
Received March 25, 2022, accepted May 30, 2022, date of publication June 8, 2022, date of current version June 13, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3180742

Single-Trace Attack Using One-Shot Learning
With Siamese Network in Non-Profiled Setting
NAYEON LEE 1, SEOKHIE HONG 1, (Member, IEEE), AND HEESEOK KIM 2, (Member, IEEE)
1Institute of Cyber Security and Privacy (ICSP), Korea University, Seoul 02841, Republic of Korea
2Department of AI Cyber Security, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea

Corresponding author: Heeseok Kim (80khs@korea.ac.kr)

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Science and ICT under Grant NRF-2019R1A2C2088960.

ABSTRACT Recently, many studies have shown that using deep learning for side-channel attacks offers
several advantages, including simplification of the attack phase and target breaking, even in protected
implementations, while presenting outstanding attack performance. Power and electromagnetic analysis,
which is known as the most robust attack, can be classified into profiling and non-profiling attacks. In the
real world, a non-profiling attack is more ideal than a profiling attack. In particular, studies on non-profiling
attacks using deep learning for asymmetric cryptosystems are rare and have shortcomings, such as a long
analysis time. In this paper, we propose a novel non-profiling attack method for asymmetric cryptosystems
that requires only a single trace and a reasonably short attack time to recover a full private key, overcoming
the limitations of previous studies. The proposed method applies one-shot learning with a convolutional
Siamese network, which is used for the first time in side-channel attacks. Thus, our proposed method can
leak private keys used in a protected public-key cryptosystem with up to 100% accuracy with only one single
trace in a non-profiled setting.

INDEX TERMS Deep learning, ECC, Montgomery ladder, non-profiling attack, one-shot learning, side
channel attack, Siamese network, similarity score.

I. INTRODUCTION
A side-channel analysis is an attack technique that uses
additional information about a computer system usage, such
as timing information, power consumption [3], [15], and
electromagnetic emissions [1], to obtain the secret informa-
tion inside the computer system. Power and electromagnetic
analysis, which is known as the most robust side-channel
attack, is classified into profiling [1], [21] and non-profiling
attacks [3], [9], [15]. In a profiling attack, a profile is created
using devices controlled by an attacker. Subsequently, the
attacker matches the profile with the measurements from a
device of the victim, to reveal secret information. However,
in a non-profiling attack, an attacker can only access a closed
target device and collect several side-channel traces. Sub-
sequently, the attacker uses statistical knowledge, such as
Pearson’s correlation, to obtain secret data. Profiling attacks
are more robust than non-profiling attacks; however, latter are
more practical because performing profiling attacks requires
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access to a profiling device, a demand that is not typically
satisfied.

To protect against non-profiling attacks, many countermea-
sures are being studied and installed in embedded devices.
For public-key cryptosystems, regular scalar multiplications,
such as the Montgomery ladder [13], double-and-add, and
atomicity-based implementations [10], and randomization
techniques [18] can be considered. To conduct such non-
profiling attacks, an attacker requires considerable analy-
sis time and sufficient expertise for the used algorithms.
For example, to conduct collision-based attacks (e.g., [4]),
an attacker must analyze the details of the algorithms, includ-
ing where a collision can occur. Moreover, finding points
where a collision occurs in traces is quite demanding and
takes a long time.

To overcome such difficulties for general side-channel
attacks and combine the advantages of deep learning, deep-
learning-based side-channel attacks are actively being stud-
ied. Many studies have shown that using deep learning for
side-channel attacks offers several advantages, including sim-
plification of the attack phase and breaking of the target, even
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in protected implementations, while presenting outstanding
attack performance. However, most deep learning-based side-
channel attacks are profiling attacks [5], [6], [17].

Deep learning-based profiling attacks are being actively
studied for enhancing the attack performance on asym-
metric cryptography. However, from the perspective of
deep learning-based non-profiling attacks on asymmetric
cryptography, thus far, [19] is the only study to our best
knowledge. In their study, a Montgomery ladder, in which
countermeasures were adopted, was attacked with their pro-
posed framework based on a convolutional neural network
(CNN). The framework used 63,750 data as the training
data, and a combination of incorrect and correct labels as
the training labels (i.e., noisy bits). Their proposed itera-
tive framework repeats the training, prediction, re-labeling,
and shuffling training dataset phases. While repeating these
phases, the framework gradually corrects the incorrect labels.
Following many iterations, their proposed attack improves
the scalar bit recovery accuracy by up to 100% from noisy
bits with 52% accuracy. Briefly, they attacked protected
implementations and achieved successful results in a Non-
profiled setting. However, the proposed framework requires
considerably long training time and a large training dataset.
Moreover, the performance of the proposed attack framework
depends on the presence of characteristic information that can
distinguish between two groups of initial training labels. For
example, if the initial training labels have numerous incorrect
bits, the framework cannot correct them because it cannot
train the characteristics that can classify the two groups
(bits ‘‘0’’ or ‘‘1’’).

As mentioned earlier, most related studies using deep
learning focus on profiled side-channel attacks and symmet-
ric cryptosystems. Moreover, the only reported framework
for deep learning-based non-profiling attacks on asymmet-
ric cryptosystems needs a long training time and numerous
traces. Therefore, in this paper, we propose a new method
for non-profiling attacks on asymmetric cryptosystems that
requires only a single trace and a reasonably short training
time, overcoming the limitations of existing attacks.

The main contributions of this paper are as follows:

• The proposed method applies one-shot learning with a
convolutional Siamese network, leading to high clas-
sification accuracy even with one training data point
for each class. Therefore, the method overcomes the
limitations of existing methods, which need many single
traces, because it can also be used even if an attacker has
only one single trace.1

• As the method trains the network for a few epochs
and uses only one data (i.e., one subtrace) per class
as the training data, it takes a shorter time than previ-
ous studies using a CNN to recover fully private key

1A single trace is split into subtraces that represent the processing of single
private key bits ‘‘0’’ and ‘‘1,’’ and the proposed method uses two subtraces
for the training data.

bits, even considering failure.2 For example, one of our
experiments requires < 2 min. Nevertheless, our method
shows a strong performance of up to 100% on protected
implementations.

• The intermediate outputs during the framework process
enable checking the effectiveness of the attacks. For
example, one of the outputs refers to the points of the
subtraces that can distinguish between the two groups
(bits ‘‘0’’ and ‘‘1’’). If an attacker overlays these points
of the subtraces and the output of the Siamese network or
the results of the proposed attacks, visual confirmation
can be obtained regarding the learning of valid features
by the network3 or success of the attack.4 Moreover,
the attack can easily be extended to other single traces
because an attacker can omit the training network phase
when reusing these points.

• The performance of the proposed method does not
depend on any initial value, such as the initial labels [19].
A previous study that used a large training dataset
required initial labels to train the network. Therefore,
in their method, to achieve good performance, the initial
labels must not be biased to one class, and simultane-
ously, they must contain some correct labels that can
provide information to classify the two classes. In con-
trast, the proposed method only requires the assump-
tion that the two randomly selected subtraces belong
to different classes, and the possibility of meeting this
assumption is 50%.

• Since the proposed method simply applicable as long as
the attack target is the algorithms that computes through
examining each individual bit of the scalar(exponent
in the case of RSA), the proposed attack framework is
generic.

Structure of paper:
The remainder of this paper is organized as follows.

Section 2 summarizes the background information regarding
the aim of the study. Subsequently, it describes side-channel
analysis with deep learning and one-shot learning with
Siamese neural networks, including related studies.
Section 3 details our proposed attack framework,
and Section 4 presents the attack results on three datasets.
Finally, in section 5, we draw the conclusions and propose
future studies.

II. BACKGROUND
This section provides the relevant background knowledge
regarding the objective of this study, deep learning-based
side-channel attacks, one-shot learning, and Siamese neural
networks.

2Because the proposed method works in a Non-profiled setting, we need
to randomly select two subtraces from different classes for one-shot learning.
In this phase, there is a possibility that subtraces belonging to the same class
are chosen, which could lead to an attack failure.

3This confirms whether the two chosen subtraces are in the same class.
4If the attack is successful, the two groups are notably distinguished

visually.
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A. MONTGOMERY LADDER

Algorithm 1Montgomery Ladder
Input: P (point on elliptic curve) and n-bit scalar k =

(kn−1, kn−2, · · · , k0)2
Output: Q = kP
1: R0← P; R1← 2P;
2: for idx ← n− 2 to 0 do
3: R¬kidx ← R0 + R1
4: Rkidx ← 2Rkidx
5: end for
6: return R0

AMontgomery powering ladder [13] is an algorithmic-level
countermeasure that is implemented for a fixed time. Because
a Montgomery ladder is implemented regularly and there is
no redundant operation, Algorithm 1 resists ordinary simple
power analysis (SPA) [15] and C safe-error analysis [24].
However, it is still vulnerable to M safe-error attacks. There-
fore, Joye and Yen [13] proposed a method to prevent an M
safe-error attack (Algorithm 2) by simply changing R0 + R1
to Rkidx + R¬kidx , i.e., line 3 in Algorithms 1 and 2.

Algorithm 2Modified Montgomery Ladder
Input: P (point on elliptic curve) and n-bit scalar k =

(kn−1, kn−2, · · · , k0)2
Output: Q = kP
1: R0← 0; R1← P;
2: for idx ← n− 1 to 0 do
3: R¬kidx ← Rkidx + R¬kidx
4: Rkidx ← 2Rkidx
5: end for
6: return R0

In the implementation of Algorithm 3, the conditional
branch is replaced by the cswap function to achieve con-
stant time. Algorithm 3 computes on coordinates P1 and P2,
which are represented as work_state. The algorithm is
already protected from side-channel attacks, owing to regu-
lar and constant-time implementation. However, a blinding
countermeasure is added at the beginning of every iteration
to blind coordinates P1 and P2 to random values for more
security (i.e., Re_Randomize_Coordinates in Algorithm 3).
For more details on Algorithm 3, we recommend referring
to [19].

This study targets various types of Montgomery ladders,
as described in Algorithms 2 and 3.

B. SIDE-CHANNEL ANALYSIS WITH DEEP LEARNING
A side-channel attack is a type of attack that can leak secret
information used for encryption using the power consumption
and electromagnetic emissions generated by hardware during
encryption. Side-channel attacks can be classified into profil-
ing (e.g., template attacks [7]) and non-profiling (e.g., SPA,
differential power analysis (DPA) [15], and correlation power

Algorithm 3 Montgomery Ladder With Cswap and
Coordinate Re-randomization [19]
1: // . . . initialization omitted . . .
2: bprev = 0
3: for i← 254 to 0 do
4: Re_Randomize_Coordinates(work_state);
5: b← bit i of scalar;
6: s← b⊕ bprev;
7: bprev← b;
8: cswap(work_state, s);
9: Ladderstep(work_state);
10: end for
11: . . . return omitted . . .

analysis (CPA) [3]) attacks. In a profiling attack, a profile
is created by operations on sensitive data in an environment
where an attacker can control the device. Subsequently, the
attacker matches the profile with the measurements from
the device of a victim to obtain secret information. In con-
trast, in a non-profiling attack, an attacker can access only
a closed target device. Because a profiling attack is under a
stronger assumption than a non-profiling attack, the former
requires significantly fewer traces than the latter. If side-
channel attacks leak secret information, they can be used
maliciously in several ways. To deal with this problem, many
countermeasures such as aMontgomery powering ladder [13]
and blinding [18] are being studied and installed in embedded
devices to protect against side-channel attacks. Blinding tech-
niques can incapacitate attacks including DPA and CPA [3].
Furthermore, a Montgomery powering ladder is immune to
SPA and fault attacks [13], [24], whereas, profiling attacks
can occur. Because in profiling attacks, the profiles do not
typically perfectly match the measurements from the device
of the victim, non-profiling attacks are more suitable in a
practical environment.

Deep learning is a commonly used technology in many
academic and industrial fields such as pattern recognition,
autonomous driving, and prediction of various phenomena.
Recently, deep learning is being used for various objectives in
side-channel analysis, including profiling [6], [11], [17] and
non-profiling [19], [23] side-channel attacks. There are many
advantages to using deep learning in side-channel attacks:
• It is very powerful and can break targets even against
protected implementations [6], [19], [23].

• It can omit essential phases of a side-channel such as
preprocessing of traces, alignment, and points of inter-
est (PoIs) selection.

• It is also possible to use information that is not employed
in existing side-channel analysis.

Most side-channel attacks based on deep learning are
profiling attacks. In contrast, few studies have been con-
ducted on non-profiling attacks using deep learning. The
first application of non-profiling attacks using deep learn-
ing was proposed by Timon [23]. However, this application
attacks symmetric cryptography. To our best knowledge, thus
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far, [19] is the only study in the field of non-profiling attacks
using deep learning on asymmetric cryptography. The authors
attacked a Montgomery ladder, in which countermeasures
were applied, by their proposed framework based on a CNN.
They used 63,750 (255 × 250) traces as training data and
improved the accuracy to an average of 90% and up to 100%
in the results of clustering-based horizontal attacks with 52%
accuracy using the proposed method. However, this frame-
work needs a considerably long time and numerous traces.
Moreover, the input labels used for the training networks, i.e.,
the results of clustering-based horizontal attacks, must have
some characteristic information to classify the traces into
two classes. Summarizing, the performance of the proposed
attack framework depends on the presence of characteristic
information in the training labels.

Presumably, the method proposed in this paper is sec-
ondary to target public-key encryption in non-profiling
attacks using deep learning. The proposed method does
not depend on any initial value, and it takes a very short
time to recover the entire private key, and simultaneously,
it shows a powerful performance of up to 100% on protected
implementations.

C. ONE-SHOT LEARNING WITH SIAMESE NEURAL
NETWORKS
In general, the features of each data are learned to achieve
high performance in deep learning. Learning good features
with machine learning can be computationally expensive, and
it can be challenging to achieve good performance if there
is little available data. In this case, one-shot learning with
convolutional Siamese networks can be effective.

One-shot learning is a method for training networks with
one data for each class. It can be used when a small dataset
is available and a severe overfitting problem needs to be
avoided. In [8], by one-shot learning on several objects future
images could be predicted using a trained model with a small
data sample. The central concept of Siamese networks is
supervised learning by sharing the same network. For image
classification, a Siamese network is designed to use two
image datasets as input to the shared network and output prob-
ability values of whether two images are in the same class.
In [2], for the first time, Siamese networks were used for
signature verification. Using the same network to share two
input data, the study extracted feature vectors and obtained
the similarity of the two input data as output. Recently, one-
shot learning with a convolutional Siamese network has been
commonly used to classify various targets. In [12], the authors
used malware images as targets and conducted two-way one-
shot learning on the dataset. In addition, in [16], the authors
conducted one-shot classification on the Omniglot dataset
using Siamese neural networks. They proposed a method
for one-shot classification by learning deep convolutional
Siamese neural networks and showed higher performance
than the general Siamese neural networks.

Most deep learning-based side-channel attacks use
a multilayer perceptron (MLP) and a convolutional neural

network(CNN) [20]. However, a general MLP and CNN
require many data samples to train deep learning networks
and high computing power to obtain good results. Side-
channel attacks, as mentioned in Section 2.B, also require
considerable training data and long training times to achieve
good performance. In this study, for the first time, we per-
formed one-shot learning using a convolutional Siamese net-
work to recover secret information in a side-channel attack.
As we used only two datasets to train for a small number
of epochs, a fully scalar bit was recovered in a very short
time using the proposed method compared with previous
studies using a CNN and a MLP in the side-channel field.
Nevertheless, it showed a strong performance of up to 100%
on protected implementations.

III. PROPOSED ATTACK FRAMEWORK BASED ON
SIAMESE DEEP NEURAL NETWORK
This section proposes a Siamese deep neural network-based
attack framework that can recover secret information. The
proposed method retains no knowledge of the secret infor-
mation (i.e., k and s). A single attack framework implements
the following six steps, and an attacker can perform additional
training steps on PoI subtraces if needed:
1. Two subtraces D0 and D1 are randomly chosen.

We do not have any information on secret bits. However,
each subtrace represents the processing of a single bit
‘‘1’’ or ‘‘0.’’ Therefore, we can select two subtraces that
are in different classes with a 50% probability.

2. Training is performed on D0 and D1, and the dis-
similarity scores between D0 and the remainder sub-
traces are predicted (Figure 1). The Siamese deep
neural network is trained with a pair of D0 and D1, with
label 1, which represents the dissimilarity score. With
the trained Siamese deep neural network, the dissimilar-
ity scores between D0 and the other data are predicted.
If the network is well-trained, the dissimilarity scores
are not biased to one value. If the dissimilarity scores
are one-sided, then step III is repeated.

3. The mean value of the dissimilarity scores is calcu-
lated and classified into two classes. The mean value
of all the dissimilarity scores is the distinguisher in
this step. If one subtrace dissimilarity score exceeds the
distinguisher, it is labeled ‘‘1’’ (i.e., having a different
class than D0).

4. Leakage assessment is performed on the datasets
using step 3 results. Leakage assessment is performed
using the t-test. The t-test is used to determine whether
the difference in the means of the two groups is statis-
tically significant. Therefore, the t-test helps determine
whether a dataset is well-classified and what is the dif-
ference between the two classified groups. If the result
of the t-test does not have any peaks, it implies that the
two groups are not classified reasonably. In this case,
it is ambiguous if the two selected subtraces belong to
the same class. Hence, step 1 is repeated or re-training
of the Siamese network is considered.
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FIGURE 1. Train on D0 and D1 pair and predict dissimilarity scores (step III).

5. PoIs are extracted from the leakage assessment and
PoIs subtraces are generated. The peaks of the t-test
results are points of interest(PoIs). Using these PoIs,
we generate PoIs subtraces by extracting values corre-
sponding to the PoIs from the subtraces.

6. The PoIs subtraces are classified into two classes
using a distinguisher. In this step, we categorize the
PoI subtraces into two classes based on the whether the
average value of a PoIs subtrace is less than or more
than 0.

IV. EXPERIMENTAL RESULTS
This section presents several results of the proposed attack
framework on three datasets. Three datasets were used in this
study.

TABLE 1. Secp192r1 parameters; p, n, and b are provided in decimal,
basepoint, and hexadecimal forms. [14].

Dataset 1:
Dataset 1 was collected by applying Algorithm 2. In this

study, the experiment on Dataset 1 used the secp192r1 param-
eters recommended by the National Institute of Standards
and Technology (NIST). The elliptic curve is defined by
the equation, E : y2 = x3–3x + b mod p, with the
parameters listed in Table 1. For more details, please refer
to the NIST document in [14]. The target software was
operated on a Cortex-M4-based STM32F4 microcontroller
chip on a board. We acquired the power consumption trace
of Algorithm 2 using a LeCroy HDO6104A oscilloscope
with a sampling rate of 250 MS/s operating at 5 MHz.
After the acquisition, we applied a 5 MHz low-pass filter to
every trace. The dataset is a single trace and can be divided
into 191 subtraces. Each subtrace frames the processing of
one scalar bit, and we aimed to recover the scalar bits, k ,
in Algorithm 2.

Datasets 2 and 3:
Datasets 2 and 3 were obtained by the implementa-

tion of Algorithm 3.5 The traces were acquired from the
implementation that added coordinate re-randomization to
theµNaCl library for ARMCortex-M.6 Also, the traces were
collected with a random scalar for each execution of the
algorithm. Both datasets consist of 300 single traces each,
and can be divided into 255 × 300 = 76,500 subtraces.
Datasets 2 and 3 differ depending on how the cswap operation
was performed. For Dataset 2, the operation was by pointer
swapping (cswap-pointer), and for Dataset 3, the operation
is by arithmetic means swapping (cswap-arith). The bit, s,
in Algorithm 3 is the target of recovery in this experiment.
Details of the dataset are presented in [19].

First, we preprocessed all datasets by z-score normaliza-
tion. Z-score normalization is a technique that averages all
datasets to zero and the standard deviation to one. Using
it, a dataset can be standardized, which can result in better
performance in deep learning. The attack framework starts
by selecting two subtraces for all three datasets. Following
this, the Siamese neural network is trained on the datasets
and the dissimilarity scores are obtained. The distribution of
the dissimilarity scores is represented by a scatter plot and
divided into two different classes. Subsequently, a leakage
assessment was conducted on the datasets with the results of
the previous step obtained using the t-test. Using the t-test
peak, we extracted PoIs and created PoI subtraces. Finally,
we applied a distinguisher to divide the PoI subtraces into
two classes. The proposed attack framework is generic. Thus,
we applied different variations of the attack framework, e.g.,
additional training steps on the PoI subtraces and adaptation
of regularization techniques.

A. ATTACKING DATASET 1
This section provides the specific results of the application
of the attack framework on Dataset 1 along with the
details of the experiments. This dataset is based on imple-
mentation of Algorithm 2. We attacked 20 single traces,

5These datasets can be downloaded from https://github.com/AISyLab/
IterativeDLFramework.

6http://munacl.cryptojedi.org/curve25519-cortexm0.shtml
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and all 20 had 100% scalar bit recovery accuracy. We used
two subtraces when training the Siamese network. Thus,
we recovered the scalar bits, k , against a single trace. The
attack can also be extended to other single traces. Using the
trained Siamese network, we recovered the scalar bits, k ,
against 20× 191 subtraces. Consequently, we achieved 100%
scalar bit recovery accuracy for all 20 single traces with one
attack. Summarizing, with two subtraces, we recovered all
secret values, i.e., k . We defined the CNN of the Siamese net-
work with three convolution layers and two fully connected
layers. The details of the CNN and convolutional Siamese
neural network architectures are presented in Tables 2 and 3,
respectively. We used a learning rate of 0.001 and the Adam
optimizer. On this dataset, regularization was not required to
achieve 100% scalar bit recovery accuracy on all 20 single
traces. Again, note that only 2 subtraces of a single trace were
used in training, and of the remainder 19 single traces were
excluded.

TABLE 2. CNN architecture in Siamese network considered for Dataset 1.

TABLE 3. Siamese neural network architectures considered for
Datasets 1–3.

The details of the experiments and the specific results are
presented below.
Step III Two subtraces D0 and D1 are randomly chosen.
Step III Train is performed on D0 and D1, and the dis-

similarity scores are predicted. For Dataset 1, the Siamese
neural network is trained for 30 or more epochs. We monitor
the loss values during the training and determine whether
more training is required. After training the network, the
dissimilarity scores between one of the training data and the
remainder subtraces are predicted. The results of this step are
represented by a scatter plot, as shown in Figure 2. Figure 2
shows that the dissimilarity scores are not biased to one value.
Hence, we can consider that the network is well-trained. Note
that, the point with the highest dissimilarity in Figure 2 isD1.
Step III The mean value of the dissimilarity scores is

calculated, and it is classified into two classes. With this
step, 92.67% scalar bit recovery accuracy is achieved, i.e.,
177 of 191 bits are recovered. However, higher accuracy can
be obtained by performing the remaining steps.

FIGURE 2. Scatter plot of dissimilarity scores; blue and yellow spots
represent different classes (Y-Axis: index of the subtrace).

Step III Leakage assessment is performed on the datasets
using the step 3 results. In this step, the t-test is performed
using the results of step 3 in the leakage assessment. The
results of this step are shown in Figure 3. Many peaks can
be seen in Figure 3, and the point at which the peak rises
can be considered the difference between the two classes.
In contrast, Figure 4 shows the results of learning with data
pairs corresponding to the same class, and it is difficult to
identify a relevant peak. In the absence of a peak in the t-test
results, as shown in Figure 4, it is ambiguous if the Siamese
network is trainedwell or that the data pair used as the training
data is of the same class. In this case, step 1 is repeated or the
network is retrained.
Step III PoIs are extracted, and PoIs subtraces are gen-

erated. The peaks in Figure 3 are PoIs. We selected the
highest 100 values from the t-test results as the PoIs. From
the PoIs, we generated PoIs sutraces. Figure 5 shows that
all PoIs subtraces are overlapping. Yellow and green graphs
represent PoIs subtraces from different classes. Remarkable
differences are apparent between the two classes. As shown
in Figure 5, the PoIs can be regarded as features that can
distinguish between the two classes.
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FIGURE 3. t-test on Dataset 1 using results of step III.

FIGURE 4. t-test on Dataset 1 using results of step 3 when attacker is
trained with two same-class data.

Step III The PoIs subtraces are classified into two classes
using a distinguisher. We achieve 100% scalar bit recovery
accuracy for a single trace.
The results are checked: Even if two selected subtraces

are of the same class, occasionally they are not filtered as
belonging to the same class in all framework steps. How-
ever, we still realize that they are in the same class. From
the step 6 results, we can overlap the two classified sub-
traces. In Figures 6 and 7, the different color plots indi-
cate that the subtraces belong to different classes. If both
color plots are symmetric around zero (e.g., the black line in
Figures 6 and 7) and the characteristics of each group are
noticeable, as shown in Figure 6, then the extracted features
are valid for classifying the subtraces. However, Figure 7
shows that the two group plots are asymmetric, and one
classified group obscures the features of the other classified
group. Thus, the two selected subtraces in step 1 are of the
same class, i.e., the features of both groups are not chosen
well.
The attacks are extended: Using the PoIs from step III,

the attack can also be extended to the other single traces.

FIGURE 5. Overlapping PoIs subtraces from step 5; yellow and green
plots are different classes (Y-Axis: z-score).

FIGURE 6. Overlapping PoIs subtraces when selected two subtraces are
from different classes (X-Axis: Samples, Y-Axis: z-score, upper: Dataset 1,
lower: Dataset 2).

This can be done simply by taking the PoIs of step III
and performing steps III and III on another single trace.
Figure 8 shows the overlapping of all PoIs subtraces when
step 5 is applied to another single trace. Figure 8 also
shows the prominent points between the two classes. This
method is applied to the other 19 single traces. In conclusion,
we achieve 100% scalar bit recovery accuracy for all 19 single
traces.
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FIGURE 7. Overlapping PoIs subtraces when selected two subtraces are
from same class (X-Axis: Samples, Y-Axis: z-score, upper: Dataset 1,
lower: Dataset 2).

FIGURE 8. Overlapping PoIs Subtraces from another single trace: PoIs
from step 5 (Y-Axis: z-score).

B. ATTACKING DATASETS 2 AND 3: CSWAP-POINTER AND
CSWAP-ARITH
This section presents the results of the application of the
attack framework on Datasets 2 and 3. Figure 9 shows the
correlation coefficient value between the mean trace of all
subtraces and each subtrace. In Figure 9, the red points are
relatively low. A subtrace with such a low correlation coeffi-
cient typically appears in the first subtrace of all 300 single

FIGURE 9. Correlation coefficient value between mean trace of all
subtraces and each subtrace.

TABLE 4. CNN architectures in Siamese network considered for Dataset 2.

traces. Therefore, we consider the first subtraces of all single
traces as outliers. We modified the proposed method slightly
to apply it to these datasets. The first subtrace of a single trace
in both datasets is classified as a dissimilarity score (e.g., the
result of the Siamese network). For Dataset 3, we performed
additional training steps on the PoIs subtraces to achieve
better results. This section also discusses regularization tech-
niques commonly used in machine learning. We expect a
regularizationmethod to reduce the overfitting that may occur
during training. The results of each case are presented in the
following subsections.
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FIGURE 10. Accuracies of scalar bit recovery results for all single traces
on Dataset 2.

TABLE 5. CNN architectures without dropout layers for Siamese network
considered for Dataset 3 and related Dataset 3; f denotes filter, ks denotes
kernel_size, s denotes stride, and relu is activation function in all cases.

1) ATTACKS ON CSWAP-POINTER
In this part, we applied the proposed attack framework sim-
ilarly to Dataset 1. Table 4 defines the CNN architecture
applied to Dataset 2. Figure 10 shows the accuracy of the
scalar bit recovery results for all single traces and the maxi-
mum, average, and minimum accuracies of a total of 300 sin-
gle traces for the two considered cases. We achieved 100%
accuracy when dropout was considered. Without regulariza-
tion, we achieved a maximum accuracy of 98.92%, an aver-
age accuracy of 96.32%, and aminimum accuracy of 91.76%.
Figure 11 shows the scalar bit recovery accuracy distribution
for the 300 single traces.

2) ATTACKS ON CSWAP-ARITH
We transformed the proposed attack framework a bit to
achieve better results, as represented in the following with

FIGURE 11. Scalar bit recovery accuracy distribution for 300 single traces
on Dataset 2 (upper: without dropout, lower: with dropout).

FIGURE 12. t-test results of single application of Siamese network.

details. Table 5 defines the CNN architecture applied to
Dataset 3. A single application of the Siamese network could
not extract sufficient differences between the two groups on
this dataset. Figure 12 shows the t-test results for a single
application of the Siamese network.

A single application of the Siamese network could produce
some relevant features; however, the key recovery accuracy
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FIGURE 13. t-test results: after second training, after third training, and
after third training with dropout.

was quite low and the features were also noisy. Therefore,
we selected 800 PoIs and generated the PoIs subtraces. Sim-
ilarly, steps 2–5 were performed on the generated data. Thus,
the peaks became larger and more pronounced than those
from the existing t-test results. However, to achieve better
results, 80 PoIs were extracted from the new t-test results
to create new subtraces. Subsequently, the Siamese network

FIGURE 14. Accuracies of scalar bit recovery results for all single traces
on Dataset 3.

was applied once more. As shown in Figure 13, application
of the Siamese network thrice improves the results noticeably
compared to its application twice.

As illustrated in Figure 14, the results of the two-time
application have a maximum accuracy of 90.19%, an average
accuracy of 83.62%, and a minimum accuracy of 75.29%.
It also presents much more advanced results with the
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FIGURE 15. Scalar bit recovery accuracy distribution for 300 single traces
on Dataset 3.

three-time application, with a maximum accuracy of 96.07%,
an average accuracy of 88.65%, and a minimum accuracy of
80%. Moreover, the accuracy distribution for the 300 single
traces is shown in Figure 15; after the three-time application,
most single traces have over 83.62%, which is the aver-
age accuracy from the two-time application. Even when the
data that cannot accurately learn the characteristics using
a single Siamese network, better results can be obtained if

TABLE 6. CNN architectures with dropout layers for Siamese network
considered for Dataset 3 and related Dataset 3; f denotes filter, ks denotes
kernel_size, s denotes stride, and relu is activation functions in all cases.

the proposed method is repeatedly applied while reducing
the learning area. The one-shot learning with the Siamese
network proposed in this paper has a very short learning time.
Therefore, even if the proposed attack framework is applied
repeatedly as above, it yields good results in a short time.
As before, dropout was also applied to this dataset. The details
of the network used are listed in Table 6. Figures 13–15
present the results of three-time Siamese network applica-
tion along with dropout. Comparing with the t-test results
obtained without and with dropout, the noise peak is reduced
and the t-value is also increased with dropout. Moreover,
the maximum, average, and minimum accuracies increase
to 97.25%, 90.32%, and 79.60%, respectively, indicating an
overall accuracy increase [Figure 14]. Thus, for application
to to this dataset, the method proposed in this paper can be
appropriately modified to achieve better results.

V. CONCLUSION AND FUTURE WORKS
This study introduced an attack framework using one-shot
learning with a convolutional Siamese network. This is
the first such application in the use of deep learning for
side-channel attacks in a non-profiled setting. Because the
proposed method is based on one-shot learning, it can be
applied even in an environment where a small dataset is avail-
able to an attacker. Because learning is performed with only
two subtraces for a few epochs, a very short time is required to
reveal the entire secret information. Nevertheless, it achieved
100% key recovery accuracy within the target where the
countermeasure was applied (Datasets 1 and 2). This paper
presents the specific results of each step of the framework.
We showed a method to determine whether a network learns
valid features and whether an attack is successful using the
intermediate output during the framework process.

In future studies, we will omit the first step of the pro-
posed framework by zero-shot learning based on a Siamese
network [22]. Furthermore, we intend to implement an
asymmetric key encryption algorithm as an attack target by
appropriately transforming it to utilize the advantages of the
proposed method.
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