incre-
ment of power consumption is faster than that of the system
rate.

Fig. 6 shows the EE performance comparison of the pro-
posed penalty function algorithm with Gaussian randomiza-
tion algorithm and eigenvalue decomposition algorithm [39].
We can observe from the numerical results that the pro-
posed algorithm is better than the other two algorithms.

FIGURE 7. Comparison of the EE performance achieved by different
algorithms (AltOpt algorithm, BFGS algorithm, OMP algorithm).

This is because the penalty function algorithm can get a
better solution through iterative calculation, which can sat-
isfy the rank-one constraint. Whereas the Gaussian ran-
domization algorithm or eigenvalue decomposition algorithm
calculates based on the variables that may not satisfy the
rank-one constraint, which may obtain a solution with poor
performance.

Fig. 7 shows the EE performance comparison of the pro-
posed AltOpt algorithm with Broyden Fletcher Goldfarb
Shanno (BFGS) [38] algorithm and orthogonal matching
pursuit (OMP) [40] algorithm. We can observe from the
numerical results that the performance of the proposed algo-
rithm is close to the BFGS algorithm and better than the
OMP algorithm. The performance of BFGS algorithm is
close to the best, which is used as a reference here, but its
algorithm complexity is high, and the complexity of each
iteration is O

(
MK 2

+ 2K 3
+MK 2

+ (M − 1)K 2
)
. In com-

parison, although the performance of the proposed AltOpt
algorithm is slightly lower than that of BFGS algorithm, its
algorithm complexity of each iteration is lower, i.e., O (MK ).
Thus, the proposed algorithm has high cost-performance
ratio.

VIII. CONCLUSION
In this paper, we have investigated a robust energy-efficient
hybrid beamforming design for the Massive MIMO LEO
satellite communication system. Taking the CSI errors caused
by residual propagation delay and residual Doppler shift
into account, we focused on the robust hybrid beamforming
design to maximize the system EE under the constraints of
transmit power and QoS. Firstly, we adopted the approximate
ergodic user rate and the approximate ergodic SINR. Then,
we invoked the SDP algorithm to transform the objective
function equivalently. Meanwhile, we proposed an inner and
outer nested iterative algorithm combining QTFP and CCCP
to handle the nonconvex QCQP problem, and adopted the
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penalty function algorithm to handle the rank-one constraint
problem. Finally, we adopted the low complexity NFDM
algorithm and AltOpt algorithm to obtain the digital beam-
forming matrix and the analog beamforming matrix. Numer-
ical results have indicated that the performance of the robust
algorithm performs better than that of the conventional one.
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