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ABSTRACT This paper presents a novel framework combining spectral analysis and machine learning
for green-tide detection. The framework incorporates a squeeze and excitation (SE) attention module into
a U-shaped generator of a generative adversarial network (GAN), and is referred to as squeeze and excitation
oriented generative adversarial network (SE-GAN). In the SE-GAN, the normalized differential vegetation
index (NDVI) is used as the preprocessing filter, which enhances the information associated with green-
tide. The SE attention module recalibrates the feature maps so as to enhance the useful features conveyed
from the generator’s convolution layer while suppressing less useful ones. Overall, the generator attempts
to render images that contain green-tide in a way that highly approximates the reference images, while
the discriminator characterizes the difference between the generated images and the reference images. The
training scheme, which is adversarial, minimizes the f-divergence between the generator and discriminator.
Consequently, compared to other green-tide detection algorithms only applicable in small-area scenes,
SE-GAN can automatically detect green-tide in MODIS images of any size. Experiments with both large-
and small-format MODIS imagery confirm that SE-GAN’s detection results are superior to those of five
other commonly used methods.

INDEX TERMS GAN, green-tide detection, NDVI, SE, SE-GAN, sea-land separation.

I. INTRODUCTION
Green-tide is a type of ecological disaster caused by the
explosive proliferation of large macroalgae under specific
environmental conditions. Since the 1960s and 1970s, large-
scale and frequent outbreaks of green-tides have occurred
in the coastal waters of many countries [1], including the
largest green-tide in Yellow Sea [2], [3]. Green-tide is non-
toxic, but it shields sunlight, consumes enormous amounts
of oxygen and nutrients from the water, and seriously affects
the growth of other marine creatures. Dead and rotting
green-tide algae accumulate on the water surface causing
water deterioration and producing harmful gases. Alive or
dead, the chemical substances secreted by the algae have
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adverse effects on marine life. Outbreaks severely influ-
ence tourism and water sports, and removing green-tides
requires a tremendous amount of manpower and finan-
cial resources, creating a huge burden for governments.
In short, large-scale outbreaks of green-tides are responsi-
ble for immense ecological, environmental, and economic
losses [3], [4].

Schreyers et al. [5] illustrate that the outbreaks of green-
tide are caused by many factors including climate change
and water eutrophication. The most massive outbreak on
record of the Ulva prolifera green-tides in 2021 has attracted
great attention [6]. Compared with traditional monitoring
methods, satellite remote sensing can obtain the real-time
and large-scale monitoring data with less labor and time
cost, and is currently the most widely used and effec-
tive method in green-tide monitoring. How to interpret

60294
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7695-1150
https://orcid.org/0000-0003-3949-985X
https://orcid.org/0000-0002-6485-393X


X. Jin et al.: MODIS Green-Tide Detection With Squeeze and Excitation Oriented Generative Adversarial Network

green-tide in satellite images more accurately becomes the
focus of attention, and researchers have carried out extensive
and in-depth researches in terms of the monitoring images
and monitoring methods.

MODIS (Moderate-resolution Imaging Spectroradiome-
ter) data has the characteristics of wide band range, fast data
acquisition frequency, wide monitoring range, free and easy
access. They are the most commonly used data in green-tide
operational monitoring, and a large amount of data has been
accumulated over the years.

TheMODIS green-tide extraction algorithms are generally
based on the spectral characteristics of green-tide which have
strong absorption characteristics in the visible red band and
reflection peaks in the near-infrared band. At the begin-
ning, Gu et al. [7] proposed the threshold method detecting
green-tides by manually setting a fixed threshold higher than
the seawater. Prasetyo et al. [8] developed the threshold algo-
rithm by combining the threshold method with methods for
detecting color features in HSV space and made the detection
more accurate. Meanwhile, several vegetation indices, such
as NDVI, EVI, ARVI, RVI and DVI, were proposed to detect
the Ulva prolifera green-tide. Of all five vegetation indices,
NDVI was proved to be the most sensitive in all develop-
ment phases of the green-tide in Yellow Sea and East China
Sea [9]–[11].

However, the NDVI method is highly susceptible to
the imaging influences of different atmospheric conditions,
observation angle, water quality environment and marine
environment, leading to uncertainties in the monitoring
results. It is also found that deviation exist in the MODIS
green-tide monitoring results using NDVI method [12], [13].

In order to improve the MODIS monitoring efficiency
and accuracy of green-tide, researchers have made three
attempts. The first is to propose a multi-source data fusion
monitoring solution, which has higher data requirements.
Ma et al. [13] combined optical and microwave data to
analyze the time and space of the green-tide in the Yellow
Sea in 2021. Some researchers proposed improved algo-
rithms with higher accuracy based the NDVI algorithm.
Hu et al. [14] proposed the floating algae indexmethod (FAI),
which is more accurate and stable than the NDVI method.
However, it needs the short-wave infrared band and is more
suitable for high-resolution images. Shi et al. [15] proposed
the normalized algae index method (NDAI) which imple-
ments atmospheric correction based on MODIS data, but it
has little effect on green-tides extraction in complex marine
environment scenarios. Other researchers explored machine-
learning solutions. Dong et al. [16] developed a pixel-by-
pixel manner of predicting green-tide based on support
vector machines, while Wu et al. [17] used a semi-supervised
clustering method based on a limited amount of labeled data
and mostly unlabeled data. Dogliotti et al. [18] combined a
floating algal index, the conditions of the red band, and the
color space of the image to detect floating plants close to
green-tide. Notably, Qu and Dong [19] constructed a dataset
containing images of green-tide with a clustering method.

In other machine learning approaches, Xie et al.’s [20]
solution involves object-oriented random forest classifica-
tion and multi-scale segmentation, whereas Wang et al. [21]
exploited deep learning with a convolution neural network
that classifies patches of the image obtained by super pixels.
Yin et al. [22] used a fully convolutional network that extracts
high-level features and predicts features at the pixel level.

The aforementioned detection methods such as data fusion
and the thresholdmethod based vegetation indices either have
high data requirements or have low detection efficiency in
facing with the complex scenes of large-scale images. Tradi-
tional machine learning methods mentioned before have poor
accuracy or low efficiency, and the CNN method requires a
large amount of data. Besides, interferences such as cloud can
bring obstacles to green-tide extraction. In green-tide images,
the existence of green-tide has discontinuous, scattered, tiny
and complex distribution characteristics, which determine
that the green-tide detection should be based on large-format
images and pay attention to the local distribution characteris-
tics at the same time in order to grasp the overall distribution
of the scattered green-tide more accurately. Motivated by
this, we proposed an ensemble approach based on spectral
analysis and machine learning. We aim at addressing the
inefficiencies, inaccuracies, and large data volumes of previ-
ous approaches and achieving accurate green-tide detection
of large-format images, a SE-GAN framework is proposed.
The SE attention mechanism is embedded in the GAN to
selectively emphasizes the useful features conveyed in the
generated images while suppressing the less useful ones. The
SE module is configured within a U-shaped structure gener-
ator to help improve channel performance, and the model is
built via repeated adversarial training of the generator and the
discriminator. The training objective of GAN is to minimize
f-divergence so as to achieve the minimal difference between
the generated detection image and the reference image. Once
training is completed, the model is able to automatically
detect green-tide in a MODIS image.

Given the above, the contributions of this paper include:
(a) An approach enhancing MODIS images of green-tide

by applying NDVI and sea-land separation [23], [24] is
framed.

(b) An SE attention module that is embedded in a GAN to
minimize f -divergence between the generated and reference
images of green-tide is presented.

(c) A novel framework, i.e., SE-GAN, for automatically
detecting green-tide in any MODIS image is developed.

II. DATA AND MATERIALS
A. STUDY AREA
We chose the Yellow Sea as our study area. Green tide in
Yellow Sea is the largest ecological disaster, which has the
characteristics of large distribution and cross sea area. And
it is also the most complex of all green tide disasters, which
originated in the East China Sea and drifted to the southern
part of Shandong Province in the North China Sea. In terms
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of monitoring areas, compared with the North China Sea, the
water in the East China Sea is more turbid, so detection on
different underlying surfaces is needed in large-scale mon-
itoring sea. Meanwhile, high-precision green tide detection
is required for the salvage and disposal of green tide in local
waters. In order to better show our experimental results, under
the premise of taking into account the large-scale, cross-sea
areas and high-precision for local areas, we set the experi-
mental scope in the zone of (120◦-123◦E, 34◦-37◦N) (Fig. 1).

FIGURE 1. The study area (red rectangle showing the experiment area).

B. SATELLITE DATA
MODIS satellite data was used in this study. It was most
widely used in operational monitoring of green tide in Yellow
Sea.

In this paper, we selected about 90 images of different
growth stages of the green tide of 2019 for preliminary exper-
iments, and finally chose four types of images under differ-
ent scenes. First scene showed the large-scale monitoring of
green tide with more green tide and fewer clouds, three other
scenes showed different complicated conditions with more
clouds and less green tide, including thick clouds, thick and
thin clouds, thin clouds in local sea areas.

III. METHODOLOGY
A. TWO-STEP IMAGE FILTER PREPROCESSING
ENVI software (Esri China Information Technology Co., Ltd,
Beijing, China) was used to perform basic image prepro-
cessing and two-step image filter. Basic image preprocess-
ing included geometric correction, atmospheric correction,
radiometric calibration, etc. Two-step easy image filter before
detection was designed to improve result accuracy and effi-
ciency without increasing the operational complexity.

The two-step preprocessing filters are NVDI calculat-
ing and sea-land separation. First, green-tide has the spec-
tral characteristics of vegetation. Compared with seawater,
its spectrum produces absorption valleys in the red band
and high reflection peaks in the near-infrared band [25].
This gives rise to an often-used method of monitoring for
green-tide on the water’s surface called the multi-band ratio
method. This method enlarges the difference between the
absorption valleys and the reflection peaks to highlight the
information associated with green-tide. The method also
helps to eliminate noise. The algorithm that extracts vegeta-
tion based on the multi-band ratio is known as the vegetation
index (VI) and its variant, the normalized difference vegeta-
tion index (NDVI), has the added benefit of better reducing
the influence of the atmosphere and clouds. In short, NDVI is
a common and widely used vegetation index, that identifies
vegetation information through the absorption and reflection
of chlorophyll. Although the floating algae index (FAI) may
be able to achieve better results, the NDVI method is simpler
than the FAI method and the effect is not inferior to the FAI
method. Xing et al. [26] used NDVI as an indicator and set
different NDVI values to monitor green-tide in the Yellow
and East China Seas. El-Gammal et al. [27] employed NDVI
to detect vegetation cover. And Larson and Tuor [28] used
NDVI to determine the time period over which vegetationwas
active.

NDVI is calculated with the following formula:

NDVI = (NIR− R)/(NIR+ R). (1)

where NIR is the reflectance of the near infrared band and
R is the reflectance of the visible red band.

TheMODIS green-tide images used in this paper aremulti-
band images. Band 2 is the near infrared band and Band 1 is
the visible red band. Hence, Eq.1 can be used to calculate
the NDVI of each image. Take Fig. 2(a) as an example.
Here, we used Bands 1 and 2 to synthesize the color of the
green-tide so as to indicate the areas of outbreak. The image
was then converted to grayscale, as shown in Fig. 2(b), and the
grayscale image was enhanced to be clearer than the original
green-tide image. As shown, the white green-tide on the sea
in the grayscale image is more obvious than the green in
Fig. 2(a) and, further, the clouds have also been eliminated.

In the second pre-processing step, we address the diffi-
culties with distinguishing between the gray values of the
green-tide and the land. This is done using the global-land-
mask package from [29] and matching the latitude and lon-
gitude value of each point to determine whether that location
is land or sea. Fig. 3(a) shows the land mask and Fig. 3(b)
shows the result of the masking.

B. THE SE-GAN FRAMEWORK
GANs [23] have been widely used in many fields. However,
in recent years, GANs have seen the addition of attention to
their standard architecture of a generator and a discriminator.
This has significantly improved the performance of many
algorithms. In this vein, SE-GAN uses squeeze and excitation
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FIGURE 2. NDVI image enhancement. The left image is the original green
tide image synthesized to show color through the near infrared band
(Band 2) and the visible red band (Band 1). The green tide in the original
image is not as obvious as in the grayscale image on the right due to
clouds and other interference.

FIGURE 3. Separating land from sea. The left image is the mask derived
from the global-land-mask package. It is based on the latitudes and
longitudes of known land masses. The right image is the separation
image after the mask has been applied.

attention to substantially improve green tide detection. This
section details the SE-GAN framework.

1) THE SE-GAN ARCHITECTURE
SE-GAN consists of two important components, a generator
and a discriminator. The generator is designed to generate a
detection image that is as accurate as the reference image,
while the discriminator is used to characterize the differ-
ence between the generated detection image and the refer-
ence image. Through adversarial training with the objective
of minimizing f-divergence, the framework minimizes the
difference between the generated detection image and the
reference image.

Both the generator and the discriminator are composed
of encoders and decoders [31]. In the generator, a convolu-
tional layer, a normalization layer, and an LReLU activation
layer are used to build the encoder. The decoder consists
of a deconvolution layer, a normalization layer, and an
LReLU activation layer. The structure of the generator G is
U-shaped [32] and is composed of n encoders and decoders
along with the SE attention module detailed in the next
subsection. The SE module is tasked with ignoring the less
important features conveyed from the convolution operation

in the decoder and the encoder while enhancing the important
ones. The reweighted features obtained from the SE module
are then fed to the subsequent layers.

The discriminator D consists of a convolution layer,
an LReLU activation layer, and three encoders, followed
by another convolution layer and a Tanh layer. Given a
green-tide image I , the generator generates a green-tide
detection image S. The image I and the generated detection
image S or the reference image R are regarded as the inputs of
the discriminator. The discriminator generates a representa-
tion of the variational variable defined as v [33] for the image.
Adversarial training of the generator and the discriminator
seeks tominimize f-divergence so that the generated detection
images are close to the reference images.

2) THE SE MODULE
The output from the convolution operation is generated by
summing all channels, and the relationship between the chan-
nels is invisibly entangled in the spatial information. Hence,
the purpose of introducing the SE module is to improve
network sensitivity to the important features by modeling the
interdependence of channels. As a consequence, less useful
features are suppressed. The SE module forms part of a
U-shaped structure in the generator immediately following
the encoders and decoders [34]. The module comprises two
separate operations – squeeze and excitation – as proposed
in [35]. The output obtained through the convolution oper-
ation of the decoder and the encoder U contains spatial
and channel information. U is regarded as the input to the
SE module for feature reconstruction. Here, we assume the
input to the SE module U = [u1, u2, · · ·, uC ] is the combi-
nation of channels ui ∈ RH×W . The feature maps U from
the convolution operation are then squeezed into a channel
descriptor through a global average pooling operation [36].
sq ∈ R1×1×C is produced by squeezing U with spatial
dimensions H × W . The k th element of sq ∈ R1×1×C is
expressed as follows:

sqk = Fsq (uk) =
1

H ×W

H∑
i=1

W∑
j=1

uk (i, j) . (2)

Thus, the squeeze operation embeds the global spatial
information into the vector sq, which expresses all the infor-
mation in the image.

For the purposes of better using the integrated global infor-
mation obtained through the squeeze operation, the excitation
operation comprehensively derives the channel-wise depen-
dencies. The output sq from the global average pooling oper-
ation is transformed to W2 (δ (W1sq)). Here, W1 ∈ RC/r×C

and W2 ∈ RC×C/r are the weights of two fully connected
layers [37] in which r is set to 2. A bottleneck between the
two fully connected layers is then formed around the non-
linearity in the excitation block. In more detail, the structure
of the excitation operation is a dimensionality-reduction layer
withW1, a ReLU layer, and a dimensionality-increasing layer
withW2 as illustrated in Fig. 4. A sigmoid activation function
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σ (·) constrains W2 (δ (W1sq)) to the interval [0,1]. A fea-
ture vector with a channel dimension of C/r is constructed
through the first fully connected layer and the ReLU layer.
This feature vector is then converted into a vector with a
channel dimension of C by the second fully connected layer
and the sigmoid layers. The output of the last sigmoid layer
is therefore:

ex = Fex (sq,W ) = σ (W2δ (W1sq)) . (3)

where ex indicates the importance of the ith channel. The final
output is obtained by scaling U with ex:

ũk = Fscale(uk , exk ) = exk .uk . (4)

In the excitation operation, reducing the dimensionality
reduction of the first fully connected layer is designed to
reduce the computational complexity of the network, while
the increasing the dimensionality with the second fully con-
nected layer ensures that the dimensions are the same as
that of the original U for calculating the weight of each
layer feature. U is recalibrated into the form of U =

[ex1u1, ex2u2, . . . , exCuC ]. The SE attention module ignores
the less important channels and emphasizes the important
channels adaptively. The process of the SE module is shown
in Fig. 4, and where it sits in the architecture of the generator
is shown in Fig. 5.

FIGURE 4. The SE module architecture. The SE attention module contains
a squeeze block and an excitation block. The squeeze block is performed
via global average pooling. The excitation is composed of a bottleneck of
two fully connected layers around a non-linearity Ultimately, the SE
module reweights feature importance.

3) THE TRAINING SCHEME
The overall objective of the training scheme is tominimize the
f-divergence between the generated image and the reference
image. When properly trained, the generator should be able
to generate accurate detection images that are very similar
to the reference images. In statistics, f-divergence is a func-
tion used to measure the difference between both probability
distributions – that is, how much both distributions are the
same or different. The distributions of the reference image R
and the generated detection image S are denoted as PR and
PS , respectively. The f-divergence of PR and PS is defined as
follows:

Df (PR||PS ) = ∫ f
(
PR (x)
PS (x)

)
PS (x) dx. (5)

where x is the distribution variable, and f (·) is a function
representing the distribution divergence. pR (x) and pS (x) are

density functions of the reference detection distribution PR
and the generated detection distribution PS , respectively.

Considering that directly minimizing f -divergence is dif-
ficult, SE-GAN minimizes the tight lower bound of the
f-divergence instead, and a surrogate loss function φ(·) [38]
is introduced to reformulate f-divergence. φ(·) is formulated
as:

f
(
pR (x)
pS (x)

)
= − inf

v

[
φ (−v)+ φ (v)

pR (x)
pS (x)

]
. (6)

The f-divergence between the reference image R and the
generated detection image S is then reformulated as:

Df (PR||PS ) = ∫ f
(
PR (x)
PS (x)

)
PS (x) dx

= ∫

{
− inf

v
[φ (−v)+ φ (v)

pR (x)
pS (x)

}
PS (x) dx

≥ − inf
v
[∫φ (−v)PS (x) dx + ∫φ (v) pR (x) dx]

= − inf
v

Ex∼PR [φ (v)]+ Ex∼PS [φ (−v)]

= max
v

Ex∼PR [φ (v)]+ Ex∼PS [φ (−v)] . (7)

FIGURE 5. The process of minimizing f -divergence. The generator is a
U-shaped structure composed of several encoders, decoders and SE
modules while the discriminator is composed of encoders. Given a
green-tide image I in training, the generator generates an accurate
detection image S. The green-tide image I and the generated detection
image S or the reference image R are regarded as the inputs to the
discriminator. The f -divergence is minimized by adversarially training the
generator and the discriminator.

The relationship of the variational variable v and the
distribution variable x of the generated detection image or
the reference image is built through the discriminator. The
inequality mentioned above follows the inequality in [39].
The lower bound of the f -divergence is expressed through the
inequality and is more constrained due to the maximization
in (8). As mentioned, the f-divergence is minimized by mini-
mizing the tight lower bound of the f-divergence as follows:

min
pS

max
v

Ex∼PR [φ (v)]+ Ex∼PS [φ (−v)] . (8)

Owing to this max − min operation, SE-GAN does mini-
mize the difference between the generated detection images
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and the reference images. The training scheme uses a trans-
formation function αf (·) to scale the variational variable v
obtained from the discriminator. The combination of φ (·) and
αf (·)means the f-divergence is varied and generalized. In this
paper, we have used just one form of f -divergence, that is,
Pearson’s χ2 divergence. θg and θd represent the parameters
of the generator G and the discriminator D, respectively.
The final optimization objective transformed from (9) is
therefore:

min
θg

max
θd ,θg

ER∼PR,I∼PI
[
φ
(
αf (D (R, I ))

)]
+ EI∼PI

[
φ
(
−αf (D (G (I ) , I ))

)]
(9)

The max − min optimization objective reveals the adversar-
ial relationship between the generator and the discriminator.
In the maximization operation, the discriminator’s task is to
distinguish the generated detection image from the reference
image to the greatest extent possible. In the minimization
operation, the generator’s task is to generate a detection
image that will fool the discriminator into predicting that
the image is a reference image. The maximization operation
achieves the maximal lower bound of the f-divergence, while
the minimization operation achieves the minimal value of the
maximal lower bound. It is the adversarial training of the
generator and the discriminator that achieves the minimum
of the maximal lower bound of the f -divergence. Given a
green-tide image I in the training, the generator generates
an accurate detection image S. The green-tide image I and
the generated detection image S or the reference image R are
regarded as the inputs of the discriminator. The f -divergence
is minimized by adversarial training the generator and the
discriminator as shown in Fig. 5. When the adversarial train-
ing is completed, the abilities of both the generator and the
discriminator are strengthened so that the generator produces
a green-tide detection image very similar to the reference
image. As a result, when an arbitrary green-tide image is
input into SE-GAN in practical situations, the generator will
generate an accurate green-tide detection image, as shown
in Fig. 6.

IV. EXPERIMENT AND RESULTS
In view of the largest distribution of green-tides in the
Yellow Sea, the MODIS images covering all monitored
sea areas often disturbed diverse seawater transparency and
changing marine environments. Similar machine learning
algorithms tend to focus more on the green-tide monitor-
ing of small-format images, and do not test or verify the
monitoring efficiency of large-format images. The detection
results for large-format green tide images either have poor
detection efficiency or poor consistency of results. There-
fore, we designed the detection experiments of large-format
and small-format images in the algorithm testing process.
The results show that SE-GAN provides excellent detection
for both types of images. The experimental details are as
follows.

FIGURE 6. The inference process. In practical operations, the generator
automatically generates an accurate detection result for any given
green-tide image.

A. DATA AND TRAINING SET
2019 was the year with the largest distribution area and
longest duration of green-tides in the Yellow Sea since 2010.
As described in II-B, we selected about 90 valid MODIS
images fromMay to August 2019 to construct our experiment
dataset. All experiment images were pre-processed with geo-
metric correction, atmospheric correction. Only 20 images
were selected from the experiment dataset to construct the
training dataset. All images were dealt as follows. First,
we used the artificial interpretation method to manually
adjust and set the appropriate threshold to extract the green-
tide while generating the corresponding binary images as the
reference images. In these reference images, the black pixels
corresponded to the background, and the white pixels corre-
sponded to the green-tides. Second, we put these reference
images with image pairs pre-processed by NDVI calculating
and sea-land separation filters, and fixed the learning rate as
η = 0.0002, and set the minibatch as 1 [31].

B. EVALUATION CRITERIA
To quantitatively evaluate SE-GAN’s effectiveness we used
precision, recall and F1-score as the evaluation criteria. The
assessment worked as follows. Let i represent the pixels of
the generated detection image S and the reference image R.
Hence, S(i) denotes the pixels of the generated detection
image S, and R(i) denotes the pixels of the reference image R.
If S(i) + R(i) = 2, the pair was deemed a true positive
(TP). Likewise, a false positive (FP) was assigned from
S(i) − R(i) = 1; S(i) + R(i) = 0 represented a true negative
(TN); and S(i) − R(i) = −1 a false negative (FN ). The
evaluation criteria were then are calculated by:

Recall =
TP

TP+ FN
(10)

Precision =
TP

TP+ FP
(11)

F1-score =
2 · Precision · Recall
Precision+ Recall

(12)

C. COMPARISON METHODS
We compared SE-GAN to the threshold method [7], the
HSV color space method [8], DeepLabv3+ [40], FCN [41]

VOLUME 10, 2022 60299



X. Jin et al.: MODIS Green-Tide Detection With Squeeze and Excitation Oriented Generative Adversarial Network

FIGURE 7. Comparison of the detection results obtained from six
different methods and the reference image. Image (a) shows the
cloudless scene. Image (b) shows the cloudy scene.

and random forest (RF) classification [20]. The threshold
method requires manual adjustment of the appropriate thresh-
old which is affected by subjective factors. Each image

FIGURE 8. Comparison of the detection results obtained from six different
methods and the reference image. Image (a) and image (b) all show the
cloud coverage scenarios. Image (a) shows green-tide monitoring in cloud
crevices. Image (b) shows the result in clouds of gradient thickness.

requires a specific threshold or several thresholds for different
areas, excessive artificial intervention leads to lower detection
efficiency. The HSV method has three threshold constraints
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TABLE 1. Performance of large-format green-tide detection.

FIGURE 9. Comparison of the detection results obtained from GAN
without and with SE module based on the images in Fig.7.

of H, S, and V, which makes the detection results of the HSV
method have higher reliability than the detection results of
the threshold method. However, the ranges of H, S, and V are
manually adjusted according to the matching degree between

FIGURE 10. Comparison of the detection results obtained from GAN
without and with SE module based on the images in Fig.8.

TABLE 2. Performance of gan on large-format green tide images without
or with SE module.

the detection results and the green-tide monitoring images,
and too much manual intervention is also undesirable. The
DeepLabv3+ method used in this paper uses DeepLabv3
as the encoder architecture, on which the decoder module
is added to refine the segmentation results. Its backbone
network is a deep convolutional neural network (DCNN)with
atrous convolution in the encoder, and the low-level and high-
level features are fused in the decoder to obtain detection
results. Here, we modified downsample_factor as 16 and got
relatively good results. The FCNmethod uses the convolution
layer to replace the full connection layer of CNN. It was a
milestone in the semantic segmentation and always ranked
first in application for consecutive years. The RF method is
one of the most commonly used and powerful supervised
learning algorithms. It is an algorithm that integrates multiple
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TABLE 3. Average performance of the six detection methods on thirty
large-format green tide images.

TABLE 4. Training and testing costs of different methods on large-format
green tide images.

decision trees. The output category is determined by themode
of individual number output. Although the RF method is
relatively accurate, it requires several times of the training
and testing cycles of other methods, resulting in extremely
low detection efficiency. In the RF method, we set the param-
eters including n_estimators, max_depth, random_state of
RandomForestClassifier as 250, 12, 42 respectively, which is
suitable to achieve good detection results.

1) LARGE-FORMAT RESULTS
To qualitatively evaluate our method, we chose four
typical scenarios of large-format MODIS images with a res-
olution of 1024 × 1024. Images in Fig. 7 and Fig. 8 repre-
sent four typical green-tide monitoring scenarios. Fig. 7 (a)
contains more green-tide and less clouds. Fig. 7 (b) shows
most of green-tides covered by thick clouds, and few green-
tides at thick cloud boundaries are needed to be detected.
Fig. 8 (a) shows the monitoring area are covered by thick
and thin clouds, and green-tide mixes with them. Fig. 8(b)
shows green-tide with thin clouds. The four green-tide images
are acquired by Terra satellite on June 24, June 25, June 27,
and July 6, 2019, respectively. The detection results of five
methods are shown in both figures. The top row of each
figure shows the input green-tide image, followed by the
reference image, then the results obtained from the threshold
method, the HSVmethod, the DeepLabv3+method, the FCN
method, the RF method, and our SE-GAN method. Each
figure has two columns, the left column is the large-format
detection results of our study area, right column shows a
small-format image representing the close-up of the green
box in the left image. It is clear from visual inspection that
SE-GAN’s results are more complete than those obtained
from the other detection methods in terms of the overall
distribution and the density of green-tide. From the detailed
detection results in the right column, it is also clear that the

FIGURE 11. Comparison of the detection results obtained from six
different methods and the reference image.

results from SE-GAN are clearer with almost no green-tide
missed. Moreover, SE-GAN was able to produce a map that
was much closer to the reference image than the other meth-
ods. Considering the amount of cloud interference, especially
in images shown in Fig. 7 (b) and Fig. 8 (a)(b), this is a very
promising result in terms of accuracy and adaptability.

Table 1 lists the quantitative evaluations for recall, preci-
sion and F1-score of these four large-format images. As the
table shows, the recall values of SE-GAN were higher than
that of all other methods, while almost all methods posted
higher precision values than SE-GAN. This is because they

60302 VOLUME 10, 2022



X. Jin et al.: MODIS Green-Tide Detection With Squeeze and Excitation Oriented Generative Adversarial Network

TABLE 5. Performance of small-format green-tide detection.

detected less green-tide, although what they detected was
accurate. The F1-score is a comprehensive index combining
recall and precision. Here, SE-GAN method had the highest
F1-scores for the three images with more cloud. Although
RF has the highest precision values, it took several magni-
tudes longer to achieve a comparable result.

To validate the effectiveness of SE module in the feature
extraction, based on the 4 images in Fig.7 and Fig.8, the com-
parison experiments have been carried out, and the results are
shown in Fig.9 and Fig.10. Based on the statistical results in
Table 2, SE-GAN has the higher F1-score than GAN.

In addition to the 4 images shown in Fig. 7 and Fig. 8,
we randomly selected 26 other images and combined them
to form 30 images for statistical analysis of six methods.
Average recall, precision, and F1-scores for the eight large-
format images are listed in Table 3. Again, SE-GAN method
yielded the highest values in terms of F1-score.

In terms of training 20 large-format green-tide images and
testing 30 large-format green-tide images for all methods, the
time cost results are shown in Table 4. Although the SE-GAN
method needs the most time in training, its testing time is
less.

2) SMALL-FORMAT RESULTS
To test SE-GAN with small-format images, we chose three
MODIS images with less cloud and cropped to a size of 1/16
of large-format image, i.e., 256 × 256 pixels. Fig. 11 shows
the results of the three images. Here again, SE-GAN’s results
look clearer and more comprehensive than those of the other
five methods. In particular, for green-tide that was obviously
ignored or detected wrong by the RF algorithm, we marked
the red circles in RF results.

TABLE 6. Average performance of the six detection methods on
twenty-seven small-format green tide images.

Table 5 lists the recall, precision and F1-scores of the
results of three images shown in Fig. 11. Same as the
large-format results, for SE-GAN, F1-scores of three small-
format images are 92.20%, 91.33% and 88.96% respectively,
which are all the highest compared with the other five meth-
ods and represent the highest performance. But compared
with Table 1, recalls of SE-GAN are 92.12%, 96.20% and
91.38%, and precisions of SE-GAN are 92.29%, 86.92%
and 86.67% respectively, which has significantly better
performance.

Again, in addition to the 3 images shown in Fig. 11,
we randomly selected 24 images and combined them to form
27 images for statistical analysis of six methods. Table 6 lists
the average performance over the 27 images. Same as with
the large-format images, SE-GAN outperformed the other
methods in terms of F1-score with the small-format images.

V. CONCLUSION
This paper presented a novel framework for detecting green-
tide from MODIS images called SE-GAN. The framework
begins by parsing the images through two preprocessing
filters: one that applies NDVI values and another that sep-
arates land from sea. This enhances the images and removes
interference from clouds and land masses. The architecture
comprises a generator and a discriminator, where the gen-
erator consists of encoders, decoders, and a ‘‘squeeze and
excitation’’ attention module, all configured in a U-shaped
structure. The training scheme is adversarial with the objec-
tive of minimizing f-divergence. Once built, the model can
automatically detect green-tide in any MODIS image. Exper-
iments confirm that SE-GAN achieves more accurate detec-
tion results with both large and small format images than four
other traditional detection methods. Compared with other
previous methods, our proposed method is more efficient,
more accurate, and requires less data.

According to the characteristics of the green-tide in
the Yellow Sea, we designed the fine-grained monitoring
experiments in both large and small scenarios, which could
comprehensively verify the sensitivity and accuracy of green-
tide extraction. The large-format can verify the accuracy
of the identification of the distribution range of green-tide,
and the small-format can test the extraction amount of
green-tide distributing in the nearshore and offshore areas,
which meets the application requirements of the emergency
department.
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SE-GAN algorithm’s training only needs 20 pairs of
images and it is automatic without interaction, which
makes the model be flexibly optimized and adjusted eas-
ily when needed. It is easy to operate and very suitable
for the operational green-tide monitoring with inter-annual
variability.
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