
Received April 21, 2022, accepted May 30, 2022, date of publication June 8, 2022, date of current version June 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3180735

Synthesis of a Two Degrees of Freedom Wireless
Networked Digital Servo Control System With
Dynamic State Prediction Based on a Gated
Recurrent Unit-Based Round Trip Time Predictor
TATSUKI NONOMURA AND FUMITAKE FUJII , (Member, IEEE)
Department of Mechanical Engineering, Yamaguchi University, Yamaguchi 755-8611, Japan

Corresponding author: Fumitake Fujii (ffujii@yamaguchi-u.ac.jp)

ABSTRACT A wireless networked control system (WNCS) may suffer from an abrupt and large network
communication delay that may degrade the control performance and lead to the instability of the closed-
loop system. A two degrees of freedom (DOF) digital servo system for a WNCS is proposed in this paper.
We trained a gated recurrent unit network to predict the round trip time (RTT) of a closed-loop packet with
high accuracy and integrated it with a feedback controller connected to the network. The feedback controller
was configured to monitor the behavior of RTTs for each node in the network, predict the future behavior
of the nodes, and synthesize a control input that compensates for the worst case RTT of the nodes using
the dynamic state predictive control scheme. We constructed a pendulum manipulator system, in which an
inverted pendulum is attached at the tip of the six DOF industrial manipulator. The control objective of a
pendulum manipulator system was to track the first axis angle of the manipulator to the given reference
trajectory while stabilizing the pendulum around its unstable equilibrium. The results of the numerical
simulations and experiments were reported to validate the performance of the proposed controller in aWNCS
that occasionally suffers from a large network transmission delay that amounted to several tens of sampling
intervals at the worst case.

INDEX TERMS Wireless networked control system, dynamic state predictive control, the Internet of Things,
gated recurrent unit network.

I. INTRODUCTION
With the advancement in broadband telecommunication
network infrastructure, the Internet of Things technology has
been deployed in industries and consumer markets. Many
electrical appliances are now able to connect to the internet.
A networked control system (NCS) is a feedback control
system, in which the plant is controlled using network data
transmission. Examples of NCSs include remote-controlled
cars and drones, rescue robots, and telesurgery systems.

A recent trend in the development of NCSs in industry is
the utilization of wireless network communication. Although
wired network connections are firmer and more robust
than wireless network connections, network cables can be
voluminous and expensive for large-scale networks. Physical
cables can restrict the motion of mobile robots and/or
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rotating machines. Replacing such cable connections with
wireless network devices can significantly reduce the initial
installation cost and increase the degrees of freedom (DOF)
in the deployed NCS.

Issues such as packet loss, quantization error, transmission
delay, and degradation of the control performance metrics
are encountered with respect to feedback control over
the network. Transmission delay is a critical issue in
remote control systems, as the feedback control system
may lose stability when it suffers from a large signal
transmission delay [1]. This problem worsens if the signal
transmission is implemented over a wireless network, as its
transmission delay increases significantly when network
congestion occurs [2]. Therefore, in this study, we focused
on compensating for the delay in wireless NCSs (WNCSs).

Several methods have been proposed to compensate for the
delays in feedback control systems. These methods include
the Smith predictor [3], internal model control [4], and state
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predictive control [5]. Although these methods work well
for constant delays, their performance deteriorates when
the delay varies, which occurs in NCSs. Several studies
have been conducted to compensate for the time-varying
delay in NCSs [6]–[13]. It was shown in [6]–[9] that
linear matrix inequality (LMI)-based methods are effective
in compensating for the time-varying delay, provided that its
variation is small. However, it might be difficult to apply the
results directly to WNCSs as a large transmission lag can
occasionally occur.

Yoshida et al. [12] proposed a dynamic state predictive
control for stabilizing an inverted pendulum. They calculated
state predictions using the measured round trip time (RTT)
of the target network and synthesized control inputs with a
feedback gain determined by the optimal control theory. They
performed 100 numerical simulations with three different
measured RTT sequences and showed that stability was
maintained under RTT variations of 200 ms with a 90%
probability. However, as the RTT is an unknown quantity, the
closed-loop stability can be improved if the RTT uncertainty
in the synthesis of feedback controllers is considered.
Liu et al. [13] proposed a packet-based dynamic state
predictive control based on time synchronization between
the controller and actuator nodes. However, this method
might further increase the RTT when the network encounters
a large transmission delay. Moreover, performing time
synchronization in a large scale NCS that includes many
network nodes is significantly difficult.

The RTT in a network communication varies depending on
the performance of the network device, the physical distance
between network devices [14], the time of day when network
communication occurs [15], and the sampling interval [16].
Depending on the size of the buffer, the RTT can be as high
as 1 s if the network is congested [17]. However, if a high
precision RTT predictor is synthesized, time synchronization
is not required. The development of RTT predictor models
has been reported in the literature. Two different approaches
exist: one approach includes the application of recurrent
neural networks (RNNs) [15], [18]–[20] and the other
approach utilizes probabilistic modeling [21], [22]. In the
latter approach [22], the behavior of the RTT was modeled
using a Markov process, whose transition probability was
determined based on beta distribution functions. In addition,
a switching algorithm for the stabilizing feedback control
gain was proposed based on the estimated interval of the
transient changes of the RTT.

We recently reported the synthesis of a two DOF digital
servo NCS using an RNN-based RTT predictor [23] for a
virtual inverted pendulum that was controlled over a network.
We verified the performance of our two DOF WNCS using a
hardware-in-the-loop setup and succeeded in stabilizing the
virtual pendulum while tracking the step changes in the first
joint axis angle of the manipulator.

In this study, we addressed the control of a real pendulum
manipulator system over a wireless network for the stabi-
lization of the pendulum attached at the tip of a six DOF

industrial manipulator while performing servo control of the
first joint axis of the manipulator. The angles of the first
joint of the manipulator and the inverted pendulum were
measured independently to form two isolated sensor nodes in
theWNCS. We also improved the RTT predictor for dynamic
state predictive control. We employed a gated recurrent
unit (GRU) network and trained it to predict several future
RTT samples to compensate for the phase lag introduced
by a Kalman filter, which is used to smooth unnecessary
jagged changes in the predicted RTT. We performed both
numerical simulations and real experiments to demonstrate
that the proposed dynamic state predictive control exhibits
better performance than the previous dynamic state predictive
control methods.

The remainder of this paper is organized as follows.
In Section II, the measurement of the end-to-end (E2E)
delay and the RTT in our WNCS are provided in detail
and the problem formulation for the synthesis of the two
DOF digital servo controller over a wireless network is
described. In Section III, the conventional two DOF feedback
controller design proposed in the literature, which was used
to determine the feedback control structure, is introduced.
Then, a gain synthesis process that guarantees closed-loop
stability when it is implemented over a wireless network is
described. We also explain the Kalman filter that was used
for state estimation. In Section IV, we propose a dynamic
state predictive two DOF servo controller for our pendulum
manipulator system, whose prediction horizon is determined
by the output of the GRU-based RTT predictor. In Section V,
the performance of the proposed control system is verified
through numerical simulations. The results of real experi-
ments are reported in Section VI. The conclusions and future
work implications for further performance improvements are
presented in Section VII.

II. PROBLEM FORMULATION
We first investigate the delays observed in wireless network
communication and mathematically formulate the controller
synthesis problem for a WNCS. There are four primary
sources of network transmission delay: serialization delayDs,
propagation delayDprop, processing delayDproc, and queuing
delay Dq [24]. Both Ds and Dprop depend on the packet size
and the physical distance between two network nodes and are
assumed to be constant. Conversely, Dproc(t) and Dq(t) vary
depending on the traffic of the network.Wemeasured the E2E
delay, which is the summation of the four delays, and the RTT
of a packet originating from a node of the network.

A. IDENTIFICATION OF THE END-TO-END DELAY AND
ROUND TRIP TIME (RTT)
To understand how the RTT changes in a network com-
munication with wireless nodes, we set up an experimental
environment, as illustrated in Fig. 1. We identified the E2E
delay and RTT of the network. Two Raspberry Pi computers
(Raspberry Pi 3 Model B+, Raspberry Pi Foundation) and a
WiFi router (WSR-1166DHPL2/N, Buffalo Inc., Japan) were
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FIGURE 1. Measurement of the end-to-end (E2E) delay and round trip
time (RTT).

used. The router was connected to the university network as
an access point. We tested the IEEE 802.11ac and 802.11n
standards for the wireless connection with 5 and 2.4 GHz
frequency bands, respectively. Because the Raspberry Pi is
not equipped with a real time clock (RTC) module, we added
one (Raspberry Pi RTC Expansion Module v1.1, Seeed
Studio, China) for the experiment.

We connected the two general-purpose input/output
(GPIO) pins of each Raspberry Pi board with a wire.
We modified the pin voltage level from low to high on one
board, hereafter referred to as the leader. The other board,
hereafter referred to as the follower, was programmed to
continuously monitor the pin status, and start the remaining
part of the program immediately after a change in the status
of the GPIO pin was sensed. The RTCs of the two Raspberry
Pi boards were synchronized accordingly.

After the completion of time synchronization, both boards
were programmed to repeatedly perform socket communi-
cations at 5 ms intervals. The user datagram protocol was
used for packet communication. The leader transmitted a
12-byte packet containing the current RTC readout and the
serial packet counter that was sequentially incremented on
the leader board. The follower recorded the RTC value when
it received a packet from the leader and then generated a
24-byte packet, which included the 12-byte packet received
from the leader, the RTC readout of the follower when the
follower received the packet, and a serial counter that was
generated inside the follower board.

If the leader or follower did not receive a packet in the
current sampling interval, we used the preceding packet
to calculate the E2E delay and RTT. The following three
quantities were determined for each sampling interval:
1) τ1(t): The E2E delay identified by the difference

between the time when the follower received a packet
from the leader and the leader RTC included in the
received packet.

2) τ2(t): The E2E delay identified by the difference
between the time when the leader received a packet
from the follower and the follower RTC included in the
received packet.

3) τ (t): The RTT as identified by the difference between
the time when the leader transmitted a packet and the

FIGURE 2. Measurements of the E2E delay and RTT.

time when the leader received a returning packet from
the follower.

The results are shown in Fig. 2. The plots shown in Figs. 2a
and 2b exhibit a large transmission delay for a duration of
6–7 s in both frequency bands. During the time window of
congestion, the two E2E delays τ1 and τ2 and the RTT τ were
identified to be approximately the same. This result implies
that a communication delay occurs in both directions of
packet transmission when the network is congested. A packet
was maintained in transit between the two nodes during the
congestion period of 100–150 ms, and its returning packet
was delivered immediately after the delivery of the delayed
packet. We did not observe a significant difference between
the largest delays in the two frequency bands; however, the
perturbations of delay were observed more frequently in
the 2.4 GHz wireless communication than in the 5 GHz
wireless communication. We also noticed the existence of
protuberances of the RTTs over the entire measurement range
in both frequency bands. Since we quantify the RTTs as
the integer multiples of the sampling interval, a small RTT
variation would result in small protuberances of five ms,
as can be clearly seen in the zoomed-in portion of the first
eight seconds of themeasurement in Fig. 2a. Another possible
cause of the observed protuberances is the inaccuracy of the
real time clock module.

Based on the behavioral knowledge of network trans-
mission delay, we mathematically formulated the wireless
networked control problem.

B. MATHEMATICAL FORMULATION OF THE WIRELESS
NETWORKED CONTROL PROBLEM
Fig. 3 shows the block diagram of the WNCS studied in
this paper. This system is composed of a continuous-time
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FIGURE 3. Block diagram of a wireless networked control system (WNCS).

plant, a discrete time controller, and two wireless sensors
labeled Sensor1 and Sensor2, which are used to measure
two independent output quantities. The plant is classified as
a linear time-invariant single-input multiple-output system,
whose state space model is given by

ẋ(t) = Ax(t)+ Bu(t)

y(t) = Cx(t), (1)

where x(t) ∈ Rn, y(t) ∈ Rl , and u(t) ∈ R represent the state,
output, and control inputs, respectively. Matrices A ∈ Rn×n,
B ∈ Rn×1, and C ∈ Rl×n define the realization of the plant.
We assume that the pair (A,B) is stabilizable and (C,A) is
detectable. We also assume that the loop transmission delay
of signals at the k-th sampling interval τk is quantified as an
integer multiple of the sampling interval h, which is denoted
by

τk = dkh (dk ∈ N). (2)

We assume that the multiple dk takes a bounded value
and belongs to the set � , {dm, · · · , dM }. However, the
boundaries dm and dM are assumed to be unknown. Using
this notation, we hereafter denote the transmission delay from
the controller to the actuator as d̄ca,k , that from Sensor1
to the controller as d̄sc1,k , and that from Sensor2 to the
controller as d̄sc2,k . We also assume that both the controller
and actuator nodes use the latest delivered packet and use the
previously delivered packet when no packet is delivered to
the nodes in the current sampling interval. Thus, d̄∗,k , where
∗ represents ca, sc1 or sc2, in Fig. 3 is defined as

d̄∗,k =

{
d∗,(k−1) + 1, no packet received,
d∗,k , packet received.

(3)

We can discretize the plant dynamics of (1) by

x[k + 1] = Adx[k]+ Bdu[k − d̄ca,k ]

y[k] = Cx[k] (4)

using a zero-order holder, where Ad and Bd are given by

Ad = eAh, Bd =
∫ h

0
eAtBdt, (5)

respectively. Considering the transmission delay from the two
sensor nodes to the controller, the output Y [k] observed by the
controller node is described as

Y [k] =
[
y1[k − d̄sc1,k ]
y2[k − d̄sc2,k ]

]
=

[
C1x[k − d̄sc1,k ]
C2x[k − d̄sc2,k ]

]
. (6)

FIGURE 4. Two degrees of freedom (DOF) digital servo system.

III. EXTENSION OF A TWO DEGREES OF FREEDOM (TWO
DOF) DIGITAL OPTIMAL SERVO CONTROL SYSTEM TO A
WIRELESS NETWORKED CONTROL SYSTEM (NCS)
We aim to synthesize a two DOF digital servo control
system that maintains its function even during the occurrence
of occasional large transmission delays. To achieve this,
we applied the feedback structure of the two DOF digital
optimal servo controller proposed in the literature and
synthesized the included gains so that the closed-loop system
maintains its stability under a large signal transmission delay.

A. SYNTHESIS OF THE TWO DOF DIGITAL OPTIMAL
SERVO CONTROLLER
Fig. 4 shows the feedback structure of the digital servo
controller proposed by Hagiwara et al. [25]. As it utilizes a
two DOF structure, we could independently design reference
tracking and disturbance rejection properties. Using the
symbols introduced in Fig. 4, the control law is given by

u[k] = F0x[k]+ H0r + v[k]. (7)

The gains F0 and G were determined to minimize the
quadratic performance indices J1 and J2, which are defined
as follows:

J1 =
∞∑
k=0

{
x̃[k]TQx̃[k]+ ũ[k]TRũ[k]

}
(8)

and

J2 =
∞∑
k=0

{
ζ̃ [k]T�ζ̃ [k]+ ṽ[k]T2ṽ[k]

}
, (9)

whereQ,R, �, and2 are selected to be positive definite. The
quantities x̃[k] = x[k]−x∞, ũ[k] = u[k]−u∞, ζ̃ [k] = ζ [k]−
ζ∞, and ṽ[k] = v[k] − v∞ that appear in the equations for
J1 and J2 represent the difference between the current values
and the steady-state values.

The feedforward gain H0 should be determined to equate
the output y to its reference r in the steady state. The
steady-state calculation yields H0, which is determined as
follows:

H0 = −[C(Ad + BdF0 − I )−1Bd ]−1. (10)

The feedback input signal v[k] takes a nonzero value only
when the output deviates from the reference, which is caused
by modeling inaccuracy and/or disturbance. The gain F1 is
formulated as follows:

F1 = C(Ad + BdF0 − I )−1. (11)
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B. DETERMINATION OF F0 AND G IN THE PRESENCE OF A
FEEDBACK TRANSMISSION DELAY
We then extended the two DOF controller design to our
WNCS. Let us start from the simplest case by assuming
that all state variables can be measured directly by the
installed wireless sensors. If we additionally assume that all
sensor-to-controller delays are identical, applying the control
law (7) results in closed-loop dynamics of the NCS that is
algebraically characterized by

x̄[k + 1] = Āx̄[k]+ B̄x̄[k − d̄k ], (12)

where x̄[k] = [x[k], ζ [k]]T . The closed-loop matrices are
obtained as follows:

Ā =
[

Ad 0
−F1BdF0 1

]
, B̄ =

[
BdF0 BdG
F1BdF0 F1BdG

]
, (13)

where d̄k = d̄ca,k + d̄sc1,k . As observed in the previous
section, d̄k can be significantly perturbed. As a result, the
feedback control system may lose its stability if we use the
nominal gains that minimize (8) and (9). Therefore, we must
determine the appropriate gains while considering the delay
d̄k .

Zhao et al. [8] proposed the synthesis of a state feedback
control law u[k] = F0x[k] that stabilizes the closed-loop
system as follows:

x[k + 1] = Adx[k]+ BdF0x[k − d̄k ]. (14)

They designed a specific Lyapunov function that includes the
past states determined by the smallest and largest possible
delays dm and dM , respectively, and derived the correspond-
ing LMI conditions by applying the Schur complement.
We followed their procedure to determine the state feedback
gain matrix F0. We should note here that the assumption
of identical sensor-to-controller delays is somewhat invalid.
As shown in the experimental validations later in this paper,
the two sensor-to-controller delays frequently exhibited
different values. However, this assumption is required for the
analytical treatment of the synthesis of F0.

Once F0 is determined, the overall closed-loop stability
depends on the choice of G. We first synthesized F0 for
the worst case delay d̄k = dM and calculated F1 using
(11). We found that the closed-loop dynamics of our WNCS
corresponding to the worst case delay (d̄k = dM ) were
characterized by

ξ [k + 1] = 8ξ [k], (15)

where the closed-loop matrix 8 is given by

8 =



Ad 0 · · · 0 BdF0 0 · · · 0 BdG
I 0 · · · 0 0 0 · · · 0 0
...

... · · ·
...

...
... · · ·

...
...

0 0 · · · I 0 0 · · · 0 0
−F1BdF0 0 · · · 0 F1BdF0 I · · · 0 F1BdG

0 0 · · · 0 0 I · · · 0 0
...

... · · ·
...

...
... · · ·

...
...

0 0 · · · 0 0 0 · · · I 0



and ξ [k] is its state vector, which is defined as

ξ [k] =
[
xT [k], xT [k − 1], · · · , xT [k − dM ],

ζ T [k], ζ T [k − 1], · · · , ζ T [k − dM ]
]T
.

We manually determined G such that all eigenvalues of 8
were located inside the unit circle of the complex plane.

C. STATE ESTIMATION USING A STEADY-STATE KALMAN
FILTER
Although we assumed that all state vector components were
directly measurable in our previous development, this is not
always the case. Consequently, we synthesized a steady-state
Kalman filter to obtain state vector estimates. Let x̂[k] be
the estimate of x[k]. Then, the Kalman filter is formulated
as follows:

x̂[k + 1] = Ad x̂[k]+ Bdu[k]+ K (Y [k]− Cx̂[k]); (16)

Moreover, the control input u[k] is synthesized as follows:

u[k] = F0x̂[k]+ H0r + v[k]. (17)

IV. THE IMPLEMENTATION OF A TWO DOF SERVO
SYSTEM WITH DYNAMIC STATE PREDICTIVE
CONTROL USING A GATED RECURRENT UNIT
(GRU)-BASED RTT PREDICTOR
We propose the integration of a dynamic state predictor into
the synthesized WNCS in this section. We also propose the
repeated use of a pretrained GRU network that is used to
predict the next step RTT to calculate the several steps ahead
RTT of the network to determine the prediction horizon in
dynamic state prediction. Based on the inferences deduced
from the RTTmeasurements in Section II, we have to assume
the occurrence of a large RTT that occasionally exceeds the
largest dM which was set during the synthesis of F0. The
introduction of the dynamic state predictive control scheme
in our WNCS is expected to compensate for a significantly
large transmission delay caused by the congestion of the
network and improve the stability margin of the closed-loop
WNCS, provided that future RTT values are predicted with
high accuracy. For this purpose, we monitored the behavior
of the RTT in real time during the control operation.

A. CALCULATION OF THE DYNAMIC STATE PREDICTION
USING THE GRU-BASED RTT PREDICTOR
The RTT of a wireless network varies significantly, as illus-
trated in Fig. 2, and we cannot predict when the network
will be in a state of congestion. Therefore, we aimed to
train a GRU model using the measured RTT sequence of
the target network to predict future RTT behavior, including
possible congestion. We recently reported a hardware-in-the-
loop simulation result of the dynamic state predictive control
for a pendulum manipulator system [23], in which we used a
conventional RNN to predict a one sampling step ahead RTT.
The proposed control law is given as follows:

u[k] = F0x̂[k + Hk ]+ H0r + v[k]. (18)
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FIGURE 5. Proposed two DOF digital servo WNCS with a switching-type
dynamic state predictive controller.

The dynamic state prediction x̂[k + Hk ] is calculated as
follows:

x̂[k + Hk ] = AHkd x̂[k]+
k−1∑

j=k−Hk

Ak−j−1d Bdu[j], (19)

where Hk denotes a one step ahead RTT generated by the
RNN-based RTT predictor at time step k . Because there was
only one physical sensor in our previous experimental target,
we concentrated on the prediction of one sensor-to-controller
delay of a WNCS. However, in the case of a real pendulum
manipulator system, two different RTTs must be considered
for two sensor nodes, i.e., Sensor1 and Sensor2 in this study,
as illustrated in Fig. 3.
Therefore, we trained two GRUs to predict the two RTTs,

namely, the RTT for the controller and Sensor1 network
and that for the controller and Sensor2 network. As the
actuator is controlled by a notebook PC that also retrieves
the Sensor1 output in our pendulum manipulator system, we
only need to predict the two aforementioned RTTs. Let Ĥ1,k
and Ĥ2,k be the predicted RTTs for the controller-Sensor1 and
controller-Sensor2 networks, respectively. Next, we propose
the following switching control law for our WNCS.

u[k] =

{
F0x̂[k + Ĥ1,k ]+ H0r + v[k] if Ĥ1,k > Ĥ2,k

F0x̂[k + Ĥ2,k ]+ H0r + v[k] if Ĥ2,k > Ĥ1,k

(20)

The predicted RTTwith the greatest value will be recognized
as the prediction horizon of the dynamic state prediction to
compensate for the worst case transmission delay.

B. CONFIGURING THE GRU FOR RTT PREDICTION
In this subsection, the calculations of the RTT predictions
Ĥ∗,k (∗ = 1, 2) are described. Our previous study [23]
revealed that both the measured and the predicted RTTs may
exhibit large and rapid changes. As the straightforward use
of the raw predicted RTT sequence in the dynamic state
predictive control might deteriorate the control performance,
we smoothed the predicted RTT sequences by synthesizing
another Kalman filter. Furthermore, we decided to predict
H (>1) steps ahead RTTs of the two controller-sensor
network connections and applied them to the synthesized
Kalman filter tomitigate the phase lag introduced by filtering.

The relationship between the input and output quantities of
the GRU network in this study is specified by the following
set of equations:

r[k] = σ (WrR[k]+ Urh[k − 1]+ br ) (21)

z[k] = σ (WzR[k]+ Uzh[k − 1]+ bz) (22)

ĥ[k] = tanh (WhR[k]+ Uh(r[k]� h[k − 1])+ bh)

(23)

h[k] = z[k]� h[k − 1]+ (1− z[k])� ĥ[k] (24)

yGRU[k] = Vh[k]+ c, (25)

where R[k] = [RTT[k−1],RTT[k−2], · · · ,RTT[k−5]]T is
an input vector for the predictor network andW∗,U∗, b∗,V , c
represent the weights and biases of each layer and gate.

The network was configured to contain one hidden layer
with 120 neurons. We used 50 previous RTT measurements
{R[k − 1],R[k − 2], · · · ,R[k − τ ]} (τ = 50) at time k
to calculate the current hidden layer output h[k]. We used
the previous five samples of RTT measurements R[k] as the
input of the GRU predictor to detect the network congestion
that lasts for 6–7 s as early as possible. The networks were
trained as follows. We prepared 500,000 RTT measurements
of the two ‘‘controller and sensor’’ networks. We used 80%
of the measurements for training and the remaining 20% for
validation. We set the number of epochs to 10,000 and the
batch size n to 1,024. The parameters were updated using
AMSGrad [26], whose learning rate was set to 0.001. The
parameters of the networkW∗,U∗,V and b∗, c were updated
to minimize the mean squared error, which is defined as

E =
1
n

n∑
k=1

(yGRU[k]− RTT[k])2, (26)

where yGRU[k] is the output of the network and RTT[k]
denotes the current measured RTT.

After the training was completed, we integrated the trained
GRUmodels into the proposed control system to calculate the
H steps ahead prediction of the RTT in the following manner.
We stored the past-to-present τ + 4 RTT measurements in a
buffer to calculate yGRU[k], which was used to form a new
input layer R̂[k] = [yGRU[k],RTT[k−1], · · · ,RTT[k−4]]T

and calculate yGRU[k + 1] using (21)-(25). We repeated this
procedure H times to determine the H steps ahead prediction
of the RTT, i.e., yGRU[k + H ].

We finally applied an alternate Kalman filter, which is
defined by

K [k] =
(p[k − 1]+ r)
p[k − 1]+ r + q

(27)

ŷGRU[k + H ] = ŷGRU[k + (H − 1)]

+K [k](yGRU[k + H ]

− ŷGRU[k + (H − 1)]) (28)

p[k] = (1− K [k])(p[k − 1]+ r) (29)

Ĥk = Round
(
ŷGRU[k + H ]

h

)
(30)
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FIGURE 6. Structure of the gated recurrent unit-based RTT predictor.

to the sequence of yGRU[k + H ] to achieve the smoothed
estimate ŷGRU[k + H ], where r and q are the covariances
of the measurement and process noises, respectively. An
integer multiple expression Ĥk of ŷGRU[k + H ] was needed,
as defined by (30), to calculate the dynamic state prediction.

V. NUMERICAL SIMULATION OF THE WNCS
The details of the pendulum manipulator system are pre-
sented in this section and are followed by a description
of the implementation of the proposed controller to our
WNCS. Simulations of the proposed control system, in which
physically moving bodies of the system and the sensor
measurements are replaced with corresponding mathematical
equations, were performed using two additional reference
controllers to highlight the performance of the proposed
control system.

A. EXPERIMENTAL APPARATUS AND
CONTROL OBJECTIVES
Fig. 7 shows the pendulum manipulator system used in this
study. The manipulator (MZ07-01, Nachi-Fujikoshi Corp.,
Japan) is a six DOF industrial manipulator. A pendulum is
attached at the tip of the manipulator so that it can rotate
freely around the axis. The control objective is to track the
designated reference angle trajectory of the first joint axis
of the manipulator while stabilizing the inverted pendulum
in its upright position. We only used the first joint motor of
the manipulator for this purpose and fixed the remaining five
joints in the modeling and experimental runs.

The manipulator was controlled by its in-house controller
(CFD, Nachi-Fujikoshi Corp., Japan). The in-house con-
troller has a supervised control mode in which it receives
joint angle references from the upper level controller, controls
the manipulator based on the implemented control law and
returns the result of control to the upper level controller.
The commands and the results of control are transmitted
over a TCP/IP network communication protocol between
the upper level controller PC and the in-house controller.

FIGURE 7. Pendulum manipulator system and its related physical
quantities.

We empirically know that there exists a constant transmission
lag in the network data transmission in this TCP/IP network
communication. We assume that the delay amounts to five
sampling steps, which is twenty-five ms.

As depicted in Fig. 7, the upper level controller (the note-
book PC) of the manipulator also serves as the sensor node of
the joint angle θ (t) of the manipulator. The angle of inverted
pendulum α(t) was measured by a potentiometer (CP-2UN,
Midori Precision, Japan) whose output was captured by
the A/D converter (MCP3208, Microchip Technology, USA)
connected to the Raspberry Pi 3B+, which served as another
sensor node. These two sensor readings were fed back to the
controller PC via the wireless network connection through the
WiFi access point, as depicted in the figure.

As we concentrate on the numerical simulation in this
section, the manipulator, its in-house controller and the
potentiometer are replaced with a mathematical model of the
system, which is derived as follows.

B. MATHEMATICAL MODELING OF THE PENDULUM
MANIPULATOR SYSTEM AND CALCULATION OF
CONTROLLER GAINS
We modeled the behavior of the pendulum manipulator
system by assuming that the pendulum motion does not
affect the first joint axis motion of the manipulator, as the
pendulum is sufficiently lighter than the payload limit of
the manipulator. The physical parameters that appear in the
mathematical model of the system are listed in Table 1.
We first modeled the dynamics in the continuous-time
domain and discretized it for the successive synthesis of the
proposed two DOF dynamic state predictive wireless servo
NCS. Let u(t) denote the input angle command of the first
joint motor of the manipulator.

Because the behavior of each joint of a typical industrial
manipulator is known to be approximatedwith a second-order
model with sufficient accuracy [27], we assumed the
following second-order linear differential equation:

θ̈ (t)+ a1θ̇ (t)+ a2θ (t) = b1u(t − L) (31)

as the mathematical model of the first joint motion of the
manipulator, where L is a known constant delay due to the
TCP/IP network communication between the upper level
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controller and the in-house controller of the manipulator.
The parameters a1, a2, and b1 were identified experimentally
using the input and output sequences.

The behavior of the pendulum manipulator system was
determined according to

ẋ(t) = Ax(t)+ Bu(t − L), (32)

where x(t) = [α(t), α̇(t), θ(t), θ̇ (t)]T denotes the state vector.
The matrices A and B are defined as follows:

A =


0 1 0 0

m1gl1
β

−
D
β

m1L0l1a2
β

m1L0l1a1
β

0 0 0 1
0 0 −a2 −a1

 (33)

B =
[
0,−

m1L0l1b1
β

, 0, b1

]T
(β = J1 + m1l21 ). (34)

By introducing the values of the parameters listed in Table 1
and discretizing (32) with a sampling interval h = 5 ms,
we obtain

x[k + 1] =


1.0003 0.0050 0.0091 0.0009
0.1238 1.0003 3.5527 0.3547

0 0 0.9957 0.0046
0 0 −1.6559 0.8347

 x[k]

+


−0.0091
−3.5527
0.0043
1.6559

 u[k − 5]. (35)

Next, we calculated the gain matrices of the proposed
controller. The gain F0 was determined by solving the LMIs,
as explained in Section III, using the SeDuMi [28] solver
in MATLAB. The maximum theoretical tolerance of the
transmission delay was determined to be dM = 17. The
associated feedback gain G was determined manually such
that the matrix8 in (15) had all its eigenvalues inside the unit
circle. Because direct measurements of the angular velocities
α̇(t) and θ̇ (t) were unavailable, we synthesized a Kalman
filter to estimate the state vector. The controller gains are
subsequently summarized.

F0 =
[
1.9624 0.3927 2.4459 0.7679

]
F1 =

[
−53.643 −10.832 −92.426 −22.881

]
G = −0.002

H0 = −1.4459

K =


−0.3316 0.7418
−18.6057 40.4547
0.1814 −0.3322
8.7146 −18.7541


C. PERFORMANCE VALIDATION SETUP BY NUMERICAL
SIMULATIONS
Fig. 8 shows the setup of the WNCS in the numerical
simulation. The feedback controller (Deep Learning BOX II,
Gdep Advance Co., Japan) and the remaining apparatus were

TABLE 1. Physical parameters of the system.

FIGURE 8. Setup of the numerical simulation for the WNCS.

located in two distinct rooms on the campus. A notebook PC
and a Raspberry Pi board were positioned beside the real
pendulum manipulator. The notebook PC in the numerical
experiments did not communicate with the in-house con-
troller of the manipulator but did calculate the response of
the system using the identified model as disclosed in the
previous subsection. We connected the notebook PC and
the Raspberry Pi board with a LAN cable in the numerical
simulation. The response of the pendulum angle α was sent
from the notebook PC to the Raspberry Pi via a UDP diagram.
The notebook PC and the Raspberry Pi both constituted two
sensor nodes. The notebook PC fed back the response of the
manipulator joint θ (t), whereas the Raspberry Pi returned
the angle of the pendulum α(t). Both sensor nodes used
the wireless network connection, and the responses were
transmitted to the controller via the WiFi access point in the
room, as depicted in Fig. 8.

We calculated the plant responses to three different
controllers in our numerical simulation:

(A) The conventional two DOF controller that does not take
delays into account, as specified by (17).

(B) The dynamic state predictive controller proposed in our
recent conference paper [23]. As the RNN-based RTT
predictor implemented in this control law is trained to
predict the behavior of RTT1, RTT2 is discarded in this
feedback controller. The control law is specified by (18).
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(C) The proposed dynamic state predictive controller,
as specified by (20).

Hereafter, the control inputs corresponding to controllers
(A), (B) and (C) are denoted as uA, uB, and uC , respectively.
The feedback controller was used to calculate these three
control inputs within a 5 ms sampling interval and transmit a
17-byte packet [TS, uA, uB, uC ,C] to the notebook PC, where
TS represents the time stamp of the controller and C is a
single byte character representing the status. The feedback
controller also transmitted a five-byte packet [TS,C] to the
Raspberry Pi.

The notebook PC was used to calculate the responses
of the plant modeled by (35) upon receiving a packet
from the controller and transmit the pendulum angle to the
Raspberry Pi. No transmission delay was assumed for this
process because we used a wired network connection, and
the network cable length was short. Once the Raspberry
Pi received the pendulum angle, it added a random noise
of ±1◦ to simulate the measurement noise in the real
environment. Then, the notebook PC returned a 16-byte
packet [TS, θA, θB, θC ] to the controller, and the Raspberry
Pi computer also returned a 16-byte packet [TS, αA, αB, αC ].
Here, TS represents the timestamp included in the packet
from the controller. Including TS in the return packets
enabled the calculation of the RTTs of the two network
communications that were necessary for RTT predictors to
determine future RTTs.

Let RTT1 be the RTT between the controller and the
notebook PC (Sensor1) and let RTT2 be the RTT between
the controller and Raspberry Pi (Sensor2). We applied a
Kalman filter defined by (27) to (30) with r = 0.05 and
q = 20. In the implementation of the proposed controller
(C), we calculated the RTT predictions for H = 7 steps
ahead and determined Ĥ∗,k (∗ = 1, 2) using the Kalman filter.
Because a constant delay of five sampling intervals exists
in the TCP/IP communication between the notebook PC and
in-house controller of the manipulator, we set Ĥk = 5, even
when we obtained a Ĥ∗,k value smaller than five.

D. SIMULATION RESULTS AND DISCUSSION
The RTT prediction results are reported in this section.
Fig. 9a shows the measured and predicted RTTs when we
used the 5 GHz frequency band connection. As disclosed in
our investigation on wireless network delay in Section II-A,
we observed that the RTT τ (t) in the experimental peer-to-
peer network connection was not the summation of two E2E
delays (τ (t) = τ1(t)+τ2(t)), but they all took almost the same
value (τ (t) ; τ1(t) ; τ2(t)). We accordingly inferred that
three network transmission delays d̄∗,k , where * represents ca,
sc1 or sc2, that appeared in (4) and (6) might also be nearly
equal in our target WNCS depicted in Fig. 8 if the network
was under a state of congestion.

Let us assume that the controller sends out a packet at time
k during network congestion. If the packet takes D steps to
be delivered to the notebook PC (d̄ca,k = D), the notebook
PC returns a packet in response to the arrival of the delayed

FIGURE 9. Numerical simulation results corresponding to the 5 GHz
wireless connection.

packet at time k + D. If the network is still under a state of
congestion, as the returned packet includes the time stamp
corresponding to k , not k + D, we presume that it will take
an additional D steps for the packet to be delivered to the
controller (d̄sc1,k+D = D). Accordingly, we observe RTT1 =
2D in the worst case. This is the reason why we plotted the
doubled RTT1 measurement in Fig. 9a. We used the doubled
RTT1 measurements in the training of the GRU predictor for
RTT1 and the calculation of the prediction. In contrast to the
issues in the controller-Sensor1 network, we only expected
a single trip E2E delay in the controller-Sensor2 network.
We accordingly used the measured RTT2 values without the
treatment as we did with RTT1 measurements, and the GRU
network calculations were performed with the raw RTT2
measurements.

The plot labeled ‘‘RNN predictor’’ is the result of a
one step ahead prediction of the RTT1 calculated using
our previous RNN predictor that was developed in [23].
The RNN prediction was also smoothed using a Kalman
filter. We observed that both the GRU and RNN RTT
predictions varied almost in phase with their corresponding
RTTmeasurements. However, the GRU predictions exhibited
more in-phase behavior with the RTTmeasurements, whereas
the RNN predictions suffered from a larger phase lag.

Next, we discuss the response of the proposed system
model. The steady-state values of the reference r for the
manipulator joint angle were set to±5◦. The actual reference
trajectory was linearly interpolated in the transients (from
+5◦ to −5◦, and vice versa) to avoid activating the software
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FIGURE 10. Numerical simulation results corresponding to the 2.4 GHz
wireless connection.

emergency brake of the in-house controller when we actually
drive the manipulator later. The software emergency brake
was used to cut out the motor motion immediately after
detecting a large angular velocity.

Because the RTTs took the values of two to three sampling
steps when the network was not congested, we did not
observe significant differences between the three responses
corresponding to the three control inputs. However, apparent
differences were observed during network congestion. When
the RTT1 exhibited large values (at approximately 40 s in
Fig. 9a), both the manipulator and the pendulum suffered
from large oscillations with the control input (A), which did
not account for the transmission delay. The remaining two
controllers succeeded in attenuating oscillations during net-
work congestion. No significant differences were observed
between the responses corresponding to the control inputs
(B) and (C).

When the RTT2 exhibited large values, the proposed
controller (C) only succeeded in achieving the two control
objectives. It is worth noting that controller (B) failed to
stabilize the plant when the discarded RTT2 took large values
because of the out-of-phase predicted state of the pendulum
angle α(t) and its derivative α̇(t).

We then altered the wireless communication frequency
band to 2.4 GHz and performed the same simulations.
The perturbations of the measured RTTs in this frequency
band were apparently larger than that of the 5 GHz band
even when the network was not congested. However, as the
RTTs remained within the stability margin guaranteed by
the LMI-based gain when the network was not congested,

the stability of the closed-loop control system was main-
tained, and we did not observe any significant difference in
the three responses.

When the second sensor node network was congested
(RTT2 was large), we found that the closed-loop system lost
its stability with the controllers (A) and (B). The proposed
controller (C) succeeded in maintaining closed-loop stability
under network congestion of the two sensor nodes. As the
discarded RTT2 in the controller implementation (B) corre-
sponds to the measurement of the unstable part of the plant
dynamics, the results imply that appropriate compensation of
the measurement delay of the unstable state variables is very
important for closed-loop stability.

The same inference can be applied to the extension of the
proposed switching dynamic state predictive control to other
WNCSs that have more than two network nodes. If there are
m(>2) network nodes included in the WNCS, we elaborate
on formulating and training m GRU RTT predictors. The
right-hand side of (20) will be extended to include m control
law equations, each of which includes the predicted RTT
Ĥi,k (i = 1, 2, · · · ,m). A straightforward extension of (20)
would be to choose the control input calculated with the worst
case RTT of m network nodes. However, this approach might
only work conditionally.

If the plant dynamics related to every sensor node are stable
or if all the m RTT predictions are similar, an acceptable
control performance can be expected. However, if a large
difference exists in the m RTTs, or if more than two sensor
nodes are related to the unstable plant dynamics, we cannot
assert that the application of the extended version of the
proposed dynamic state predictive control to other WNCSs
would be successful. We currently believe that providing the
in-phase prediction of unstable state variables may be the key
to the successful application of the proposed control system
to a WNCS with more than two sensor nodes.

E. ADDITIONAL CLOSED-LOOP STABILITY ANALYSIS OF
THE DYNAMIC STATE PREDICTIVE CONTROL
From the results of the numerical simulations, it can be
observed that the measured RTTs sometimes exceeded
the stability tolerance that the LMI-based feedback con-
troller gain F0 guarantees; however, the proposed controller
maintained the closed-loop stability for all setups tested.
As the LMI conditions were derived by assuming the
algebraic description of the control law (A), we analyzed
the closed-loop stability when we used the dynamic state
predictive controllers (B) and (C) under certain assumptions
for simplicity.

We hereafter assumed that all states can be directly
measured, and hence omitted the state observer in the rest of
the development. We also assumed that d̄sc1,k = d̄sc2,k . Let
Hk represent the predicted RTT at time step k . Then, the state
predictive controller is defined as

u[k] = F0x[k + Hk ]+ H0r + v[k], (36)
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where the future state prediction x̂[k + Hk ] should
be expressed using the quantities available at time k .
We achieved this by assuming that d̄k > Hk holds, and we
obtained

x[k + 1] = Adx[k]+BdF0

AHkd x[k − d̄k ]+
k−1∑

j=k−Hk

Ak−j−1d

× Bdu[j− d̄ca,k ]+ v[k − d̄k ]

 . (37)

Moreover, x[k] can also be expressed as

x[k] = AHkd x[k − Hk ]+
k−1∑

j=k−Hk

Ak−j−1d Bdu[j− d̄ca,k ].

(38)

By using this relation to eliminate the input-related terms in
(37), we obtained

x[k + 1] = (Ad + BdF0)x[k]+ BdF0A
Hk
d x[k − d̄k ]

−BdF0A
Hk
d x[k − Hk ]+ BdF0Gζ [k − d̄k ]

(39)

as the dynamics that govern the behavior of x[k], where the
adjoint quantity ζ [k] was governed by

ζ [k + 1] = ζ [k]+ F1BdGζ [k − d̄k ]− F1BdF0A
Hk
d

× (x[k − Hk ]− x[k − d̄k ]). (40)

The closed-loop dynamics of the state predictive control
system were found to be

ξ ′[k + 1] = 8′ξ ′[k], (41)

where8′ is the closed-loop matrix presented at the bottom of
the page and ξ ′[k] is the corresponding state vector defined
as

ξ ′[k] =
[
xT [k], xT [k − 1], · · · , xT [k − Hk ], · · · ,

xT [k − d̄k ], ζ T [k], ζ T [k − 1], · · · , ζ T [k − dM ]
]T
.

As reported in Section V-B, we determined a solution of
LMI with dM = 17. If we set d̄k = 30 and assumed the
corresponding estimate Hk to be 16 based on the observed

worst case RTT2 value in Fig. 9a, the largest absolute value
of the eigenvalues of 8′ was determined to be 0.9986, which
is inside the unit circle of the complex plane. However,
introducing d̄k = 30 to8 in (15) results in the existence of an
eigenvalue λ0 outside the unit circle (|λ0| = 1.0077), which
justifies the instability of the closed-loop control system with
control law of (A) observed in the numerical simulation.

Next, we considered the worst RTT1 value d̄k = 50, which
amounts to a 250 ms delay in Fig. 9a. By introducing this
value with Hk = 23 to 8′, we observed that there exists
an eigenvalue λ1 outside the unit circle (|λ1| = 1.0081).
However, when we introduced d̄k = 50 to 8, the largest
absolute value of an eigenvalue outside the unit circle was
1.017. This fact proves the improvement of the closed-loop
stability when we apply a dynamic state predictive controller.

We believe that the reason why the closed-loop stability
was maintained when we used the proposed dynamic state
predictive controller (C), as shown in Fig. 9a, depends
significantly on the time-varying behavior of the RTT in
wireless network communication. As shown through the
results of our RTT measurements, the extreme RTT values
only lasted for a couple of samples. Instantaneous instability
may have occurred in our simulation, as evidenced by the
oscillatory behaviors shown in Figs. 9b and 10b. However,
as the RTTs decreased considerably after their extremes, the
stability of the control system was maintained.

F. HOW THE GRU CONFIGURATION AFFECTED THE RTT
PREDICTION
We showed that the dynamic state predictive control scheme
contributed to the closed-loop stability in our WNCS.
As the prediction of RTT is key information for successful
implementation of the proposed control system, we now
discuss the configuration of the GRU RTT predictor.

Since our control objective includes the stabilization of the
unstable inverted pendulum, high rate control calculations
are expected for better control performance. At this point,
we have to balance the trade-off between the computational
cost of the predictor and the accuracy of RTT prediction.
Adding more hidden layers to the GRU RTT predictor can
be an attractive option for improved prediction accuracy at
the expense of high rate control.

We accordingly decided to use one hidden layer GRU
model for RTT prediction. As we can still alter the number

8′ =



Ad + BdF0 0 · · · 0 − Bd − F0A
Hk
d 0 · · · 0 BdF0A

Hk
d 0 · · · 0 BdG

I 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0
...

... · · ·
...

...
... · · ·

...
...

... · · ·
...

...

0 0 · · · 0 0 0 · · · I 0 0 · · · 0 0
0 0 · · · 0 − F1Bd − F0A

Hk
d 0 · · · 0 F1BdF0A

Hk
d I · · · 0 F1BdG

0 0 · · · 0 0 0 · · · 0 0 I · · · 0 0
...

... · · ·
...

...
... · · ·

...
...

... · · ·
...

...

0 0 · · · 0 0 0 · · · I 0 0 · · · I 0
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TABLE 2. Prediction performance comparison of the three GRU networks.

FIGURE 11. Setup of the manipulator-driven inverted pendulum
stabilization experiment over a wireless network.

of hidden layer neurons for our single hidden layer GRU,
we configured and trained two additional single hidden layer
GRURTT predictors that had 50 and 85 neurons, respectively.
We trained these two models with the same training dataset
as we used to train the GRU predictor with 120 neurons that
was implemented in the proposed dynamic state predictive
controller. The same set of hyperparameters as was used in
the GRU predictor with 120 hidden layer neurons was used
for the additional two GRU RTT predictors.

After the training was completed, we applied the measured
RTT2 sequences as shown in Figs. 9a and 10a, to the
predictors and calculated seven steps ahead prediction of
RTT2 in the same manner as stated in Section IV-B.
We calculated the root mean squared error for the seven steps
ahead prediction of RTT2 as the prediction accuracy metric,
and the results are summarized in Table 2.

This table shows that the GRU predictor with 50 hidden
layer neurons failed to predict the seven steps ahead
behavior of the RTT2, whereas the remaining two GRU
predictors exhibited comparable accuracy metrics. A sig-
nificant improvement in the accuracy was observed when
we increased the neurons from 50 to 85. However, the
improvement was less relevant when we increased the
neurons from 85 to 120. We inferred that adding more
hidden layer neurons might contribute little while increasing
computational time, and we confirmed that using 120 hidden
layer neurons was a reasonable choice.

VI. EXPERIMENTAL VALIDATION
A. EXPERIMENTAL SETUP
In the next experiment, the proposed controller (C), which
exhibited the best control performance in the numerical

FIGURE 12. Experimental results corresponding to the 5 GHz wireless
connection.

simulation, was implemented in a real inverted pendulum
experiment with a robotic manipulator. Fig. 11 shows the
experimental apparatus. We used the same network connec-
tion that was established in the numerical simulation. The
numerical model was replaced with a real inverted pendulum
and robotic manipulator. The packets communicated between
the controller and the two sensor nodes were modified. The
controller transmits a nine-byte packet of [TS, u,C] to the
notebook PC, where u represents the control input calculated
with the proposed control law. The controller also transmits
a five-byte packet [TS,C] to the Raspberry Pi in every
sampling interval h = 5 ms.
When the notebook PC received a packet from the

controller, u was transmitted to the in-house controller of
the manipulator using the TCP/IP cable connection. The
notebook PC also received the control result from the in-
house controller, retrieved the first-joint axis angle θ , and
generated a nine-byte packet [TS, θ,C] to be transmitted back
to the controller. The pendulum angle was measured using
a potentiometer (CP-2UN, Midori Precisions Co., Japan),
whose output was converted to an angle in the Raspberry Pi
via a 12 bit analog-to-digital converter (MCP3208,Microchip
Technology Inc., Arizona, USA) every 5 ms, and the
Raspberry Pi returned a nine-byte packet [TS, α,C] to the
controller.

B. RESULTS OF THE EXPERIMENT
The experimental results are summarized in two plots,
as shown in Figs. 12 and 13 for the 5 GHz and 2.4 GHz
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FIGURE 13. Experimental results corresponding to the 2.4 GHz wireless
connection.

wireless connections, respectively. When the network con-
nection was stable, the responses were fine. When we
considered the RTT1 or RTT2 under conditions of network
congestion, we observed a marginally larger oscillation of
the pendulum, which also affected the tracking control of the
manipulator joint. However, the controller performed the two
tasks as expected even under congestion, and we observed no
steady-state error in the tracking task.

We concluded from the results of the experiments that the
proposed switching-type dynamic state-predictive controller
with the GRU-based RTT predictor performed as expected in
the two DOF digital servo WNCS.

VII. CONCLUSION AND FUTURE WORK
In this paper, we described the synthesis of a two DOF
digital servo controller design for a WNCS and proposed
a switching-type control law with dynamic state prediction
using the output of the GRU-based RTT predictor. We deter-
mined the feedback controller gains while considering the
network transmission delay. The gains with the proposed
control law guaranteed the closed-loop stability of the
WNCS when the network was less congested and the
tracking to the step changes of the reference. We proposed
integrating the dynamic state predictive control into the
aforementioned controller to improve the stability under
network congestion, which is commonly observed in wireless
network communications.

The results of the simulation of the pendulum manipulator
WNCS and its experimental validation showed that the

proposed switching-type controller exhibited good perfor-
mance in a networked control environment where multiple
network nodes exist. As discussed in Section V-D, the
time-varying nature of the RTT in the NCS makes the
theoretical treatment of the stabilization in controller design
a challenging task. We would like to apply the current
results to other WNCSs with more than two communication
nodes and continue the development of controller synthesis
to improve the closed-loop stability of wireless networked
control problems.
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