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ABSTRACT Ransomware is one of the most harmful types of cyber attacks that cause major concerns on
a global scale. It makes the victims’ resources unusable by encrypting data or locking systems to extort
ransom payments. Ransomware has variant families that continue to evolve. Moreover. cybercriminals
use advanced techniques to develop ransomware, making it harder for anti-malware detection systems to
detect them. Ransomware solutions need the capabilities of timely and effective detection and response to
discover uncommon behavior before losing sensitive data. Cyber threat hunting (CTH) is a novel proactive
malware detection approach that includes cyber threat intelligence (CTI) methods and data analysis methods.
However, most present CTH solutions depend on internal data sources and reactive techniques to detect
unusual activities. An effective CTI technique is required to obtain knowledge from external data sources and
combine it with internal sources to enhance the hunting capabilities. Then, using the optimal data analysis
technique is needed for the CTH approach to obtain valuable insights into abnormal patterns in running
activities in the early stages. In this study, we investigate using a practical CTI approach and different
CTH models. Subsequently, we discussed ransomware research directions to detect known and unknown
ransomware attacks. Also, we discussed the available ransomware datasets used in present ransomware
studies.

INDEX TERMS Ransomware, cyber threat hunting, cyber threat intelligence, malware analysis, machine
learning, deep learning.

I. INTRODUCTION
In 2020, ransomware attacks against healthcare systems
increased during the COVID-19 pandemic. Healthcare insti-
tutions face disruption of medical services and long-term
consequences because of ransomware attacks [1]. Also, ran-
somware attacks affect individuals and organizations to gain
more money [55]. In 2021, 66 percent of surveyed companies
were attacked by ransomware, up from 37 percent in 2020 [2].
Ransomware is a form of malware that uses encryption meth-
ods to encrypt a user’s files or locks the system. Ransomware
attacks aim is to gain payments from the victim to unlock
the system or decrypt the victim’s data files [3]. In 1989,
the first ransomware was created by Joseph Popp, when
he initiated a ransomware attack called AIDS, also known
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as PC Cyborg. He shared floppy disks with several AIDS
researchers containing the malicious scripts [4].

Subsequently, ransomware attacks have continued to
evolve using different tactics and techniques. Crypto-
ransomware and locker-ransomware are the two main types
of ransomware. In a crypto-ransomware attack, the attacker
encrypts the victim’s valuable data using robust encryp-
tion methods, such as Rivest–Shamir–Adleman (RSA) or
Advanced Encryption Standard (AES), and locks them until
the victim pays a ransom. In contrast, instead of encrypting
data files, locker ransomware locks the victim’s system and
requests a ransom payment to unlock it. Attackers primarily
design ransomware attacks for money extortion from the
victims. Pre-paid vouchers, premium rate SMS or calls, and
online purchases are examples of early ransom payment
techniques. Cryptocurrencies or virtual currencies, such as
Bitcoin, are currently one of the most widely used ransom
payment methods [50].
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In recent years, security researchers have been investi-
gating and tracking the evolution of various ransomware
types. Famous ransomware families include TeslaCrypt,
CryptoWall, Locky, Cerber, and WannaCry [5]. CryptoWall
appeared in 2014 as locker ransomware that spreads by phish-
ing emails, exploit kits, and infected attachments. In 2015,
TeslaCrypt was distributed by exploit kits, and it used an
AES encryption algorithm to encrypt all user data. Moreover,
Cerber is frequently distributed by exploit kits and exchanged
on hacker forums as ransomware-as-a-service (RaaS). Cerber
starts by encrypting user data using the AES algorithm with-
out connecting to the command and control (C&C) server.
Locky ransomware came into view in 2016 and included
embedded macros with Microsoft Office documents. As a
custom method, encrypted communication is used by Locky
ransomware for Tor and Bitcoin payments. WannaCry was
one of the most severe ransomware attacks in 2017, affecting
more than 300,000 computers in over 100 countries [6].
WannaCry employs the EternalBlue exploit tool set to exploit
the SMB vulnerability in Microsoft Windows and uses the
AES algorithm to encrypt data files [7].

Ransomware could attack various platforms, including
PCs, mobile devices, and Internet of Things (IoT) devices.
Ransomware attacks on mobile devices have increased
since 2017, and they have a variety of impacts, such as steal-
ing important data or locking mobile devices. Ransomware
attacks on IoT devices have recently become a challenge [8].
Currently, adversaries do not need to develop their ran-
somware; instead, they can purchase it from another adver-
sary, a practice known as Ransomware-as-a-Service (RaaS).
RaaS makes it easier for inexperienced actors to create and
launch ransomware attacks.

Most existing ransomware solutions are reactive. File
hashes, IP addresses, and DNS records are examples of
known indicators used in reactive approaches [9]. Adopt-
ing reactive methods to identify ransomware can result in
data and system damages. However, employing a proactive
defense strategy is the safest alternative for ransomware
attacks. Proactive approaches use indicators and behavioral
artifacts to identify malicious threats. Registry paths, sys-
tem calls, user and authentication records, DNS queries
and responses, and other run-time activities are captured by
behavioral indicators [10], [11].

Cyber Threat Hunting (CTH) is a proactive approach uti-
lized to secure critical assets. CTH is performed proactively in
the environment, without any threat alerts. [12]. CTH’s major
purpose is to identify hidden threats, disable them, and estab-
lish policies to avoid them in the future. It integrates cyber
threat intelligence and data analysis methods to find evidence
of a threat in a network. Cyber Threat Intelligence (CTI)
is the process of seeking and collecting information beyond
what is readily available, such as event logs [13]. Evidence-
based knowledge outside security logs is necessary to adopt
a proactive step and help in the decision-making process.

Ransomware has received much attention recently due to
the rise in ransomware attacks on individuals, businesses, and

governments worldwide. Ransomware attacks are constantly
changing and becomingmore sophisticated than before. From
this perspective, This study investigates the literature review
of CTI and CTH for both malware and ransomware works
with their limitations and gaps. Also, this study will inves-
tigate the current CTH techniques and the utilization of
CTI techniques. Related studies and available datasets were
reviewed to highlight the main trends. In addition, potential
research directions of ransomware studies are described.

The remainder of this paper is organized as follows:
section 2 summarizes ransomware studies and the existing
CTI and CTH techniques. Section 3 provides an overview
of cyber threat intelligence techniques. Section 4 presents
a detailed overview of malware analysis approaches.
Section 5 discusses cyber threat hunting techniques.
Section 6 discusses the evolution of ransomware attacks
and research directions. Section 7 discusses datasets of ran-
somware detection studies. Finally, Section 8 provides the
conclusion of this study.

II. BACKGROUND
Ransomware targets computer, mobile, cloud-based, IoT,
ICS, and other systems as extortion-based cyber threat [14],
[15]. Researchers have developed several taxonomies to help
understand how ransomware operates. Specific countermea-
sures should be implemented to secure different digital assets.
Ransomware is classified into two categories based on confis-
cated resources: locker-ransomware and crypto-ransomware.
In a Locker-ransomware attack, the victim will not be able
to reach system services; however, data will not be com-
promised. Locker-ransomware is classified by the type of
non-data resources it encrypts, such as operating systems,
applications, services, user interfaces, and other utilities.
Crypto-ransomware encrypts data resources and requests a
ransom payment from users. Crypto-ransomware is classified
into three types based on the encryption process: symmetric,
asymmetric, and hybrid.

A deep understanding of the ransomware attack steps
is required to discover an effective solution. Infection,
installation, communication, execution, extortion, and eman-
cipation are the most common ransomware attack phases.
Figure 1 depicts the steps involved in a typical ransomware
attack.

• Infection phase: This phase begins when the malicious
ransomware code enters the victim’s system. Different
infection vectors for ransomware attacks include affili-
ate programs, exploit kits, and email-based malvertising
campaigns [16].

• Installation phase: This phase begins following ran-
somware infection, when the ransomware installs itself
on the system and takes control without attracting
attention.

• Communication phase: This phase starts when the ran-
somware establishes an initial connection with the main
adversary to carry out the following level of actions.
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The ransomware initiates a connection with a command
and control (C&C) server.

• Execution phase: This phase starts when the ran-
somware begins to carry out malicious operations on the
victim’s resources. These malicious ransomware actions
include encrypting data, deleting files, accessing file
systems, locking procedures, andmodifying master boot
records (MBRs) [17].

• Extortion phase: This phase starts when the ransomware
notifies users that they have been attacked andmust obey
the attacker’s instructions. A ransom note is shown to
the victim, which uses social engineering techniques to
persuade them to pay the ransom.

• Emancipation phase: This phase starts after receiving
the ransom payment when the attacker unlocks system
resources. Following ransom payment, attackers would
send a link to infected victims that contains a specific
decryption tool for some crypto-ransomware attacks.

Security researchers have investigated two defense
approaches for ransomware attacks: signature-based and
behavior-based approaches. Signature-based methods, often
known as static analysis, refer to the process of examining a
malicious file without its execution. Because of the growth of
ransomware attacks and anti-forensic tactics such as packing
and obfuscation, signature-based approaches have limita-
tions. Behavior-based approaches, often known as dynamic
analysis, refer to running a malicious program and observing
its activities in the system. Behavior-based approaches can
strive for the detailed characteristics of ransomware behavior.
Their ability to strive for detailed characteristics makes using
a defensive technique based on ransomware behavior much
more effective. Thus, employing a behavior-based approach
as a defensive strategy is more effective in preventing ran-
somware attacks from carrying out damaging actions.

III. LITERATURE REVIEW
Protecting data and systems from ransomware attacks
requires a proactive solution. A proactive solution refers
to the early recognition of the malware threat. CTI and
CTH are novel techniques used to spot cyber threats in the
environment.

A. CTI STUDIES
CTI is a proactive method that gathers valuable informa-
tion from various sources to provide insight into the most
recent cyber vulnerabilities and threats. Discovering and
extracting such vital threat information is crucial for cyber-
security researchers and practitioners to improve awareness.
Williams et al. [18] utilized a web crawling technique to find
proactive cyber threat intelligence (CTI) in hacker forums.
They implemented the Depth-First Search (DFS) technique,
an incremental crawling method for collecting attachments
while avoiding various popular anti-crawling measures.

Li et al. [19] relied on articles focusing on security
event-related topics to build a proactive CTI. They collected
131 articles from the Internet and built an SVM model for

data analytics. Samtani et al. [20] presented a methodology
for implementing a more proactive CTI by mining hacker
communities for source codes, tutorials, and attachments. The
framework employs social network analysis methodologies
and metrics to identify the key individuals behind discovered
hacking assets. Ebrahimi et al. [21] focused on cyber threats
hosted by the deep net market to avoid significant financial
losses. They developed semi-supervised cyber threat identi-
fication, an integral part of the CTI, used to detect various
types of threats and their primary data sources. They cre-
ated a web crawler that used a combination of approaches
to combat deep net marketplace anti-crawling mechanisms.
Table 1 summarizes the proactive CTI strategies studied.

TABLE 1. A summary of CTI techniques.

B. CTH STUDIES
Cyber threat hunting (CTH) is an approach that integrates CTI
with data analysis methods to detect and respond to threats
proactively. Homayoun et al. [23] developed sequential pat-
tern mining as a ransomware hunting mechanism. They tried
to hunt abnormal behavior within the first 10 seconds of
ransomware execution by mining system logs of file sys-
tem activities, registry, and Dynamic Link Libraries (DLL).
Sequential pattern mining was implemented to discoverMax-
imal Frequent Patterns (MFP) and combined with machine
learning classification techniques to identify ransomware and
benign samples and distinguish ransomware families.

Mavroeidis et al. [24] suggested a Sysmon log-based auto-
mated threat hunting system. Sysmon refers to a Windows
system monitor service for monitoring and logging system
activities. The proposed solution presents an automated threat
assessment system that analyzes the continuous incoming
feeds from Sysmon logs to classify the system processes to
different threat levels. Detection was performed based on a
predefined knowledge base.

Darabian et al. [25] developed an integrated multi-view
learning approach that uses multiple features rather than a
single feature view to detect malware behavior on diverse
platforms. Weight is added to each view to enhance the hunt-
ing approach, including the header information, ByteCodes,
API call, OpCodes, permission, and the attacker’s intent.
SVMmodel was used to assign weights to the obtained view.
The proposed solution was employed on Windows, Android,
and IoT platforms.

Naik et al. [26] developed triaging methods as hunting
techniques to determine the similarity of two ransomware
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FIGURE 1. Ransomware attack steps [14].

samples. They applied four evaluation methods: import hash-
ing method (IMPHASH), SSDEEP and SDHASH fuzzy
hashing methods, and YARA rules. The performance results
are described with the number of detected samples and a
comparison between the four methods without showing per-
formance results.

Jadidi et al. [27] proposed an industrial control system
threat hunting framework (ICS-THF). The proposed frame-
work focuses on detecting cyber threats against ICS devices.
The proposed framework consists of three phases: threat
hunting trigger, threat hunting, and cyber threat intelligence.
The first phase includes events that could trigger the hunting
phase. Then, the second phase uses a combination of the
MITRE ATT&CK matrix and a diamond model of intrusion
analysis to generate hunting hypotheses and predict future
behavior. Finally, the third phase generates indicators of com-
promise (IoCs) for future threat hunting.

HaddadPajouh et al. [28] developed an IoT malware hunt-
ing method using a Long Short-Term Memory (LSTM)
structure based on their OpCode sequences. Their findings
demonstrated that stacked LSTM techniques could achieve
high accuracy and handle input sequences of any length.

Jahromi et al. [29] developed an Extreme Learning
Machine (ELM) approach that includes two hidden layers.
They aimed to achieve an extremely fast learning speed, good
generalization capability, straightforward implementation,
and reduce the human intervention characteristics.

Homayoun et al. [30] developed a system for deep ran-
somware threat hunting in the fog layer. They used LSTM
and CNN for classification to discover ransomware attacks
within the first 10 seconds of program execution.

Al-rimy et al. [31] proposed two novel techniques, incre-
mental bagging (iBagging) and enhanced semi-random
subspace selection (ESRS), which are combined into an
ensemble-based detection model. iBagging technique is used

to build incremental subsets that show the evolution of
crypto-ransomware behavior over various attack phases.
ESRS technique is then used to construct feature spaces and
exclude weak features.

Al-rimy et al. [32] proposed a novel Redundancy Coeffi-
cient Gradual Upweighting (RCGU) technique that improves
redundancy–relevancy tradeoffs during feature selection.
RCGU technique increases the redundancy term weight pro-
portional to the number of selected features. The Enhanced
MIFS (EMIFS)was developed by combining the RCGU tech-
nique with the Mutual Information Feature Selection (MIFS)
technique. Moreover, MM-EMIFS was developed as an
improvement that incorporates the MaxMin approximation
with EMIFS to prevent redundancy overestimation. They
mentioned that the limitation of the proposed work is the lack
of consideration of the conditional redundancy term when
calculating the feature importance.

Kok et al. [33] proposed a Pre-Encryption Detection Algo-
rithm (PEDA) that aims to discover crypto-ransomware
attacks at the phase of pre-encryption using two levels.
The first level uses static analysis to compare the file sig-
nature with the known ransomware signature. The sec-
ond level uses dynamic analysis with a learning algorithm
model that analyzes the API generated in the pre-encryption
stage.

Darem et al. [34] proposed an adaptive behavioral-based
incremental batch learning malware variants detection model
(AIBL-MVD) using concept drift detection and sequential
deep learning.

Roy et al. [35] proposed a deep learning-based ran-
somware detector (DeepRans). The proposedmodel monitors
the infected host’s suspicious activity in the bare metal server
network. DeepRans was developed using attention-based
Bi-LSTM with Conditional Random Fields to classify the
normal and infected host activities.
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Pundir et al. [36] proposed a hardware-assisted ran-
somware detection technique using DL methods. They mon-
itored micro-architectural events using a hardware perfor-
mance counter to detect abnormal events. They showed that
the proposed solution could detect ransomware in 2 millisec-
onds before encryption. However, hardware data processed
in run-time could be corrupted.

Ullah et al. [37] proposed a ransomware detection model
using online ML classifiers. The proposed model extracts the
run-time features and performs ransomware detection. The
model performs detection by tracing the ransomware behav-
ior features during the execution, such as registry, network,
and file systems API calls. Their proposedmodel used a mod-
ified decision tree, random forest, and AdaBoost classifiers.

Zhang et al. [38] proposed a deep learning-based model
that uses a self-attention mechanism. The authors extracted
contextual information to apply the static analysis. They used
an N-gram of opcodes to identify ransomware fingerprints in
the environment.

Khan et al. [39] proposed a DNAact-Ran system that uses
digital DNA sequencing along with ML to detect ran-
somware. Naïve bayes, random forest, and Sequential min-
imal optimization classifiers were utilized in the proposed
system. The proposed systemwas able to predict ransomware
using DNA sequencing, which illustrates several numbers of
features.

Poudyal et al. [40] proposed an AI-based ransomware
detection framework (AIRaD). The proposed framework
combines static and dynamic analysis to detect ransomware
attacks. SVM, logistic regression, random forest, AdaBoost
with J48, and J48 classifiers were used in the AIRaD frame-
work. Multi-level analysis was performed on the assembly,
DLL, and function calls.

Zuhair et al. [41] proposed a machine learning-based
multi-layer ransomware detection system. The proposed
solution consists of analysis, learning, and detection phases.
The model utilized behavioral analysis to detect unknown
ransomware variants. A decision tree and naïve bayes clas-
sifiers were used in the proposed solution. The first step is
ransomware detection using a decision tree, and the second
step is ransomware prediction using naïve bayes decisions.
The limitation of the proposed system is the time of the fed
samples analysis, which was done for 5 minutes.

Alrazib et al. [42] proposed DL-driven software-defined
networking (SDN) intrusion detection system (IDS). They
studied the presence of emerging cyber threats in the IoT
environment. They utilized DNN and LSTM classifiers as
a hybrid detection scheme. They used the CICIDS-2018
dataset, including 14 cyber threats such as brute-force, DDoS,
and port scanning attacks.

Javeed et al. [43] proposed a novel SDN- enabled hybrid
DL-driven cyber threat detection. They utilized LSTM and
GRU classifiers as a hybrid detection scheme. The proposed
solution detects cyber threats on the IoT platform. They
used the CICDDOS-2019 dataset that includes network flow
features for more than 78283 instances.

In summary, the limitations and gaps in current CTH solu-
tions are as follows:
• Disregarding the evolving nature of ransomware or mal-
ware attacks: some previous studies have focused on
detecting existing malware based on traditional anal-
ysis techniques that compare one or more static fea-
tures that are insufficient to the evolving nature of
attacks that utilize elusion and offense techniques. Some
previous studies that detect malware based on static
features, such us [25], [26], cannot detect unknown
threats.

• Relying on using classification methods based on static
features: some previous works relied on analyzing only
static information that is ineffective against sophisti-
cated malware. Static features involve analyzing a mal-
ware binary file without executing the code, such as
determining the malware’s signature and calculating the
hash of the malware file. Known malware can be easily
applied to other file formats in which previously col-
lected data are useless. Darabian et al. [25] used only
static features for their proposed solutions.

• Small number of samples in the used dataset: The
growth in the complexity of ransomware or malware
attacks requires the utilization of a large, diverse,
and up-to-date dataset. Some studies used a small
dataset that could affect the prediction and lead
to overfitting issues. For a supervised deep learn-
ing algorithm, a rough rule of thumb indicates that
using approximately 5000 labeled samples per cate-
gory will mainly achieve acceptable performance [44].
Homayoun et al. [30] used a small dataset containing
660 ransomware samples and 219 benign samples.
Moreover, HaddadPajouh et al. [28] applied the RNN
model with a dataset that contained 281 malware sam-
ples and 270 benign samples to train the model, and
then they used 100 malware samples to evaluate the
model. Pundir et al. [36] applied their proposed RNN
andLSTMsolution using a dataset that contained 80 ran-
somware samples and 76 benign samples.

• Imbalanced data: Some studies include classification
data with skewed class proportions that will make one
class a majority class and another a minority class.
Homayoun et al. [23] applied their proposed solution
using a dataset that contains 1624 ransomware samples
against 220 benign application samples. In addition,
Al-rimy et al. [31] used a dataset that includes 8152 ran-
somware samples from 1000 benign application samples
from another dataset. Darem et al. [34] used a dataset
containing 19,076 malware samples and 3,994 benign
application samples.

• Hiding performance results: Performance results, such
asmodel accuracy, f-measure, and other measures, could
help other researchers evaluate previous works and
solve the current challenges. Some studies do not show
performance results and findings that could affect the
research field. Mavroeidis et al. [24] did not show any

VOLUME 10, 2022 61699



F. Aldauiji et al.: Utilizing CTH Techniques to Find Ransomware Attacks: Survey of State of Art

performance results in their research to evaluate the
proposed solution.

• Some studies have not specified the source of the col-
lected data samples: Datasets are a significant part
of scientific research. Some previous studies have not
described the source of malware or ransomware sam-
ples. Homayoun et al. [30] did not mention the source
of benign samples in their work.

• Some studies have focused on finding a set of features
that cannot be shown in other versions of ransomware
samples: Kok et al. [33] depended on finding Windows
API calls that indicate pre-encryption processes. Other
ransomware samples that used their native encryption
codes will not be detected.

IV. CYBER THREAT INTELLIGENCE TECHNIQUES
Finding reliable intelligence regarding cyber threats helps
defend against current attacks in a proactive manner [45].
Many CTI techniques have been proposed for obtaining
timely information from trustworthy sources. CTI can pro-
vide detailed information related to anticipated cyber attacks.
For example, an email designed for phishing attacks could
include various vital features such as the attack technique
used, attacker information, target information, software, and
tools used to launch the attack [46].

The collection and analysis of massive amounts of online
sources of threat data present a new area of challenges
that enhance CTI abilities to mitigate or disable rising
attacks [20]. Different capabilities are required to produce
comprehensive CTI to find knowledge. To discover online
sources, extensive data analysis, awareness of web crawling
and anti-crawling mechanisms, understanding of foreign lan-
guages, knowledge of cyber world terms, and understanding
of the complex structures of malicious assets are needed.
Malicious assets can be found on different online platforms
such as repositories, IRC channels, and hacker forums to
exchange content and knowledge.

The web crawling mechanism is applied to search for web
content as a computer program that systematically browses
sources on the World Wide Web [47]. A web crawler is used
for different purposes, such as searching for and extracting
information or classifying web content. A crawler parses
HTML tags and retrieves pages, extracts new hyperlinks from
these tags, and stores HTML content. After collecting the
data, the analysis technique is utilized to leverage the discov-
ered information to understand the critical trends of malicious
cyber assets.

V. MALWARE ANALYSIS
To detect malware, researchers used various techniques,
including analyzing files with various tools, extracting static
or dynamic features from the analyzed files, and categoriz-
ing features to distinguish between malicious and benign
software. Malware analysis could be classified into static,
dynamic, and hybrid [48]. Malware samples can be analyzed
manually or automatically [49]. Automatic analysis requires

advanced data science programming skills; however, domain
expert knowledge is needed in manual analysis.

A. STATIC ANALYSIS
Static malware analysis is applied by reverse engineering,
disassembling, or dissecting a malware binary file to analyze
the different structural and semantic information found in the
binary file. The structure of the malware sample is identified
by static analysis without actually executing malicious code.
File strings, header information, and functions are examined
in fundamental static analysis. More details of the program
commands are examined in the advanced static analysis.

B. DYNAMIC ANALYSIS
On the other hand, dynamic malware analysis is applied by
observing or debugging a malware’s program instructions
to evaluate its behavior in an isolated environment. Isolated
environments, such as virtual machines or sandboxes, are
used to perform the dynamic analysis. API calls, memory and
registry changes, parameters, information flows, and network
activities are tested in dynamic analysis. There are two parts
of dynamic malware analysis: basic and advanced. The fun-
damental dynamic analysis uses monitoring tools to examine
malware’s behavior. However, the advanced dynamic analy-
sis uses debugging tools to execute each command individu-
ally to view command contents such as variables, parameters,
and memory areas.

C. HYBRID ANALYSIS
In addition, hybrid malware analysis is a file analysis that
combines both static and dynamic analysis aspects. It extracts
the structural and semantic information of the binary file
besides the run-time information.

Static analysis is easier and faster than dynamic analy-
sis; however, it is impossible to analyze malicious software
that utilizes obfuscation, packed, or polymorphic techniques
using static analysis. For detecting unknownmalware threats,
dynamic analysis is more effective. Although dynamic analy-
sis shows malware’s actual functionality, some malware vari-
ants could be aware of being analyzed in isolated or closed
environments, resulting in hiding their actual behavior.

VI. CYBER THREAT HUNTING TECHNIQUES
The concept of CTH describes combining an effective CTI
method with a robust data analysis technique to detect cyber
threats. Cyber attacks are evolving and becoming more
sophisticated because of the advanced level of threat actors’
skills [50]. Various solutions have been proposed as a data
analysis technique to detect cyber threats. The application of
machine learning-based techniques has a great majority of the
current methods of CTH. The main development trends of the
CTH are described in the following paragraphs.

A. TRADITIONAL MACHINE LEARNING APPROACHES
Machine learning (ML) is a part of artificial intelligence
wheremachines learn from data or experience to automate the
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FIGURE 2. Malware Feature Taxonomy.

building of analytical models [51]. The efficiency of the ML
model depends on the quality and performance of the chosen
learning algorithm. Supervised learning, unsupervised, semi-
supervised, and reinforcement learning are the four major
categories of ML algorithms.

ML involves several steps such as data collection, data
cleaning and preparation, model building, model evaluation,
and model deployment. A set of software features is extracted
during data preparation to describe it and classify it as benign
or malware. The features were then used to train the model to
solve the specified problem. Malware can be identified based
on different features categorized according to the type of mal-
ware analysis approach: static and dynamic. Figure 2 shows
the malware feature taxonomy.

Various ML classifiers have been employed in ran-
somware and malware detection models such as decision
tree [23], [37], [41], ransom forest [23], [33], [37], [39], [40],
naïve bayes [39], [40], Sequential minimal optimization
(SMO) [39], logistic regression [40], J48 [23], [40], and
SVM [25], [40]. Ensemble learning has also been employed
in ransomware detection models [31], [37], [40]. Table 2
presents a summary of ML techniques used for CTH.

B. DEEP LEARNING APPROACHES
Deep learning (DL) is a subset of ML that learns from data,
and the computation is performed through multilayer neural
networks, and processing [52]. DL models require a large
amount of data for each problem domain to construct a data-
driven model. Moreover, DL algorithms require high com-
putational capabilities to train models with a large amount

of data. An essential characteristic of DL is that it decreases
the time and effort required to construct the feature extractor.
Supervised, unsupervised, and hybrid learning are the three
major categories of DL algorithms.

Different DL architectures have been employed in
ransomware and malware detection models such as
MLP [23], [30], CNN [30], [38], Extreme Learning Machine
(ELM) [29], sequential learning [34], RNN [36], and Long
Short-term memory [28], [30], [35], [36]. Also, Hybrid
DL models have been employed in IoT threat detection,
such as [42] and [43]. Table 3 presents a summary of DL
techniques used for CTH.

C. OTHER DATA ANALYSIS APPROACHES
Other data analysis approaches that do not include artificial
intelligence methods have been utilized in CTH studies such
as, [24], [26], and [27]. Table 4 presents a summary of other
data analysis techniques for CTH.

VII. DIRECTION OF FUTURE RESEARCH ON
RANSOMWARE
Most ransomware-related research works focus on different
characteristics such as threat delivery, encryption algorithm
and communication, associated IoCs, and behavior analy-
sis [53]. Threat actors can change a malware’s appearance to
obfuscate its code; however, it is difficult to change its moti-
vation and behavior. New ransomware variants are constantly
being developed. Several detection and protection solutions
rely on static analysis, which detects only earlier forms
of ransomware samples. Cybercriminals apply advanced
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TABLE 2. A summary of ML methods used for CTH techniques.

TABLE 3. A summary of DL methods used for CTH techniques.

TABLE 4. A summary of other data analysis techniques used for CTH.
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TABLE 5. Some windows API calls categories and examples extracted from different ransomware samples.

FIGURE 3. Extraction of API calls sequence from ransomware sample.

techniques to conceal the ransomware executable program
intention to avoid detection.

Ransomware can appear as a standalone crypto-worm that
replicates itself to other computers to maximize the impact
on the network. In addition, ransomware can appear as a
Ransomware-as-a-Service (RaaS), which is a distribution kit
sold on the dark web. RaaS permits novel attackers with
limited technical skills to launch ransomware attacks [55].
Moreover, ransomware can be deployed by threat actors who
scan the Internet to find IT systems with soft protection to
make them targets.

Ransomware can infect files on locally fixed, removable,
or remotely shared drives. To minimize detection, attackers
may attempt to sign their ransomware using code-signing
technology by buying or stealing it. In addition, current
ransomware utilizes exploits to abuse stolen administrator
privileges and elevate their privileges. After that, the ran-
somware will start encrypting as many files as possible to
ensure receiving ransom money from the victim. Files can
be encrypted individually as a single thread or more than one
at the same time as multiple threads. Moreover, ransomware
can be programmed to start encrypting files with smaller file
sizes or alphabetically [10].

A ransomware attack will have a tremendous financial
impact on an organization when it encrypts its mapped

network drives. Restoring multiple servers from backup data
takes a long time, and data could not be up to date. Many
organizations use only backup solutions as a critical defense
against ransomware, which makes it a recovery solution
rather than a detection solution. Ransomware attacks can also
target backup files and folders, which can cause permanent
damage and data loss [54].

The ransomware performs the file encryption process using
two methods: overwrite (in-place) and copy. The overwrite
method encrypts files by reading the original file, writing an
encrypted version over the original file, and renaming the file.
On the other hand, the copy method encrypts files by reading
the original file, creating an encrypted copy, and deleting the
original file. It is impossible to recover the original files using
the overwrite method. However, ransomware that uses the
copy method will use an additional wiping action to ensure
that data files are not recoverable.

Ransomware behavior follows specific patterns that
include the file identification process, file encryption, net-
work command, and control communications [56]. In most
ways, ransomware uses aWindows application programming
interface (API) to make function calls. Windows API offers
a collection of programming interfaces that simplify the soft-
ware development process.Windows API calls can be used as
behavioral features to identify abnormal patterns. Table 5 lists
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TABLE 6. Datasets used by state-of-the-art ransomware detection works.

some Windows API call categories and examples extracted
from different ransomware samples. Software API calls can
be extracted from most modern devices [57]. Figure 3 shows
the process of gathering API call sequences from ransomware
samples.

VIII. RANSOMWARE DATASETS
Datasets are essential to foster the development of an effec-
tive ransomware detection solution. The outcome of a ran-
somware detection solution depends on the utilized dataset.
Therefore, the accuracy of the solution is directly related to
and dependent on the input dataset. Datasets contain several
samples for benign and ransomware; however, one of the
crucial challenges is a balanced dataset. Datasets for ML
could either be privately collected or publicly available to
anyone. Different ransomware studies used datasets from
different repositories. Popular repositories that offer malware
data include the following sources: VirusTotal, VirusShare,
and theZoo. Table 6 shows a summary of openly available
popular datasets and repositories used for ransomware detec-
tion studies.

IX. CONCLUSION
Ransomware is an evolving form of malware designed to
block access to the system or encrypt its data. Various
static and dynamic features of ransomware can be extracted
and used to reveal its activities. This paper presents a
systematic review of Cyber Threat hunting techniques for
detecting ransomware attacks. The previous works of CTI

and CTH have been investigated, and the limitations and
gaps have been mentioned. Then, we explained the CTI tech-
nique. We provided an extensive overview of the malware
analysis. CTH techniques are discussed based on the used
data analysis method. Ransomware evolution and research
directions are highlighted. The available ransomware datasets
used in the previous works are mentioned with their data
sources. In summary, ransomware attacks must be detected
proactively, as shown in this study. Developing an effec-
tive ransomware CTH technique that can detect known and
unknown ransomware is a concern. We provided a detailed
review of ransomware research directions and the available
ransomware datasets utilized with different data analysis
methods. In our future work, we will adopt a CTI method
to enhance the development of a CTH technique by collect-
ing the latest shared information about ransomware attacks.
Subsequently, the collected information will be incorporated
into an effective new learning strategy model to enhance
detection accuracy. A deep focus on dynamic features will
be performed to hunt ransomware attacks based on behavior
classification.
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