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ABSTRACT The dynamic motion of a span is coupled to the other spans in transmission lines. From the
continuity conditions, force equilibrium conditions, and dynamical equations of every span conductor and
insulator string, a close-form expression for the dynamic stiffness of a coupled two spans in harmonic motion
is presented. Unlike some existing theories of single span conductor, the effect between the conductors and
insulator strings is considered here. By means of example calculations, the validity of the dynamic stiffness
of two-span is demonstrated by the consistency of the results determined by the ABAQUS. Meanwhile,
the dynamic stiffness and natural frequency are discussed under variation of the span lengths ratio, Irvine
parameter, and insulator string length. Moreover, the modal shape function corresponding natural frequency
is derived, and the contribution of localizationmode is studied. The results show that the contribution is either
sensitive to or independent of transmission line parameters in certain parameter ranges. Finally, generalizing
the work of two-span, the dynamic stiffness of arbitrary span number is obtained.

INDEX TERMS Equivalent stiffness, series of spans, mode, natural frequency, ABAQUS.

I. INTRODUCTION
Using insulator string to connect a span with its adjacent
span and forming multi-span structure are widely used in
electricity transmission lines. Galloping is a well-known phe-
nomenon for iced electricity transmission lines. Galloping of
multi-span conductors can reach high amplitude causing high
tension on conductors, and the periodic change of the tension
can be leaded to damage of sub-conductors, spacers, and tow-
ers (Kermani et al., 2013; Chen et al., 2017), which usually
give rise to disruption of power supply, as shown in Fig.1.
In January 2018, a serious cold snap swept through much of
northern and central china, knocking down the regional power
lines due to galloping [3].

For the analysis of the galloping and other dynamic
response of transmission lines, the first basic and most impor-
tant aspect is to obtain vibratory characteristic of transmis-
sion lines as low-sag cables. Initially, the linear theory of
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FIGURE 1. Overhead transmission lines.

free vibration of single-span horizontal cable with small
sag was studied by Irvine (1974). Meanwhile, an important
geometric-elastic parameter λ was raised, and the natural
frequencies and corresponding symmetrical in-plane modes
depended on the parameter. Irvine (1978) generalized the
theory of horizontal cable and applied it to an inclined
cable. Yamaguchi (1979) considered the weight component
parallel to the chord of an inclined cable and studied nat-
ural frequencies and modal shapes of the inclined cable.
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Triantafyllou (1984, 1986) found that for inclined cable an
‘‘avoided crossing’’ on frequency curves occurs. Afterward,
in order to avoid complicated calculation, Wu et al. (2005)
and Zhou et al. (2011) presented a simplified method by
using two characteristic parameters λ and ε. In order to study
the dynamic response of cable-tower, cable-bridge, and other
cable-supported structures, Veletsos et al. (1983) proposed
the dynamic stiffness of single span cable. The dynamic
stiffness can evaluate the deformation resistance (Kim et al.,
2001; Han et al., 2017), and can identify the frequencies of
corresponding deferent modes (Li et al., 2017; Dai et al.,
2017; Kari et al., 2017). Because the cable is a flexible struc-
ture, the cable exhibits very rich nonlinear dynamic response.
In particular, if two or more linear natural frequencies are
nearly commensurable, these commensurable relationships
of frequencies can cause the multiple modes to be strongly
coupled, and an internal resonance occurs (Rega et al., 1999,
2004).

Most of the interesting internal resonances occur at the
crossover points in the spectrum of cable natural frequencies.
Based on the obtained modes and corresponding frequencies,
a multimode discretization of the continuum formulations
is adopted, then a simplified asymptotic analysis is applied
by using any perturbation technique (Lacarbonara et al.,
2003; Srinil et al., 2007). In recent decades, a lot of results,
which include internal resonance and multiple internal res-
onances (Abe et al., 2010; Zhao et al., 2006; Wang et al.,
2009), are obtained for single span cable nonlinear vibra-
tions. Luogno et al. (1998, 2008, 2009) discovered that the
internal resonance can occur in transmission line galloping,
and further investigated the nonlinear galloping instability
of single span under multiple internal resonance conditions.
Afterward, using finite element method, liu et al. (2009) also
discovered the internal resonance through the study of iced
quad-bundle conductor galloping.

Nonlinear dynamic characteristics of self-excited vibra-
tion for iced transmission line have been recently stud-
ied (Liu et al., 2010; Yan et al., 2012; Liu et al., 2015;
Guo et al., 2017). However, the nonlinear dynamic inves-
tigations are only based on single span transmission lines
(Lou et al., 2014; Ghabraei et al. 2016; Zhang et al., 2017;
Nguyen et al., 2018). In overhead transmission lines, the bare
wire conductors are suspended from towers via insulator
strings. Overhead transmission lines between two anchoring
towers, which is connected to tangent towers in a row by
a freely movable insulator string, is called a strain section.
Due to the swing of suspension insulator strings along a
transmission line, it is possible for coupling to occur between
different spans in a strain section (Rienstra, 2005). Initially,
in order to simplify the calculation, a single-span model with
spring boundary conditions, in which suspension insulator
string and adjacent span are represented by equivalent linear
spring, is established (Yu et al., 1993; Desai et al., 1995;
Guo et al., 2018). Afterward, the effect of the spring bound-
ary conditions on galloping amplitude is compared to the
effect of the previous fixed boundary conditions by using

FIGURE 2. The dynamic stiffness of two-span transmission line with
insulator string.

FEM (Wang et al., 2009, 2010). The results showed that
the boundary conditions of a single span can significantly
influence the galloping amplitude. The dynamic interaction
between the adjacent spans is reflected in the equivalent
stiffness spring at both ends of single span. In fact, the equiv-
alent stiffness represented adjacent spans not only depends
on the cable geometrical parameters, but also depends on
the frequency of external excitation. In addition, in order
to understand the interaction between the multiple spans,
Xie et al. (2017) studied the effect of the span ratio on the
frequencies of two-span transmission lines, and Yi et al.
(2017) studied the vibratory characteristics of a three-span
mass-carrying cable with multiple pulley supports.

Further investigation on the interaction between different
spans in a strain section is important to deeply understand the
nonlinear galloping characteristics of transmission lines, such
as multi-span internal resonance conditions, frequency, mode
of multi-span vibration, and the effect of the multi-span con-
ductors on the towers. This paper is intended to be responsive
to these needs. Since the two-span transmission lines is a sim-
plest multi-span transmission lines, we introduce a dynamic
stiffness model of two-span transmission lines that right end
is fixed and the left end is subjected to a harmonically varying
horizontal displacement. The configuration of every span
conductor is considered to have a parabolic profile at static
equilibrium position under self-weight, the displacement at
the left end is presumed to be small. The effect of span ratio,
insulator string length, and external exciting frequency on the
dynamic stiffness is discussed, respectively. Special attention
is paid to the identification of frequencies through dynamic
stiffness peaks. The accuracy of obtained frequencies and
corresponding modes is discussed through comparison of
theoretical and FEM results. Finally, the two-span dynamic
stiffness is generalized to the case of arbitrary multi-span
transmission lines. The results can provide a theoretic foun-
dation for the development of the galloping research.

II. DYNAMIC STIFFNESS FOR TWO-SPAN CONDUCTOR
A. THEORETICAL FORMULA TO CALCULATE THE
DYNAMIC STIFFNESS
A transmission line suspended from end supports located at
equal elevation is considered, as shown in Fig.2. The support
A is a smooth roller, and the support C is a hinge. The support
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B ismoving in concentric circles with centers at O because the
transmission line hangs from the insulator stringOB. The dot-
ted line represents the static equilibrium configuration under
self-weight. The transmission line is linearly elastic, with
negligible bending stiffness, uniform undeformed effective
cross-section A, self-weight per unit length p, and Young’s
modulus E . l1 and l2 are span length, which is the horizontal
length of the straight line between two supports in a span.
The transmission line is also called flexible cable because the
span length of a transmission line is much greater than the
dimension. For the selected Cartesian coordinate system, the
x-direction takes along the cable chord, the y-direction takes
the normal direction, and the origin is taken at the left end
of a span. The static equilibrium configuration of small sag
horizontal cable is defined by the parabola

y =
ql2

2H
(
x
l
− (

x
l
)2) (1)

where l is the horizontal span. TheH is the horizontal compo-
nent of cable tension which is constant everywhere. If the left
end A of the cable is subjected to an additional harmonically
varying horizontal force1F = 1F̄eiωt , the dynamic config-
uration of the cable is the solid line as shown in Fig.2. The
transmission line dynamics is described by the horizontal u
and vertical w displacement components measured from the
static configuration. The amplitude of additional force1F is
presumed to be small, so that the displacement of the left end
is also small. The vibration of two-span cable with respect
to its position of static equilibrium can be expressed by the
partial differential equations [3]

H
∂2w1

∂x2
+1F

d2y1
dx2
= m

∂2w1

∂t2
+ c

∂w1

∂t
(2a)

H
∂2w2

∂x2
+ hτ2

d2y2
dx2
= m

∂2w2

∂t2
+ c

∂w2

∂t
(2b)

where m is mass per unit length; c is the coefficient of vis-
cous damping per unit of chord length; 1hτ2 is the dynamic
additional tension of H . The effects of the axial components
of the inertia forces on the dynamic stiffness are small com-
pared with those of the y-direction components, and may be
neglected. The 1F is equal to 1hτ1 when the axial inertia
force of a cable is neglected. By substituting (1) into (2), the
(2) can be simplified, as

H
∂2w1

∂x2
− m

∂2w1

∂t2
− c

∂w1

∂t
=

q1F
H

(3a)

H
∂2w2

∂x2
− m

∂2w2

∂t2
− c

∂w2

∂t
= hτ2

q
H

(3b)

The insulator string shown in Fig.1 is suspended from
a smooth bearing at O. The insulator string which oscil-
lates with a small amplitude executes harmonic motion. The
insulator string has an angular displacement of θ measured
from the equilibrium position at the instant. The sun of the
moments about O of all the external forces is equal to J θ̈ , the
moment of inertia J with the weight W relative to O is W

3ga

and θ̈ is the angular acceleration. Thus,

a(hτ1 − hτ2)− (Tr1 + Tl2)1x2 −W
1x2
2
= J θ̈ (4)

were a is the length of the insulator string, 1x2 is the dis-
placement of the lower end B. Tr1 and Tl2 are vertical forces
exerted by the two-span conductors at the lower end B.

In conditions of moderately small vibration amplitudes and
assuming small sag, the additional tension becomes [3]

hτ (
dx
ds

)3 = EA(
∂u
∂x
+

dy
dx
∂w
∂x

) (5)

Accounting for the cable boundary conditions and com-
patibility of the resulting strains and displacements, the addi-
tional tensions of two-span conductors are given

hτ1 = 1F =
EA
Le1

[(1x1−1x2)+
q
H

∫ l1

0
w1(x, t)dx] (6a)

hτ2 =
EA
Le2

[1x2 +
q
H

∫ l2

0
w2(x, t)dx] (6b)

Le1 and Le1 are the effective lengths of two-span conductors.
For harmonically excited two-span conductors, the values

of the displacement increment and additional tension are of
the form:

1F = 1F̄eiωt ; hτ1 = h̄τ1eiωt ; hτ2 = h̄τ2eiωt (7a)

w1(x, t) = w̄1(t)eiωt ; w2(x, t) = w̄2(t)eiωt (7b)

1x1 = 1x̄1eiωt ; 1x2 = 1x̄2eiωt (7c)

Apply (7), the system equations (3) can be written as:

H
d2w̄1

dx2
+ (mω2

− iωc)w̄1 =
qh̄τ1
H

(8a)

H
d2w̄2

dx2
+ (mω2

− iωc)w̄2 =
qh̄τ2
H

(8b)

When the angular displacement of θ is small, the θ is equal
approximately to 1x2/a. With this approximation and (7)
the (4) lead to the following expression as

a(h̄τ1 − h̄τ2)− (Tr1 + Tl2 +
W
2
−
Jω2

a
)1x̄2 = 0;

h̄τ1 = 1F̄ (9)

The solution of (8), with the given boundary conditions, is

w̄1(x) = (
l1
ω̄1H

)2qhτ1 (1− tan(
ω̄1

2
) sin(ω̄1

x
l1
)− cos(ω̄1

x
l1
))

(10a)

w̄2(x) = (
l2
ω̄2H

)2qhτ2 (1− tan(
ω̄2

2
) sin(ω̄2

x
l2
)− cos(ω̄2

x
l2
))

(10b)

where ω̄2
1 = (mω2

− ωci)l21/H , ω̄
2
2 = (mω2

− ωci)l22/H .
The additional tensions, hτ1 and hτ2, may now be evaluated
from (6). Substituting the (10) into the (6), the following
expressions of additional tensions are obtained by definite
integral

h̄τ1 =
EA
l1
(1x̄1 −1x̄2)

1− ( λ1
ω̄1
)2(1− tan(ω̄1/2)/(ω̄1/2))

(11a)
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h̄τ2 =
EA
l2
1x̄2

1− ( λ2
ω̄2
)2(1− tan(ω̄2/2)/(ω̄2/2))

(11b)

and

λ21 =
EAl1
HLe1

(
ql1
H

)2 ≈
EA
H

(
ql1
H

)2 λ22 ≈
EA
H

(
ql2
H

)2 (12)

The dynamic stiffness, Kh, is the ratio of the applied force
to the corresponding displacement. From (11) and (9), the
dynamic stiffness function would then be given by the expres-
sion

Kdyn = Lim
1x1→0

1F
1x1
=

a1[(a2 + 1
a (Tr1 + Tl2 +

W
2 −

Jω2

a )]

a1 + a2 + 1
a (Tr1 + Tl2 +

W
2 −

Jω2

a )
(13)

The remaining quantities are defined as

a1 =
EA

l1(1−
λ21
ω̄2
1
(1− tan(ω̄1/2)

ω̄1/2
))
;

a2 =
EA

l2 − l2
λ22
ω̄2
2
(1− tan(ω̄2/2)

ω̄2/2
)

(14)

(13) is themost important equation in this paper. It is of signif-
icant practical value and teaches an important, fundamental
way of approaching and diagnosing engineering problems.
Upon carrying out the limiting transitionω→ 0, (13) reduces
to

Ks = Lim
1x1→0

1F
1x1

=

EA
l1(1+ 1

12λ
2
1)
[( EA
l2(1+ 1

12λ
2
2)
+

1
a (Tr1 + Tl2 +

W
2 )]

EA
l1(1+ 1

12λ
2
1)
+

EA
l2(1+ 1

12λ
2
2)
+

1
a (Tr1 + Tl2 +

W
2 )

(15)

Ks is equivalent static stiffness of two-span conductors.
A typical 500kV transmission line section, which consists

of two-span quad bundle conductors, suspension clamp, and
an insulator string, is selected to obtain the dynamic stiffness.
The span lengths of first and second spans are the same
as 200m. Each sub-conductor of quad bundle conductors is
LGJ-400/50, mass per unit length 1.511kg/m, Young’s mod-
ulus E is 7.0 × 104MPa, and the dimension of the conductor
is 27.63 × 10−3m. The suspension clamp is LX-4245, and
its total mass is 89kg. The spacer is JZF-400, and its mass is
7.5kg. A suspension insulator consists of 28 ball-and-socket
porcelain insulators of model XP-16 with self-weight 6.0kg,
the length of suspension insulator string is 6.47m, and its
Young’s modulus is set to 200GPa. The tension stress at its
lowest point in the conductor under self-weight is 30.3Mpa
(λ1 = π ). It is noted that for quad bundle conductors the
mass per unit lengthm in (13) is four times larger than a single
conductor.

The variation of dynamic stiffness, Kd , with respect to the
dimensionless frequency, ω̄1/π , is shown in Fig.3 for the
cable having two equal spans. The dynamic stiffness in each
figure is normalized with respect to the corresponding static

stiffness value. The static stiffness value calculated by (15)
is constant, and the dynamic stiffness, which is calculated
according to (13), is variable with frequency. In Fig.3(a) the
peak corresponds to the frequency of first symmetrical mode,
and in Fig.3(b) the first peak corresponds to the frequency of
second symmetrical mode. The first peak in Fig.3(b) is much
larger than the peak in Fig.3(a), it is shown from (13) that the
effect of second symmetrical mode on the tension is much
larger than the first symmetrical mode. This phenomenon of
two-span conductors is different from single span.

In Fig3, the red line corresponds to a dynamic stiffness of
quad bundle conductors, and the blank line corresponds to a
dynamic stiffness of single conductor. It is shown from Fig.3
that the frequency of single-conductor is very close to that of
quad bundle conductors when the geometrical and material
parameters of single conductor and bundle conductors are
the same. This conclusion provides a way to simplify the
calculation of bundle conductors. In order to verify the valid-
ity of (13), the corresponding finite element model is estab-
lished in ABAQUS. The frequencies of first two symmetrical
modes of single conductor and bundle conductors obtained by
ABAQUS are respectively 0.3536Hz, 0.4741Hz, 0.3515Hz
and 0.4727Hz, respectively. The corresponding dimension-
less frequencies are respectively 1.000, 1.340, 0.9937, and
1.336. The results obtained by ABAQUS showed that the fre-
quency of single-conductor is very close to that of quad bun-
dle conductors. The natural frequencies of single-conductor
and quad bundle conductors, which are identified from Fig.3,
are close to those obtained by the ABAQUS.

In order to simplify the theoretical formula for two-
span conductors, the effect of insulator strings mass on the
dynamic stiffness is studied. The black line corresponds to
the dynamic stiffness of two equal spans considering insulator
string mass, and the red line corresponds to the dynamic
stiffness of two equal spans under the assumption of ignoring
insulator string mass. The comparison of the frequency iden-
tified from Fig.4 is shown that the effect of insulator string
mass on the frequency of two-span conductors is very small.
Therefore, the J in (13) can be ignored when this (13) is used
to calculate the frequency of two-span conductors.

Next, applying some examples, which have the samemate-
rial parameters, insulator string length, and horizontal tension
under self-weight as the previous examples, we will investi-
gate the effects of the span ratio l1/l2 on dimensionless natural
frequencies. In particular, first assuming that a constant first
span length of l1 is 200m, the second span length of l2 is
changed. Fig.5(a) shows the variation of the dynamic stiffness
of the two-span transmission lines with different span ratios
when first span length of l1 is larger than the second span
length of l2. In particular, these peaks of dynamic stiffness
represent the dimensionless natural frequencies of first sym-
metrical mode. It is seen that the dimensionless frequencies
of corresponding first five peaks are greater than 1. It is pos-
sible to note that the dimensionless natural frequency of first
symmetrical mode is decreasing as the ratio of l1/l2decreases.
When the ratio of is reduced to 1 the dimensionless natural
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FIGURE 3. Effect of sub-conductor number on the dynamic stiffness.

frequency of first symmetrical mode is close to 1 by Com-
bining the results of Fig.2. Fig.5(b) shows the variation of
the dynamic stiffness of the two-span transmission lines with
different span ratios when the first span length of l1 is less
than the second span length of l2. It is seen that the dimension-
less natural frequency of first symmetrical mode is increasing
as the ratio of l1/l2 is increases, and when the ratio of l1/l2
increases to 1 the dimensionless natural frequency is closed
to 1. Because of the first-span conductor is relatively long,
so the first symmetrical mode is dominated by the vibration
of the first-span conductor. With the reduction of the pitch of
the second-span conductor, the restraint of the second-span
conductor on the first-span conductor increases, resulting
in an increase in the vibration frequency of the first-span
conductor.

The dynamic stiffness formula can also be used to evaluate
the natural frequencies of corresponding symmetrical modes
by the peak of a dynamic stiffness. When first span length is
a constant of 200m, the variation of the natural frequencies
with span length ratio of l1/l2 is obtained from the peak of the
dynamic stiffness of two spans at λ1/π = 1 and a = 6.47 as
shown in Fig.6. It is seen that the dimensionless natural
frequencies of first two symmetrical modes are increasing

FIGURE 4. Effect of insulator string mass on the dynamic stiffness.

as the ratio of span lengths increases. A scatter plot in Fig.6
presents the natural frequency obtained by ABAQUS. It is
indicated that the natural frequency obtained by the dynamic
stiffness is consistent with the ABAQUS result. On the other
hand, the comparison between two methods shows that the
dynamic stiffness formula is reasonable. The modes in Fig.6
shown that the ratio of span lengths has a significant effect
on the mode shape of two spans. For the mode of two spans
with 200m-50m, the modal displacement of the second span
is close to 0. The first two symmetrical modes show that
the modal displacement of a span having longer span length
dominates when the length of a span in two span transmission
lines is much greater than the length of another span.

In order to obtain a full understanding of the dynamic stiff-
ness, the variation of the dynamic stiffness with dimension-
less natural frequency is carried out on two-span conductors
of 200m-250m, see Fig.7. Fig.7(a) shows the variation of the
dynamic stiffness with dimensionless natural frequency for
different insulator string lengths when the span lengths are
200m-250m and the λ1/π is 1. For λ1/π = 1, the insulator
string length strongly influences the peak of dynamic stiff-
ness. The dimensionless natural frequency of first symmet-
rical mode decreases from 0.90 to 0.89, when the insulator
string length increases from 1m to 50m. It is shown that the
insulator string length has few effect on dimensionless natural
frequency when λ1/π = 1.
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FIGURE 5. Effect of span lengths ratio on the dynamic stiffness
(λ1/π = 1; a = 6.47).

FIGURE 6. Variation of natural frequencies with span length ratio of l1/l2.

Fig.7(b) reports the variation of the dynamic stiffness with
dimensionless natural frequency for different insulator strings
when the span lengths are 200m-250m and the λ1/π is 7.
The calculated results also show that the insulator length has
a remarkable effect on dynamic stiffness. In particular, the
minimum peak occurs at the dimensionless natural frequency
close to 1. This conclusion is in accord with what we dis-
cussed in Fig.6. As the insulator string length increases from
1m to 20m, the dimensionless natural frequency decreases
from 1.15 to 0.92. For the two span transmission liens with
λ1/π = 1, the insulator string length has a remarkable effect

FIGURE 7. Effect of insulator string length on the dynamic stiffness
(200m-250m).

on the dimensionless natural frequency by comparison with
Fig.7(a). Fig.7(a) and (b) highlights a similar trend in the
dimensionless natural frequency as a function of the insulator
string length.

The solid lines in Fig.8 show that the variation of dimen-
sionless natural frequencies with insulator string length
obtained through dynamic stiffness peak in Fig.7. The calcu-
lated results show approximate constant natural frequency for
λ1/π = 1, whereas a dependency on insulator string length
is found for λ1/π = 7. In Fig.8 the scatter plots show that
dimensionless natural frequencies are obtained by ABAQUS
for different insulator string length. The theoretical results are
generally consistent with those by ABAQUS. The maximum
percent error between theory and ABAQUS results of 2.2%
occurs at λ1/π = 7 when insulator string length is 20m. The
Fig.8 also shows that insulator string length has a few effect
on symmetrical mode shape.

B. THEORETICAL FORMULA TO CALCULATE THE
SYMMERTRICAL MODE
Substituting (13) into (11) and ignoring 1x1, the i-th sym-
metrical modal shape can be written as

φ1i(x) = Ai

1
l1
(1− tan( ω̄12 ) sin(ω̄1

x
l1
)− cos(ω̄1

x
l1
))

1− ( λ1
ω̄1
)2(1− tan(ω̄1/2)/(ω̄1/2))

(16a)
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FIGURE 8. Variation of natural frequencies with insulator string of a
(200m-250m).

FIGURE 9. Finite element model of two-span conductors.

FIGURE 10. First two symmetrical modes obtained by ABAQUS.

φ2i(x) = Ai

1
l2
(1− tan( ω̄22 ) sin(ω̄2

x
l2
)− cos(ω̄2

x
l2
))

1− ( λ2
ω̄2
)2(1− tan(ω̄2/2)/(ω̄2/2))

(16b)

where the Ai is determined by the normalization condition.
When λ1/π takes a large value, the (16) can be simplified as

φ1i(x) = Bi(1− tan(
ω̄1

2
) sin(ω̄1

x
l1
)− cos(ω̄1

x
l1
)) (17a)

φ2i(x) = Bi(1− tan(
ω̄2

2
) sin(ω̄2

x
l2
)− cos(ω̄2

x
l2
)) (17b)

where the Bi is determined by the normalization condition.
In order to verify the validity of the new theoretical formulas,
we use an example for comparison. We choose the geomet-
rical parameters of two-span overhead transmission lines as
follows: l1 = 200m, l2 = 250m, a = 6.47m. The material
property settings are same with the first example for the
insulators string and cable. The finite element model based
on ABAQUS is established as follows:

Figure 10 shows the first two symmetrical modes of two-
span conductors with λ1/π = 1 is obtained by ABAQUS. The
calculation modes show that the two adjacent spans influence
each other.

In order to better understand the application range of (17)
and (16), Fig.11 reports the comparison between the results

FIGURE 11. Comparison between the modes obtained by two methods.

of the two new theories and FEM method. It is interesting to
observe that the results by the two methods agree well with
that of ABAQUS when λ1/π = 1, and only the result by (16)
agrees with that of ABAQUSwhen λ1/π = 7. It is shown that
the simplified formula of (17) can be applied only to two-span
conductors with a small sag, and the exact formula of (16) is
also suitable for two- span conductors with a larger sag.

In order to understand the modal properties better, a factor
βi, which represents the ratio between the kinematic energy
stored in a span conductor and the total kinematical energy
of the two-span transmission lines having mono-frequent
free linear vibration, is suggested. Based on the obtained
closed-form solution of the mode of two-span transmission
lines, the factor βi for the j-th mode is defined as

βi1 =

∫ l1
0 mφ21i(x)

1
l1
dx∫ l1

0 mφ21i(x)
1
l1
dx +

∫ l2
0 mφ21i(x)

1
l2
dx

(18a)

βi2 =

∫ l2
0 mφ22i(x)

1
l2
dx∫ l1

0 mφ22i(x)
1
l1
dx +

∫ l2
0 mφ22i(x)

1
l2
dx

(18b)

where βi1 and βi2 reflect the contribution of the first and sec-
ond span to the mode shape of the total system, respectively.
In the following two examples, the effect of transmission line
parameters on the localization factor is illustrated.

When the insulator lengths are, respectively, 1m and 7m
in the two-span transmission lines, in which the span lengths
are 200m and 250m, the variations of the localization factor
of the first symmetrical mode with the λ1/π are reported in
Fig.12(a). It can be seen that when λ1/π is in the range of
0∼2, the localization factor is decreases and when λ1/π is
in the range of 2∼10, the localization factor has a constant
trend. The calculated results also show that when the two span
lengths are 200m and 250m, the effect of the insulator string
length on the localization factor is very small.

VOLUME 10, 2022 64995



L. Zhongbin et al.: Calculation Method for Dynamic Stiffness of Multispan Overhead Transmission Lines

FIGURE 12. Effect of the transmission line parameters on the localization
factor.

When the insulator lengths are, respectively, 1m and 7m
in the two-span transmission lines, in which the λ1/π is
equal to 1, the variation of the localization factor of the first
symmetrical mode with the span ratio l2/l1 are in Fig.12(b).
It is noted that when the value of l2/l1 is large, the span ratio
and insulator string length have a significant effect on the
localization factor.

III. DYNAMIC STIFFNESS FOR MULTI-SPAN CONDUCTOR
A. THEORETICAL FORMULA TO CALCULATE THE
DYNAMIC STIFFNESS
Similarly, for multi-span transmission lines with arbitrary
span number, the dynamical stiffness can be also obtained by
referring to the calculation method of two-span conductors.
Multi-span transmission lines with N spans are reported in
Fig.13. All suspension points of N − 1 insulator strings
are located at the same level. The support A1 is a smooth
roller, and the support AN+1 is a hinge. Each span can be
considered as a substructure, and local coordinate system,
which is attached to each span at its left end, is established
on the substructure. For example, the xj-axis is taken along
the chord of the j-th span, and the yj-axis is taken along the
vertical direction. wj is the transverse displacement in the yi
direction.

If the left end A1 of the transmission lines is sub-
jected to an additional harmonically varying horizontal force

FIGURE 13. Multi-span transmission lines.

1F = 1F̄eiωt , the dynamic configuration of the transmis-
sion lines is the dotted line as shown in Fig.13. Neglecting
the conductor inertia component parallel to the chord, The
vertical vibration of j-th span conductor with respect to its
position of static equilibrium can be expressed by the partial
differential equation [3]

H
∂2wj
∂x2
+ hτ j

d2yj
dx2
= m

∂2wj
∂t2
+ c

∂wj
∂t

(19)

where the hτ j is the additional tension of j-th span conductor.
yj is the static equilibrium configuration of j-th span conduc-
tor with small sag, which is represented by (1). Solution to
the partial differential can be obtained using the technique
known as separation of variables. For j-th span conductor,
we substitute (1) and (7) into the (19) to obtain

H
d2w̄j
dx2
+ (mω2

− iωc)w̄j =
qh̄τ j
H

(20)

The solution of (20), with the given boundary condition of
w̄j(0) = w̄j(lj), is

w̄j(x) = (
lj
ω̄jH

)2qhτ j(1− tan(
ω̄j

2
) sin(ω̄j

x
lj
)− cos(ω̄j

x
lj
))

(21)

were ω̄2
j = (mω2

− ωci)l2j /H , w̄j(x) is in-plane vertical
displacement of j-th span conductor. Neglecting the inertia
component parallel to the chord, substituting the (21) into the
(6), the additional tension on j-th span conductor is obtained
with the given boundary condition as

h̄τ j =
EA
lj
(1x̄j −1x̄j+1)

1− ( λj
ω̄j
)2(1− tan(ω̄j/2)/(ω̄j/2))

(22)

where λ2j =
EA
H ( qljH )2,1x̄N+1 = 0 for N span transmission

lines. N span transmission lines include N − 1 insulator
strings. For OjAj insulator string as shown in Fig.12, the
sun of the moments about O of all the external forces is
equal to J1ẍ/a. Considering the left end A1 of multiple
span transmission lines is subjected to a harmonically varying
horizontal force, the following relation is obtained from the
differential equation governing j-th insulator string rotation:

a(h̄τ j−1 − h̄τ j) = (
Gj−1 + Gj

2
+
W
2
−
Jω2

a
)1x̄j (23)
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were Gj−1 is the self-weight of (j − 1)-th span conductor,
and Gj is the self-weight of j-th span conductor. 1x̄j is the
displacement amplitude of the low end of the i-th suspension
insulator string. Then, based on (22)-(23) and the dynamic
stiffness define Kx = Lim

1x1→0
1F
1x1

, the dynamic stiffness of

multi-span transmission lines is given as (24), shown at the
bottom of the page, were

Ki =
EA

li(1−
λ2i
ω̄2
i
(1− tan(ω̄i/2)

ω̄i/2
))
;

Ei =
1
a
(
Gi + Gi+1

2
+
W
2
−
Jω2

a
) (25)

The dynamic stiffness is expressed also by recursive formula
as

Kx =
K1(K2N + E1)
K1 + K2N + E1

(26)

were

KiN =
Ki(K(i+1)N + Ei)
Ki + K(i+1)N + Ei

(1 < i < N) (27a)

KiN = KN (i = N) (27b)

In order to verify the validity of the dynamic stiffness
of multi-span transmission lines, we use some examples for
comparison. The material parameters for the following two
examples are same as for the first example in this paper.
For the transmission lines with three spans of 100m-140m-
180m that the insulator string length is 6.47m, and λ1/π is
1 under self-weight, the variation of the dynamic stiffness
with ω̄1/π is reported in Fig.14(a). The dimensionless natural
frequencies can be identified by these peaks of the dynamic
stiffness. It is shown in Fig.14(a) that the natural frequencies
identified by the dynamic stiffness are close to those obtained
by ABAQUS method. The Fig.14(a) also shows that the
values of the second, third and fourth peaks are significantly
greater than those of other peaks. It is indicated that the
energy is easily transferred to an adjacent structure when the
resonance of the transmission lines includes the modes that
correspond to the natural frequencies of the second, third and
fourth peaks.

For the transmission lines with five spans of
100m-140m-180m-220m-260m having the insulator string

FIGURE 14. Dynamic stiffness of transmission lines with different span
numbers.

length of 6.47m and λ1/π of 1, the variation of the dynamic
stiffness with respect to the dimensionless frequency of ω̄1/π

is reported in Fig.14(b). A good agreement between the
dimensionless natural frequencies by the two methods in
Fig.14(b) further provides proof of the correctness of the
dynamic stiffness. Similar to three spans, the Fig.14(b) shows
the maximum peak value of the fourth peak, and the energy
is easily transferred to an adjacent structure when the reso-
nance of the five-span transmission lines includes the fourth
symmetrical mode.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Kx − K1 K1 0 0 0 0 · · ·

−K1 K1 + K2 + E1 −K2 0 0 0 · · ·

0
. . .

. . .
. . .

. . .
. . . · · ·

... 0 −Ki Ki + Ki+1 + Ei −Ki+1 0 · · ·

0 · · · 0
. . .

. . .
. . . · · ·

...
...

... 0 −KN−2 KN−2 + KN−1 + EN−2 −KN−1
0 0 · · · · · · · · · −KN−1 KN−1 + KN + EN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(24)
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FIGURE 15. Comparison between the three-span modes obtained by two
methods.

B. THEORETICAL FORMULA TO CALCULATE THE
SYMMETRICAL MODE
For multi-span transmission lines having arbitrary span num-
ber, the modal function can be obtained by referring to the
calculation method of two-span transmission lines. Accord-
ing to the (28), the symmetrical mode ofN -span transmission
lines can be obtained as follows:

φi(x) = Ai

1xi−1xi+1
li

(1− tan( ω̄i2 ) sin(ω̄i
x
li
)− cos(ω̄i xli ))

1− ( λi
ω̄i
)2(1− tan(ω̄i/2)/(ω̄i/2))

(28)

were 1 ≤ i ≤ N , 1x1 = 1xN+1 = 0. In (28) 1x2,1x3 . . .
are unknown quantities and can be obtained as the equation
(29), shown at the bottom of the page.

In order to verify to the validity of Eq.(29), according to the
preceding of three-span transmission lines with 100m-140m-
180m having the insulator string length of 6.47m and λ1/π
of 1, the dimensionless natural frequency corresponding first
symmetrical mode is obtained from Fig.14(a) and is equal
to 0.629. Substituting 0.629 into (29), we obtain 1x3/1x2
of 5.8. According to corresponding geometrical and material
parameters of this three-span transmission lines, 1x2 and
1x3 in first symmetrical mode are obtained from ABAQUS

and are equal to−0.0132m and−0.0777m, respectively. The
1x3/1x2 obtained by ABAQUS is 5.9 and is close to that
with (29). Substituting the parameters of three-span transmis-
sion lines and1x3/1x2into (29), the first symmetrical mode
of the three-span conductors is obtained as shown in Fig.15.
It is indicated that the two first symmetrical modes obtained
by two methods are in good agreement.

IV. CONCLUSION
In this paper, a theoretical method for the calculation of equiv-
alent dynamic stiffness is presented. Unlike previous dynamic
stiffness of a single span, the effect of the adjacent span
and swing of insulator string are considered. The parametric
study reveals that the previously ignored factor, as the insu-
lator string length, is indeed very important for the dynamic
stiffness. The sizes of the peaks that correspond to different
modes are not the same.

The natural frequencies are identified based on the peak-
to-peak of the dynamic stiffness curve with varying external
exciting frequency, and corresponding modes are obtained.
The validity and accuracy of the proposed frequencies and the
associated modes are verified by using finite element method.
It is shown that the method is accuracy, and more convenient
than the finite elementmethod. At the same time, a parametric
study is performed to examine the sensitivity of the natural
frequencies and associated modes to the span ratio, insulator
length, Irvine parameters, and span number. In particular, the
mode localization is discussed.

In this paper the main contribution is a closed-form expres-
sion for the dynamic stiffness of arbitrary multi-span trans-
mission lines. The dynamic stiffness and natural frequencies
obtained by the dynamic stiffness can be used to guide the
design of overhead transmission lines so as to avoid the cou-
pling between towers and liens or coupling between different
spans, which may cause severe damage of transmission lines.



K1 + K2 + E1 −K2 0 0 0 0 · · ·

−K2 K2 + K3 + E2 −K3 0 0 0 · · ·

0
. . .

. . .
. . . 0 0 · · ·

... 0 −Ki Ki + Ki+1 + Ei −Ki+1 0 · · ·

0 0
. . .

. . .
. . . · · ·

...
...

... 0 −KN−2 KN−2 + KN−1 + EN−2 −KN−1
0 0 · · · · · · · · · −KN−1 KN−1 + KN + EN−1



×



1x2
1x3
...

1xN


= 0 (29)
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