
Received May 23, 2022, accepted May 31, 2022, date of publication June 6, 2022, date of current version June 10, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3180547

Middleware Control Systems Design and Analysis
Using Message Interpreted Petri Nets (MIPN)
JOAQUÍN LÓPEZ 1, ALEJANDRO SANTANA-ALONSO 1, AND DIEGO PÉREZ LOSADA 2
1System Engineering and Automation Department, EEI, University of Vigo, 36310 Vigo, Spain
2Robotics and Control Unit, AIMEN Technology Centre, 36418 O Porriño, Spain

Corresponding author: Joaquín López (joaquin@uvigo.es)

This work was supported in part by the Spanish ‘‘Ministerio de Ciencia e Innovación’’ through the ‘‘Centro para el Desarrollo Tecnológico
Industrial’’ (CDTI) by the Project ‘‘5R—Cervera network of robotic technologies in smart manufacturing’’
under Grant EXP00139978CER-20211007.

ABSTRACT Many distributed frameworks use a message-oriented middleware to interchange information
among several independent distributed modules. Those modules make up complex systems implementing
basic actions and reporting events about their state. This paper introduces the Message Interpreted Petri
Net (MIPN) model to design, analyze, and execute the central control of these middleware systems.
The MIPN is a new Petri net extension that adds message-based high-level information communications and
hierarchic capabilities. It also contributes to the definition and study of new properties such as terminability
for the hierarchy-wide analysis of a system. Special attention is given to the analyzability of the model.
Useful relations between the individual properties of each MIPN and the global properties of a hierarchic
MIPNs system are extracted through a mathematical analysis of the model. The goal is to analyze each net
separately and then build up the properties of the whole system. This results in a great aid for the programmer
and optimizes the development process.
This paper also shows the actual integration of this new MIPN model in different robot control frameworks
to design, analyze, execute, monitor, log, and debug tasks in such heterogeneous systems. Finally, some
applications created with this framework in the fields of robotics, autonomous vehicles, and logistics are
also presented.

INDEX TERMS Middleware control systems, petri nets, robotics, distributed control systems, inter-process
communication systems.

I. INTRODUCTION
A. RELATED WORK AND MOTIVATION
Model-driven engineering (MDE) is a well-established
approach in software control development [1] where abstrac-
tion is used to model systems. These models can be used
to implement the software that controls the system and also
for documenting purposes [2]. They can be created using
domain-specific languages (DSLs) specialized for their par-
ticular application domain [3]. Many DSL are based on Petri
nets [4], which embody a well known and widely used tool
for modeling control algorithms inmany fields of application.
For example, industrial processes with high demanding envi-
ronments, like Flexible Manufacturing Systems (FMS) [5]
or automated warehouses [6]. It is also commonly used

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwu Li .

in traffic networks [7], resource optimization in business
processes [8], predicting availability levels of photovoltaic
power generation systems [9], and supply chain risk man-
agement [10]. Despite the versatility of the model, in some
cases, the standard definition of PN has been extended to add
functionality to fulfill further requirements or to optimize the
model towards certain applications. Among a large number
of extensions, we can find some well-known models such as
Hierarchical PNs [11], [12], Workflow-nets (WF-nets) [13],
Coloured PNs [14], or timed PNs [15], just to name a few.

Basic PNs do not explicitly model the relation between
the control system itself and its environment. To solve that,
Moalla introduced the Synchronized PNs (SPNs) [16] and
afterward König and Quäck developed it into the Interpreted
PNs (IPNs1) [18], providing the means to model systems

1English IPN notation was taken from [17].

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 60213

https://orcid.org/0000-0001-9151-4346
https://orcid.org/0000-0003-4202-0627
https://orcid.org/0000-0003-1249-4039
https://orcid.org/0000-0003-1547-5503

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

where the relationship between the control logic and its envi-
ronment is based on events. IPNs has been widely used to
model discrete event systems and many works have been
published worldwide since its definition [19]. Automation
Petri Nets (APN) [20] are also extensions to include actions
and sensor readings as formal structures within the net. They
were specifically designed for manufacturing systems to
accommodate impulse and level actions at places and leading-
edge, falling-edge, and level signals of sensors at transitions.
Later, the Signal Interpreted PN (SIPN) [17] extension was
proposed as an evolution of the previous IPN and differs
in that the influence of the environment is based on signals
instead of events. The SIPNmodel allows a more precise way
to model inputs and outputs, specially thought for PLC pro-
gramming, a field where it has been extensively applied [21].
SIPN also differs from IPN in that several signals can change
simultaneously, while events occur one at a time. In this case,
MIPN is closer to IPN, because messages are processed one
at a time.

Events, sensor readings and signals of IPNs, APNs and
SIPNs are very useful in many situations, as in PLC pro-
gramming. However, there is also a wide variety of sys-
tems that surpass the definition of both and cannot be easily
modeled just with events or signals. That is the case of
distributed systems, where the coupling between the con-
trol and environment is carried out via some communica-
tion mechanism. Most of the distributed control frameworks
are based on a middleware layer with several independent
modules. These modules are usually connected with dif-
ferent inter-process communication mechanisms using the
publish/subscribe paradigm. This use of messages instead of
events (IPNs), sensor readings and actions (APNs) or sig-
nals (SIPNs) establishes a significant difference with the pre-
vious models. Also, the correct management of messages is a
critical feature that defines and conditions the functioning of
these systems. Such differences were made clear while devel-
oping a message-based multi-robot framework called RIDE
(Robotic Integrated Development Environment) [22], [23].
In RIDE we first tried using the IPN model [24], but
finally, we stated that the complexities of message-based
communications and practical needs exceed the modeling
capabilities of the current event-based and signal-based
models. For example, each message type is defined by the
programmer with its own complex data structures. The mid-
dleware may use queues, so no messages are lost and can
be processed in order according to some communication
data. Messages can also add some time-related restrictions
not available with the previous models. Finally, due to the
complexity of most of these distributed systems, a hierarchic
modular model is required.

Beyond the modeling capabilities of PNs, there is a more
practical interest to automated code generation [25]. In that
aspect a specific tool was created for such a matter called
RoboGraph [26], [27], whereMIPNs are also used as the code
for complex tasks to be carried out by robots or other agents
within the system. With this approach, instead of generating

the code, RoboGraph is used to execute the control sequences
modeled on the nets of the MIPN model. In a similar way a
virtual machine runs the same code on different machines,
RoboGraph (coded in java) runs the nets of the MIPN model.

Most applications based on middleware systems like the
ones we used in this research implement a finite-state
machine (FSM). For example, in the case of the autonomous
vehicles, the Tartan team that won the DARPA Urban Chal-
lenge [28] used a hierarchical finite-state machine to design
the behavior generation component [29]. A similar approach
was used by the Standford Uiversity team [30] that finished
in second place and by the Ohio State University [31]. Since
FSMs need to define explicitly all states, the number of nodes
tends to grow much faster than the complexity of the reactive
system it describes. This can happen in some situations where
it is necessary to decompose an action into smaller actions
that can run in parallel or when a system can be divided
in subsystems. Behaviors Trees (BT) [32] provide a lot of
flexibility and can be used to implement the executive layer
architecture [33]. BTs are also easier to maintain and to
expand.

B. CONTRIBUTION
The main contribution of this paper is the definition of a new
model specially designed for distributed control systems that
use a message-oriented middleware. This new model named
Message Interpreted Petri Net (MIPN) is based on the
PN model and includes the following features:
• Modeling. Provides a simple hierarchical way to model
the process. The definition of the model is presented in
Section II.

• Analysis. Provides a method to verify the system
through the properties of the model. The process to
analysis and verify the model is presented in Section III.

• Control program generation. Unlike other approaches
for automatic generation of control code after a formal
model [34], the model itself is the code that is executed
in our case for a virtual machine named RoboGraph
dispatch (Section IV-B).

• Control program debugging. As a result of the last fea-
ture, the model serves to debug the process present-
ing the evolution of the system graphically through the
sequence of tokens on the net using RoboGraph GUI
(Section IV-B).

Another advantage of the MIPN derives from its
task-oriented design and its aim for applicability. Some appli-
cations in Flexible Manufacturing Systems (FMSs) or mobile
robot control [35] demand more than cyclic tasks, which
are usual in any PN-based model and in PLC programming.
They require tasks that start, perform, and finish, commu-
nicating their termination to the system. A contribution of
the MIPN model is the introduction of a new controlled
start-termination capability. This new capability of MIPNs
enhances the controllability and analyzability of the system.

The MIPN model is hierarchic, allowing to nest differ-
ent sub-nets within higher-order ones. Another contribution

60214 VOLUME 10, 2022

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

of this paper is the development of a set of new prop-
erties used for the hierarchic-wide analysis of MIPN sys-
tems, allowing atomic analysis, i.e., global properties of a
system can be obtained from the individual properties of
each of its nets. These results are very helpful in design-
ing, validating and verifying all the modeled tasks, allowing
both top-down and bottom-up developments. This leads to
a faster design and reconfiguration cycle of Petri net mod-
els [36]. It allows to model a structure of complex, interre-
lated, and heterogeneous systems, that can be considered as a
system-of-systems (SoS) [37].

This paper is structured in four parts: in the first one
(Section II) the MIPN is defined, its benefits are presented,
and its similarities and differences with previous models are
explained. A second part (Section III) shows an analysis of
MIPN model properties, requirements and restrictions for
validation and verification of the modeled tasks. A third part
(Section IV) shows the results that include our implementa-
tion of the model and its applications. Finally, a fourth part
(section V) includes the final conclusions about this research.

II. MESSAGE INTERPRETED PETRI NETS
This section provides a progressive insight into the model,
from the basic definitions to a more detailed description. The
notation used here follows [17].

A. FORMAL DEFINITION
A Message Interpreted Petri Net (MIPN) is described by an

n-tuple MIPN=(EP, ET , EF , Em0, Emf , EI , EO, EW , ES, Eϕ, Eω) with:
• (EP, ET , EF, Em0): an ordinary pure binary Petri net with

places EP, transitions ET , arcs EF and initial binarymarking
Em0, with | EP |, | ET |, | EF |, | Em0 |> 0, as also defined in [17].

• Emf : final binary marking, with | Emf | ≥0 (i.e. {∅⊆ Emf }).
Whenever all tokens of current marking Emi are within the
final marking Emf or there are no tokens left at all (|Emi ∩
Emf | = 0) the execution of the MIPN terminates. Places
that include a token in the final marking are named
terminal places. This final marking and termination rule
are new features introduced in the model that allows
the system to control the actual termination of any task
modeled by an MIPN.

• EI : a set of incoming message types that the net can
receive through subscription, where | EI |> 0. Each
message type may have a unique information structure.

• EO: a set of outgoing message types the net can publish,
where | EO |> 0. Note that EO should be disjoint with
EI (EI ∩ EO =∅) to avoid formally incorrect synchro-
nization within the same net, as it will be explained
in Section II-D.

• EW : a set of timers, that can be defined to provide
time-related control within the MIPN, such as time-
outs or delays, and may also act as firing conditions to
transitions.

• ES: a set of schedulers, that can be defined to handle
repetitive time-related matters within the MIPN, such as

hourly, daily, or weekly events, etc. and may also act as
firing conditions to transitions.

• Eϕ: a set of firing conditions functions, associating each
transition ti ∈ ET with a function expressing its firing
condition state Eϕ(ti).

• Eω: a set of output functions, associating each place
pi ∈ EP with an output function. Each of these out-
put functions may involve actions related to messages
(publish), timers (start), and schedulers (start).

This definition aims to avoid hidden assumptions built-
in the MIPN definition. Any hidden assumption may lead
to design decisions that are difficult to correct in a later
stage [38].

Regarding the graphic aspects, MIPN uses the traditional
representation of ordinary PNs: places are depicted by cir-
cles, transitions by bars, arcs by arrows joining places and
transitions, and tokens by dots inside the circles of the cor-
responding places. Terminal places (related to Emf) are distin-
guished by a thicker border circle. Also, as MIPN is a binary
PN extension, no more than one token is allowed within a
place. An example of its graphical representation is shown
in FIGURE 1.

FIGURE 1. Graphical representation of an MIPN. This one contains two
terminal places, i.e. two places belonging to the final marking Emf .

B. PHYSICAL INTERPRETATION
The main purpose of the MIPN is to model the desired
dynamic behavior of a discrete event control system while
executing a task. So an MIPN describing a task can be seen
as a ‘‘control system algorithm’’ and its environment as the
‘‘action and event modules’’ or processes to be controlled
(or anything outside the MIPN itself). A graphical represen-
tation of those relations between the different elements is
shown in FIGURE 2.
In MIPNs, the interaction between the control system

and the environment is managed by information exchanged
through messages. From the MIPN point of view, the output
messages (sent to the environment modules) correspond to
the commands to be executed by the distributed modules
and the input messages (received from the environment mod-
ules) correspond to the events produced by these distributed
modules. The input messages and their information structure,

VOLUME 10, 2022 60215

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

FIGURE 2. Events and commands from the point of view of the net,
as well as the interaction between an MIPN and its environment (or
process to control).

together with the internal events produced by timers and
schedulers, are the basic components of the firing conditions
associated with transitions.

For example, in a tour-guide mobile robot application
(FIGURE 3), the main control of the system is carried out by
the MIPN node (RG_dispatch in our case) implementing the
executive functions that coordinates the other modules. This
node is a program that loads and executes the MIPNs. The
environment includes the rest of the nodes (programs) that
implement the different navigation and human-interaction
functions on the robots such as ‘‘LocalPlanner’’, ‘‘Local-
ize’’, ‘‘GlobalPlanner’’, ‘‘MultimediaManater’’, ‘‘HeadGui’’,
‘‘RobotInterface’’, ‘‘NavigatorGUI’’ or ‘‘RobotGUI’’’. Inter-
action with the environment are messages published to those
nodes (commands) or received from them (events). For exam-
ple, some commands could be ‘‘plan_path’’, ‘‘follow_path’’,
‘‘change_map’’, ‘‘say_text’’, and ‘‘show_video’’ while pos-
sible events could include ‘‘path_planned’’, ‘‘goal_reached’’,
‘‘goal_unreachable’’, and ‘‘video_finished’’.

Whenever an event occurs, the evaluation of enabled
transitions is carried out according to the firing conditions
functions (Eϕ). If conditions are fulfilled, the corresponding
transition will be fired and the marking will evolve.

Places may have associated commands according to the
output functions (Eω). Whenever a token enters a place pi,
its output function Eω(pi) is executed, which leads to the
execution of the associated commands. There are three types
of commands: outputmessages to other environmentmodules
(i.e. belonging to EO), timers, and schedulers. Commands to
timers and schedulers include start, restart, or modify their
parameters.

FIGURE 3. Nodes included in a tour-guide mobile robot. Each rectangle in
the control, executive and interface layer are independent programs.

C. COMMUNICATIONS IN MIPNs
The interpreted nature of the MIPN model demands a way to
connect the MIPN control algorithm with its dynamic envi-
ronment. That connection is managed distinctively to other
IPN models, both in concept and in the range of target appli-
cations. That is the case of systems using message-oriented
middleware communications, where the environment can be
a heterogeneous combination of entities with very different
characteristics, such as different physical locations, software,
protocols, or abstraction levels. It is also usual in this case
that data is produced and consumed by many different soft-
ware modules across the system. Such a complex scenario
can be found, for example, on distributed and asynchronous
systems like multi-robot applications. The coupling provided
by messages, usually with the publish/subscribe paradigm,
has proven to be a good solution [27].
Middleware can be described as software that connects

several components and their applications. It allows multiple
different processes to interact, regardless of their particu-
lar physical location (one or more computers over one or
more networks), platform (usual support for Linux,Windows,
macOS, and others), or programming language (C, C++,
Java, the most usual) of each one. In these distributed sys-
tems the information is transmitted through messages, where
data producers are the senders and data consumers are the
receivers, taking into account that a process can be sender
and receiver at the same time. There are several advantages
of the decoupling between publishers and subscribers such
as more flexible and dynamic network topology and greater
scalability.

Apart from the benefits of transparent connection among
very diverse systems, there is also a major advantage of this
kind of communication inherited byMIPNs: the quality of the
information supported by messages. Traditional data types
(booleans, strings, integers, floats, and so on) are supported.
But also complex types, such as arrays and objects are per-
mitted. Thus the MIPN model can exchange much richer

60216 VOLUME 10, 2022

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

information with the rest of the system, compared to other
previous PN-based models, which are usually constrained
to boolean data. As a result of this type of coupling with
the environment using message-based communications (see
FIGURE 2), a wider range of systems and applications are
possible, compared with previous PN models, thus evolving
from the usual limited PLC applications to a new vast array
of possibilities, especially in distributed applications like pro-
cess control, robot applications or production plant control
among others. This communication paradigm includes the
possibility of sending control messages over any network,
including the internet. So far, IPC (Inter Process Communi-
cation) [39], JIPC [40], and the ROS [41] message-related
communication mechanism have been considered.

D. HIERARCHICAL CHARACTERISTICS
PN models for real-world applications end up being huge,
complex, and visually challenging net designs. As with most
other visual modeling systems, when a model size and com-
plexity increase, it requires a bigger effort to handle it. In that
situation, the concept of hierarchy allows to group parts of
the net in smaller subnets with specific behaviors [42]. The
hierarchic composition features three main assets. Firstly,
it increases the readability of the net, making it easier to
understand, analyze, and develop. Secondly, it allows lay-
ered top-down design, letting the programmer concentrate
on global ideas at the beginning and then go deeper into the
implementation details, refining each part of the system in
separate, nested subnets. From a practical point of view it
allows to design small nets for common tasks which are used
as building blocks in bigger tasks (e.g., go to a point, text-
to-speech, etc.). Thirdly, it allows to analyze and verify the
whole system from the analysis of each net (Section III).
This, along with the communication capabilities described
in II-C, can be effectively considered modeling a system-of-
systems [37].

Intuitively each net can be associatedwith a task. Theymay
involve subtasks, therefore containing subnets representing
each of them. Recursively, subtask nesting could go as deep
as needed. Also, any termination of a net is reported to its
parent net, so it can act subsequently.

The MIPN hierarchical design approach aims for fur-
ther functionality through modularity but also for trans-
parency [43], seeking that nets can be reused as subnets in
other nets (an example can be seen in FIGURE 4), thus gain-
ing all the aforementioned advantages. But subnet nesting
has implications that affect the structure and analysis of the
resulting composite net (further explained in Section III).
A message is used to start the execution of a subnet in

MIPNs as well as to report the end of the subnet. This behav-
ior differs significantly from other interpreted extensionmod-
els such as SIPN, where subnets have exactly one input and
one output place [44]. MIPNs and subnets do not have this
restriction andmay have more than one initially marked place
and more than one eligible termination place, defined by

FIGURE 4. Graphical representation of an MIPN (left) that hierarchically
contains a subnet (right). In the task ‘‘SHOW POINT’’, the initial place
includes the execution of the sub-task ‘‘GO TO POINT’’ defined in the right
subnet. When this subnet finishes, a termination report message is issued
and a string return value is used to know the outcome of the execution
(in this case ‘‘OK’’ or ‘‘ERROR’’).

initial marking Em0 and final marking Emf , respectively. This
allows for more flexible and modular programming.

E. TIMING CAPABILITIES
To describe time-dependent dynamic systems, the time notion
has been incorporated into PNs in different ways [45], nor-
mally related to timed places, arcs, or transitions.

MIPNs implement the timing capabilities with two specific
timing tools and with time-related information associated
with messages.

The two timing inner tools are timers and schedulers. Both
are capable of triggering the evaluation of firing conditions
of those enabled transitions. A set of timers EW allows count-
downs or time counts for custom periods of time. This alone
provides similar functionality to timed transitions. Beyond
that, a set of schedulers ES allows planned evaluation of
transitions, i.e. hourly, daily or weekly events. Schedulers
can generate ‘‘precise time point’’ triggers or ‘‘time span’’
triggers. Timers and schedulers are not associated directly
with places, arcs, or transitions. Instead, they are considered
net-wide, but can be modified by places (start, re-start, stop)
and can affect several transitions at once (by triggering the
evaluation of firing conditions). Also, it is possible to define
and use simultaneously as many timers and schedulers as
needed within an MIPN.

Time-related information associated with messages has an
important role within MIPN model. It affects the evaluation
of firing conditions depending on the moment a message is
received and its type. The message type is relevant, as the
sole reception of a message of a certain type at any time can
be meaningful within a task. Transitions in MIPNs feature
two different evaluation modes for message reception:

1) ‘‘Recently’’ mode: Evaluates if a message of a given
type arrived after the transition became enabled. This
is the usual behavior in event-based Petri nets, where

VOLUME 10, 2022 60217

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

transitions are only aware of events that happened after
they have been enabled.

2) ‘‘Anytime’’ mode: Evaluates if at least one message of
a given type arrived since the start of the net, regardless
of whether the transition was enabled or not at the
moment of arrival. This unique feature allows using
of valuable information generated at any moment in
the past, even before a transition became enabled. This
allows being aware of things that are no longer active
and do not produce more events. This is the case of
the completion of other tasks, i.e., the reception of
termination messages. This may also be useful to be
aware of alarms, initializations, etc.

The designer may choose which mode to use in each case.
These evaluation modes are used within the firing conditions
functions (Eϕ) as part of the conditions related to message
reception. Other conditionsmay involve themessage type and
its specific data. If newmessages arrive after the first, only the
parameters of the last one will be evaluated if a parameters
check is required.

All these capabilities give the MIPN model the power and
flexibility to handle any kind of time-related tasks needed in
the applications theywere implemented so far (Section IV-C).

F. DYNAMIC BEHAVIOR
MIPN marking evolution follows the same general rules
applied to ordinary PNs. More specifically, conditions are
evaluated only when one or more of the three types of
events occur—message reception, timer event, and scheduler
event—. These events cause the evaluation of transitions
according to their associated Eϕ functions and may cause their
firing, which consequently causes the ‘‘flow’’ of tokens and
the execution of Eω functions defined in those new occupied
places.

MIPN dynamic behavior is characterized by the transition
firing rules and the evaluation/evolution algorithm.

The transition firing rules are:

1) A transition is enabled if all its input places are
marked. To avoid possible conflicts, the output tran-
sitions of a place cannot fulfill the firing conditions
simultaneously.

2) A transition is fired if it is enabled and fulfills all its
firing conditions.

3) The firing of a transition is considered instantaneous,
i.e. consumes no time.

4) Firing is a step-by-step process, meaning that if a firing
of a transition ti grants new conditions for the firing
of another transition tj, it will not occur until the next
evaluation of transitions. This prevents iterated firing
within the same validation cycle and the ‘‘jump’’ of
tokens beyond the output places, as seen in SIPN.

5) Events cannot happen simultaneously. Instead, they are
treated only one at a time. Even though messages can
reach their destination simultaneously, they are queued
and handled sequentially. Therefore not more than one

FIGURE 5. Flowchart of the evaluation/evolution algorithm.

new message event takes effect in transition firings
within the same validation cycle.

SIPN has a particular characteristic, dynamic synchroniza-
tion (DS). It may lead a token to ‘‘jump’’ beyond a transition ti
output places if the firing of ti grants the conditions to fire
another one. IPN does not even consider this possibility and
MIPN explicitly prevents the possibility of DS. It establishes
its dynamic behavior as a step-by-step process. The evalua-
tion/evolution algorithm evaluates the necessary conditions
for the evolution of the marking. Furthermore, it carries out
all needed actions to effectively make the net evolve. The
flowchart of the evaluation/evolution algorithm is depicted in
FIGURE 5, and its steps are the following:

1) One or more trigger events occur.
2) All enabled transitions are evaluated according to their

related firing conditions functions (Eϕ): those fulfilling
all their conditions, if any, are fired.

60218 VOLUME 10, 2022

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

3) If any firing occurred:

a) The new marking Emi+1 is calculated and applied,
and thus the net evolves, i.e. the tokens ‘‘flow’’.

b) All output functions (Eω) that might have been
defined in the new marked places are executed.

c) All enabled transitions are evaluated again, start-
ing a new evaluation/evolution cycle.

4) If no firing occurred: the system stays stable, waiting
for the next message or time event to trigger a new
evaluation/evolution cycle.

As part of the firing conditions evaluation, the message
arrival deserves a special study. Message-based communica-
tions with the environment is one of the main assets of this
model and has several possibilities. Message conditions can
be classified into:

1) ‘‘Just arrival’’ mode: only themessage type is evaluated
to see if it matches the given type of condition, no other
message parameters are evaluated. This is useful when
the mere reception of a message has an implicit mean-
ing, e.g., subnet termination messages.

2) ‘‘Field conditions’’ mode: the type of arrival message
is evaluated, as well as some of its parameters. The
condition, in this case, can be any expression on the
message parameters which results in a boolean value.

III. MIPN ANALYSIS
Petri nets are well known for their strength in modeling
discrete event dynamic systems, but they have another key
advantage: They can also be used for model-checking, vali-
dation, and verification. Therefore, PN analysis allows early
detection and immediate correction of errors in algorithm
design. One example is the deadlock (or the livelock), where
the algorithm gets stuck with a permanent marking or in a
local loop during the execution. The next section reviews
the basic MIPNs properties and the following sections are
focused on the verification and analysis of the specific sys-
tems modeled by MIPNs. We will focus mainly on reacha-
bility, liveness and terminability because they are the more
relevant properties for the kind of applications that use these
middleware control systems. Reachability testing is one of the
most popular and basic means for checking the accuracy of
the model compared to its expected execution. For example,
reachability testing of the Petri net modeling through the
use of Gröbner bases was performed in [46] for the control
of a mobile robot. On the other side, a bounded and live
net means that the modeled system cannot have capacity
overflows and deadlocks, two types of unwanted behaviors
in applications that include manufacturing [47]. Finally, ter-
minability is added to make sure that some tasks come to an
end for the analysis of hierarchical and nested networks.

A. BASIC PROPERTIES
The analysis process allows the extraction of characteristics
of a given PN-based model. It allows verification and avoids
design errors or unwanted behaviors. Some basic properties

define the main characteristics of a PN-based model. They
provide information about performance, restrictions, con-
flicts, design errors, etc. These basic properties can be either
dependent on an initial marking Em0, called behavioral proper-
ties or independent of Em0, called structural properties. A sum-
mary of the properties used in this research follows; further
explanation can be found on [48]:
• Reachability: Indicates whether the ‘‘flow’’ of tokens
can reach all, some, or none of all possible markings
of the net. A marking Emi is reachable if there exists a
sequence of transition firings that leads to that particular
marking Emi starting from the initial marking Em0. The set
of all reachable markings from Em0 is denoted by R(Em0).

• Coverability: Shows whether a marking is contained by
another reachable one or not. A marking Emi is coverable
if: ∃Emj∈R(Em0) : Emj(pn)≥ Emi(pn), ∀pn∈ EP

• Boundedness: Sets a limit on the number of tokens in a
place. A place is k-bounded if it does not contain more
than k tokens for all markings. The MIPN is k-bounded
if all the places are k-bounded: Emj(pi)≤ k; ∀pi∈ EP,∀Emj

• Safeness: It is a specific case of boundedness, with
k = 1 (1-bounded), meaning that the number of tokens
contained in any place will never exceed 1. A place is
safe when it is 1-bounded. Therefore, a PN is safe when
each one of its places is safe. An MIPN is, by definition,
safe.

• Reversibility: This means that an initial marking Em0 can
be reached again. A PN is reversible if for each marking
Emi ∈ R(Em0), initial marking Em0 is reachable from Emi,
which means the PN can always revert to its initial state.

• Liveness: Indicates whether transitions can be fired
again. A transition ti is said to be live for an initial
marking Em0 if, from any reachable marking Emj, there
exists a sequence of transition firings that grants ti can
be enabled and fired again. Otherwise, it is said to be
dead. A PN (B) is said to be live (L[B]) if and only if all
its transitions are live.

• Quasi-liveness: Indicates the capability of transitions
to be fired at least once. A transition ti is said to
be quasi-live for an initial marking Em0 if, there exists
a sequence of transition firings that grants ti can be
enabled and fired. This is, (∃Emj ∈ R(Em0) such that ti
is fireable from Emj. A PN (B) is said to be quasi-live
(QL[B]) if and only if all its transitions are quasi-live.

Besides the properties inherited from PNs, the MIPN
model comprises specific properties that can simplify and
extend the analysis, especially when dealing with nested,
multilevel hierarchical MIPNs.
Definition 1 (Terminability): An MIPN (B) is said to be

terminable (τ [B]) for an initial marking Em0 if, from any
reachable marking Emj, there exists a sequence of transition
firings that ends in a terminal marking Emt and therefore its
execution terminates. Emt is a terminal marking if it is covered
by the final marking Emf (i.e. all tokens of current marking Emi
are within the final marking Emf or there are no tokens left at
all, given that {∅ ⊆ Emf }). When reaching Emt , the execution

VOLUME 10, 2022 60219

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

of the MIPN terminates, noticing it to the system, through a
termination message.

τ [B] ⇐⇒ ∀Emi∈R(Em0), ∃ Emt ∈R(Emi)
/
Emt⊆ Emf (1)

where:

Emt ⊆ Emf ⇐⇒ Emt ∩ Emf =∅ (2)
Due to their definitions, liveness and terminability are

mutually exclusive within the same MIPN.

B. BEHAVIORAL ANALYSIS
Model checking is one of the formal verification meth-
ods most used in software and hardware production [12].
As in model checking, our interest is to provide a method for
checking whether the MIPN model of a system meets a given
specification and identify the possible problems. However,
since we work with interpretable PNs, it is necessary to
narrow down the nature of problems that these methods are
capable of detecting. A possible division of these issues is the
following:
• Structural issues: These are problems associated with
the structure of the net and they are independent of
the conditions associated with transitions. For example,
there is no reachable terminal marking Emt .

• Functional issues: These are problems related to the
conditions associated with transitions. For example, the
condition would never hold.

Only the structural issues are considered in this study. This
is, all transition conditions are considered well designed and
therefore, all transitions can eventually be fired.

There are mainly two approaches to analyze PNs: algebraic
analysis and reachability graph-based analysis [49]. A reach-
ability graph (RG) is a graph representation of all possible
firing sequences of a net, and it is commonly used for the anal-
ysis of net evolution and properties depending on initial mark-
ing Em0. With the RG it is possible to establish if a specific
marking is reachable. It can also identify some behaviors such
as loops, deadlocks, dead-ends, etc. The analysis presented
here is based on the RG analysis. The generation of the RG is
conceptually simple and is integrated into most PN software
analysis tools. One way to obtain the RG is by using the
Karp andMiller algorithm [50] to obtain first the Reachability
tree. Since MIPNs are 1-bounded, the reachability graph is
finite and it can be obtained iteratively, starting with the
initial marking and then considering all reachable markings.
A simple example is shown in FIGURE 6 for the ‘‘Show
point’’ task of a tour guide robot application [27]. The vertices
of the graph correspond to possible markings. Every vertex
is labeled as Mi.j... where the indexes (i, j, . . .) correspond to
the places with a mark. For example, M2.4 means that place
p2 and p4 are marked.

In the case of bounded nets, the Reachability Tree (RT) [48]
is a tree representation of its possible firing sequences. The
Reachability Graph (RG) is obtained from the RT by merging
the nodes with the same marking. The RT can be obtained by

FIGURE 6. Representation of the MIPN model and Reachability Graph for
the ‘‘Show point’’ task.

Algorithm 1 Algorithm to Obtain the Reachability Tree
1: Label initial marking Em0 as the root of the tree and tag it

as new.
2: for each new marking do
3: select a new marking Emj.
4: ifM is identical to a marking on the tree then
5: tag M as old
6: go to another new marking
7: end if
8: if no transitions are enabled at Emj then
9: tag M as dead-end.
10: end if
11: for each enabled transitions at Emj do
12: obtain the marking Emi that results from firing t at Emj.

13: introduce Emi as a node, draw an arc with label t from
Emj to Emi and tag Emi as new.

14: end for
15: end for

the Karp and Miller algorithm [50] that for the case of binary
Petri nets is reduced to algorithm 1.

In model checking the specifications are usually defined
using some temporal logic formula but structural properties
can also be checked. The specifications we are interested in
include:
• Reachability: some unsafe states should never happen.
• Liveness: there should be no unreachable actions in the
model.

• Terminability: deadlocks should be avoided and most
tasks should come to an end.

1) REACHABILITY
The state of a system modeled by an MIPN is defined by the
current marking Emi. In theory, if the MIPN has p places, the
combination of marks on states is 2p. However, in practice,
only the states represented in the RG can take place. For
example, in FIGURE 6 the state corresponding to making
M0.1 is not reachable because there is no sequence of events

60220 VOLUME 10, 2022

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

that will lead to the situation where places p0 and p1 have a
mark at the same time.

In model checking, the model of the system is checked
for some defined properties or specifications. In case some
of those properties do not hold, appropriate counterexamples
are generated to identify the error source. For most of the
message-driven distributed systems modeled with MIPNs
an easy way to define unsafe states is to use the markings
that correspond to those states (Emu). In that case, checking
if those states are reachable can be done using the RG.
If some of those unsafe states exist in the RG, there is
a possibility to reach that state. Besides, in this case, the
sequence of events (transitions) that lead to that unsafe state
is the sequence of events associated with the transitions
corresponding to the arcs in the RG between the initial
marking Emo and the marking corresponding to the unsafe or
failure state Emu.
As a simple example, in the ‘‘show point’’ task

of FIGURE 6, before start talking, the robot needs to reach the
point. In the MIPN model, this means that places p0 (‘‘Go To
Point’’) and p1 (‘‘Say text’’) can not have a mark at the same
time. That corresponds with the RG since there is no vertex
labeled M0.1.

2) TERMINABILITY
Most of the tasks modeled in this kind of systems should
finish in a limited period. Therefore, verifying the absence
of deadlocks is another important property to check on the
model. This can be tested on the RG using the following
theorem:
Theorem 1: A single MIPN is terminable if its RG fulfills

the following condition:
• All markings at the end of the RG branches are terminal
markings.
Proof: The RG branches represent all possible firing

sequences and the terminal nodes represent all the possi-
ble markings where it can end or stop. If all the markings
associated with those terminal nodes are terminal markings,
it fulfills the terminability condition (Definition1). �
In case the condition does not hold, the model checker
will generate the list of branches that end in a non-
terminal marking. For each branch, the list of transitions
fired that lead to the deadlock is provided. This list of
transitions identifies the sequence of events that end in a
deadlock.

The example in FIGURE 6 is a well-modeled task and the
MIPN is terminable because the only terminal vertex of the
RG (M5) is a terminal marking. However, wrong modeling
of the net like in FIGURE 7 where the two branches start
from a place (or node) instead of a transition (and node)
leads to a net that does not hold the terminable condition.
This situation can easily be detected in the corresponding
RG of FIGURE 7 because two vertexes at the end of the RG
branches correspond to non-terminal markings (M3 andM4).
Only the branch in the middle (M5) corresponds to a terminal
branch.

FIGURE 7. MIPN model and Reachability Graph for the case of wrong
modeling of the ‘‘Show point’’ task. The correct model is shown in
FIGURE 6.

3) LIVENESS
For the kind of applications thatMIPNs are designed, liveness
is not always a desired requirement because terminability
and liveness are mutually exclusive. However, quasi-liveness
should be checked to avoid design problems with transitions
of a Petri net that are unreachable. Having unreachable tran-
sitions is a clue for an error in the design. It would be similar
to have a part of a software program that is unreachable and
therefore will never be executed. The quasi-liveness property
of an MIPN can be checked using the following theorem:
Theorem 2: A single MIPN is quasi-live if its RG fulfills

the following condition:
• All transitions of the MIPN are included in some arc of
the RG.
Proof: The RG branches represent all possible firing

sequences and the arcs represent the transitions fired in the
sequence. If all the transitions ti are included in the RGmeans
that ∃Emj∈R(Em0) such that ti is fireable from Emj and therefore,
fulfills the quasi-liveness condition. �
In case the condition does not hold, the model checker

will generate the list of transitions not reachable. This is, the
transitions that are not included in the RG.

The example in FIGURE 6 is a quasi-live MIPN because
all transitions are included in some arc of the RG (M5).
However, the case shown in FIGURE 7 does not hold the
quasi-live condition. This situation can easily be detected in
the corresponding RG of FIGURE 7 because there is no label
t4 in any of the arcs. That means that transition t4 is not
quasi-live and consequently the MIPN is not quasi-live.

C. ATOMIZATION OF ANALYSIS
The RG can be obtained simply by computing all succes-
sor markings starting with the initial marking Em0. However,
in general, due to the state-space explosion, the generation
of the reachability graph is inefficient even for bounded PNs.
This analysis becomes more inefficient or intractable for nets
with a lot of places and transitions like the ones needed
to model complex tasks in these message-oriented middle-
ware distributed systems. To deal with this problem, several

VOLUME 10, 2022 60221

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

FIGURE 8. MIPN model for the transport_cart task. This task includes the
navigate subtask.

researchers proposed different hierarchical solutions [42],
[49] as a divide and conquer approach. Since the MIPNs are
by definition hierarchical, a similar approach can be used to
reduce the dimensionality of the problem. One example of the
application of hierarchy is shown in FIGURE 8.

It is important to keep in mind that the execution of sub-
tasks in MIPNs is carried out through messages as any other
commands or actions in the system. This means that when
one of the places p2 or p6 gets a token, a message to run
the navigate subtask is issued. When the goal is reached
and therefore the execution of the navigate subtask finishes,
a special message regarding the end of the subtask is issued.
That message can include data regarding the outcome of
the execution. This outcome message is associated with the
output transitions t2 and t6.
In the case of hierarchic nets (i.e. a net A with one or more

nested subnets spanning one or more hierarchical levels),
it is mandatory to evaluate the whole multi-level system to
extract its global properties and behavior. The termination
capabilities of the MIPN play a very important role in the
hierarchical properties of an MIPN and its derived global
behavior and characteristics (such as safeness and liveness),
as will be explained later. The possibility of hierarchic nesting
implies some challenges for the analysis and some design
restrictions that should be followed.

Before dealing with further analysis some core definitions
must be established.2

• Let A be an individual single MIPN, which may have
subnets. HA is the hierarchic system of MIPNs where
A is the top-level (or parent) net.

• Hierarchic level l ∈ [0, h]
/
l ∈ N is the level

of nesting of a net within the whole hierarchic
system of nets. Thus, the 0-level is the top level

2For simplicity, direct or obvious demonstrations for definitions and corol-
laries are omitted.

of the hierarchy (i.e. a net not contained by any
other) and the h-level is the bottom of the hierarchy
(i.e., the most nested level, not containing any further
subnets). Also, levelA(B) = k is the hierarchical level
of B within that net system HA.

0 ≤ levelA(B) = k ≤ hA = maxlevel{HA} (3)

• NA is the set of all n nets (| NA | = n) within the net
system HA.

• NA(l) is the set of all nets of hierarchic l-level out of
NA, and | NA(l) | = nl is the number of nets within
l-level.

• SNA is the set of all subnets of A, if any, i.e. all nets
within the system HA except A itself.

NA = A ∪ SNA (4)

• NA,m is the mth net out of the set NA, where 0 ≤ m ≤ n

1) REACHABILITY
In the case of a hierarchical MIPN, the state of the system
is defined by the current marking Emi of all the running nets.
If the state to analyze include some subnets, the two next
conditions should be checked to see if the marking matches
the state:
• There is at least a vertex with a matching marking for
each RG involved in that state.

• All the subtasks included in that state should be running.
Therefore, for each subnet involved in that situation,
theremust be, in another net, somemarked place running
the subnet.

In the task represented in FIGURE 8 a simple example is
to verify that the robot is never unplugging from the charger
(place p0 in MIPN Transport_cart) and following a path
(place p2 in MIPN Navigate) at the same time. In this case,
it is necessary to make sure that both places are not marked
at the same time. To reach that situation the next conditions
should hold:
• There should be amarking in the Transport_cartRG that
includes the place p0 and one of the places p2 and/or
p6 that run the Navigation subtask. Therefore, the possi-
ble markings areM0.2, M0.6 and M0.2.6.

• There should be a marking in the Navigate RG that
includes the place p2.

The RG for FIGURE 8 is represented in FIGURE 9 and it is
easy to see that it does not meet the first condition because
the RG for the main net does not include any of the three
markings (M0.2, M0.6 nor M0.2.6) on a vertex. Therefore,
according to theMIPNmodel that fault situation should never
take place.

2) TERMINABILITY
Let’s first extend the definition of terminability to the case of
a hierarchical system.

60222 VOLUME 10, 2022

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

FIGURE 9. Reachability Graph for the transport_cart and navigate MIPNs
shown in FIGURE 8.

Definition 2 (Terminability): Terminability is expressed
by a boolean function represented by τ :

τd [A] =

{
0 , if A is not terminable
1 , if A is terminable

(5)

The Subindex d indicates the ‘‘depth’’ of the analysis.
Depths may be ‘‘individual3’’ (τi), ‘‘subhierarchy’’ (τsh)
or ‘‘global’’ (τg). The default depth is ‘‘individual’’, if no
subindex is specified.
• Sub-hierarchy terminability (τsh): The sub-hierarchy
terminability of a net A ∈ HA refers to the combined
terminability of the subnets of A, but not considering A
itself. Considering that NA(1) are the subnets of A, this
function is defined depending on |NA(1) |= n1:
1) the combined terminability (productory) of indi-

vidual and subhierarchy terminabilities of each
subnet of A (NA(1)), if A has subnets (i.e. n1 6= 0).

2) 1, if A has no subnets (i.e. n1 = 0)

τsh[A] =


n1∏
m=1

(
τi[NA(1)m] · τsh[NA(1)m]

)
,

if SNA 6= ∅
1, if SNA = ∅

(6)

• Global terminability (τg): The global terminability of
a net A is the terminability of the whole system HA,
considering the influence of A and all its subnets, which
means that each one of the subnets of A, if any, affects
the global terminability of A.

τg[A] =


τi[A] ·

n1∏
m=1

(
τg[NA(1)m]

)
, if SNA 6= ∅

τi[A] , if SNA = ∅

(7)

Sub-hierarchy terminability can be obtained recursively
from Equation 6, computing the productory of the individual

3For simplicity, simple notation ‘‘terminable’’ implies ‘‘individually ter-
minable’’ (Definition 1), otherwise should be specified. Thus: τ = τi

terminability of each net in SNA set, if any, or 1 if A has
no subnets.

τsh[A] =
n1∏
m=1

(
τi[NA(1)m]·τsh[NA(1)m]

)
=

n1∏
m=1

(
τi[NA(1)m]·

n2∏
p=1

(
τi[NA(2)p]·τsh[NA(2)p]

))

= = · · · =

n−1∏
m=1

(
τi[SNA,m]

)
, if SNA 6= ∅. (8)

Corollary 1 (Relation between τg and τi): Global termin-
ability can also be obtained recursively from Equation 7,
computing the productory of the individual terminability of
each net in NA set.

τg[A] = τi[A] ·
n1∏
m=1

(
τg[NA(1)m]

)
= τi[A]·

n1∏
m=1

(
τi[NA(1)m]·

n2∏
p=1

(
τg[NA(2)p]

))
=

n∏
m=1

(
τi[NA,m]

)
(9)

From a practical point of view, the conclusion is that if an
MIPN A is globally terminable (τ sg[A]), then the hierarchic
system HA is free of deadlocks and its termination is always
possible. Also, the global terminability can be obtained from
the individual terminability of all the nets in the hierarchy
using Equation 9.

As a consequence of the previous conclusions, the ter-
minability analysis of an MIPN can be based on the RG
of each individual net. If all the individual RG hold the
terminability condition (Theorem 1), the global MIPN is
terminable.

3) LIVENESS
For the kind of applications that MIPNs are designed, com-
pliance with quasi-liveness avoids design problems related to
transitions that are unreachable. The quasi-liveness property
of a global MIPN can be assessed from the RGs using the
following theorem:
Theorem 3: A hierarchic MIPN is quasi-live if the RGs

fulfill the following two conditions:
1) All the RGs for the nets of the MIPN hold the quasi-live

condition.
2) Every subnet should be included in at least a place of

a higher level net and that place should be included in
some marking of the RG corresponding to that net.
Proof: The quasi-liveness condition for the global

MIPN requires that all the transitions ti in all the nets Nj are
quasi-live. Therefore, ∀ ti ∈ Ni, there exists a sequence of
transition firings in different nets that grants ti can be enabled
and fired. This can be proven using both conditions:

1) The first condition implies that within the net Ni that
includes the transition ti ∈ Ni there is a sequence

VOLUME 10, 2022 60223

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

of transition firings from the initial marking Em0 that
grants ti can be enabled and fired.

2) The second condition, implies that there is a net Nj that
includes the execution of netNi and therefore the initial
marking Em0 ofNi can be reached. This condition can be
applied recursively until the main net N0 is reached.

�
In case the condition does not hold, the model checker will

generate the list of transitions not reachable (transitions not
included in the RG) and nets not executable (nets not included
in another net).

IV. RESULTS
The MIPN theoretical model has been motivated by the
requirements of actual message-based communications hier-
archic systems that exceeded the capabilities of current PN
extensions. MIPNs are modular and hierarchic because it is
the most natural way to model the behavior of these complex
systems but at the same time, these atomic properties simplify
the analysis as we pointed out in Section III-C. This section
includes first a simple example that illustrates these advan-
tages. Then we introduce the IDE that we have developed to
implement these systems and some of the applications where
it has been used.

A. A SIMPLE EXAMPLE
Let’s use the simple example of FIGURE 8 to get an idea of
the reduction of the RG provided by the hierarchical nature
of MIPNs. The equivalent flat net without hierarchy is shown
in FIGURE 10a and the corresponding RG is represented
in FIGURE 10b. The number of vertices (nodes) in the RG
for the hierarchical case (FIGURE 9) is 19 while for the
non-hierarchical case (FIGURE 10b) is 32. As we can see, the
number of vertices for this simple case with only one subnet is
reduced substantially. TABLE 1 shows the reduction of nodes
in the RG as a function of the number of places in the subnet.
As the complexity of the subnet increases, there is a higher
benefit of using hierarchy. That reduction is even more sig-
nificant as the number of simultaneous sequences increases
because there is a higher number of possible combinations of
markings and more calls to the subnets. TABLE 2 shows this
reduction when the branch of the MIPN that calls the subnet
in FIGURE 8 is replicated several times. It can be observed
that the reduction in this case as the number of branches in
parallel increase is exponential.

B. IMPLEMENTATION
There are many software systems so complex that need to be
divided into different modules. A popular solution, especially
in distributed systems, is to implement different parts of the
system in several, independent processes that use some mes-
sage exchange mechanism to share information. Most of the
autonomous vehicle software architectures are among those
systems. The executive module should coordinate the activity
of the rest of the modules to carry out some specific task.
The process to build this component includes two steps: the

FIGURE 10. Non-hierarchical MIPN and RG of the task defined in
FIGURE 9.

first step consists of building the model as some sequence of
actions and events and the second step consists of generating
the code that implements the model. Throughout the last
twenty years we have beenmodeling this executive module as
a finite state machine first, then as different kinds of PNs and
finally using MIPNs. The software generated in the second
step includes instructions to send messages to other modules
to carry out different actions and to subscribe to messages
containing information about the events. To eliminate the
second step, we built the tool RoboGraph [27] where we
can define the MIPN model that serves at the same time as
the program to control and coordinate the other modules.
RoboGraph adds twomodules to the architecture: RoboGraph
GUI (RG_GUI) that allows to edit and debug the MIPNs

60224 VOLUME 10, 2022

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

TABLE 1. Number of vertex of the reachability graph versus the number
of places in the subnet when using a model with (MIPN) and
without (IPN) hierarchy.

TABLE 2. Number of vertex of the reachability graph versus the number
of branches in the main net when using a model with (MIPN) and
without (IPN) hierarchy.

FIGURE 11. RoboGraph in editor mode displaying the list of modules and
messages of a module.

models and RoboGraph dispatch (RG_dispatch) that executes
the nets.

RG_dispatch implements the executive layer of the
architecture executing the tasks defined as MIPNs. When
RG_dispatch executes the task, the messages assigned to
places will be published as the net progresses. On the other
side, when RG_dispatch loads a new MIPN subscribes to all
messages included in conditions associated with transitions.

RG_GUI can work in three different modes: Editor, Mon-
itor, and Play Logger. In editor mode (FIGURE 11) the user
can create new tasks using a simple and intuitiveMIPNgraph-
ical editor. First, the MIPN structure is created by selecting
and dragging the different elements: places, transitions, arcs,
and marks. Then actions, associated with places (publish
messages, start a timer, start other MIPN,. . .), and conditions
associated with transitions (conditions on the arrival of mes-
sages, end of a subnet,. . .) must be defined. All the messages
can be selected from a menu list automatically generated by
the GUI as shown in FIGURE 11.
Once the tasks are defined, RoboGraph provides several

tools to analyze the MIPNs using the methods described in
this paper. These tools are integrated into RoboGraph [51]
along with the programming tools, so the developer has
immediate access to design/debug/analysis tools in the

same IDE, thus enhancing the designer’s workflow and mak-
ing easier the design task.

RG_GUI in monitor mode is used in execution time to
watch the evolution of the running MIPNs. While executing
a net, every time RG_dispatch fires a transition, it publishes a
message to report it. RG_GUI in monitor mode is subscribed
to this kind of messages to show every running Petri net
in a different tab with the current marking. Because of the
hierarchical nature of MIPNs, most of the applications have
several nets running at the same time and it is quite difficult to
monitor the execution in real time. For this purpose, an XML
log file with dispatch IPC/JIPC/ROS messages is created in
running time. The programmer can then run RG_GUI in play-
logger mode, open the log file and play it back. Besides the
regular play option, the user can monitor the log file step by
step or jump to a specific place in ‘‘execution’’.

C. APPLICATIONS
The MIPN model has been used and polished in several
robot control applications, providing an easy way to design,
verify, and debug complex architectures that include multi-
ple modules. RoboGraph is currently working in three dif-
ferent message-related communication systems: IPC [39],
JIPC [24], and the ROS (Robot Operating System) commu-
nication system [41].

1) APPLICATIONS THAT USE IPC AND JIPC
Applications that use IPC and JIPC include the following (see
also FIGURE 12):
• WatchBot [26]. A multi-robot surveillance application
that allows for scheduled patrolling, video camera con-
trol, robot teleoperation, alarm managing, etc.

• HospBot [52]. A robotic automated delivery system for
hospital facilities.

• BellBot [53]. A hotel assistant system using mobile
robots that guide guests through the hotel and deliver
small items such as drinks or the newspaper to their
rooms.

• GuideBot [54]. A tour-guide robot for fairs and muse-
ums. The robot participated in several editions of the
‘‘Xuventude Galicia Net’’ event.

All these applications have been created using RIDE
(Robotic Integrated Development Environment) [22], [24].
The control architectures developed using RIDE are based
on a middleware layer with several independent modules that
implement primitive actions and report events about their
state. Project developers useRoboGraph [27] to define tasks
(RG_GUI) as MIPNs and store them in XML files. The
RoboGraph dispatcher (RG_dispatch) is just another running
module of the control architecture that loads the tasks from
the XML files and executes them. Therefore, RG_dispatch
coordinates the activities of the middleware modules accord-
ing to the sequences defined in the MIPNs.

FIGURE 13 shows the general architecture for the
tour-guide robot application developed using RIDE. The
modules of the architecture are connected on two different

VOLUME 10, 2022 60225

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

FIGURE 12. GuideBot, WatchBot, HospBot, and BellBot.

FIGURE 13. RIDE multi-robot system architecture.

levels. The lowest level includes the on-board modules of
each robot connected using IPC (FIGURE 3) and the highest
level is the global system connected using JIPC where each
robot is considered as one single module. Each set of modules
has its own RoboGraph modules because there are tasks
defined on both levels. Global tasks might include several
robots, other elements of the application, and users. Robot
tasks are executed by only one robot andmost of them are part
of a global task. This means that someMIPNs in the hierarchy
can be executed by different RoboGraph dispatch modules
distributed in different machines by the system. Both kinds
of tasks are defined in a similar way using the RG_editor as
MIPNs. However, the robot tasks use IPC messages while the
global tasks use JIPC messages.

In both communication systems (IPC and JIPC), mod-
ules share information using a publish/subscribe messages
paradigm. However, while IPC uses broadcast messages,
JIPC can publish messages to and subscribe to messages from
a specific module. In IPC, modules subscribed to a kind of
message will receive all the messages of that kind that any
module publishes. This is a nice feature when thinking of a

FIGURE 14. ROBLE, SmartElderlyCar, and ColRobot projects developed
under ROS.

single robot control. However, due to the symmetry of the
multi-robot multi-user framework (FIGURE 13), a problem
arises when dispatch wants to send a command to only one
robot since all the robots will get the message. JIPC was
designed to avoid that problem in multi-robot systems.

2) APPLICATIONS THAT USE ROS
Applications that use ROS include the following (see also
FIGURE 14):
• SmartElderlyCar [55]. An autonomous car designed
for elderly or disabled people. MIPNs were used to
define the behavior expected for the car according to the
traffic rules in different scenarios.

• ROBLE [56]. In this case, tugger trains were used to
transport stock material to supply different working sta-
tions with different materials efficiently. The first ver-
sion was developed under RIDE and a final version was
implemented on ROS.

• ColRobot [57]. European Project centered on using col-
laborative mobile manipulators for assembly and kitting
in smart manufacturing.

• PROFETA. Application centred on the manipulation of
preimpregnated composite materials in the manufactur-
ing of aircraft parts.

• Mari4_YARD [58]. This is an ongoing European
Project were different robotics technologies will be
tested in shipbuilding industry.

• 5R Network [59]. Collaboration network between com-
petence centres in robotics to foster the technology trans-
fer to manufacturing companies.

Even though RoboGraph was initially developed inside
RIDE, the communication capabilities were implemented in
an external layer that facilitates the extension to other archi-
tectures. As in most robot control frameworks, ROS pro-
vides an inter-process communication interface with different
type of connections between modules that include persistent

60226 VOLUME 10, 2022

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

connections to a service when high-throughput is needed.
However, only the publish/subscribe paradigm was used to
exchange information between RoboGraph and other ROS
modules. Besides the communication interface, the rest of
RoboGraph is the same with two modules (processes); one
to load and execute the nets and subnets (RG_dispatch) and
the other to edit, validate and debug them (RG_GUI).

For all these applications, MIPNs model only the executive
layer. For example, in the SmartElderlyCar project, the main
net identifies the main driving situations according to the
section of the road and events perceived by the perception
layer. Some of these scenarios include ‘‘follow a lane’’,
‘‘overtake a vehicle’’, ‘‘enter an intersection’’, etc. At the
same time, each situation can be modeled by one or more
subnets. In the ROBLE project, the main net identifies dif-
ferent events that start different tasks. For example, the event
that ‘‘there is a new empty cart to remove’’ or ‘‘some work
station needs new material’’. As in the previous case, each
task is modeled by one ormore subnets. In the ColBot project,
RoboGraph was used to orchestrate the ROS-based control
architecture of a mobile manipulator operating inside a van
to screw the partition wall. Finally, Mari4_YARD is still an
ongoing project where RoboGraph is planned to be used to
orchestrate the control architecture of a mobile manipulator
performing outfitting operations inside superblocks.

V. CONCLUSION
In this paper, a new extended hierarchic PN model has been
presented. The model expands the functionality provided by
the current PN-based models. It was designed for complex
applications whose control functions are distributed in several
processes that use a well established message-based com-
munications to exchange information. This is the case for
example of the applications developed under the Robotics
Operating System (ROS).

Once the hierarchic model was defined, the means to ana-
lyze it have been provided. Aside from the MIPN model
itself, new properties such as the concept of terminability
have been defined. Some methods to evaluate these proper-
ties in the MIPN models were also developed. The evalua-
tion process is simplified using the mathematical relations
between global properties of a hierarchic MIPNs system and
individual properties of eachMIPN. This allows to atomically
analyze each net separately and then build up the properties of
the whole system. This capability for building up properties
through hierarchy levels simplifies the analysis of any com-
plex multi-level MIPN system and enhances the reusability
of subtasks modeled with MIPNs. Some properties similar
to terminability, have been previously proposed by other
researchers. The closest one is the concept of soundness in
WF-nets. However, WF-nets design implications are differ-
ent [13], [60]. A WF-net requires the Petri net to have (i) a
single Start place, (ii) a single End place, and (iii) each node
must be on one path from Start to End. Those restrictions
make WF-nets less versatile than MIPNs and its termination
rule, which allows for arbitrary final markings, as needed by

the designer, and has an established behavior on termination
(publish a termination message).

Software tools to check the MIPNs properties have been
added to our IDE (RoboGraph). Most of these tools are
analysis modules imported directly from PIPE [61] such as
the classification, reachability graph and state space analysis.
These modules provide the analysis and properties of each
individual net. Using the results on Section III-C we have
added new modules that provide the global properties of a
hierarchic MIPN based on the individual properties of each
subnet. The MIPNs are edited using the RoboGraph Editor
and, once the model is defined, it can be analyzed providing
a report. The report in the case of problems such as deadlocks
includes the sequence of events that leads the system to the
deadlock.

Beyond the modeling and analysis, MIPN model is aimed
for auto generation of code for the modeled tasks. Several
methods and tools for automatic generation of control code
after a formal model such as GRAFCET [34] have been
designed. Here the model itself (MIPN) is the code that is
executed by our tool (RoboGraph). In this way, RoboGraph
can be seen as the ‘‘Virtual Machine’’ that can execute the
nets included in the MIPN model.

The actual utility of the model was motivated and verified
by the use in platforms such asRIDE [22], [24] andROS [41].
Several applications have been developed using both plat-
forms as described in Section IV-C. In these applications,
besides task modeling, verification, and analysis, MIPNs
have also been used for task control definition, becoming an
efficient visual task programming language, task sequencing,
and task monitoring. These are some of the main advantages
of this approach:
• Reduce development time. Once the model is created,
it can also serve as the control program. For example,
in our case, RoboGraph is in charge to execute directly
the nets. There is no need to generate extra code.

• Simple and intuitive programming. Almost everybody
that has worked or learn to use IEC 61131-3 com-
pliant programming environments (Siemens S7 Graph,
Graphcet, etc.) will be able to program new tasks using
MIPNs with minimal training.

• Automatic verification and analysis. The MIPN proper-
ties described in this paper can be easily implemented
in a graphical IDE tool. We have included this func-
tionality in RoboGraph so that after editing the nets,
it can be automatically analyzed producing a report with
counterexamples to identify the error source when some
structural problem is detected.

• Intuitive graphical debugging. The same MIPN model
is also used to follow the state of the system because the
RoboGraph GUI shows the current marking of all the
running nets. If the system gets stuck, it is quite easy to
identify the event or events is waiting for. Those events
correspond to the conditions of the enabled transitions.

• Simulation and report generation. Since a net models
a task or subtask, statistics on the execution of the net

VOLUME 10, 2022 60227

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

or sections of the same are easily generated through a
simple event simulation.We have been using this feature
to establish the minimum size of a fleet of robots in
multi-robot applications.

ACKNOWLEDGMENT
The authors would like to thank all the people that contributed
in the different projects, where MIPNs were used through the
RoboGraph tool. Their feedback helped not only to fix some
initial problems but also to improve and adapt the model to
new requirements making it more versatile.

REFERENCES
[1] H. Ergin, E. Syriani, and J. Gray, ‘‘Design pattern oriented develop-

ment of model transformations,’’ Comput. Lang., Syst. Struct., vol. 46,
pp. 106–139, Nov. 2016.

[2] A. R. da Silva, ‘‘Model-driven engineering: A survey supported by the uni-
fied conceptual model,’’Comput. Lang., Syst. Struct., vol. 43, pp. 139–155,
Oct. 2015.

[3] P. Gómez-Abajo, E. Guerra, and J. D. Lara, ‘‘A domain-specific language
for model mutation and its application to the automated generation of
exercises,’’ Comput. Lang., Syst. Struct., vol. 49, pp. 152–173, Sep. 2017.

[4] D. Méndez-Acuña, J. A. Galindo, T. Degueule, B. Combemale, and
B. Baudry, ‘‘Leveraging software product lines engineering in the devel-
opment of external DSLs: A systematic literature review,’’ Comput. Lang.,
Syst. Struct., vol. 46, pp. 206–235, Nov. 2016.

[5] I. Kovalenko, D. Tilbury, and K. Barton, ‘‘The model-based product agent:
A control oriented architecture for intelligent products in multi-agent man-
ufacturing systems,’’Control Eng. Pract., vol. 86, pp. 105–117, May 2019.

[6] F. Basile, P. Chiacchio, and E. Di Marino, ‘‘An auction-based approach to
control automated warehouses using smart vehicles,’’ Control Eng. Pract.,
vol. 90, pp. 285–300, Sep. 2019.

[7] M. F. Geronimo, E. G. H. Martinez, E. D. F. Vazquez, J. J. F. Godoy, and
G. F. Anaya, ‘‘A multiagent systems with Petri net approach for simula-
tion of urban traffic networks,’’ Comput., Environ. Urban Syst., vol. 89,
Sep. 2021, Art. no. 101662.

[8] Y.-W. Si, V.-I. Chan, M. Dumas, and D. Zhang, ‘‘A Petri nets based
generic genetic algorithm framework for resource optimization in business
processes,’’ Simul. Model. Pract. Theory, vol. 86, pp. 72–101, Aug. 2018.

[9] D. F. Simon, M. Teixeira, and J. P. da Costa, ‘‘Availability estimation in
photovoltaic generation systems using timed Petri net simulation models,’’
Int. J. Electr. Power Energy Syst., vol. 137, May 2022, Art. no. 106897.

[10] J. B. Oliveira, M. Jin, R. S. Lima, J. E. Kobza, and J. A. B. Montevechi,
‘‘The role of simulation and optimization methods in supply chain risk
management: Performance and review standpoints,’’ Simul. Model. Pract.
Theory, vol. 92, pp. 17–44, Apr. 2019.

[11] W. M. Zuberek and I. Bluemke, ‘‘Hierarchies of place/transition refine-
ments in Petri nets,’’ inProc. IEEEConf. Emerg. Technol. Factory Automat.
(ETFA), Nov. 1996, pp. 355–360.

[12] M. Figat and C. Zielinski, ‘‘Methodology of designing multi-agent robot
control systems utilising hierarchical Petri nets,’’ in Proc. Int. Conf. Robot.
Autom. (ICRA), May 2019, pp. 3363–3369.

[13] C. Dufourd, A. Finkel, and P. Schnoebelen, ‘‘Reset nets between decid-
ability and undecidability,’’ in Proc. 25th Int. Colloq. Automata, Lang.
Program. London, U.K.: Springer-Verlag, 1998, pp. 103–115.

[14] K. Jensen, ‘‘Coloured Petri nets and the invariant-method,’’ Theor. Comput.
Sci., vol. 14, no. 3, pp. 317–336, 1981.

[15] J. Wang, Timed Petri Nets: Theory and Application, vol. 9. Springer &
Business Media, 2012.

[16] M. Moalla, J. Pulou, and J. Sifakis, ‘‘Synchronized Petri nets: A model
for the description of non-autonomous systems,’’ in Proc. MFCS, 1978,
pp. 374–384.

[17] G. Frey, ‘‘Analysis of Petri net based control algorithms–basic properties,’’
in Proc. Amer. Control Conf. (ACC), Jun. 2000, pp. 3172–3176.

[18] R. König and L. Quäck, Petri-netze in der steuerungs und digitaltechnik.
Oldenbourg Verlag, 1988.

[19] I. Grobelna and M. Adamski, ‘‘Model checking of control interpreted
Petri nets,’’ in Proc. 18th Int. Conf. Mixed Design Integr. Circuits Syst.,
Jun. 2011, pp. 621–626.

[20] M. Uzam and A. H. Jones, ‘‘Discrete event control system design using
automation Petri nets and their ladder diagram implementation,’’ Int.
J. Adv. Manuf. Technol., vol. 14, no. 10, pp. 716–728, Oct. 1998.

[21] I. A. Fernández, J. C. M. Cortabarría, L. E. Echeverría, ‘‘Petri net imple-
mentation in programmable logic controllers: Methodology for develop-
ment and validation,’’ in Proc. IEEE 19th World Symp. Appl. Mach. Intell.
Inform. (SAMI), Jan. 2021, pp. 000015–000020.

[22] RIDE: Robotics Integrated Development Environment, Mobile Robots
Intell. Syst. Group, Univ. Vigo, Vigo, Spain, 2010.

[23] J. López, E. Zalama, and J. Gómez-García-Bermejo, ‘‘A simulation and
control framework for AGV based transport systems,’’ Simul. Model.
Pract. Theory, vol. 116, Apr. 2022, Art. no. 102430.

[24] J. López, D. Pérez, and E. Zalama, ‘‘A framework for building
mobile single and multi-robot applications,’’ Robot. Auto. Syst., vol. 59,
nos. 3–4, pp. 151–162, Mar. 2011.

[25] A. C. Gaona, J. M. Chavez, and C. R. Vazquez, ‘‘RCPetri: AMATLAB app
for the synthesis of Petri net regulation controllers for industrial automa-
tion,’’ in Proc. 26th IEEE Int. Conf. Emerg. Technol. Factory Autom.
(ETFA), Sep. 2021, pp. 1–7.

[26] J. López, D. Pérez, E. Paz, and A. Santana, ‘‘Watchbot: A building main-
tenance and surveillance system based on autonomous robots,’’ Robot.
Auton. Syst., vol. 61, no. 12, pp. 1559–1571, Dec. 2013.

[27] J. L. Fernandez, R. Sanz, E. Paz, and C. Alonso, ‘‘Using hierarchical binary
Petri nets to build robust mobile robot applications: RoboGraph,’’ in Proc.
IEEE Int. Conf. Robot. Autom., May 2008, pp. 1372–1377.

[28] M. Buehler, K. Iagnemma, and S. Singh, Eds., The DARPA Urban Chal-
lenge: Autonomous Vehicles in City Traffic (Springer Tracts in Advanced
Robotics), 56th ed. Springer, 2010.

[29] C. Urmson, J. A. Bagnell, C. R. Baker, M. Hebert, A. Kelly, R. Rajkumar,
P. E. Rybski, S. Scherer, R. Simmons, and S. Singh, ‘‘Tartan racing:
A multi-modal approach to the darpa urban challenge,’’ Robot. Inst.,
Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep., 2007.

[30] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,
D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, andD. Johnston, ‘‘Junior:
The Stanford entry in the urban challenge,’’ J. Field Robot., vol. 25, no. 9,
pp. 569–597, 2008.

[31] A. Kurt and Ü. Özgüner, ‘‘Hierarchical finite state machines for
autonomous mobile systems,’’ Control Eng. Pract., vol. 21, no. 2,
pp. 184–194, 2013.

[32] P. Ogren, ‘‘Increasing modularity of UAV control systems using computer
game behavior trees,’’ in Proc. AIAA Guid., Navigat., Control Conf.,
Aug. 2012, p. 4458.

[33] M. Colledanchise and P. Ogren, ‘‘How behavior trees modularize robust-
ness and safety in hybrid systems,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Sep. 2014, pp. 1482–1488.

[34] F. Schumacher and A. Fay, ‘‘Formal representation of GRAFCET to auto-
matically generate control code,’’ Control Eng. Pract., vol. 33, pp. 84–93,
Dec. 2014.

[35] J. M. B. Braman and R. M. Murray, ‘‘Bisimulation conversion and veri-
fication procedure for goal-based control systems,’’ Formal Methods Syst.
Des., vol. 38, no. 1, pp. 62–95, Feb. 2011.

[36] J. Li, X. Dai, Z. Meng, J. Dou, and X. Guan, ‘‘Rapid design and recon-
figuration of Petri net models for reconfigurable manufacturing cells with
improved net rewriting systems and activity diagrams,’’Comput. Ind. Eng.,
vol. 57, no. 4, pp. 1431–1451, Nov. 2009.

[37] M. Vierhauser, R. Rabiser, P. Grünbacher, K. Seyerlehner, S. Wallner,
and H. Zeisel, ‘‘ReMinds : A flexible runtime monitoring framework for
systems of systems,’’ J. Syst. Softw., vol. 112, pp. 123–136, Feb. 2016.

[38] H. Bruyninckx, ‘‘Robotics software framework harmonization by means
of component composability benchmarks. The manifolds of four,’’ RICS
Repository, BRICS Deliverable D8.1, Most, Tech. Rep., 2010, pp. 1–12.

[39] R. Simmons and D. James, ‘‘Inter-process communication (IPC). A refer-
ence manual,’’ School Comput. Sci./Robot. Inst., CMU (Carnegie Mellon
Univ.), Pittsburgh, PA, USA, Tech. Rep., Aug. 2001.

[40] J. López, D. Pérez, I. Vaamonde, E. Paz, A. Vaamonde, and J. Cabaleiro,
‘‘Building a warehouse control system using ride,’’ in Proc. Robot: 2nd
Iberian Robot. Conf., Cham, Switzerland: Springer, 2016, pp. 757–768.

[41] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, ‘‘ROS: An open-source robot operating system,’’ in Proc.
ICRA Workshop Open Source Softw., Kobe, Japan, vol. 3, 2009, p. 5.

[42] P. Buchholz, ‘‘Hierarchical high level Petri nets for complex system anal-
ysis,’’ in Application and Theory of Petri Nets (Lecture Notes in Com-
puter Science), vol. 815, R. Valette, Ed. Berlin, Germany: Springer, 1994,
pp. 119–138.

60228 VOLUME 10, 2022

J. López et al.: Middleware Control Systems Design and Analysis Using Message Interpreted Petri Nets (MIPN)

[43] G. Frey and L. Litz, ‘‘A measure for transparency in net based control algo-
rithms,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 1999,
pp. 887–892.

[44] S. Klein, X. Weng, G. Frey, J.-J. Lesage, and L. Litz, ‘‘Controller design
for an FMS using signal interpreted Petri nets and SFC: Validation of both
descriptions via model-checking,’’ in Proc. Amer. Control Conf., vol. 5,
May 2002, pp. 4141–4146.

[45] A. M. Atto, C. Martinez, and S. Amari, ‘‘Control of discrete event systems
with respect to strict duration: Supervision of an industrial manufacturing
plant,’’ Comput. Ind. Eng., vol. 61, no. 4, pp. 1149–1159, Nov. 2011.

[46] A. Chandler, A. Heyworth, L. Blair, and D. Seward, ‘‘Testing Petri nets for
mobile robots using groebner basis,’’ Proc. 21st Int. Conf. Appl. Theory
Petri Nets, Aarhus, Denmark, Jul. 2000.

[47] M. D. Jeng, ‘‘Petri nets for modeling automated manufacturing sys-
tems with error recovery,’’ IEEE Trans. Robot. Autom., vol. 13, no. 5,
pp. 752–760, Oct. 1997.

[48] T. Murata, ‘‘Petri nets: Properties, analysis and applications,’’ Proc. IEEE,
vol. 77, no. 4, pp. 541–580, Apr. 1989.

[49] P. Buchholz and P. Kemper, ‘‘Hierarchical reachability graph generation
for Petri nets,’’ Formal Methods Syst. Des., vol. 21, no. 3, pp. 281–315,
Nov. 2002.

[50] R. M. Karp and R. E. Miller, ‘‘Parallel program schemata,’’ J. Comput.
Syst. Sci., vol. 3, no. 2, pp. 147–195, May 1969.

[51] J. L. Fernández, D. P. Losada, M. G. Prado, and A. P. Domonte, ‘‘Moni-
toring and debugging distributed autonomous systems using Petri nets,’’ in
Proc. 15th World Multi-Conf. Systemics, Cybern. Inform. (WMSCI), vol. 1,
Jul. 2011, pp. 216–221.

[52] J. L. Fernández, D. P. Losada, R. Pinillos, S. Domínguez, E. Zalama, and
J. Gómez-García-Bermejo, ‘‘Diseño y desarrollo de un sistema de trans-
porte reconfigurable para entornos hospitalarios,’’ Revista Iberoamericana
de Automática e Informática Industrial., vol. 9, no. 1, pp. 57–68, 2012.

[53] J. López, D. Pérez, E. Zalama, and J. Gómez-García-Bermejo, ‘‘BellBot—
A hotel assistant system using mobile robots,’’ Int. J. Adv. Robotic Syst.,
vol. 10, no. 1, p. 40, Jan. 2013.

[54] J. López, D. Pérez, M. Santos, and M. Cacho, ‘‘GuideBot. A tour guide
system based on mobile robots,’’ Int. J. Adv. Robotic Syst., vol. 10, no. 11,
p. 381, Nov. 2013.

[55] J. López, P. Sánchez-Vilariño, R. Sanz, and E. Paz, ‘‘Implementing
autonomous driving behaviors using a message driven Petri net frame-
work,’’ Sensors, vol. 20, no. 2, p. 449, Jan. 2020.

[56] R. Samaniego, R. Rodríguez, F. Vázquez, and J. López, ‘‘Efficient path
planing for articulated vehicles in cluttered environments,’’ Sensors,
vol. 20, no. 23, p. 6821, Nov. 2020.

[57] (Nov. 17, 2020). Collaborative Robotics for Assembly and Kitting in
Smart Manufacturing. Accessed: Jan. 4, 2021. [Online]. Available:
https://cordis.europa.eu/project/id/688807

[58] (Sep. 6, 2019). User-Centric Solutions for a Flexible and Modular Manu-
facturing in Small and Medium-Sized Shipyards. Accessed: May 18, 2022.
[Online]. Available: https://cordis.europa.eu/project/id/101006798

[59] (2021). Network of Spanish Competence Centres in Robotic Technolo-
gies for Manufacturing. Accessed: May 18, 2022. [Online]. Available:
https://red5r.es/

[60] C. Li, J. Ge, L. Huang, H. Hu, B. Wu, H. Hu, and B. Luo, ‘‘Software
cybernetics in BPM:Modeling software behavior as feedback for evolution
by a novel discovery method based on augmented event logs,’’ J. Syst.
Softw., vol. 124, pp. 260–273, Feb. 2017.

[61] P. Bonet, C. M. Lladó, R. Puijaner, and W. J. Knottenbelt, ‘‘Pipe v2. 5: A
Petri net tool for performance modelling,’’ in Proc. 23rd Latin Amer. Conf.
Informat. (CLEI), 2007, pp. 1–12.

JOAQUÍN LÓPEZ received the M.S. degree in
telecommunications engineering from the Univer-
sity of Vigo, Spain, in 1992, and the Ph.D. degree
from the Department of Systems Engineering and
Automation, University of Vigo, in 2000. He spent
two years as a Visiting Researcher (first year) and a
Special Faculty (second year) at Carnegie Mellon
University’s Robotics Institute. He is currently an
Associate Professor with the School of Industrial
Engineering, University of Vigo. He is the author

and the coauthor of over 40 journal articles in the field of mobile robotics and
artificial intelligence. He has participated in several funded research projects
during the last 15 years.

ALEJANDRO SANTANA-ALONSO received the
M.S. degree in electrical engineering from theUni-
versity of Vigo, Spain, in 2011. He is currently
pursuing the Ph.D. degree, with a focus on com-
plex tasks definition, analysis, and implementation
for mobile robotics applications. He worked at
the System Engineering Department, University
of Vigo, where he is developing mobile robotics
applications and control systems. He also worked
at ERP Development as a CTO for three years.

From 2016 to 2019, he was employed at the AIMEN Technology Centre in
research and development in robotics and control area. His research interest
includes mobile and collaborative robotics.

DIEGO PÉREZ LOSADA received the M.S.
degree in electrical engineering and the Ph.D.
degree in robotics and control engineering from
the University of Vigo, in 2006 and 2012, respec-
tively. His work focuses on robotics architectures,
mobile robot applications, and hardware integra-
tion in mobile robot control architectures, with
more than 16 years of experience in the design of
applications-based in mobile robots and industrial
manipulators. He has worked on several national

and European research and development projects within the University
of Vigo and the AIMEN Technology Centre. Currently, he is leading the
Advanced Robotics Technologies and Applications Research Team (ARTA),
Smart Systems and Smart Manufacturing Unit, AIMEN Technology Centre.

VOLUME 10, 2022 60229

