
IEEE VEHICULAR TECHNOLOGY SOCIETY SECTION

Received March 27, 2022, accepted May 27, 2022, date of publication June 8, 2022, date of current version June 13, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3181152

Beamforming Optimization for IRS-Assisted
mmWave V2I Communication Systems
via Reinforcement Learning
YEONGROK LEE 1, (Student Member, IEEE), JU-HYUNG LEE 2, (Member, IEEE),
AND YOUNG-CHAI KO 1, (Senior Member, IEEE)
1School of Electrical Engineering, Korea University, Seoul 02841, South Korea
2Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90007, USA

Corresponding authors: Young-Chai Ko (koyc@korea.ac.kr) and Ju-Hyung Lee (juhyung.lee@usc.edu)

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research
Center) support program (IITP-2022-2021-0-01810) supervised by the IITP (Institute for Information & Communications Technology
Planning & Evaluation)

ABSTRACT Intelligent reflecting surface (IRS), which can provide a propagation path where non-line-
of-sight (NLOS) link exists, is a promising technology to enable beyond fifth-generation (B5G) mobile
communication systems. In this paper, we jointly optimize the base station (BS) and IRS beamforming
to enhance network performance in the mmWave vehicle-to-infrastructure (V2I) communication system.
However, the joint optimization of the beamforming matrix for BS and IRS is challenging due to non-convex
and time-varying issues. To tackle those issues, we propose a novel reinforcement learning algorithm based
on deep deterministic policy gradient (DDPG) method. Simulation results corroborate that the proposed
algorithm converges in both systems with and without IRS, and the case with IRS improves the network
performance from as little as about 5% to as much as about 100% depending on the environments such as
the number of vehicles or deployment. Simulation results also show that in the IRS-assisted communication,
up to 10% higher network throughput can be achieved in Dense V2I network scenario compared to Sparse
case.

INDEX TERMS Intelligent reflecting surface (IRS), deep reinforcement learning (DRL), vehicle-to-
infrastructure communications (V2I), mmWave.

I. INTRODUCTION
Witnessing an exponential growth of the number of con-
nected machines, unprecedented requirements are expected
across wireless communications [1]–[3]. Examples of con-
nected machines include not only new form-factors, such
as augmented reality (AR), virtual reality (VR), and holo-
gram devices but also autonomous mobile devices, such
as an unmanned aerial vehicle (UAV) and autonomous
driving. Each requires different categories of service:
enhanced mobile broadband (eMBB), ultra-reliable low
latency communications (URLLC), and massive machine-
type communications (mMTC) as standardized in the
fifth-generation (5G) [1].

The associate editor coordinating the review of this manuscript and
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However, the existing resource (such as, sub-6 GHz) band
may not be enough to satisfy all the services and requirements
of beyond 5G (B5G) due to its resource scarcity. In this
regard, the standardization work and academic research
toward B5G or sixth-generation (6G) are already actively
underway [4]. In particular, many studies have investi-
gated the potential of other higher frequency bands such
as millimeter wave (mmWave) [5], [6] and Terahertz (THz)
bands [7]–[9].

This high-frequency band communication poses other
challenges: severe path loss and extra signal attenuation.
Particularly, the signal in such a high frequency band is
attenuated by atmospheric conditions, e.g., water vapor and
oxygen [10]. Moreover, due to its high directivity, the signal
is severely attenuated in a non-line-of-sight (NLOS) environ-
ment [10]. Nevertheless, it can be overcome by the additional
deployment of a base station (BS) or by utilizing a massive
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multiple input multiple output (MIMO) at the expense of
implementation complexity and hardware cost.

Recently, as a promising alternative solution for the chal-
lenges in the high-frequency band, an intelligent reflecting
surface (IRS) has been introduced with an emerging material
called metasurface [11]–[16]. IRS is also called a reconfig-
urable intelligent surface (RIS). Each IRS element is pro-
grammable such that the amplitude and the phase of a signal
can be reconfigured as desired. Another noteworthy advan-
tage is that IRS requires fewer RF chains than conventional
multiple antennas systems; thereby, the power consumption
and the hardware cost can be reduced. Thus, the low-cost
and reconfigurable alternative can deal with the limitations
of high-frequency communications by installing more of it
instead of conventional BS and by intelligently reconfiguring
it to obtain favorable channel conditions [13], [17]–[19].

A. RELATED WORKS
1) IRS-ASSISTED COMMUNICATION SYSTEMS
Numerous studies have been introduced to utilize the various
advantages of IRS. IRS has been mainly considered for sup-
porting the downlink multi-user multiple input single output
(MU-MISO) case in fixed terrestrial networks and its perfor-
mance and optimization have been widely studied [20]–[23].
These studies mainly focused on optimizing well-known
communication techniques such as beamforming to improve
network performance such as throughput and secrecy rate in
various situations.

In [24] and [25], the authors introduced the operation
method and the cost of the existing technologies with
which IRS can replace such as backscatter, MIMO relay,
and massive MIMO and compared them with IRS. More-
over, the IRS-assisted communication has been considered
for mobile networks as well as fixed networks, such as
UAV-enabled wireless networks and vehicular networks.
In particular, in dynamic network scenarios [26]–[28], not
only the beamforming optimization for IRS but also tra-
jectory design for UAV is addressed to fully utilize the
advantage of dynamic networks. However, since its dynamics
make the optimization problem to be non-convex, it could
be inefficient to optimize the transmit beamforming matrix
with conventional methods [29]–[31]. In order to effi-
ciently solve optimization problems that are difficult to solve
with conventional methods, a recent study introduced a
technique for optimizing the beamforming matrices in the
IRS-assisted network to which deep reinforcement learning is
applied [32]–[34].

In some studies, feasibility studies of IRS technology have
been conducted in various network scenarios, such as opti-
mizing the transmit beamforming or IRS reflecting matrix to
increase network performance such as coverage and spectral
efficiency. However, few studies have contributed to careful
consideration of the channel characteristics of IRS-assisted
communications, which directly affect coverage and spectral
efficiency.

2) mmWave VEHICLE-TO-INFRASTRUCTURE
COMMUNICATION SYSTEMS
The growth of automation technologies leads to the openness
of mobile networks advancing toward 6G. To satisfy the
requirements of enhanced throughput and reduced latency,
the high-frequency bands, mmWave or THz band, are also
considered in vehicle-to-infrastructure (V2I) or vehicle-to-
everything (V2X) communications. As pointed out in [35]
and [36], the vehicle communication usingmmWave depends
on LOS and focused-reflected paths, not on scattering and
diffracting paths. Some studies have analyzed the vehicle
communications with mmWave band to tackle the issues and
introduced some challenges [37]–[40].

IRS can also be leveraged for the mmWave-V2X net-
works, particularly in urban environments which suffer from
securing LOS channel conditions and from limited coverage.
Using IRS instead, costs can be reduced compared with
conventional BS to guarantee coverage and LOS channels in
the mobile mmWave-V2X network scenario; thereby, it is of
great importance to optimize the beamforming architecture to
provide more wide coverage. However, there are only a few
studies that have addressed the issue of beamforming design
of IRS-assisted networks in the mobile networks [41], [42].

B. CONTRIBUTIONS AND PAPER ORGANIZATION
In this paper, we maximize the network throughput by jointly
optimizing the beamforming matrix of BS and reflecting
matrices of IRS in mmWave V2I network with IRS-assisted
communication systems. To do so, the deep reinforcement
learning (DRL) method is proposed by taking into account
the characteristic of the non-stationary V2I network environ-
ment [43]. The main contributions of this work are summa-
rized as follows:
• We jointly optimize the BS beamforming matrix and the
IRS reflecting matrices to maximize the throughput of
the IRS-assisted mmWave V2I network.

• We propose a novel DRL algorithm based on deep
deterministic policy gradient (DDPG) method [44],
to address the non-convex and time-varying optimiza-
tion while considering the mmWave V2I network chan-
nel and environment.

• Simulation results demonstrate that the proposed
DDPG-based algorithm converges and IRS helps
improvemmWaveV2I network performance.Moreover,
the comparison results are presented over the number of
vehicles and the network density.

The remainder of this paper is organized as follows.
In Section II, IRS-assisted mmWaveV2I communication sys-
tem model is presented. In Section III, the rate maximization
problem is proposed. In Section V, simulation results are
provided, followed by concluding remarks in Section VI.
Notation: The boldface capital letters and lower case

letters denote matrices and column vectors, respectively.
Capital calligraphic letters denotes finite discrete set and
| · | denotes cardinality of the set if applied to the finite
discrete set, or absolute value if applied to the complex
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FIGURE 1. An illustration of IRS-assisted mmWave V2I network model.

number. For example, |M| is the finite discrete set of the BS
antennas. (·)H, (·)T and (·)−1 denote the Hermitian transpose,
the transpose and matrix inversion of matrices or vectors,
respectively. tr(·) and diag(·) denote trace and diagonal matrix
with elements in vector. CA×B and RA×B denote the space
of A × B complex-values matrices and real-values matrices,
respectively. E [·] denotes the statistical expectation. Re(·)
and Im(·) denote the real and imaginary part of a complex
number, respectively.

II. SYSTEM MODEL
As illustrated in Fig. 1, we consider the multi-IRS-assisted
mmWave V2I network scenario. In particular, to consider a
practical environment, we here consider an urban case with
UMi Street Canyon model [37] in which a base station (BS)
and multiple IRSs exist around the street. Table 1 gives the
description of the symbols and notations used throughout this
paper.

A. CHANNEL MODEL
In this paper, we assume that the V2I network operates
in the mmWave band. In particular, throughout this paper,
we consider the Saleh-Valenzuela (SV) channel model [5]
with slow fading, which is a conventional channel model of
mmWave MIMO case. In addition, Doppler effect [37] is
further considered by taking account of the characteristics of
mobile V2I network. This channel model can be expressed by
baseband equivalent channel matrix H given as

H(t) = HNLOS(t)+HLOS(t), (1)

where HNLOS(t) and HLOS(t) are denoted as (2) and (3),
shown at the bottom of the page, respectively. In (2) and (3),
C is the number of clusters, Li is the number of
paths for the i-th cluster, βi,j is the path loss, and

TABLE 1. Description of symbols and notations.

fi,j = vR cos (ϕRi,j) sin (θ
R
i,j)/λ is Doppler frequency shift,

ϕRi,j and ϕ
T
i,j denote azimuth angle of arrival and departure,

θRi,j and θ
T
i,j are the elevation angle of arrival and departure,

respectively, all for the j-th ray of the i-th cluster.With a slight
abuse of notation, (·)T and (·)R for scalar value represents the
value for transmitter and the receiver, respectively. An array
response vector of uniform linear array can be expressed as

a(ϕi,j) =
1
√
M

[1, ej2π
d
λ
sinϕi,j , . . . , ej2π

d
λ
(M−1) sinϕi,j ]. (4)

Unlike aT and aR, the array response vector of IRS,
aI(ϕIi,j, θ

I
i,j) is based on a uniform planar array (UPA), not

a uniform linear array (ULA), which can be expressed as
following

aI(ϕIi,j, θ
I
i,j) =

1
√
N
[1, ej2π

d
λ
sinϕIi,j cos θ

I
i,j , . . . ,

× ej2π
d
λ
(M−1) sinϕIi,j cos θ

I
i,j ], (5)

where ϕI and θ I denote azimuth and elevation angle of the
j-th ray of the i-th cluster for the IRS elements, respectively.
Note that in UPA vector, not only the azimuth angle but also
the elevation angle are considered.

HNLOS(t) =

√
MN∑Ncl
i=1 Li

Ncl∑
j=1

Li∑
l=1

βi,je−j2π fi,jtaR(ϕRi,j, θ
R
i,j)(a

T(ϕTi,j, θ
T
i,j))

H), (2)

HLOS(t) = IL(d0)
√
MNejη[n]β0e−j2π f0taR(ϕR0 , θ

R
0 )(a

T(ϕT0 , θ
T
0 ))

H, (3)
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For the detail of channel, the parameters of LOS in (3)
are expressed, similarly to parameters of NLOS, in (2) by
using the subscript 0. In (3), η[n] ∼ U(0, 2π ) denotes a
random variable that changes the phase according to the
environment, and IL(d0) is a function for LOS probability at
the distance d0 between the transceiver. As considered in [12],
we assume that the channel state can be perfectly estimated
by using channel estimation techniques for various mmWave
communication systems.

B. V2I NETWORK SCENARIO
Consider that a BS is equipped with M antennas and com-
municating with K vehicles each equipped with a single
antenna (M ≥ K ). In addition, I IRSs assist the network
between BS and vehicles to enhance communication perfor-
mance. We assume that all IRSs are equipped with R passive
reflective elements. For mathematical convenience, through-
out this paper, we denote the set of BS antenna, IRS, elements
of IRS, and vehicle as M ∈ {m = 1, 2, . . . , M},
I ∈ {i = 1, 2, . . . , I }, R ∈ {r = 1, 2, . . . , R}, and
K ∈ {k = 1, 2, . . . , K }, respectively.
We also denoteHi ∈ CR×M as the channel matrix between

BS and the i-th IRS, gi,k ∈ CR×1 as the channel vector
between the i-th IRS to the k-th vehicle, and hk ∈ CM×1

as the channel matrix from the BS to the k-th vehicle.
By following the discrete-time state-space model [45],

[46], we consider that time is discretized in slots of
length δ. Then, the position of vehicles, q[n] =

[
q1[n],

q2[n], . . . , qK [n]
]T, at time n can be expressed as

q[n+ 1] = q[n]+ v[n]δ +
1
2
a[n]δ2, ∀n, (6)

where qk [0] is the initial position of the vehicle k at time
n = 0, assuming that each vehicle has a different initial
position. This position of vehicles constraint can be written
as

qmin ≤ qk [n] ≤ qmax, ∀k, n, (7)

where qmin = [qmin,x , qmin,y]T is the minimum value and
qmax = [qmax,x , qmax,y]T is the maximum value of coordi-
nate in 2-D Cartesian coordinate plane, respectively.

Similar to (6) and (7), the velocity of the vehicles, v[n] =
[v1[n]v2[n] . . . vK [n]]T , at time n can be also expressed as

v[n+ 1] = v[n]+ a[n]δ, ∀n, (8)

where vk [0] is the initial velocity of the k-th vehicle.
In our V2I network model, there are two types of com-

munications link; i) the direct link from BS-to-vehicle, and
ii) the reflected link from BS-to-IRSs-to-vehicle, as depicted
in Fig. 1. For ease of analysis, the following conditions are
assumed; the signals of both links can be transmitted to the
receiver synchronously, there is no reflection between IRSs,
and there is a central controller between BS and IRSs which
coordinates them to synchronize and for beamforming.

C. NETWORK MODEL
Let us denote wk ∈ CM×1 and W ∈ CM×K for the transmit
beamforming vector and matrix at BS for the vehicle k ,
respectively. Then we can write the transmit signal, x, at BS
as

x =
K∑
k=1

wksk , (9)

where sk ∼ CN (0, 1) is the transmitted symbol for the
vehicle k at BS. In addition, there is a maximum transmis-
sion output limit in BS. We consider the following power
constraint at BS as

E
[
‖x‖2

]
= tr

(
WWH

)
≤ Pt , (10)

where Pt is the total transmit power at BS.
The i-th IRS reflecting elements can be expressed as

αr,i = βr,iejθn,i , where βr,i ∈ [0, 1] and θr,i ∈ [0, 2π ]
are the amplitude and the phase of the i-th IRS’s the
r-th elements, respectively. Additionally, the i-th IRS reflect-
ing matrix is a diagonal matrix denoted by 8i =

diag
(
α1,i, α2,i, . . . , αR,i

)
∈ CR×R. We assume that ideal

IRS reflecting elements mounted on all the IRSs that do not
affect the power of the signal like a mirror. This assumption
can be denoted by

∣∣αr,i∣∣ = 1 for all the values of n and i.
In other words, we suppose that βr,i = 1 for all r and i for the
remainder of the paper.We also assume that the IRS reflecting
elements are configured in a square shape. That is, when the
total number of IRS elements is R, the number of horizontal
and vertical elements can be considered as

√
R.

In our network configuration, there are two networkmodel,
i.e., single-hop and multi-hop. For single-hop case, BS can
transmit a signal directly to vehicles, i.e., BS-vehicles, which
represents the conventional V2I network model. While, for
multi-hop case, IRS and BS support the V2I network, i.e.,
BS-IRS-vehicles and BS-vehicles; That is, there is not only a
direct link from BS but also a multi-hop link from BS-IRS.

1) SINGLE-HOP
For single-hop case, the received signal at the vehicle k , yk ,
can be expressed as

ysk =
K∑
k=1

hHd,kwksk︸ ︷︷ ︸
desired signal

+

K∑
l=1,l 6=k

hHd,kwlsl︸ ︷︷ ︸
interference signal

+nk ,
(11)

where hd,k ∈ CM×1 is the baseband equivalent channel
from BS to vehicle k , sk denotes the transmit signal for
the vehicle k and nk ∼ CN

(
0, σ 2

k

)
is the independent and

identically distributed (i.i.d.) Gaussian noise at the vehicle k .
Then, SINR for the single-hop link at vehicle k , γ sk , is given
by

γ sk =

(
hHd,kwk

)2(∑K
l=1,l 6=k h

H
d,kwl

)2
+ σ 2

k

, (12)
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and the network throughput of the single-hop network model
is given as

Cs
=

K∑
k=1

log2(1+ γ
s
k ). (13)

2) MULTI-HOP
Single BS and multiple IRSs are connected to multiple vehi-
cles in the multi-hop network model. We consider that the
received signal yk at the vehicle k is the sum of all signals
from the IRSs and BS, which can be expressed as

ymk = (hHd,k +
I∑
i=1

gHk,i8iHi︸ ︷︷ ︸
reflected link channel

)wksk + nk , (14)

and as in single-hop case, SINR for the multi-hop link at
vehicle k , γmk , is given by

γmk =

∣∣∣(hHd,k +∑I
i=1 g

H
k,i8iHi)wk

∣∣∣2∣∣∣∑K
l=1,l 6=k (h

H
d,k +

∑I
i=1 g

H
k,i8iHi)wl

∣∣∣2 + σ 2
k

. (15)

Thus, the network throughput of the multi-hop network
model is given as

C =
K∑
k=1

log2(1+ γ
m
k ). (16)

III. NETWORK THROUGHPUT MAXIMIZATION FOR
IRS-ASSISTED mmWave V2I NETWORKS
This section addresses the network throughput maximiza-
tion problem for the multi-IRS-assisted mmWave V2I net-
work by optimizing the beamforming matrices. In this paper,
we define the overall performance of the system for one time
slot as the network throughput. We also define the average
value of network throughput over the entire time as average
network throughput (ANT).

A. PROBLEM FORMULATION
Throughout this paper, we aim to jointly optimize the
BS transmit beamforming matrix W and the IRSs reflect-
ing beamforming matrices 8i for maximizing the network
throughput. The following problem, (P1), corresponds to the
network throughput under the constraints related to the char-
acteristics of IRSs and the actual conditions of vehicles given
as

∗ (P1) max
W,8i

C

s.t. (6)− (8)

tr
(
WWH

)
≤ Pt , (17a)∣∣αr,i∣∣ = 1, ∀r, i (17b)

8i = diag(α1,i, α2,i, . . . , αR,i), ∀i, (17c)

where Pt denotes the transmission power of BS. In (P1),
(17a) is the power contraint at BS while the constraints

of (17b) and (17c) represent the characteristics of the IRSs
reflecting beamforming matrices. Each of these represents
a form of aan IRS reflecting beamforming matrix that an
IRS reflecting element reflects all the transmitted signals
without power loss.

However, since the problem (P1) is non-convex with
non-convex objective functions and constraints, it is chal-
lenging to solve it with general convex optimization tech-
niques. Although there are some methods to approach the
non-convex optimization problem that provide sub-optimal
solutions such as the successive convex approximation (SCA)
method [47], [48], but that is still difficult to apply to this
system model, as the optimization problem is composed of
some entities with stochastic channel. Furthermore, the vari-
ables considered in this system are too many to utilize the
conventional exhaustive search-based method. Thus, we pro-
pose a joint beamforming method via a DRL method, which
is elaborated in the following section.

IV. BEAMFORMING OPTIMIZATION FOR IRS-ASSISTED
V2I NETWORKS VIA DEEP REINFORCEMENT LEARNING
In this section, we introduce the DRL-based beamforming
optimization method. Firstly, the MDP model is designed,
which casts the optimization problem (P1). Next, our pro-
posed algorithm, based on DDPG [44], is introduced.

A. MARKOV DECISION PROCESS MODELING
Wedesign the problem (P1) into environment, state, behavior,
and reward of the MDP model.

1) ENVIRONMENT
Our environment consists of the proposed communication
systems, in which there is an agent that interacts with this
environment to find the optimal actions and policies that
maximize cumulative rewards. The environment includes all
information related to the networks such as the BS, vehicle
and IRS. Specifically, the transmission power of BS, the
characteristics of IRS elements, the state of vehicles, and the
channel information are included in the environment. At each
time step n, an agent observes a state s[n] from the state
space S, accordingly takes an action a[n] from the action
space A based on a policy π (s, a), which is a mapping from
the state space to the action space. Let us define the cardi-
nalities of the state space and action space as |S| and |A|,
respectively. After performing the action, the current state
s[n] of the environment changes to the next state s[n + 1].
In addition, the agent receives current reward r[n].
We point out that V2I network environment has a periodic

pattern such that the movement of vehicles in this scenario
follows a similar pattern for a certain period. Thus, we set one
episode of the environment as n = 0, · · · ,T −1 and consider
the initial time slot n = 0 and the final time slot n = T − 1.

2) STATE
In this system, the agent obtains a state of the system
by observing the environment. We aim to optimize the
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BS beamforming matrix and the IRS reflecting matrix to
maximize the network throughput of the network scenario.
Therefore, observable information related to this network
throughput is included in the state. In particular, the state
includes the followings: the BS transmit beamforming matrix
W[n], the IRSs reflecting matrices 8i[n], and the channel
information (Hi[n], gk,i[n], and hk,i[n]).
Then we can write the state s[n] as

s[n] = {W[n],8i[n],Hi[n],

× gk,i[n],hk,i[n], i ∈ I, k ∈ K}, ∀n. (18)

3) ACTION
In our problem (P1), the BS transmit beamforming matrixW
and the IRSs reflecting beamforming matrices 8i are jointly
optimized to maximize the total throughput of the system.
Accordingly, the action space of the system includes those
matrices. Thus, the action a[n] is given by

a[n] = {W[n],8i[n], i ∈ I} , ∀n. (19)

Note that the beamforming vectors and reflecting elements
are continuous values rather than discrete values; accordingly,
the action is also determined in the continuous action space.

4) REWARD
The aim of optimization problem (P1) is to maximize the total
network throughput of IRS-assisted V2I networks. We set the
reward function as the network throughput of the multi-hop
network in (16). Therefore, for the time slot n, the instanta-
neous reward r[n] is given by

r[n] = C[n], ∀n, (20)

where C[n] denotes the sum rate of the system at the time
step n.

B. BEAMFORMING OPTIMIZATION VIA DRL
Under the designed MDP model, we employ a DDPG-based
DRL algorithm for beamforming optimization. Before
describing the considered DDPG algorithm, we firstly intro-
duce a deep Q-Network (DQN), which is the basis of our
algorithm. For the convenience of expression, state s[n],
action a[n], and reward r[n] are shortened as sn, an and rn,
respectively.

1) DEEP Q-NETWORK
Deep Q-Network (DQN) is one of the most widely used rein-
forcement learning algorithms and is based on model-free,
value-based and off-policy. The method learns the optimal
policy to maximize cumulative future rewards. The cumula-
tive reward R at time n is expressed as

Rn =
∞∑
t=n

γ t−nrt , (21)

where γ is the discount rate, which distinguish between
present and future rewards by setting a higher weight to the
present reward, e.g., 0 ≤ γ ≤ 1.

We define the expected sum of future reward as the action-
value function, Q(s, a), when the action, a, is performed in
a state s with a policy π . The action-value function, Q(s, a),
is also called Q-value. The agent needs to find the optimal
Q-value to maximize the reward and the optimal action-value
function Q∗(s, a) to find this optimal value is defined as

Q∗(s, a) = max
π

Eπ [Rt |st , at , π]. (22)

This optimal Q-value is a function that can obtain the best
reward when action a is taken in state s. The role of policy π
is to calculate the Q-value by mapping state s and action a.
The model-free DRL trains the policy by using a Bellman
equation [49] to find the optimal Q-value, which can be
expressed as

Q∗(s, a) = Es′ [rt + γ max
a′

Q∗(s′, a′)|s, a]. (23)

However, in reality, the optimal Q-value cannot be found
due to the lack of information, so a function that converges
to the optimal Q-value is found by updating the Q-value
through the policy π . This operation of repeatedly updating
the Q-value is expressed as an equation as follows

Qπn+1(s, a) = E[r + γEr,a′ [Qπn (s
′, a′)], (24)

and Qπn will converge to Q∗ as n goes to infinity.
This iterative process, called value iteration, enables the

problem in (24) to find the optimal Q-value. However, note
that the iterative training and learning becomes challenging
as the dimension of state and action increases since cause a
severe complexity in calculation of Q-value and storing data.
To solve this issue, the authors of [50] proposed a method
to find the approximate Q-value through DNN instead
of using the Q-table created by finding the deterministic
Q-value, of which algorithm is called a deep Q-Network
(DQN). Here, the loss function Li is given as

L(θi) = Es,a,r,s′ [(yi − Q(s, a; θi))2], (25)

where

yi = Es,a,r,s′ [r + γ max
a′

Q(s′, a′; θi−1)|s, a], (26)

and θ denotes DNN parameters for finding the optimal policy
by stochastic gradient descent (SGD) method. Therefore,
we can calculate the optimal weight θ through SGD of the
loss function as follows

∇θiLi(θi) = Es,a,r,s′ [(r + γ max
a′

Q(s′, a′; θi−1)

−Q(s, a, ; θi))∇θiQ(s, a; θi)]. (27)

However, the trajectory data used in (27) and the value
function are temporally correlated while learning the policy,
which degrades the performance. In particular, if samples are
correlated, this method does not perform well because the
SGD method assumes that each sample is independent and
evenly distributed. Note that DQN method uses two tricks to
address this issue: i) the experience is not used for learning
immediately, but stored in the replay buffer; and ii) when
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data accumulates more than a certain amount, it is randomly
extracted and used for learning. This idea is called experience
and replay, and it makes the samples independent.

2) DEEP DETERMINISTIC POLICY GRADIENT
For the DQN method, there are some hurdles for the appli-
cation. The amount of computation rapidly increases as the
number of actions or states increases due to the burden of
Q-value calculation. Besides, it can only deal with discrete
actions, not with continuous ones. In value-based methods
such as DQN, values must be discretized to the handle con-
tinuous action, but this method has some limitations. When
the action space is discretized, the action space increases
exponentially, making learning almost impossible, and since
the optimal action can also be removed in the discretization
process, it is difficult to find the desired action.

Most of the algorithms used to solve this problem are
based on policy gradient (PG), especially, actor-criticmethod.
In particular, compared to other stochastic policy gradient
methods, the deterministic policy gradient (DPG) method
is learned through a deterministic action space rather than
considering the probability distribution of the action space,
so the amount of computation is small and convergence is
fast [51].

In this paper, we consider the deep deterministic policy
gradient (DDPG) that combines the advantages of DQN and
DPG for our system model. DDPG was introduced in [44]
by improving the conventional DPG, amodel-free, off-policy,
actor-critic learning method. We make some modification of
the original DDPG by using the experiance replay such as
in DQN. Unlike many actor-critic methods that are on-policy
methods, DDPG is also applicable because it is an off-policy
method. There are two more problems, one of which is the
problem of updating the actor network and the critic network
using the gradient obtained from the time difference (TD)
error.

The main critic network Q(s, a|θQ) and the main actor
network µ(s|θµ) can be expressed as

Q(s, a) = E[rγ1 ]S1 = s,A1 = a;π ], (28)

µ(s) = E[rγ1 ]S1 = s;π ]. (29)

In addition, time delayed copy of the critic and the actor net-
work are defined as Q′(s, a|θQ

′

) and µ′(s|θµ
′

), respectively.
Those networks are also called target critic network and target
actor network, respectively. When selecting the action for
the next time step through an actor network µ′(s|θµ

′

) in
DDPG, a random action is selected for exploration. In the
paper that first proposed DDPG [44], Ornsten-Uhlenbeck
(OU) noise derived from OU process N is used. Random
action is selected by adding this noise to the output value of
the network. The formula for selecting a random action in
DDPG in this way can be written as

al = µ(sl |θµ)+Nl . (30)

The time difference target yi and the loss function L to be
used in the critic network can be written respectively as

yi = ri + γQ′(s′, u′(s′; θu
′

)|θQ
′

), (31)

L =
1
Nb

∑
i

(yi − Q(si, ai|θQ))2. (32)

The gradient of objective function can be calculated as

∇θJ (πθ ) =
∫
S
ρπ (s)

∫
A
∇θπθ (a|s)Qπ (s, a)da ds

= Es∼ρπ ,a∼πθ [∇θ logπθ (a|s)Q
π (s, a)], (33)

where J is the objective function, in the form of a discounted
cumulative reward, which is given as

J (θ ) = E[Q(s, a)|πθ (a|s)Qπ (s, a)]. (34)

For the next learning step, the parameters of the main actor
network θu are updated as θµ ← θµ − lrµ∇θµ . Finally, the
target critic and actor network are updated through a soft
update target parameter τ , which controls the learning fre-
quency of the target networks. This parameter update process
is summarized as

θQ
′

← τθQ + (1− τ )θQ
′

,

θµ
′

← τθµ + (1− τ )θµ
′

. (35)

The following subsection introduces our proposed rein-
forcement learning algorithm for beamforming optimization
based on the DDPG algorithm with some modifications.

3) PROPOSED DDPG-BASED ALGORITHM
Fig. 2 shows the training process of our proposed algorithm
for IRS-assisted mmWave V2I communication systems.
As described in Section II, we aim to jointly opti-
mize the BS transmit beamforming matrix W and the
IRSs reflecting matrices 8i. The real and imaginary ele-
ments, <(wm,k ) and =(wm,k ), of W are continuous in the
range [−1, 1], respectively. Similarly, the amplitude and the
phase of IRS elements βr,i and θr,i of 8i are also continuous
in the range [0, 1] and [0, 2π], respectively. Also, all the
channel matrices have continuous complex-values. Note that
our MDP model consists of continuous values for both states
and actions.

In DRL, a non-linear activation function is used to prevent
a situation inwhich gradient vanishes or explodeswhen learn-
ing a neural network. Since most of the non-linear activation
functions have very limited domains, our system model does
not handle a wide range of values such as elements of a
channel matrix. Therefore, to solve the gradient vanishing or
exploding problem, ReLU6 is used for an activation function,
as well as the operation of the batch normalization [52].

First, the activation function, ReLU6, is a modified form
of the widely used ReLU [53]. The ReLU function has the
advantage of efficiently solving the gradient vanishing or
exploding problem, and ReLU6 has an additional advantage
that it can make a quick learning when the feature is sparse
like our system. Also, batch normalization is a method of
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FIGURE 2. Learning diagram of the proposed DDPG-based algorithm.

normalizing the mean and variance of input values for each
layer in the neural network so that the distribution is not
deformed [52].

V. NUMERICAL EVALUATIONS
This section presents the numerical results of the proposed
joint beamforming optimization.We, here, compare and eval-
uate the proposed scheme by configuring various network
scenarios by changing the number of BS antennas, vehicles,
and IRSs.

A. SIMULATION SETUP
1) ENVIRONMENT
In this section, we consider a special case in Section II where
all the vehicles are moving at a constant velocity in the
x direction. The initial position of vehicles is as qmin,x = 0 in
the x-coordinate. Therefore, the discrete position of vehicles
in this environment can be expressed as

0 ≤ qk [n] ≤ qmax,x , ∀k, n, (36)

where qmax,x is the maximum in the x coordinate that vehicle
can reach and the velocity of vehicles is assumed to be a
constant, v0, given as

v[n] = v0, ∀n. (37)

In our simulation situation, we assume that the episode end
after a certain period of time T , regardless of the location of
the car. Even though qmax,x can be any value, we set qmax,x to
qmax,x = qK [T − 1] which is the largest value of position
of any vehicles. We include the position and speed of the
vehicle defined in this section as additional constraints in
(P1). The detail of considered environment configuration is
illustrated in Fig. 3. In this environment, we set T = 50 with
a time step size of 0.1 [sec] as an example. Unless otherwise
stated, the parameters related to BS, IRS, and vehicle are

FIGURE 3. System model of the simulation environment.

used as summarized in Table 2. Throughout this section, ANT
is regarded as the main performance metric of our network
scenario defined as

ANT =

∑L
l r[n]
T

[bps/Hz]. (38)

2) DRL NETWORK
The network structure of the proposed DDPG-based algo-
rithm is shown in Table 3. In the case of online and target
actor networks, since the entire action is received as input, the
number of nodes is the same as the size of the action space
A. Since online and target critic networks receive both state
and action as inputs and determine the Q value, the number of
nodes is equal to the sum of the state space S and the action
space A.

We employ Tensorflow 2 with some modifications to han-
dle the complex values to implement the proposed algorithm.
In our networks considered for the simulations, there are two
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Algorithm 1 Proposed DDPG-Based Algorithm
Input: Learning parameters : E,T , γ, τ,B,Nb, µa, µc, τa

and τc
1: Randomly initialize critic network Q(s, a|θQ) and the

actor network µ(s|θµ) with weights θQ and θµ;
2: Initialize the target critic network Q′ and the target actor

network µ′ with weight θQ
′

← θQ and θµ
′

← θµ;
3: Initialize replay buffer R;
4: for episode = 1 to E do
5: Initialize the environment and a random OUnoise

process N for action exploration;
6: Receive initial observation state s0;
7: for l = 0 to T − 1 do
8: Executes the beamforming design based on the

state sl and the policy µ, and al = µ(sl |θµ)+Nl ;
9: Perform the action al and records reward rl and

the next state s′;
10: Store the transition (sl, al, rl, s′) in R;
11: end for
12: Sample a random mini-batch of Nb transitions from

R;
13: Set yi = ri + γQ′(s′, µ′(s′; θµ

′

)|θQ
′

);
14: Minimize the loss function to update the critic net-

work:
L = 1

N

∑
i(yi − Q(si, ai|θ

Q))2,
15: Update the online critic network weights θQ as:

θQ← θQ − lrQ∇θQ ;
16: Update the online actor network by sampled stochas-

tic policy gradient ascent as:
∇θµJ ≈ 1

N

∑
i ∇aQ(s, a)|s=si,a=µ(si)∇θµµ(s)|s=si ;

17: Update θu can be expressed as:
θµ← θµ − lrµ∇θµ ;

18: Soft update the target critic network and the target
actor network:
θQ
′

← τθQ + (1− τ )θQ
′

,

θµ
′

← τθµ + (1− τ )θµ
′

;
19: end for
20: return P

hidden layers with the number of each node given as 400 and
300, respectively. Note that all the layers are fully connected.
The activation function of the hidden layer uses the ReLU6
function, which can solve the gradient vanishing problem that
occurs during training in DRL [53]. The activation function of
the output layer of the critic network is used only to determine
the Q value. Therefore, the output value is used by using a
linear function as the activation function. Unlike the critic
network, in the actor network, since the behavior is the beam-
forming matrix of the BS and the reflecting element of the
IRS, the range of the network output value must be in [−1, 1]
according to the constraint of the optimization problem. Since
the most used activation function in this situation is the tanh
function, it is used as the activation function of the actor

TABLE 2. Environment and learning parameters.

network [54], [55]. In the learning process, the parameters
specified in Table 2 are used unless otherwise stated.

B. CONVERGENCE
Firstly, we present the convergence behavior of the proposed
DDPG-based algorithm in Fig. 4. Particularly in Fig. 4(a)
shows convergence curve as iterations go. Note that the
variance and the mean of each result are drawn in bold
and shaded forms, respectively, by conducting three different
simulations. Here, three cases are considered, 1) No-IRS,
2) Single-IRS and 3) Multi-IRS. In this section, We consider
that Multi-IRS case has two IRSs.

Fig. 4(b) shows the result for the last 5000 episodes in
Fig. 4(a) to show and compare the convergence and vari-
ance of each. It is shown that Multi-IRS obtains the best
performance on average, although Single-IRS and Multi-IRS
achieve a comparable ANT; while the variance of Multi-
IRS is relatively small compared to Single-IRS and No-IRS.
On the other hand, Fig. 4(c) shows the average result for
the last 5000 episodes in Fig. 4(a) to explicitly compare
the converged policy of each simulation. The achievable
throughput after convergence in each case is 14.7 for Multi-
IRS, 14.25 for Single-IRS, and 9.75 for No-IRS. Multi-IRS
converges around 5500 episodes, while Single-IRS and No-
IRS take around 4000 and 2000 episodes, respectively. Those
results suggest that Multi-IRS achieves the best throughput
performance at the expense of training complexity.

C. AVERAGE NETWORK THROUGHPUT
We compare the ANT performance of our proposed schemes
denote as w/ IRS-DRL, with two different schemes, denoted
as Random and w/o IRS-DRL.
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TABLE 3. Network structures of the proposed DDPG-based algorithm.

FIGURE 4. (a) Convergence curves of the proposed-DDPG algorithm, (b) Enlarged figure of last 5000 episodes in Fig. (a) and (c) Converged ANT curve
obtained through the optimal policy.

1) W/WWWWW/IRS-DRL (Proposed)
In a situation that BS and IRS are beamformed together using
the proposed DDPG-based DRL, the optimal BS beamform-
ing matrix and IRS reflecting matrix are selected to maximize
the ANT.

2) W/O IRS-DRL
It uses the same learning method as w/ IRS-DRL, that is, DRL
based on DDPG, but considers the situation where there is no
IRS in the environment. That is, it is a method of maximizing
the ANT by selecting only the BS beamforming matrix.

3) RANDOM
In the same environment as w/ IRS-DRL, this is a method
of randomly selecting the BS beamforming matrix and IRS
reflecting matrices. Because the matrices are chosen ran-
domly, the performance of this scheme is said to be the actual
lower bound. The channel is generated byMatlab simulation
and the simulation results are averaged over 10,000 times.

Fig. 5 and Table 4 show the convergence curve and the
convergence values of each algorithms, respectively. Fig. 5(a)
and 5(b) shows the baseline convergence curves in M = 4,
K = 2 and M = 4,K = 4, respectively. First, Random
selects the elements of BS beamforming matrix and IRS
reflecting matrix completely randomly, so the performance
is very poor in both cases.

TABLE 4. Comparison of ANT.

In Fig. 5(a), we compare the ANT between our proposed
scheme w/ IRS-DRL, and w/o IRS-DRL and show that w/ IRS-
DRL scheme provides the throughput about 46.55% higher.
Similarly, in Fig. 5(b), the ANT at w/ IRS-DRL is about
52.41% higher. This means that the use of IRS is a good
way to improve communication performance in our proposed
simulation environment.

D. IMPACT OF THE NUMBER OF VEHICLES
We analyze and compare the effects of IRS and the number of
vehicles on the ANT. For convenience of comparison, when
using IRS, we consider that only one IRS is used. In addition,
the number of BS antenna is fixed toM = 8, and the number
of IRS reflecting elements is fixed to R = 16 as an example.

Fig. 6, shows the ANT according to the number of vehicles.
In both Single-IRS and No-IRS cases, the ANT increases as
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FIGURE 5. Convergence curves for comparison between out method and
baselines.

FIGURE 6. Learning diagram of the proposed DDPG-based algorithm.

the number of vehicles increases. In particular, we can see
that the ANT of Single-IRS enhances significantly compared
to the case of No-IRS at the number of vehicles increases.
Those trends are related to the channel rank [56]. The rank in
the MIMO channel is sufficient when the number of vehicles
is relatively small compared to the number of BS anten-
nas. However, when the difference between the number of

TABLE 5. ANT comparison for network density.

BS antennas and the number of vehicles is small, the gain
through the channel cannot be sufficiently obtained because
the channel rank is low. Remarkably, the IRS improves over-
all channel condition by providing an additional channel rank
and reducing correlation between different channels, as in the
case of K = 8.

E. IMPACT OF NETWORK DENSITY
Table 5 shows the ANT over the network density. Note that it
is assumed the initial location of vehicles inDense and Sparse
deployments are qk [0] = [35 + 10 k, 25]T and qk [0] =
[33.3 k, 25]T, respectively, while the period of this result is
considered with a short time for T = 5, for convenience.

For Sparse network scenario, the network throughput
improves by about 7.53% in Single-IRS and about 7.86% in
Multi-IRS compared with No-IRS. Besides, for Dense case,
the network throughput improves about 9.41% in Single-
IRS and about 14.56% in Multi-IRS compared with No-IRS.
As shown in this table, IRS can enhance the network through-
put and multiple IRS further improve it. It is worth noting that
in a dense network environment, in general, the interference
power may significantly degrade the network performance.
Nevertheless, in IRS-assisted communications, the reflective
elements mitigate interference power well, improving overall
network performance even in the dense network environment.

VI. CONCLUSION
This paper investigated a system in which the BS and the
IRS perform beamforming jointly for mmWave V2I commu-
nications network. We proposed a novel DDPG-based DRL
algorithm that optimizes the BS beamforming matrix and the
IRS reflecting matrices to maximize network performance.
Simulation results showed that IRS could improve the net-
work performance in mmWave V2I communications network
in dense as well as sparse network environments. Improving
reinforcement learning structures and algorithms to support
more base station antennas, IRS reflective elements, and
vehicles could be an interesting future research. It is also
interesting to consider generalized situations, such as those in
which there are vehicles moving in random directions rather
than following a road. Additionally, extending the optimiza-
tion and considering beam tracking may be of interest for
future studies. It is also worth investigating flexible MADRL
frameworks to adapt quickly to a new environment with meta
and split learning [57].
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