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ABSTRACT The importance of resources for balancing electricity supply and demand is increasing with the
decentralization of power systems; the role of demand response is being emphasized to effectively deal with
the volatility of renewable energy. In this study, a model to participate in the electricity market, especially
energy and demand response, utilizing demand response resources by compensating for the uncertainty of
renewable energy products is proposed. The probabilistic distribution of photovoltaic generation, derived
based on stochastic programming, was used as a framework for solving the optimization problem by
reflecting the uncertainty of photovoltaic generation. Moreover, a demand response modelling approach
to enhance flexibility was developed by estimating the maximum potential demand response capacity in an
industrial load. The output of these models was used to derive an optimal operational strategy to participate in
the day-ahead market. The simulated Korean electricity market results confirmed that the virtual power plant
aggregator’s profits increased when using the suggested strategy to utilizing demand response resources.

INDEX TERMS Virtual power plant, demand response, uncertainty, stochastic programming, optimization.

NOMENCLATURE
PARAMETERS
µk,m,t Average power generation of PV.
σk,m,t The standard deviation of PV.
Pk,t Power generation of PV.
Ppredk,t The predicted value of PV generation.
Peck,t Power generation with error compensation of PV.
CPV Rated capacity of PV.
λt Wholesale electricity price.
ζ
ferr
t Forecasting incentive settlement price at time t .
ηt Imbalance penalty.
ρ The average successful bid rate in the day-ahead

economic DR market.
ϕincl,t DR increment amount for error compensation.
ϕredl,t DR reduction amount for error compensation.

The associate editor coordinating the review of this manuscript and
approving it for publication was Madeleine Gibescu.

Lub,inct Upper bound for plus DR participation of load
resources.

Lub,redt Upper bound for minus DR participation of load
resources.

pr ferr Constant value of the forecast error ratio at the
forecast error ratio range ferr .

Z Positive infinity.
σ prior Prior information generator.
εth Threshold error.

VARIABLES

Rpv Revenue of selling electrical power to market
from PV generation of k generator.

Rinc Revenue for participating in the PV forecasting
incentive.

Rec Revenue for the PV error compensation.
Cec Cost for the PV error compensation.
ν
ferr
t State variable according to the prediction error

rate.
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εt Forecasting error rate of PV at time t .
εMCSt Forecasting error of PV in MCS at time t .
µ
ferr
t Forecasting error of PV at time t in forecast error

ratio range ferr .
gferrt Incentive at a time in forecast error ratio range

ferr .
hferrt Multiplication of all terms related to forecasting

error interval at a time t in forecast error ratio
range ferr .

Gferrt Incentive at a time in forecast error ratio range
ferr considering error compensation.

H ferr
t Multiplication of all terms related to forecasting

error interval at a time t in forecast error ratio
range ferr considering error compensation.

Lopt Load profile scheduled from optimization.
LMCS Load profile scheduled from MCS.

I. INTRODUCTION
As environmental issues emerge, efforts to pursue sustainable
development are being undertaken in all industrial sectors,
including the power industry. The conversion from tradi-
tional fossil-fueled power generation to eco-friendly and
pollution-free technologies is already underway worldwide.
Photovoltaic (PV) solar technology has shown remarkable
results over the past decade, with the total capacity of solar
power supplied by the end of 2019 estimated at 623.2 GW.
The newly constructed solar power capacity is estimated to
be 111.6 GW, approximately 18% of the total generation
capacity in 2019. Of this, approximately 75.77 GW of solar
power was installed in the United States, with 13.27 GW
installed in 2019. Furthermore, of the total 11.23 GW solar
PV capacity installed in Korea, 3.13 GW (or 27.9%) was
implemented in 2019 [1].

The intermittency of PV generation may cause problems in
the grid operation and the electricitymarket. If the scale of PV
generation is modest, it has a negligible effect on the system;
however, countermeasures are needed as the scale increases.
The concept of a virtual power plant (VPP), which aggregate
behind-the-meter (BTM) resources, including PV generation
and distributed energy resources (DERs), is particularly
useful for coping with the intermittency of renewable energy
sources (RESs). Participating in the market through VPPs
can support better performance than participating separately,
compensating for the weaknesses of individual resources [2].
However, to support a large amount of RESs, a sufficient
storage capacity must be provided [2]–[4].

As a battery energy storage system (BESS) can be used
to solve the intermittency of RESs, many studies consider
the utilization of ESS in VPP [5], [6]. In a previous
report [5], the optimal operation strategy to maximize the
profit of ESS with PV-centred resources under specific
circumstances is proposed in Korea. Meanwhile, Ko and
Kim propose a comprehensive optimal operational strategy
for VPP to participate in the Korean energy market using
ESS [6]. Despite these efforts, managing supply and demand

with BESS remains a challenging task because of its low
profitability; Therefore, many studies on VPP focus on
maximizing profits through optimal operation, and most
of them use the multi-integer linear programming (MILP)
technique due to its very clear advantage of the simplicity of
implementation [7].

While aggregating RESs into VPPs has considerable
merit, it also has several uncertainties and drawbacks. These
include uncertainty about renewable energy generation,
demand resources, and market prices [8], [9]. To deal with
these uncertainties, most studies have adopted a stochastic
programming approach [2], [10]–[13]. In an earlier study [2],
a strategy to participate in the market was suggested by
combining conventional power generation resources and
renewable energy; additionally, Baringo and Baringo [10]
attempted a scenario-based stochastic approach to deal with
the uncertainty of VPPs composed of traditional generators
and renewable energy, especially wind power. Meanwhile,
subsequent studies [11], [12] derived an optimal operation
strategy through a combination of renewable energy and
CHP. Rahimi et al.. [11] applied a probabilistic technique to
derive the optimal scheduling for power and heat demand,
and Riveros et al.. [12] suggested a strategy to use CHP to
alleviate the uncertainty of renewable energy-based VPPs.
Finally, a two-step probabilistic optimal model to mitigate the
uncertainty of VPPs operating solar, wind, gas turbines, ESS,
and demand response (DR) was proposed [13].

In many countries, the wholesale electricity markets are
being reorganized to efficiently manage the supply of RESs
and DERs. In the USA (United States of America), a market
system for accommodating renewable energy and DERs
has already been implemented through FERC Orders 2006,
792, 719, 745, 784, 841. The most recent Order, 2222,
issued in 2020, provides guidelines for the electricity market
participation model through a VPP for each wholesale
market operator [14]. South Korea also proposed introducing
VPPs and a real-time market to respond to the volatility of
renewable energy through the ‘‘9th Basic Plan for Electricity
Supply and Demand’’ announced at the end of 2020 [15].

In contrast to ESS, many studies prove the economic
efficiency of DR, and as a result, many DR markets are
being activated worldwide. The DR market was introduced
relatively early in the buildout of RESs in two countries:
the USA and South Korea. According to a report released
by Pennsylvania, New Jersey, and Maryland (PJM), which
is one of the most mature DR markets in North America,
the DR participation capacity was 2.1 GW as of 2021,
of which annual economic DR participation was 18.246 GWh
or 12.975 GWh for day-ahead market participation [16].
In Korea, approximately 4.58 GW of resources participated
in the DR market for 10 months from January to October
2021, generating approximately 421.1 GWh of power [17].
In PJM, most DR resources participate in load management
rather than economic DR [16], while the opposite is the case
in Korea, with a considerable difference in function between
the two markets.
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As discussed above, to cope with the uncertainty of RESs,
most of the research into VPP operation strategies focuses
on alleviating fluctuations using supplementary resources.
However, most researchers use backup means such as ESS
or conventional generators with rapid ramping-up features.
Thus, we propose a method to ascertain the error composition
of PV generation through DR resources and derive an optimal
operation strategy for participating in the day-ahead energy
and DR markets. We focus on the following contents in this
study.

1) An optimal VPP operation strategy using DR resources
as auxiliary means for error compensation of PV
generation.

2) Deriving an electricity market participation strategy,
resulting in the profitability of the VPP operators.

3) Optimal scheduling algorithm of DR resource,
developed by MILP.

The remainder of this paper is organized as follows:
Chapter 2 presents the VPP model, Chapter 3 explains the
optimization model for the VPP operation, and Chapter
4 discusses the simulation results based on theKoreanmarket.
Our conclusions are presented in Chapter 5.

II. PROBLEM DESCRIPTION
Figure 1 shows the overall framework of the suggested model
from the perspective of the VPP operator. The model is
based on the historical data of PV, weather, market operation
results, and load data. At first, the predicted PV profile is
generated by combining the PV sampling model and weather
forecasting. The historical data of PV generation is used to
construct the PV samplingmodel, and the details of themodel
are addressed later.

Meanwhile, the DR market operation results and load data
are used to obtain the constraints for DR in the optimization
problem. DR successful bid rate is calculated based on
the DR market data, and the load data is used to estimate
the maximum available flexibility potential through DR
potential model. An optimization problem is constructed
with the output of the PV profile and DR constraints, and
the output of the optimization model is compared with
the load profile derived from the Monte Carlo Simulation
(MCS). If the theoretical value, which is the output of the
optimization problem, is feasible, VPP operators arrange
their DR resources to participate in both markets. Otherwise,
they will only participate in the DR market.

The last part of this section consists of the market
framework in Korea and DER modeling.

A. MARKET FRAMEWORK
1) FORECASTING RATE INCENTIVE
VPP operators can participate in the PV forecasting incentive
system in the Korean electricity market. Forecasting incen-
tives are paid when VPP operators perform PV predictions,
and the incentive standard is shown in Table 1.

If the prediction error rate exceeds 8%, the VPP operator
will not receive any incentives. If the prediction error rate

TABLE 1. PV forecasting incentive implemented in korea.

TABLE 2. Imbalance penalty parameters.

is between 6% and 8%, the VPP operation will receive an
incentive of 3 KRW per kWh, and 4 KRW per kWh if the
prediction error rate is within 6%.

VPP operator submits their forecasting profile Ppred by
17:00 a day ahead, after that Korea Power Exchange (KPX)
computes the forecasting error by comparing the submitted
value and the metered value. The settlement process follows
the rule indicated in Table 1.

2) IMBALANCE PENALTY
In addition, KPX, a market operator, is in the process of
improving the market by introducing an imbalance penalty
system. According to the plan, the energy imbalance penalty
is charged to generation companies if their prediction error
exceeds a different threshold for each system operator.
In FERC Order 890, the penalty is suggested at 10% of
the energy price level if the error range is 1.5–7.5%, and
a 25% penalty if the error range exceeds 7.5%. Following
this recommendation, each system operator charges for
the over-generation or under-generation according to the
prediction error. As there is currently no standard in Korea,
we consider the imbalance penalty referring to the FERC
Order 890 and current Korean market rules. The imbalance
penalty is shown in Table 2.

B. DER MODELLING
PV sampling model and the DR potential model (Figure 1)
are addressed here.

1) PV SAMPLING MODEL
A sampling model was created by modeling the normal
distribution of each solar resource k at time t . The model is
represented by the following equation:

Ppredk,t = Fk (Rk)
1

σk,m,t
√
2π

e
−

(
Rk−µk,m,t
√
2σk,m,t

)2

(1)

whereµk,m,t denotes the average power generation of the PV,
and σk,m,t is the standard deviation of the PV generation.

Furthermore, to reflect the prediction error of solar power
generation caused by weather conditions, the days were
classified into sunny, cloudy, and rainy days. Because solar
power generation is affected by illumination and solar
radiation, solar power generation is highest on sunny days,
lower on cloudy days, and lowest on rainy days.
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FIGURE 1. Architecture of the proposed model.

Accordingly, the weather was classified according to the
per-unit value of the solar power generation data by dividing
the daily utilization rate of the solar power generator by the
rated capacity of the PV generator.

The classification is as follows: if the per-unit value of the
daily power generation data is bigger than 5, it is a sunny day,
and a rainy day if it is less than 2; otherwise, it is a cloudy day.

Sunny If
∑

t∈24 Pk,t
CPV > 5.0 [p.u]

Rainny If
∑

t∈24 Pk,t
CPV < 2.0 [p.u]

Cloudy Otherwise

(2)

The data distribution according to the weather of the VPP
aggregate resource is shown in Figure 2.

2) DR POTENTIAL MODEL
It is possible to establish a strategy for VPP operators
only when they can estimate available DR capacity. Thus,
we describe DR potential-score-estimation model following
Lee’s suggestion [18]. A summarization of the mechanism is
as follows: calculate the frequency score of power consump-
tion (FS), the consistency score of power consumption (CS),
and the operation score (OS) from the historical data. Then,
the potential score S is defined by the multiplication of the
aforementioned factors as follows:

S = FS × SC × OS (3)

As our goal is to calculate the DR potential, detailed
calculations for each factor are not mentioned here. Briefly,
we scored the DR flexibility scale based on data analysis
of the load pattern and compared the actual DR reduction
performance of cement factories during DR events.

FIGURE 2. PV generation distribution for each classification.

III. MATHEMATICAL MODEL
In Chapter 3, an optimization model is presented to derive an
optimal operation strategy for participation in the electricity
market from the perspective of VPP operators.
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A. OBJECTIVE FUNCTION
The objective function for optimal operation of the VPP is as
follows:

max(Rpv + Rinc + Rec − Cec) (4)

where Rpvk is the revenue from PV generation, calculated by
the following equation:

Rpv =
∑
∀T

(
λt · Pk,t

)
(5)

where λt is the wholesale price at the time t , Pk,t is the
PV generation amount, and Rinck is the revenue from the PV
forecasting incentive.

Rinc =
∑
∀T

(
Pk,t ·

∑
∀ferr

(
ζ
ferr
t · ν

ferr
t

))
(6)

where ζ ferrt is the forecasting incentive settlement price at
time t with the forecasting error rate range (FERR), and νferrt
is a state variable according to the prediction error rate.
Reck shows the revenue from the error compensation.

Rec =
∑
∀T

(
(
Peck,t ·

∑
∀ferr

((
ζ
ferr
t

)
· ν

ferr
t

))
+ ηt ) (7)

where ηt represents the profit from error compensation by not
paying an imbalance penalty.

Additionally, an opportunity cost Cec
k is incurred owing to

error compensation. In other words, when the flexible load
resource is used as a DR resource rather than as a means of
covering the PV uncertainty, they earn DR settlement profits,
which are converted into opportunity costs.

Cec
= ρ ·

∑
∀T

(
λt ·

(
ϕincl,t + ϕ

red
l,t

))
(8)

where ρ is the average winning rate in the day-ahead
economic DR market. Even if the load resource is utilized
as an economic DR resource, there is no guarantee that it
will participate in the 100% DR market; hence, the market
performance is calculated and reflected. Moreover, ϕincl,t , and
ϕredl,t represent the increment or reduction in DR resources
activated for error compensation, respectively.

B. LINEARIZATION
Rinck contains a nonlinearity element and hence must be
linearized to model the MILP problem. Thus, we developed
a method proposed by Ko and Kim [6]. The FERR is divided
into five sections in Table 1. That is, if the error exceeds 8%,
FERR is one; if the error is within 6–8%, FERR is two, etc.

µ
ferr
t = εt · ν

ferr
t ∀t,∀ferr (9)

εt =
Ppredk,t − Pk,t

CPV ∀t (10)∑
∀ferr

ν
ferr
t = 1, ferr = 1, 2, 3, 4, 5 (11)

The forecasting error µferrt is multiplied by the error rate εt
and state variable νferrt .
The error rate εt is determined by dividing the difference

between the predicted value and the actual measured value

by the PV generator’s nameplate capacity; νferrt is equal to
one if the error rate value belongs to one of the five sections,
and zero otherwise. To linearize nonlinearity, the following
process was performed following the flow proposed by Ko
and Kim [6]:

 εt≥−
(
1− νferrt

)
· Z + νferrt · pr ferr

εt≤
(
1− νferrt

)
· Z + νferrt · pr ferr+1

if ferr< ferrmax εt ≥ −
(
1− νferrt

)
· Z + νferrt · pr ferr

εt ≤
(
1− νferrt

)
· Z + νferrt

otherwise

(12)

where pr ferr is the parameter used to distinguish five
sections, the values of pr1, pr2, pr3, pr4, andpr5 are
−1,−0.08,−0.06, 0.06, and0.08, respectively, and Z repre-
sents the positive infinity. Rinck is redefined by linearization as
follows:

Rinck =
∑
∀T

(Pk,t ·
∑
∀ferr

(
ζ
ferr
t · ν

ferr
t

)
)

=

∑
∀T

∑
∀ferr

(
Pk,t · ζ

ferr
t · ν

ferr
t

)
=

∑
∀T

∑
∀ferr

(
gferrt · ν

ferr
t

)
=

∑
∀T

∑
∀ferr

(
hferrt

)
(13)

where gferrt is the multiplication of power generation Pk,t
and incentive price ζ ferrt , hferrt is calculated by multiplying the
state variable νferrt by gferrt .
As a result, non-linear constraint (12) is converted to linear

inequality constraint as follows:

{
hferrt ≥ −ν

ferr
t · Z

hferrt ≤ ν
ferr
t · Z hferrt ≥ gferrt −

(
1− νferrt

)
· Z

hferrt ≤ gferrt +

(
1− νferrt

)
· Z

∀t,∀ferr

(14)

The result of hferrt depends on the state variable in (12).
Additionally, the reorganized prediction error rate δferrt is

the product of the adjusted error rate θt and the state variable.
The adjusted error rate θt is calculated with the Peck,t , which
is the amount of electricity generated by error compensation
(15)–(17), as shown at the bottom of the next page.

In addition, Reck is redefined through the following
lineariszation as follows:

Reck =
∑
∀T

(
(
Peck,t ·

∑
∀ferr

(
ζ
ferr
t · ν

ferr
t

))
+ηt )

=

∑
∀T

(
∑
∀ferr

(
Peck,t · ζ

ferr
t · ν

ferr
t

)
+ ηt )

=

∑
∀T

(
∑
∀ferr

(
Gferr · νferrt

)
+ ηt )

=

∑
∀T

(
∑
∀ferr

(
H ferr
t

)
+ ηt ) (18)

The electricity generation amount Peck,t determined by error
compensation is the summation of the PV generation,
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DR increment amount, and DR reduction amount.

Peck,t =
(
Pk,t + ϕincl,t − ϕ

red
l,t

)
(19)

Similar to the above linearization process constraints,
the constraints formed through error compensation are as
follows:

{
H ferr
t ≥ −ν

ferr
t · Z

H ferr
t ≤ ν

ferr
t · Z{

H ferr
t ≥ Gferrt − (1− νferrt ) · Z

H ferr
t ≤ Gferrt + (1− νferrt ) · Z

∀t,∀ferr

(20)

For the upper bound for DR participation of load resources,
each value derived from the DR potential model was applied
as follows:

ϕincl,t ≤ Lub,inct (21)

ϕredl,t ≤ Lub,redt (22)

The constraint for the imbalance penalty is given as:

ηt =
∣∣Peck,t − Pk,t ∣∣ ∗ λt ∗ 0.1 (23)

IV. SIMULATION AND DISCUSSION
A. COMPOSITION OF VIRTUAL POWER PLANT
VPP resources were aggregated by combining eight PV
generators participating in the Korean electricity market. The
generation capacity of the VPP exceeded 10 MW. Load
resources used as auxiliary power sources, through industrial
buildings that mostly participate in the DR market, should
be classified as CVPPs. Information on the aggregated VPP
resource is presented in Table 3.

Figure 3 presents the results of our analysis of the historical
data of the PVs. Based on this, a sampling model was created
by modeling the normal distribution of each solar resource k
at time t .
Meanwhile, Figure 4 shows the load data of a cement

factory, which are used in this case study, and the customer
baseline load (CBL) on the day when the actual reliability DR
event was issued (13 June 2019).

The ramping down score of Cement Factory 2 was
0.2783 using the suggested methodology, with a calculated
ramping-up score of 0.2290. Because Cement Factory
2 caused a > 13,000 kWh reduction with a ramping down
score of 0.2783, the minimum ramping-up capacity should be

TABLE 3. Composition of virtual power plant.

FIGURE 3. Historical data of PV generation.

10,500 kWh from the ramping-up score of 0.2290 by simple
linearity. However, as Lee [18] demonstrated, it is difficult

δ
ferr
t = θt · ν

ferr
t ∀t,∀ferr (15)

θt =
Ppredk,t − P

ec
k,t

Pcap
∀t (16)

 θt ≥−
(
1−νferrt

)
· Z+νferrt · pr ferr

θt ≤
(
1−νferrt

)
· Z+νferrt · pr ferr+1

if ferr < ferrmax θt ≥ −
(
1− νferrt

)
· Z + νferrt · pr ferr

θt ≤
(
1− νferrt

)
· Z + νferrt

otherwise

(17)
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FIGURE 4. DR performance results with CBL during DR event.

TABLE 4. Results of DR flexibility potential.

to accumulate ramping-up resources compared to ramping
down; hence, we assumed that the minimum ramping-up
capability was 3,500 kWh. Contrarily, as Factory 1 recorded
a ramping-up score of 0.2011, which is approximately 90%
of that of Factory 2, it was assumed that the ramping-up
capability was approximately 3,000 kWh. Therefore, it was
assumed that there was a potential of 58,000 kWh in the
case of ramping down based on actual DR performance
and a potential of approximately 6,500 kWh in the case of
ramping-up for the VPP resources, as shown in Table 4.

B. DAY-AHEAD MARKET PARTICIPATION
VPP operators conduct MCS to establish a day-ahead market
participation strategy. At this time, scenarios for the PV
prediction profile are generated, and an error rate is derived
for each scenario by comparing it with the real generation
amount. The error rates for each period derived by the
following mechanism are calculated in advance, and the error
rate distribution is shown in Figure 5.

As Figure 5 demonstrates, before 8 a.m. and after 7 p.m.,
the maximum value of each error rate εMCSt did not exceed
the threshold value εth which is 8% in the Korean electricity
market. That is, VPP operators organize their load resources
to participate in the energy market by compensating for a PV
error between 8 a.m. and 7 p.m. when PV production is active.

Therefore, VPP operators reflect the determined prior error
rate to prepare their load profile LMCS .
LMCS assessed considering the error rate εMCSt indicates a

more practical value compared to Lopt , which is a theoretical
value calculated by the optimization problem. If the output
of the optimization model Lopt is a feasible set, that is,
Lopt is a subset of LMCS ; A condition for satisfying error
compensation is satisfied. That is, VPP operators sort their
load resources out for participation in the energy market by

FIGURE 5. Prior error rate distribution.

FIGURE 6. PV forecasting error rate during a month.

compensating their PV error and economic DR. In contrast,
if Lopt is unfeasible; LMCS is not a superset of Lopt ; VPP
operators participate in the DR market only, as illustrated in
Figure 1.

Consequently, VPP operators make their decision to
participate in the day-ahead market with the above strategy.
If the prediction is successful, the VPP operator will earn
more profits by participating in the energy and DR market
with the error compensation of PV generation by activating
their DR resources.

C. RESULTS WITHOUT ERROR COMPENSATION
The PV forecasting error was calculated when the utilization
rate of the PV generation exceeded 10% at each time.
If the prediction error was within 8%, it was considered
that no error had occurred in the PV forecasting incentive
settlement. The upper and lower parts of the red dotted line in
Figure 6 indicate a case in which an error occurs. The upper
and lower parts of the red dotted line in Figure 6 indicate a
case in which an error occurs.

The average error rate for each generator per month
was calculated through the number of times (a) when the
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TABLE 5. PV error rates without error compensation.

FIGURE 7. DR resources utilized for error compensation.

FIGURE 8. Load pattern with error compensation.

prediction error exceeded ± 8% compared to the number of
days (b) that satisfied the generator utilization rate of 10% or
more (Table 5). In the case where error compensation using
DR resources was not performed, that is, when participation
in the market occurred only through solar resources, the error
rates of each generator and VPP solar sets were as listed in
Table 5.

D. RESULTS WITH ERROR COMPENSATION
The simulation results according to the optimization model
are shown in Figure 7. As shown in Figure 7, approximately
3,000 kWh were reduced due to under-generation at 8 h
(50 kWh per minute during 480–540 min), and 500 kWh of
DR resources were increased due to over-generation at 11 h
(8 kWh per minute during 660–720 min). The load pattern
changes according to DR participation due to load reduction
or increment are shown in Figure 8.

FIGURE 9. PV error rate of VPP through error compensation.

Before error compensation of the DR resource, the errors
recordedwere 8.42% at 8 h and 8.07% at 11 h, both exceeding
the 8% mark (Figure 9).

The reduced and increased DR resources were 5.5% and
8.45% of the upper boundary that can be used as DR
resources, 58,000 and 6,500 kWh, respectively; thus, there
was room for more DR resources to be utilized for error
compensation with 94.5% and 91.55%, respectively.

However, if the VPP operator increased its DR resource to
compensate for the PV forecasting error, the opportunity cost
of not participating in DRwas greater than the profit obtained
through incentives. Thus, DR resources were limited to 8%,
which is the boundary for forecasting incentives.

Thus, VPP operators will make efforts to reduce solar
prediction errors by only up to 8% of the boundary, which
can disadvantage the system operator. The system operator
aims to reduce uncertainties caused by PV generation as
much as possible, but for VPP operators, the more they try
to reduce prediction errors to less than 8% using their DR
resources, the less profitable they are. That is, VPP operators
aim to maximize their profit, and the system operator aims
to mitigate the PV uncertainties. Therefore, it is necessary to
improve the market system to resolve this mismatch.

E. COMPARING RESULTS
VPP operators can participate in the energy market with PV
resources and the DR market with load resources when they
fail to predict PV error. On the other hand, if load resources
are exercised in error compensation, the VPP operators
participate in the energy market not only with PV resources
but load resources, and their expected payoff increases.

An additional profit of 489,219 KRW was generated by
participating in the day-ahead energy market with error
compensation. However, an opportunity cost of participating
in an economic DR of 62,110 KRW is incurred, resulting
in a net profit of 427,109 KRW. In addition, 28,530 KRW
is incurred from the opportunity benefit for imbalances,
resulting in a total profit of KRW 455,639.
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TABLE 6. PV error comparison.

As indicated in Table 6, VPP operators reduce the error
probability from 38.9% to 35.5%; consequently, the average
additional income is 4,521,485 KRW per month.

In conclusion, through the error composition technique
usingDR resources proposed in this study, if VPP aggregators
collect PV and load resources, participating in the power
market as presented in this study, they are expected to earn
approximately 54,257,496 KRW annually.

V. CONCLUSION
An optimal VPP operation strategy is proposed to mitigate
the uncertainty of PV generation with a DR resource. At first,
the PV generation profile is derived using the PV prediction
model and used to calculate the available DR resource timely.
DR market operation data and load data are used to calculate
DR constraints. MILP optimization problem is solved with
the output of the PV sampling model and the DR potential
model. Finally, the optimization results provide a market
participation strategy for the VPP operator. The case study
results produced based on the Korean power market are
expected to increase the profitability of VPP operators based
on the error compensation technique. However, institutional
improvements should be required to resolve the mismatch
between the profitability of VPP operators and system
operators.

Nevertheless, it is necessary to establish a more advanced
prediction model to calculate the more practical profitability
of VPP operators. If the proposed model is trained using data
analysis-based classification or prediction, the results will
be very practical from the point of view of VPP operators.
Moreover, in this study, we considered only the strategy of
participating in the day-ahead market. Thus, a further study
that considers real-time market participation is expected to
help improve profitability for VPP operators and enhance the
operational stability of the system operator.
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