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ABSTRACT Robot manipulators are now used in various domains and environments, where they can be
subjected to random vibrations. Random vibrations mainly affect the torque control signal, and a torque
controller is therefore required to be designed for stabilization purposes. However, for security or intellectual
property protection reasons, most commercialized robots are manufactured with unknown and inaccessible
torque controller interface such that the user can only design a position/velocity controller. This paper
proposes an adaptive task-space velocity controller free from the inner controller’s structure and exhibiting
stochastic and deterministic disturbances rejection to deal with these issues. To deal with the unknown
inner controller, the paper exploits the fact that most torque controllers use a velocity feedback term,
and it considers the other terms as an unknown functions vector. To cope with random disturbances, it is
demonstrated that the random excitationmatrix can be linearly parameterized, and therefore, a direct adaptive
method is constructed. Using radial basis function neural network (RBF NN), an indirect adaptive method
is developed to cope with deterministic uncertainties. Through Lyapunov theory, the paper proves that all
the closed-loop signals are bounded in probability. The effectiveness of the proposed approach is further
demonstrated through simulation comparisons.

INDEX TERMS Robotmanipulators, adaptive task-space control, closed inner controller, randomvibrations,
neural networks.

I. INTRODUCTION
The first use of robot manipulators was handling objects
in industrial manufacturing lines. In the industrial domain,
manipulators evolve in a static and secure environment, where
their interactions with this environment are predictable.
Nowadays, robot manipulators are used in many domains,
such as shipping areas for ship hull maintenance [1], [2],
and air transportation for wall painting, fault inspection,
or drugs delivery [3], [4]. Inmost of these usages, it is difficult
to stabilize the robot’s environment or predict the different
interactions between the robot and the environment due to
stochastic phenomenons. A robot evolving in a stochas-
tic environment is mainly subject to random vibrations.

The associate editor coordinating the review of this manuscript and

approving it for publication was Junhua Li .

For example, a robot manipulator used in a boat is subject
to boat random movements generated by the waves, whereas
an aerial manipulator is exposed to random movements
generated by thewind. Therefore, themodeling and control of
robot manipulators subject to random vibrations have gained
interest for control practitioners, and several solutions have
been proposed.

Note that there are two stochastic modeling techniques
in the literature, and all existing control schemes use one
of these models. The first stochastic modeling approach
describes the robot dynamics using Itô-type stochastic
differential equations systems (SDEs) and considers random
perturbations as white noises. Several control techniques
based on an Itô-type stochastic model were proposed in the
literature. Cui et al. [5] tackled the problem of robot control
in a random vibration environment and proposed a vector
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form backstepping approach to ensure the convergence of
the tracking error mean square to a neighborhood close to
zero. The authors in [6] proposed an adaptive dynamic surface
control approach to deal with stochastic disturbances. Hui-
Fang et al. [7] used a neural network-based approximation
approach to develop an output feedback control for robot
systems subjected to stochastic disturbances. The proposed
controller achieves the semi-globally and ultimately uni-
formly boundedness of the mean square error. Wu et al. [8]
investigated the issue of tracking control for a benchmark
system under random vibrations and developed a vectorial
backstepping control approach. Sun et al. [9] investigated
the tracking control for robot manipulators subjected to
state constraints and random disturbances. They achieved
system stability through a backstepping controller with a
tangent-type constraints term. Sun et al. [10] tackle the prob-
lem of controlling flexible joint robots subjected to random
disturbances from the external environment. They proposed
a finite-time adaptive fuzzy command filtered backstepping
control approach. Su et al. [11] proposed an adaptive
neural network controller with unknown control gains for a
nonlinear system to achieve stochastic disturbances rejection
and ensure full state constraints. The design procedure uses
a backstepping technic, and the control gains of the virtual
and the main control laws are updated online to achieve
the tracking requirements. However, the stochastic Itô-type
dynamic model has a drawback related to the fact that it does
not represent a natural physical system, and therefore, control
approaches based on such a model are difficult to be used in
engineering. Indeed, white noise is rarely encountered in a
natural environment as it has infinite power. Moreover, some
terms in Itô-type modeling, such as Hessian terms, have no
physical meaning [12].

To introduce the second stochastic modeling approach,
Wu [12] show that an engineering system evolving in a
stochastic environment is ideally represented by a system of
random differential equations (RDEs) with random pertur-
bations viewed as colored noises and stationary processes.
Attractive control schemes using RDEs stochastic model are
found in the literature. Cui andWu [13] developed a vectorial
backstepping for the control of flexible joint electrically
driven robot manipulators subjected to mechanical and
electrical random disturbances. Cui et al. [14] investigated
the global output feedback tracking control of robot manip-
ulators in random vibrating environments without velocity
measurement. However, all these valuable works proposed
torque-based controllers, therefore, cannot been used for
robot manipulators with inaccessible torque control interface.

Most robot manipulators are manufactured so that the inner
controller is designed and embedded by the manufacturer,
and the structure is not revealed to the end-user. Indeed,
the robot’s inner controller structure is not disclosed to
the user for security and intellectual property protection
reasons, and the torque control interface is not accessible.
The user can only design position or velocity commands
(outer controller) in this context. Therefore the following

problem arises: How to achieve disturbances rejection and
high tracking accuracy using only velocity commands? Some
research has addressed this issue, and good results have
been obtained. For instance, Wang et al. [15] developed two
adaptive task-space controllers that incorporate a dynamic
compensator, where the inner controller is assumed to be a
PI (proportional-integral) velocity controller with uncertain
design parameters. However, only deterministic disturbances
are considered, which means that this solution may yield
poor tracking performances for stochastic disturbances.
Furthermore, the controller cannot achieve good tracking
performances if the actual inner controller is not a PI con-
troller. Khan et al. [16] proposed a joint velocity controller
which is free from the structure of the inner loop. They
deal with the closed structure of the inner controller by
considering that a torque controller can be written as a com-
bination of velocity feedback terms and an unknown vector
representing the unknown structure. However, this work only
consider deterministic uncertainties; therefore, the controller
may yield poor tracking performances in a stochastic
environment.

One can observe from this brief literature review that there
is a need to propose a control strategy for robot manipulators
with closed and unknown inner controller working in a
random vibrating environment. This paper aims to cope with
this problem. Two challenges emerge from this problem,
namely: How to deal with the unknown structure and the
inaccessibility of the robot’s inner controller? How to perform
both stochastic and deterministic disturbances rejection? To
cope with the first challenge, this paper takes advantage of the
fact that for stability purposes, most torque controllers use the
velocity feedback term Kd (q̇− q̇c), with Kd an unknown gain
matrix, q̇ the joints velocity vector, and q̇c the joint velocity
commands (the outputs of the outer controller). From this
observation, it is considered that the inner controller has the
form τ = −Kd (q̇− q̇c)+8

(
q, q̇, qc,

∫ t
0 q(s)ds,

∫ t
0 qc(s)ds

)
,

with 8 an unknown part of the inner controller, whose upper
bound is approximated using RBF NN. Therefore, q̇c is
designed such that the unknown vector 8 is canceled in the
closed-loop.

For the second challenge, which is performing random
disturbances rejection, note that two approaches exist in
the literature. In order to present these approaches, let us
consider that random excitation dynamics are represented by
thematrix0 (q) ∈ Rn×r , where q is the vector of the n angular
positions of the robot joints, and r is the dimension of the task
space. The first approach is to separate random disturbances
from the robot dynamics and obtain ‖0 (q)‖2F , representing
the Frobenius norm of 0 (q). In the end, the upper bound
(which can be a constant or a linear function) of ‖0 (q)‖2F is
used to perform random vibrations rejection [5], [6], [8],
[14]. The second approach separates random disturbances
from the robot dynamics to obtain a term dependent on
0 (q) 0T (q); this term is then used to perform random
disturbances rejection [13]. However, since 0 (q) depends
on the robot parameters, these two approaches are sensitive
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to modeling errors. Therefore, this paper proposes a direct
adaptive random disturbances rejection method to overcome
this problem. The proposed adaptive approach is based on the
fact that Young’s inequality can separate random disturbances
from the robot dynamics to obtain the term 0 (q) 0T (q) y
with y ∈ Rn. This term is then used to construct the random
disturbances rejection. To design an adaptive approach, this
paper demonstrates that the vector 0 (q) 0T (q) y can be
linearly parametrizable such that0 (q) 0T (q) y = Q (q, y)2,
with Q (q, y) ∈ Rn×m̄ the regressor, and 2 ∈ Rm̄ the robot
parameters vector. The vector2 is updated online to improve
the accuracy of random disturbances rejection.

Compared with the existing control approaches, the pro-
posed control technique has advantages that are summarized
below:
(1) Unlike [5]–[10], this paper considers real practical

problems the robot may encounter in various envi-
ronments. Therefore, the control law developed in
this paper has more substantial applicability compared
with the previous methods. Furthermore, the proposed
control strategy can be used for a robot manipulator
with a closed and unknown torque control interface.

(2) Compared with control methods in [13], [14], the
proposed adaptive control method is more accurate
and less conservative because no assumption is made
about the Frobenius norm of random excitation matrix;
instead, a direct adaptive method is used. Moreover, the
proposed controller has more substantial applicability
since it can be applied for robot manipulators with
closed or opened torque control interfaces.

(3) In contrast with the control laws in [15], [16],
the proposed control technique deals with both
deterministic and stochastic uncertainties; therefore,
it is adequate for the control of robot manipu-
lators in complex environments. Furthermore, the
proposed control approach allows the user to spec-
ify the desired tracking performances to improve
accuracy.

The rest of this article is organized as follows. In Section II,
the preliminaries and problem statement are presented.
Section III shows the design procedure. The stability of the
closed-loop system is evaluated in Section IV. In Section V,
simulations are carried out to verify the effectiveness of the
proposed control scheme. Section VI concludes the paper.
Notations: For a vector y, ‖y‖ stands for its Euclidean

norm, yT denotes its transpose, and diag (y) transforms the
vector into a diagonal matrix; For a matrix Y , Y−1 is inverse
matrix, λmin (Y ) and λmax (Y ) stands for the minimum and
the maximum eigenvalue of Y , respectively; For a scalar α,
Eα is its mathematical expectation; Rn represents the real
n-dimensional space; Rn×r denotes the real n × r matrix
space; In×r represents the n× r unity matrix; 0n×r represents
a n × r matrix with all entries being equal to zero; 1n×r
represents a n× r matrix with all entries being equal to 1. For
the sake of simplicity, the function arguments are sometimes
omitted.

FIGURE 1. n-link revolute joints manipulator.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. PROBLEM FORMULATION
Consider an n-DOF revolute joints robot manipulator shown
in Fig. 1, with x ∈ Rr its end-effector (EE) position in the
world frame. The robot is connected to O0 on the floor and
is affected by the environment’s random vibrations. Consider
that these vibrations result in random accelerations ξ ∈ Rr

of point O0. In order to get closer to the real-world context,
we consider that these accelerations are stationary and
independent processes. With the help of Lagrange’s and
relative motion theories, the following random model is
obtained [13], [14]

M (q) q̈+ C (q, q̇) q̇+ G (q) = τ + 0 (q) ξ, (1)

where q̈ ∈ Rn, M (q) ∈ Rn×n, C(q, q̇) ∈ Rn×n,
g(q) ∈ Rn, τ ∈ Rn, and ξ = [ξ1, ξ2, . . . , ξr ]T are the joint
acceleration vector, the inertia matrix, the Coriolis matrix,
the gravitational torque, the torque control, and random
accelerations vector, respectively. 0 (q) =

(
0ij (q)

)
n×r

is a random excitation matrix. The underlying complete
probability space is taken to be a quartet (�,F ,Ft ,P), the
filtration Ft being increasing and right continuous while
F0 contains all P-null sets.
Most commercialized robots have an unknown and

inaccessible torque-control interface (inner controller). For
security and intellectual property protection purposes, the
manufacturer designs the torque controller τ , and the
structure is not revealed to the user. The only way to specify
joint inputs is through position or velocity commands (outer
controller) in such a context. However, when the robot
operates in an environment subject to random vibrations,
these vibrations affect the actuator torques, as shown in (1).
Torque control is the appropriate approach to achieve torque-
disturbance rejection, as shown by the many techniques
proposed in the literature. However, the user cannot design a
torque control law when the robot has a closed and unknown
torque-control interface. Therefore, it is tricky to control a
robot manipulator with a closed and unknown inner controller
and subjected to random vibrations. This paper aims to design
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a task-space velocity command q̇c for the random system (1),
which is independent of the embedded torque controller, such
that the end-effector trajectory x (t) can track a given bounded
reference signal xdes (t) (which is assumed at least first-order
differentiable) as close as possible while ensuring all the
closed-loop signals are bounded in probability.

Before getting into the detailed control scheme, let us
summarize the key idea. The general approach for the
task-space control is the design of two controllers: a
task-space controller (outer controller) q̇r = f (q, x, xdes) for
the task-space tracking error compensation, and a torque con-
troller (inner controller) τ = −Kd (q̇− q̇r )+ g (q, q̇, qr , . . .)
for the joint-space tracking error compensation, with Kd
a control gain matrix, f (q, x, xdes) a smooth function, and
g (q, q̇, qr , . . .) a smooth function ensuring the gravity or the
modeling error compensation, or the stiffness compensation,
and so forth [15]. According to the tasks to be executed
by the robot, the user can modify f , g, and Kd . However,
for robot manipulators with closed-form architecture, τ is
already designed by the manufacturer, and the end-user does
not know its structure, and he cannot modify it. Furthermore,
for the sake of simplicity, the manufacturer does not consider
stochastic disturbances during the design of τ . Therefore, for
a robot manipulator with closed-form architecture, Kd and
g (q, q̇, qr , . . .) are unknown, and the random disturbances
are not considered. The key idea of the proposed method
is the design of a task-space controller q̇c = q̇r −
K̂−1d h (q, q̇, qr , . . .), where K̂

−1
d is the online estimation of

K−1d , and h (q, q̇, qr , . . .) is a smooth function ensuring the
kinematic and dynamic modeling errors compensation, the
rejection of stochastic disturbances, and the compensation of
the unknown structure g (q, q̇, qr , . . .). Therefore when the
inner controller takes q̇c as input, it is modified as follows:
τ = −Kd (q̇− q̇r )−Kd K̂

−1
d h (q, q̇, qr , . . .)+g (q, q̇, qr , . . .).

The key difficulty of the proposed approach is the design of
K̂−1d , and h (q, q̇, qr , . . .).

B. RADIAL BASIS FUNCTION NEURAL NETWORK
Nowadays, neural networks (NN) are widely used when
approximating uncertain dynamics. The RBF NN is a
particular type of NN that uses Gaussian radial basis
functions as basis functions. It is well-known that for a
continuous function f (y) defined on a compact set = ⊂ Rn,
there exists a RBF NNW T

f S(y) such that for a given positive
scalar δf (y) and a positive constant εf , and a sufficient
number of nodes ι, we have [17]

f (y) = W T
f S(y)+ δf (y) , (2)

with |δf (y) | < εf , and Wf = [w1,w2, . . . ,wι]T ∈ Rι
being the weight vector. Furthermore, y ∈ = ⊂ Rl is the
input vector and S(y) = [s1(y), s2(y), . . . , sι(y)]T is the basis
function vector, with si(y) being a Gaussian function given as

si(y) = exp
[
−
(y− µi)T (y− µi)

η2

]
, i = 1, 2, . . . , ι. (3)

The vector µi = [µi1, µi2, . . . , µil]T is the vector of
Gaussian centers, and η the width of Gaussian functions. This
paper uses a RBF NN to approximate the upper bound of the
robot’s nonlinear dynamics.

C. USEFUL PROPERTIES, ASSUMPTIONS AND LEMMAS
The following properties, assumptions, and lemmas are
helpful for the ease of controller design.
Proposition 1: The inertia matrix is positive definite,

symmetric, and satisfy the following inequality for all
y ∈ Rn [18]

λmin(M (q))||y||2 ≤ yTM (q)y ≤ λmax(M (q))||y||2. (4)

Proposition 2: The inertia and the Coriolis matrix satisfy
the following property known as skew symmetry [18]

yT
(
Ṁ (q)− 2C (q, q̇)

)
y = 0, ∀y ∈ Rn, (5)

where Ṁ (q) is the derivative of the inertia matrix.
Proposition 3: Let J (q) ∈ Rr×n be the Jacobian matrix

of a n-DOF revolute joint robot manipulator. For any vector
y ∈ Rn, the vector J (q)y is linearly parametrizable in the
sense that [16]

J (q)y = Y (q, y)θ, (6)

with Y (q, y) ∈ Rr×p the kinematic regressor matrix, and
θ ∈ Rp the kinematic parameters vector.
Assumption 4: The process ξ (t) is continuous, stationary,

and Ft -adapted. There exist a constant α > 0 such that for
all t ≥ t0, [12]

sup
t0≤s≤t

E‖ξ (s)‖2 ≤ α. (7)

Lemma 5: For a given n-DOF revolute joint robot manipu-
lator under random vibrations as shown in Fig. 1, the random
excitation matrix 0 (q) ∈ Rn×r is derived such that for all
y ∈ Rn, the vector 0 (q) 0T (q) y is linearly parametrizable in
the sense that

0 (q) 0T (q) y = Q (q, y)2, (8)

with2 ∈ Rm̄ a vector of kinematic and dynamic parameters,
and Q (q, y) ∈ Rn×m̄ a regressor matrix.
The proof of Lemma 5, is given in APPENDIX A.
Lemma 6: Let S(b̄l) =

[
S1(b̄l), S2(b̄l), . . . , Sι(b̄l)

]T
be a basis function vector of a RBF NN with b̄l =
[b1, b2, . . . , bl]T . For all k and l chosen such that 0 < k ≤ l,
the following inequality holds [17]

||S(b̄l)||2 ≤ ||S(b̄k )||2. (9)

Lemma 7: For any y ∈ R and ε > 0, the following
inequality holds [17]

0 ≤ |y| − y× tanh
( y
ε

)
≤ 0.2785× ε. (10)
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Lemma 8: Given two vectors x, y ∈ Rn and scalars a > 0,
b > 1 and c = b

b−1 , the following inequality holds [19]

xT y ≤
ab

b
‖x‖b +

1
cac
‖y‖c. (11)

Remark 9: So far, random excitation dynamics are can-
celed in the closed-loop system using the upper bound of the
norm of the random excitation matrix [5], [14], [20], [21].
In contrast to this approach and for an accurate stochastic
disturbances rejection, the method proposed in this paper
provides a direct adaptive method using Lemma 5.

III. CONTROL DESIGN
This section presents the task-space velocity controller design
procedure. Note that this paper deals with robot manipulators
with a closed and unknown inner controller. The latter means
that the torque vector τ is designed and already embedded
by the manufacturer, but its structure is not revealed to the
user and cannot be modified. To overcome this difficulty,
we take advantage of the fact that most inner controllers
use a velocity feedback term Kd (q̇− q̇c) for stability issues
[15], [16]. Therefore, we consider that the inner controller has
the form

τ = −Kd (q̇− q̇c)+8
(
q, q̇, qc,

∫ t

0
q(s)ds,

∫ t

0
qc(s)ds

)
,

(12)

with q̇c the joint velocity command (outer controller), Kd the
unknown feedback gain matrix, and 8 ∈ Rn×n the unknown
part of the inner controller.

Define x̃ = x (t) − xdes (t) and J† (q) = J (q)T[
J (q) J (q)T

]−1
the task-space tracking error and the pseudo

inverse of the Jacobian matrix J (q), respectively. The
computation of the velocity command q̇c requires the
following joint reference velocity

q̇r = Ĵ† (q)
[
ẋdes − %0ψ (x̃)

]
, (13)

with Ĵ†(q) = Ĵ (q)T
[
Ĵ (q) Ĵ (q)T

]−1
the estimation

of J†(q), Ĵ (q) the estimation of J (q), and %0 =

diag (%01, %02, . . . , %0r ) a positive defined diagonal gain
matrix. ψ (x̃) ∈ Rr is a vector defined as

ψ (x̃)

= %1 × diag
([

exp
(
x̃21 −$

2
1

)
, .., exp

(
x̃2r −$

2
r

)])
x̃,

(14)

where x̃j is the j-th element of x̃, the parameters $j,
j = 1, 2, . . . , r , are the user specified tracking performances,
and %1 a positive design parameter. The parameters $j
represent the maximum task-space tracking errors that the
controller can tolerate; therefore, the physical unit of each
of them is a mater (m). When the tracking error x̃j is out
of the expected range

[
−$j, $j

]
(that is x̃2j > $ 2

j ), from
the increasing property of the exponential function, the term

%0ψ (x̃) increases to enforce the tracking error’s convergence
to a neighborhood close to zero. As a result, the convergence
rate increases when the tracking performance constraints are
violated. In addition, define the joint velocity tracking error
as

z = q̇− q̇r . (15)

Taking the derivative of (15) and substituting into (1), and
using (12), it results in the following joint error dynamic

M (q) ż = −Kd (q̇− q̇c)− C (q, q̇) z+ 0 (q) ξ +9 (Z ) ,

(16)

with

9 (Z ) = − [M (q) q̈r + C (q, q̇) q̇r + G (q)−8] , and

Z =
[
q, q̇, q̇r , q̈r , qc,

∫ t

0
q(s)ds,

∫ t

0
qc(s)ds

]T
. (17)

The task-space error dynamic is also required for the
controller design. To this end, we use the fact that the
task-space velocity ẋ and the joint velocity q̇ are related as
ẋ = J (q) q̇. Furthermore, from Property 3, one has J (q) q̇ =
Y (q, q̇) θ . Therefore, taking the derivative of x̃ yields to the
following task-space error dynamic

˙̃x = ẋ − ẋdes
= J (q)q̇− ẋdes
= Y (q, q̇) θ̃ + Y (q, q̇) θ̂ − ẋdes
= Y (q, q̇) θ̃ + Ĵ (q) q̇− ẋdes
= −%0ψ (x̃)+ Y (q, q̇) θ̃ + Ĵ (q)z, (18)

with θ̃ = θ − θ̂ , and θ̂ the estimate of the ideal kinematic
parameters vector θ .

This paper considers that kinematic and dynamic parame-
ters are uncertain; as a result, the vector 9 (Z ) is uncertain.
Therefore, 9 (Z ) represents the deterministic uncertain-
ties while 0 (q) ξ represents the stochastic uncertainties.
Furthermore, Kd is unknown because the user does not
know the structure of the inner controller. The latter means
that Kd cannot be taken as a diagonal matrix as it is
considered in [15]. Therefore, finding q̇c which copes with
the uncertaintiesmentioned abovewhile ensuring the stability
of the closed-loop system (represented by (16) and (18)) is
a challenge. To solve this problem, the following task-space
velocity control law is proposed:

q̇c = q̇r − ϒ̂ϑ, (19)

with

ϑ = β̂Ū + ĴT (q) x̃ +
1
4%2

Q (q, z) 2̂, (20)

ϒ̂ ∈ Rn×n the estimation of K−1d , %2 a positive design
parameter, and β̂ ∈ R the estimation of β the parameter used
to build the RBF NN model of the upper bound of zT9 (Z ).
β is defined as follows

β = max{δ91 , δ92 , . . . , δ9n , ||W91 ||, . . . , ||W9n ||}. (21)
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FIGURE 2. Overview of the proposed control scheme.

The vector Ū ∈ Rn is chosen as

Ū =
[
U1 tanh

(
U1z1
ε1

)
, . . . ,Un tanh

(
Unzn
εn

)]T
, (22)

with εi > 0 a design parameter, and zi the i-th element of z,
i = 1, 2, . . . , n. The function Ui is defined as

Ui = ||Si(Z̄ )|| + 1, (23)

with Z̄ = [q, q̇r ]T .
The estimation of adaptive parameters θ , β, 2, and ϒ are

obtained according to the following laws

˙̂
θ = λ1Y T (q, q̇) x̃ − γ1θ̂ , (24)
˙̂
β = λ2zT Ū − γ2β̂, (25)
˙̂
2 =

λ3

4%2
QT (q, z) z− γ32̂, (26)

˙̂
ϒi = λ4iϑiz− γ4iϒ̂i, (27)

where ϒ̂i stands for the i-th column of the matrix ϒ̂ and
ϑi the i-th element of ϑ , i = 1, 2, . . . , n. The parameters
λj, γj, λ4i, and γ4i, j = 1, 2, 3, are positive design
parameters.

For the sake of clarity, Fig. 2 shows the control scheme
proposed in this paper.

IV. STABILITY ANALYSIS
In order to evaluate the stability of the controller, let us
formulate the following theorem.
Theorem 10: Consider the random model (1) for a

n-DOF revolute joint manipulator. Given a bounded reference
signal xdes (t) being at least first order differentiable, under
Assumption 4, the controller (19) with update laws (24), (25),
(26), and (27) can ensure that:
(1) The closed-loop system has a unique global solution,

and its state has an asymptotic gain in the second
moment.

(2) All closed-loop signals are bounded in
probability.

(3) The task-space tracking error x̃ (t) = x (t) − xdes (t)
satisfies

lim
t→∞

E‖x̃ (t)‖2 ≤
2 (%2α + ρ2)

ρ3
, (28)

where the bound 2(%2α+ρ2)
ρ3

can become small with an
appropriate choice of the design parameters $k , γj, λj,
εi, γ4i, λ4i, %0k , %1, and %2, with i = 1, 2, . . . , n, j =

1, 2, 3, and k = 1, 2, . . . , r . ρ2 =
n∑
i=1

γ4i
2λ4i
+ ρ1, and

ρ1 =
γ1
λ1
‖θ‖2 +

γ2
λ2
β2 +

γ3
λ3
‖2‖2 + 0.2785 × β

n∑
i=1
εi.

ρ3 is chosen accordingly to the constraints (60), (61),
and (62).

The proof of Theorem 10 is given in APPENDIX B.
Remark 11: It is essential to know how to choose the

design parameters to reduce the bound 2(%2α+ρ2)
ρ3

. Note that
this bound becomes smaller for ρ3 taken significant enough,
and %2 and ρ2 taken small enough. The parameter ρ2 is small
for γj and γ4i chosen asmall as possible, and λj and λ4i chosen
significant enough, j = 1, 2, 3, i = 1, 2, . . . , n. From the
latter, it is tricky to find a significant value for ρ3 that fulfills
the constraints (60), (61), and (62). Furthermore, tacking a
small value for %2 can result in a large control signal as
shown in (20). Therefore, a trade-off must be found between
the tracking performance requirements and the fulfillment of
constraints through the trial and error method.

V. SIMULATION RESULTS
To demonstrate the effectiveness of the proposed control
scheme, we carry out simulations tests using a 5-DOF
revolute joint robot manipulator with kinematic, dynamic,
and Denavit-Hartenberg (DH) parameters given in Tab. 1.
d1 and d5 are the link 1 and link 5 offset, α1 and α4 are the
link 1 and link 4 twist, and li is the link length, i = 1, 2, 3, 4.
In this study, two groups of simulation studies are carried
out. The first group aims to study the effect of the main
design parameters $j and %2 on the tracking performances,
j = 1, 2, 3. The second group aims to show the superiority
of the proposed controller over the observer-based adaptive
control developed in [15]. For the two groups of simulation
tests, the desired EE trajectory is given as

xdes =
[
0.2+ 0.1 cos(

π

12.5
t), 0.2+ 0.1 sin(

π

12.5
t),

0.4+ 0.2 sin(
π

12.5
t)
]T
. (29)

The 5-DOF revolute joint robot using in this study has the
joint position defined as: q1, the base rotation angle, q2,
the shoulder rotation angle, q3, the elbow rotation angle,
q4, the wrist pitch angle, and q5, the wrist roll angle.
For the Cartesian trajectory tracking, the wrist roll angle
q5 remains unchanged (that is q5 (t) = q5 (0) = 0rad).
Therefore, the control signal for this axis will be zero,
q̇c5 (t) = 0rad/s.

Throughout the study its assumed that the robot’s inner
controller is a PI velocity controller given as

τ = −Kd (q̇− q̇c)− Ki (q− qc) , (30)

with Kd = Ki = diag (10× 15×1).
Decomposing ξ1, ξ2, and ξ3 in each link’s frame as

indicated in [5], and using the explicit formula for the random
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TABLE 1. Kinematic and dynamic parameters for the 5-DOF robot.

excitation matrix (39), it follows that

011 (q)

= −m1lc1 sin(q1)+ m1l1 sin(q1)

+m4l3 cos(q1) cos(q2)2 cos(q3)2 sin(q4)

−m4l3 cos(q1) cos(q2) cos(q3) sin(q4) sin(q2) sin(q3)

+m4l2 cos(q1) cos(q2)2 cos(q3) sin(q4)

+m4l1 cos(q1) cos(q2) cos(q3) sin(q4)

012 (q)

= m1lc1 cos(q1)− m1l1 cos(q1)

+m4l3 sin(q1) cos(q2)2 cos(q3)2 sin(q4)

−m4l3 cos(q2) cos(q3) sin(q4) sin(q2) sin(q3) sin(q1)

+m4l2 sin(q1) cos(q2)2 cos(q3) sin(q4)

+m4l1 cos(q2) cos(q3) sin(q4) sin(q1)

013 (q)

= m4 sin(q4) sin(q2) cos(q3) (l3 cos(q2) cos(q3)

−l3 sin(q2) sin(q3)+ l2 cos(q2)+ l1) , (31)

021 (q)

= − cos(q1) (−m3lc3 cos(q2) sin(q3)

+m3l3 cos(q2) sin(q3)+ m3l2 sin(q3) cos(q3) cos(q2)

+m2lc2 sin(q2)− m2l2 sin(q2))

022 (q)

= − sin(q1) (−m3lc3 cos(q2) sin(q3)

+m3l3 cos(q2) sin(q3)+ m3l2 sin(q3) cos(q3) cos(q2)

+m2lc2 sin(q2)− m2l2 sin(q2))

023 (q)

= −m2 cos(q2)l2 + m2lc2 cos(q2)

+m3lc3 sin(q2) sin(q3)− m3l3 sin(q2) sin(q3)

−m3l2 sin(q3) cos(q3) sin(q2)

031 (q)

= −m3 (l3 − lc3) cos(q1) cos(q2) sin(q3)

032 (q)

= −m3 (l3 − lc3) sin(q1) cos(q2) sin(q3)

033 (q)

= −m3 (l3 − lc3) sin(q2) sin(q3), (32)

with 0i1 = 0i2 = 0i3 = 0, for i = 4, 5. From (31), (32)
and (40), the regressor Q (q, z) ∈ R5×28, and the vector of
kinematic and dynamic parameters 2 ∈ R28 can be easily
computed. The random vibrations ξ1, ξ2 and ξ3 are produced
as follows [5]

biξ̇i (t) = −ξi (t)+ wi (t) , ξi (0) = 0, i = 1, 2, 3, (33)

with bi > 0, and wi (t) a zero-mean band limited white
noise with a power Ai and a sample time tc. The means
square value of the zero mean stationary process ξi is given as
E‖ξi (t)‖2 = Ai

πbi
arctan

(
πbi
50tc

)
. For this simulation study,

we choose bi = 0.5, tc = 0.05, and Ai = 2, which result
in E‖ξi (t)‖2 = 0.7143.

1) COMPARATIVE SIMULATIONS WITH DIFFERENT
DESIGN PARAMETERS
Among the design parameters that can improve the tracking
performances, $j and %2 are the most important. Indeed,
$j can improve the transient performances of the closed-
loop system, whereas %2 can ameliorate the steady-state
performances as stated in Remark 11. This section carries
out simulations tests using different $j and %2 values to
verify these properties. During these tests, the other design
parameters are chosen as: εi = 5, λ2 = 10, γ1 = γ2 =

γ3 = γ4i = 0.01, %0 = diag (13×1), %1 = 1, and
λ1 = λ4i = 3, i = 1, 2, . . . , 5. Initial values are taken
as: q(0) = [0.6, 0.4, 0.2, 0, 0]T , q̇(0) = 05×1, β̂(0) =
0.04, θ̂ (0) = 0.5 × 14×1, 2(0) = 0.4 × 128×1, and
ϒ̂(0) = diag (10× 15×1).

For the first group of simulation tests, we choose $j =

0.001, j = 1, 2, 3, whereas three different values for %2 are
used, that is %2 = {0.01, 0.5, 1}. Simulations results are
given in Fig. 3 and Fig. 4. Fig. 3 depicts the EE trajectory
tracking errors for different values of %2. It is observed that
during the transient phase (that is t ≤ 2Sec), the lowest
settling time is obtained for %2 = 1, the highest settling
time is obtained for %2 = 0.01, and the highest bound for
the tracking error (that is

∣∣x̃j (t)∣∣ ≤ 0.103m) is obtained for
%2 = 1. At the steady-state phase, it is observed that

∣∣x̃j (t)∣∣ ≤
2 × 10−3m for %2 = 1, and

∣∣x̃j (t)∣∣ ≤ 2 × 10−4m for %2 =
0.01. From Fig. 4, it is observed that at the transient phase,
the highest bound of the control signals (that is |q̇ci (t)| ≤
1.1 rad/s) is obtained for %2 = 0.01, whereas for %2 = 1, the
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FIGURE 3. Simulation results for %2 = {0.01, 0.5, 1}: Tracking errors in
X-axis, Y-axis, and Z-axis.

FIGURE 4. Simulation results for %2 = {0.01, 0.5, 1}: Velocity commands
q̇ci , i = 1,2, . . . ,5.

FIGURE 5. Simulation results for $j = {0.001, 0.2, 2}, j = 1,2,3:
Tracking errors in X-axis, Y-axis, and Z-axis.

bound is 0.86 rad/s. These observations show that the lowest
the parameter %2 is, the better are the tracking performances,
but with a high control demand at the transient stage. These
results are compatible with expectations because from (28) a
low value for %2 results in a low value for E ‖x̃ (t)‖2, whereas
from (20) a low value of %2 can lead to high control demands.
Therefore, %2 must be chosen according to the admissible
maximum actuator velocity.

For the last group of simulation tests, we choose
%2 = 0.5, whereas three different values for $j are used,
that is, $j = {10−3, 0.2, 2}. Fig. 5 and Fig. 6 give the
simulation results. From Fig. 5, it is observed that the lowest
tracking error (that is

∣∣x̃j (t)∣∣ ≤ 1.2 × 10−3m) is obtained
for $j = 0.001. From Fig. 6, the control signals are higher
for $j = 2 at the steady-state, but the highest control signal
is observed for $j = 0.001 at the transient phase. These
results show that a low value for$j leads to good steady-state

FIGURE 6. Simulation results for $j = {0.001, 0.2, 2}, j = 1,2,3: Velocity
commands q̇ci , i = 1,2, . . . ,5.

FIGURE 7. Random accelerations ξ1, ξ2, and ξ3 of the robot’s connection
point to ground.

and transient performances and high control demand at the
transient phase. These results confirm the effectiveness of
the disturbances rejection due to ψ (x̃). Indeed, when the
constraint x̃2j ≤ $ 2

j is not fulfilled (mainly encountered at
the transient phase), ψ (x̃) increases the control gain %1%0j
to improve the disturbances rejection. However, $j must
be chosen according to the admissible maximum actuator
velocity.

2) COMPARATIVE SIMULATIONS WITH THE
OBSERVER-BASED ADAPTIVE TRACKING CONTROL SCHEME
DEVELOPED IN [15]
This section aims to prove the superiority of the proposed
control scheme over the controller developed in [15]. The
design parameters for the proposed controller are chosen
as $j = 0.001, j = 1, 2, 3, and %2 = 0.01. For
the controller in [15] the design parameters are taken as:
γ = diag ([5, 5, 10]), 0d = I54, 3 = 0.01I5, 3I = 0.2I5,
âd (0) = 054, and ŵI (0) = 2× 15×1.
The simulation results are given in Figs. 7, 8, and 9.

Fig. 7 depicts the random accelerations chosen for this study.
Note that these random accelerations are the worst-case
encountered in the real world. Fig. 8 presents the EE
trajectory and the EE trajectory tracking errors for the two
controllers. It is observed that the two controllers achieve
the EE trajectory tracking. The proposed controller performs
the lowest settling time at the transient phase (t ≤ 4Sec).
At the steady-state phase, tracking error is bounded as∣∣x̃j (t)∣∣ ≤ 1.5 × 10−4m for the proposed controller, and as∣∣x̃j (t)∣∣ ≤ 2 × 10−3m for the controller in [15]. Control
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FIGURE 8. Comparative simulation results: EE trajectory and tracking
errors for the two controllers.

FIGURE 9. Comparative simulation results: Velocity commands q̇ci ,
i = 1,2, . . . ,5 for the two controllers.

demands for the two controllers are given in Fig. 9. It is
observed that |q̇ci (t)| ≤ 1.1 rad/s for the proposed
controller, and |q̇ci (t)| ≤ 5 rad/s for the controller in [15].
Therefore, the proposed controller performs the best tracking
performances with low control signals. Two reasons can
explain these observations. The first reason is that in contrast
to the observer-based adaptive tracking control scheme [15]
our controller exhibits both deterministic and stochastic
disturbances rejection. The second reason is that, for the
proposed controller, ψ (x̃) allows the designer to impose
the required tracking performances. Note that, in contrast to
the method in [15], the proposed controller is free from the
structure of the inner controller; consequently it can be used
for any robot manipulator.

At the end of these simulation studies, it appears that,
in contrast to the literature, the proposed control approach
presents better tracking performances, with the lowest control
signals. These good performances can be explained by
the ability of the controller to achieve both deterministic
and stochastic disturbances rejection. Moreover, through the
ψ (x̃) vector and particularly the$j parameters, the controller
succeeds in maintaining the constraint x̃j (t)2 ≤ $ 2

j , which
improves the tracking accuracy even in the presence of
significant disturbances. Note that the designer does not need
to know the robot’s inner controller structure to implement
the proposed controller.

VI. CONCLUSION
This paper considers the problem of tracking control of
a robot manipulator with a closed and unknown inner

controller under random vibrations. A direct adaptive method
is proposed to achieve a stochastic disturbances rejection.
An indirect RBF NN adaptive method is used to deal with
deterministic uncertainties. Based on the fact that most inner
controllers use a velocity feedback term, an adaptive velocity
controller is designed to be free from the structure of the
inner controller. Through Lyapunov theory, the paper shows
that the tracking error is bounded in probability. Simulation
comparisons demonstrate the effectiveness of the proposed
control strategy.

APPENDIX A
PROOF OF LEMMA 1
Before proceeding to the proof of the Lemma 5, let us recall
the modeling procedure of the effect of random vibrations
on a planar robot manipulator, developed by Cui et al. [5].
Indeed, they consider that due to the random vibrations of
the robot’s environment, the robot’s connection point to the
groundO0 acquires an acceleration ξ ∈ Rr . This acceleration
propagates along the robot arms and generates in each arm’s
center of mass, a stochastic inertial force iFci = −miiaci2,
where mi is the i-th link mass, and iaci2 the projection of ξ
in the Y-direction (if the link evolve in the vertical plane)
or in the Z-direction (if the link evolve in the horizontal
plane) of the i-th link frame. Therefore, the stochastic torque
τc = 0 (q) ξ is the generalized stochastic inertial force.
Now let us find the explicit formula for the random

excitation matrix 0 (q) for any revolute joint robot manip-
ulator. For this purpose, define x̌ci =

[
ixTci, 1

]T and
F̌ci =

[
iFTci , 0

]T , where ixci ∈ Rr is the position of
the i-th link center of mass in the i-th link frame. Define
0Hi ∈ R(r+1)×(r+1), the homogeneous transformation
describing the relative position between the base frame and
the i-th link frame. The generalized stochastic force along the
j-th generalized coordinates is given as [5]

τcj =

n∑
i=1

r∑
s=1

(
Fci (s)

∂xci (s)
∂qj

)
, (34)

where Fci (s) and xci (s) are the s-th element of Fci and xci,
respectively. Fci and xci are the stochastic inertial force, and
the position of i-th link center for mass in the base frame,
respectively. Using the homogeneous transformation 0Hi,
(34) can be rewritten as

τcj =

n∑
i=1

(
0HiF̌ci

)T ( ∂

∂qj
0Hix̌ci

)

=

n∑
i=1

F̌Tci
0HT

i

(
∂

∂qj
0Hi

)
x̌ci. (35)

From the definition of iaci2, there exist a matrix �i (q) ∈
R(r+1)×(r+1) such that

F̌ci = mi�i (q) ξ̌ , (36)

with ξ̌ =
[
ξT , 1

]T .
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Note that for a revolute joint robot one has
∂
∂qj

0Hi = 0(r+1)×(r+1), for j > i. Using the latter and (36)
in (35) it follows

τcj =

n∑
i=j

miξ̌T�T
i
0HT

i

(
∂

∂qj
0Hi

)
x̌ci

=

n∑
i=j

(
mix̌Tci

(
∂

∂qj
0Hi

)T
0Hi�i

)
ξ̌

=
[
0j×r , 1

]
ξ̌ , (37)

with [
0j×r , 1

]
=

n∑
i=j

(
mix̌Tci

(
∂

∂qj
0Hi

)T
0Hi�i

)
, (38)

and 0j×r the j-line of 0 (q).
From (38) it follows the explicit formula for the elements

of 0 (q) as

0js =

n∑
i=j

mix̌Tci

[(
∂

∂qj
0Hi

)T
0Hi�i

]
(r+1)×s

, (39)

with 1 ≤ j ≤ n, and 1 ≤ s ≤ r . It is known that for
a revolute joint robot, 0Hi depends linearly on kinematic
parameters. Therefore, from (39), we can conclude that 0js
depends linearly on dynamic and kinematic parameters.

Now define v, y ∈ Rn such that v = 0 (q) 0T (q) y. The
j-th element of v is given as

vj =
n∑
s=1

r∑
k=1

0jk0skys, (40)

with ys the s-th element of y. Since 0js depends linearly
on dynamic and kinematic parameters, from (40) we can
easily conclude that vj depends linearly on kinematic and
dynamic parameters. The latter means that v can be linearly
parameterizable. In order words, we can found a matrix
Q (q, y) ∈ Rn×m̄ and a vector of robot’s dynamic and
kinematic parameters 2 ∈ Rm̄ such that 0 (q) 0T (q) y =
Q (q, y)2, this ends the proof �

APPENDIX B
PROOF OF THEOREM 1
The closed-loop signals are z, x̃, θ̃ = θ − θ̂ , β̃ = β− β̂, 2̃ =
2− 2̂, and ϒ̃i the i-th column of the matrix ϒ̃ = K−1d − ϒ̂ .
Therefore, we can define the Lyapunov candidate V (t) ∈ R
of the closed-loop system as follows

V (t) =
1
2
zTM (q)z+

1
2
x̃T x̃ +

1
2λ1

θ̃T θ̃ +
1
2λ2

β̃2

+
1
2λ3

2̃T 2̃+
1
2

n∑
i=1

1
λ4i
ϒ̃T
i Kd ϒ̃i. (41)

Taking the derivative of (41), using (16), (18), and
Property 2, it follows

V̇ (t) =
1
2
zT
[
Ṁ (q)− 2C (q, q̇)

]
− zTKd (q̇− q̇c) z

+zT0 (q) ξ + zT9 (Z )+ x̃T ˙̃x +
1
λ1
θ̃T
˙̃
θ

+
1
λ2
β̃
˙̃
β +

1
λ3
2̃T ˙̃2+

n∑
i=1

1
λ4i
ϒ̃T
i Kd
˙̃
ϒi

= −zTKd (q̇− q̇c) z+ zT0 (q) ξ + zT9 (Z )

−%0x̃Tψ (x̃)+ x̃TY (q, q̇) θ̃ + x̃T Ĵ (q) z

+
1
λ1
θ̃T
˙̃
θ +

1
λ2
β̃
˙̃
β +

1
λ3
2̃T ˙̃2

+

n∑
i=1

1
λ4i
ϒ̃T
i Kd
˙̃
ϒi. (42)

The parameter β, the parameters vectors θ and 2, and
K−1di the i-th column of K−1d are constants. Therefore, the
following equalities hold

˙̃
β = −

˙̂
β;

˙̃
θ = −

˙̂
θ;

˙̃
2 = −

˙̂
2;

˙̃
ϒi = −

˙̂
ϒi. (43)

From Lemma 5 and Lemma 8, the following inequalities
hold

zT0 (q) ξ ≤
1
4%2

zT0 (q) 0T (q) z+ %2‖ξ‖2

≤
1
4%2

zTQ (q, z)2+ %2‖ξ‖2. (44)

The vector 9 (Z ) is unknown; therefore, from (2), its
components 9i (Z ) can be approximated with a RBF NN
model as follows

9i (Z ) = W T
9i
Si (Z )+ δ9i (Z ) , (45)

with |δ9i (Z )| ≤ ε9i , i = 1, 2, . . . , n. From (21), (22), (23),
(45), Lemmas 6 and 7, the nonlinear function zT9 (Z ) is
bounded as follows

zT9 (Z ) =
n∑
i=1

zi
[
W T
9i
Si (Z )+ δ9i (Z )

]
≤

n∑
i=1

|zi|
[
‖W T

9i
‖‖Si (Z )‖ + |δ9i (Z )|

]
≤ β

n∑
i=1

|zi| [‖Si (Z )‖ + 1]

≤ β

n∑
i=1

|zi|
[
‖Si

(
Z̄
)
‖ + 1

]
≤ β

n∑
i=1

|ziUi|

≤ βzT Ū + 0.2785× β
n∑
i=1

εi. (46)

Using (19), (43), (44), and (46) into (42), yields

V̇ (t) ≤ −zTKd (q̇− q̇c)+
1
4%2

zTQ (q, z)2

+%2‖ξ‖
2
+ βzT Ū + 0.2785× β

n∑
i=1

εi

−%0x̃Tψ (x̃)+ x̃TY (q, q̇) θ̃ + x̃T Ĵ (q) z

−
1
λ1
θ̃T
˙̂
θ −

1
λ2
β̃
˙̂
β −

1
λ3
2̃T ˙̂2
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−

n∑
i=1

1
λ4i
ϒ̃T
i Kd
˙̂
ϒi

≤ −zTKd z− %0x̃Tψ (x̃)− zTKd ϒ̂ϑ

+
1
4%2

zTQ (q, z)2+ %2‖ξ‖2 + βzT Ū

+0.2785× β
n∑
i=1

εi + θ̃
TY (q, q̇) x̃

+zT Ĵ (q) x̃ −
1
λ1
θ̃T
˙̂
θ −

1
λ2
β̃
˙̂
β

−
1
λ3
2̃T ˙̂2−

n∑
i=1

1
λ4i
ϒ̃T
i Kd
˙̂
ϒi

≤ −zTKd z− %0x̃Tψ (x̃)− zTKd ϒ̂ϑ

+%2‖ξ‖
2
+ 0.2785× β

n∑
i=1

εi

+zT
[
β̂Ū + Ĵ (q) x̃ +

1
4%2

Q (q, z) 2̂
]

+
1
λ1
θ̃T
[
λ1Y (q, q̇) x̃ −

˙̂
θ
]

+
1
λ2
β̃
[
λ2zT Ū −

˙̂
β
]
−

n∑
i=1

1
λ4i
ϒ̃T
i Kd
˙̂
ϒi

+
1
λ3
2̃T

[
λ3

4%2
Q (q, z) z− ˙̂2

]
. (47)

Substituting (20), (24), (25), and (26) into (47) one has

V̇ (t) ≤ −zTKd z− %0x̃Tψ (x̃)+ %2‖ξ‖2

+zT
[
1n×n − Kd ϒ̂

]
ϑ +

γ1

λ1
θ̃T θ̂

+
γ2

λ2
β̃β̂ +

γ3

λ3
2̃T 2̂−

n∑
i=1

1
λ4i
ϒ̃T
i Kd
˙̂
ϒi

+0.2785× β
n∑
i=1

εi. (48)

Note that the following inequalities hold
γ1

λ1
θ̃T θ̂ ≤ −

γ1

λ1
θ̃T θ̃ +

γ1

λ1
‖θ‖2

γ2

λ2
β̃β̂ ≤ −

γ2

λ2
β̃2 +

γ2

λ2
β2

γ3

λ3
θ̃T θ̂ ≤ −

γ3

λ3
2̃T 2̃+

γ3

λ3
‖2‖2. (49)

Substituting (49) into (48) and using the fact that
1n×n − Kd ϒ̂ = Kd ϒ̃ , it follows that

V̇ (t) ≤ −zTKd z− %0x̃Tψ (x̃)−
γ1

λ1
θ̃T θ̃

−
γ2

λ2
β̃2 −

γ3

λ3
2̃T 2̃+ zTKd ϒ̃ϑ

−

n∑
i=1

1
λ4i
ϒ̃T
i Kd
˙̂
ϒi + %2‖ξ‖

2
+ ρ1, (50)

with ρ1 =
γ1
λ1
‖θ‖2 +

γ2
λ2
β2 +

γ3
λ3
‖2‖2 + 0.2785× β

n∑
i=1
εi.

Since ϒ̃ is a matrix and z a vector, the term zTKd ϒ̃ϑ can
be rewritten as

zTKd ϒ̃ϑ =
n∑
i=1

ϒ̃T
i ϑiKd z, (51)

with ϑi the i-th element of ϑ , i = 1, 2, . . . , n.
Substituting (27) and (51) into (50) yields

V̇ (t) ≤ −zTKd z− %0x̃Tψ (x̃)−
γ1

λ1
θ̃T θ̃ −

γ2

λ2
β̃2

−
γ3

λ3
2̃T 2̃+

n∑
i=1

1
λ4i
ϒ̃T
i Kd

[
λ4iϑiz−

˙̂
ϒi

]
,

+%2‖ξ‖
2
+ ρ1

≤ −zTKd z− %0x̃Tψ (x̃)−
γ1

λ1
θ̃T θ̃ −

γ2

λ2
β̃2

−
γ3

λ3
2̃T 2̃−

n∑
i=1

γ4i

λ4i
ϒ̃T
i Kd ϒ̃i

+

n∑
i=1

γ4i

λ4i
ϒ̃T
i KdK

−1
di + %2‖ξ‖

2
+ ρ1. (52)

Note that KdK
−1
di is a vector with the i-th element equal

to 1, whereas all the other elements are zero. Therefore, the
following equality holds(

KdK
−1
di

)T (
KdK

−1
di

)
= 1, ∀ i = 1, 2, . . . , n. (53)

From (53) and Lemma 8 it follows
n∑
i=1

γ4i

λ4i
ϒ̃T
i KdK

−1
di ≤

n∑
i=1

γ4i

2λ4i
ϒ̃T
i ϒ̃i +

n∑
i=1

γ4i

2λ4i
. (54)

Substituting (54) into (52) results in

V̇ (t) ≤ −zTKd z− %0x̃Tψ (x̃)−
γ1

λ1
θ̃T θ̃ −

γ2

λ2
β̃2

−
γ3

λ3
2̃T 2̃−

n∑
i=1

γ4i

λ4i
ϒ̃T
i

(
Kd −

1
2
In×n

)
ϒ̃i

+%2‖ξ‖
2
+ ρ2, (55)

with ρ2 =
n∑
i=1

γ4i
2λ4i
+ ρ1.

In this study, Kd is assumed to be unknown for the user.
Therefore, the sign of Kd − 1

2 In×n is not known a priori.
Nevertheless, we should notice that the feedback gains Kdii
are chosen significantly enough to reduce the settling time
and the tracking error for most torque controllers. Therefore,
for most practical cases, Kdii � 1

2 such that the matrices Kd
and Kd − 1

2 In×n are positive definite [22], [23]. The latter
means that for all y ∈ Rn, the following inequalities hold:

0 ≤ λmin (Kd ) yT y ≤ yTKdy ≤ λmax (Kd ) yT y (56)

0 ≤ yT
(
Kd −

1
2
In×n

)
y. (57)

From the increasing property of the function exp (x),
it follows

−%0x̃Tψ (x̃) ≤ −x̃T diag
([
%01%1 exp

(
−$ 2

1

)
,

. . . , %0r%1 exp
(
−$ 2

r

)])
x̃. (58)
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Using (56), (57) and (58) into (55), it follows

V̇ (t) ≤ −λmin (Kd ) zT z−
γ1

λ1
θ̃T θ̃ −

γ2

λ2
β̃2 + %2‖ξ‖

2

−
γ3

λ3
2̃T 2̃−

n∑
i=1

γ4i

λ4i
ϒ̃T
i

(
Kd −

1
2
In×n

)
ϒ̃i

+ρ2 − x̃T diag
([
%01%1 exp

(
−$ 2

1

)
,

. . . , %0r%1 exp
(
−$ 2

r

)])
x̃. (59)

From (56) and (57), and the fact that inertia matrixM (q) is
positive definite, for all y ∈ Rn, there exist a positive constant
ρ3 that fulfills the following three constraints

ρ3 ≤ min
{
2%0j%1 exp

(
−$ 2

j

)
, 2γk

}
,(60)

ρ3

2
λmax (M (y)) ≤ λmin (Kd ) , (61)

and
ρ3

2
yTKdy ≤ γ4iyT

(
Kd −

1
2
In×n

)
y, (62)

with k = 1, 2, 3, j = 1, 2, . . . , r , and i = 1, 2, . . . , n.
Using (41), (60), (61), (62), and Property 1 into (59) it

follows

V̇ (t) ≤ −
ρ3

2
zTM (q) z−

ρ3

2λ1
θ̃T θ̃ −

ρ3

2λ2
β̃2

−
ρ3

2λ3
2̃T 2̃−

n∑
i=1

ρ3

2λ4i
ϒ̃T
i Kd ϒ̃i

−
ρ3

2
x̃T x̃ + %2‖ξ‖2 + ρ2

≤ −ρ3V (t)+ %2‖ξ‖2 + ρ2. (63)

Taking expectations on both sides of (63) and using
Assumption 4, one has

EV̇ (t) ≤ −ρ3EV (t)+ %2E‖ξ‖2 + ρ2
≤ −ρ3EV (t)+ %2α + ρ2. (64)

By defining ν =
[
zT , x̃T , θ̃T , β̃, 2̃T , ϒ̃T

1 , . . . , ϒ̃
T
n

]T
, and

using (41) and Property 1, one has

a1‖ν‖2 ≤ V (t) ≤ a2‖ν‖2, (65)

with

a1 =
1
2
min

λmin (M (q)) , 1,
1
λk
,
λmin (Kd )
max
i=1,..,n

(λ4i)

 , (66)

a2 =
1
2
max

λmax (M (q)) , 1,
1
λk
,
λmax (Kd )
min
i=1,..,n

(λ4i)

 , (67)

and k = 1, 2, 3. From (63), (65) and theorem 3 in [12], the
closed-loop system has a unique global solution, and its state
has an asymptotic gain in the second moment. Furthermore,
(63) and (65) mean that V (t) < ∞, and V̇ (t) < ∞.
Therefore, from the Fubini’s theorem [24], we have∫ t

t1
EV̇ (s) ds = E

∫ t

t1
V̇ (s) ds = EV (t)− EV (t1) , (68)

which implies that

E
dV (t)
dt
=
dEV (t)
dt

. (69)

Using (69) into (64), multiplying the resulting inequality by
exp (ρ3t), and integrating both sides over [0, t], it follows

EV (t) ≤
(
V (0)−

%2α + ρ2

ρ3

)
exp (−ρ3t)+

%2α + ρ2

ρ3

≤ V (0) exp (−ρ3t)+
%2α + ρ2

ρ3
. (70)

Taking expectations on both sides of (65), using (70) and the
Chebyshev’s inequality results in

lim
ρ4→∞

sup
t>0

P {‖ν (t)‖ > ρ4} ≤ lim
ρ4→∞

sup
t>0

E‖ν (t)‖2

ρ24

≤ lim
ρ4→∞

V (0) exp (−ρ3t)

a1ρ24

+ lim
ρ4→∞

%2α + ρ2

a1ρ3ρ24
= 0, (71)

which means that ν (t) is bounded in probability. Therefore,
all the closed-loop signals are bounded in probability.

Furthermore, taking expectations on both sides of (41) and
using (70) gives

lim
t→∞

E‖x̃ (t)‖2 ≤ lim
t→∞

2EV (t)

≤ lim
t→∞

[
2V (0) exp (−ρ3t)

+
2 (%2α + ρ2)

ρ3

]
≤

2 (%2α + ρ2)
ρ3

. (72)

The latter completes the proof �
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