
Received May 12, 2022, accepted May 27, 2022, date of publication June 6, 2022, date of current version June 9, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3180333

Effective Flow Table Space Management Using
Policy-Based Routing Approach in
Hybrid SDN Network
MANISH PALIWAL 1 AND KAPIL KUMAR NAGWANSHI 2, (Senior Member, IEEE)
1Department of Computer Science Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Raysan, Gujarat 382007, India
2ASET, Amity University Rajasthan, Jaipur, Rajasthan 303002, India

Corresponding author: Kapil Kumar Nagwanshi (dr.kapil@ieee.org)

ABSTRACT Software-defined networking makes forwarding devices easier to manage and provides cen-
tralized control. Because of the centralization, a network administrator can programme the devices cheaply.
Network administrators make attempts to convert their entire network into SDN-compatible switches.
A good balance of SDN and legacy switching functions can lead to a successful network scenario in
network architecture. In this study, a hybrid network scenario is provided in which the external boundary
forwarding devices of the service provider network are replaced with SDN devices. Still, the other internal
forwarding devices continue to operate traditionally. The benefits of both SDN and legacy network design
are combined, allowing the network administrator to reap the benefits of both. The network architecture
employs a policy-based routing algorithm that takes advantage of free IP addresses from the free IP pool. The
technique enables efficient use of available flow table space, which is critical in SDN architecture due to the
small flow table size. The algorithm’s efficiency is assessed using performance metrics such as network path
stretch, throughput, latency delay, and so on, compared to traditional SDN controllers such as OpenDayLight,
NOX, and POX. According to the experimental results, the suggested approach outperforms specific similar
state-of-the-art techniques in the hybrid SDN domain.

INDEX TERMS Control plane, legacy forwarding devices, openflow, software-defined network, traffic
engineering.

I. INTRODUCTION
The legacy network architecture consists of networking
devices, which are very complex in their functionality. The
main reason behind the complex working is the tight integra-
tion of control and forwarding functionality. Because of this,
these architectures become inflexible from the configuration
point of view of the network administrator. In recent years,
the current networking scenario has been moving towards
a network architecture where the control logic functions of
forwarding devices are decoupled from the forwarding func-
tions. This new network scenario is called a Software-Defined
Network (SDN). SDN provides a simplified and flexible
network design where the complex control functionalities
are detached from the hardware devices and placed in the
centralized location known as the Controller. The Controller

The associate editor coordinating the review of this manuscript and

approving it for publication was Paulo Mendes .

directs the data plane devices to work according to the various
configured policies.

Fig. 1 provides the layered architecture of SDN. It consists
of mainly three layers: Infrastructure Layer (Data Plane),
Control Layer (Control Plane), and Application Layer (Man-
agement Plane). The infrastructure layer consists of the
underlying physical devices. Similarly, the Control layer con-
tains the control logic, which directs the underlying devices
for packet processing. Finally, the Application layer has var-
ious modules which the network administrator defines for
network functioning. For example, OpenFlow [34] is the
southbound API that provides an interface between the con-
trol plane and the data plane.

Nowadays, organizations are interested in upgrading their
existing network architecture into SDN-based design. How-
ever, the full up-gradation of infrastructure is associated with
a massive deployment cost. This deployment cost will be
significantly higher than a homogeneous environment in a
heterogeneous environment. At this point, the incremental

59806 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-5756-4881
https://orcid.org/0000-0003-3133-978X
https://orcid.org/0000-0003-1059-8272


M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

FIGURE 1. Layered architecture of SDN.

deployment of SDN over the traditional network would be a
cost-effective solution. This hybrid network architecture will
be capable of providing SDN-like features in an optimized
way. Apart from it, a typical SDN device supports a flow
table of size 500k to 1M flow entries. This limited flow table
space sometimes bottlenecks the architecture’s scalability.
So, we should define the routing policies effectively to mini-
mize the flow table entry consumption in the devices.

The article contributes to designing a policy-based routing
approach in hybrid SDN architecture that systematically uses
the free IP addresses available in the destination subnet. Here,
the proposed policy-based routing [42], [47] defined the opti-
mal policy path that a packet follows during its journey. The
incremental deployment starts with replacing edge devices in
the service provider network. The selection of edge devices
is made because of their additional roles and responsibilities
(e.g., bridging activity between customer and service provider
networks). Besides the edge devices, all the other devices
in the core network work in a legacy manner. The edge
SDN devices are configured and operated from the central-
ized Controller using OpenFlow version 1.5.0 southbound
protocol. The Controller consists of various modules, e.g.,
Topology Manager, Route Discovery, etc., which guide the
underlying devices for their activity. Similarly, each customer
network is connected to at least one SDN edge device for
appropriate communication in the underlying data plane.

The paper is organized into the following different
sections. Section I discuss the introduction of SDN tech-
nology and an overview of Hybrid SDN. Section II pro-
vides insights into the previous works related to hybrid
SDN routing and flow table space management. Section III

defines the architectural design of the proposed approach.
Section IV demonstrates the methodology of the proposed
design. Section V deals with the experimental results and dis-
cussions on the proposed architecture. Finally, in section VI,
the paper is concluded with future work that can be achieved
in the upcoming years.

II. PREVIOUS WORKS
Routing is one of the widely studied topics in computer
networking. The introduction of SDN has brought significant
changes in the network routing paradigm. Gushchin et al.
focused on middlebox activity and presented a MultiPoint-
To-Point Trees (MPTPT) for SDN networks to reduce the
flow table usage in the switches [22]. In [30], the authors
presented a multi-AS-based routing control platform that
uses the logical centralized architecture based on SDN.
Kumbhare et al. given route segregation and prioritization
approach for switch flow table utilization in SDN [31].
In ref. [28], the authors emphasized the low latency aspects
of the flow table and suggested a TCAM based technique for
reducing the flow table entries. In [21], the authors proposed
an MPLS label-based forwarding scheme for the SDN called
jump flow which reduces the bandwidth usage. It uses the
VLAN identifier for carrying the routing information. Paliwal
and Shrimankar suggested a practical resource management
approach that depends upon the active data centre traffic and
uses the hybrid SDN concept [37]. Cohen et al. presented a
method that intends to introduce the global network objective
in the limited forwarding table environment [15]. Similarly,
In ref. [10], A Tag-In-Tag approach is suggested by the
authors to optimize the flow table space. It is a two-layering

VOLUME 10, 2022 59807



M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

tagging system to reduce the number of bits required for the
flow.

In ref. [41], the authors suggested a hybrid SDN model
with an objective of minimization of maximum link uti-
lization by considering traffic engineering aware distributed
routing. In [7], The author presented a decision tree and
K-partite graph-based network policy implementation for
hybrid SDN design. In [23], The author discussed the con-
trol plane operational challenge in hybrid SDN design and
suggested a lightweight control plane called Hybridflow.
Similarly, in ref. [6], The authors provide a brief survey
about the hybrid SDN, which comprises issues. It includes
network deployment strategies, controllers for hybrid SDN
networks, protocols for hybrid SDN network management,
traffic engineering mechanisms for hybrid SDN networks,
and testing, verification, and security mechanisms for hybrid
SDN networks. In ref. [38], the authors suggested a compre-
hensive study based on the various classical state of art SDN
controllers. Finally, in ref. [49], the authors presented a hybrid
SDN design mainly focused on two aspects- incremental
deployment of SDN and throughput-maximization routing
strategy.

Ref. [11], presented a Robust Routing Architecture for
Hybrid Software-Defined and Wireless Mesh Networks
(Soft-Mesh), which provide a systematic and effective tran-
sition of wireless mesh network into SDN. In ref. [20] an
SDNMesh architecture is presented, which addresses the sig-
nificant issues of deployment, such as resource optimization
and scalability in a hybrid SDN-WMN network. Finally,
in ref. [45], the authors emphasized 4G and Non-Standalone
5G support for mobile networks using Hybrid SDN Mobile
Core Network design.

When using OpenFlow, network forwarding rules are
translated into rule entries. A table-overflow problem might
occur if the flow table’s capacity is inefficiently used.
A control-plane adaptive flow table management strat-
egy (AFTM) can manage flow table resources better by com-
bining dynamic timeout with proactive eviction [44].

According to Khorsandroo et al. [29] extensive network
and cloud providers, including Tech Giants, have embraced
Software-Defined Networking (SDN) as an evolutionary net-
working paradigm. SDN functions may be used in a hybrid
networking environment, where legacy network infrastruc-
tures are also recognised as a compromise solution. Many
enterprises and organisations are now considering hSDN as
an effective networking option. It’s been a long journey for
HSDN, but a few areas still require additional study. They
explore the use cases for high-speed distributed networking in
5G, 5Gmobile networks, the cloud/data centre, and IoT. They
also investigate traffic engineering, including methods for
measuring andmanaging traffic flow and routing tomaximise
the quality of service. Additionally, standards and future
research initiatives are addressed.

In research proposed by Osman and Mangues-Bafalluy
[36], they examine the influence of unreliable controller-to-
node communication channels on network performance. their

hSDN system is a mix of centralised and distributed SDN.
When control channel packet loss rates rose, the findings
reveal that the suggested method significantly enhanced the
aggregated throughput of the test system. This makes it pos-
sible to run the network even when the circumstances are
difficult, while a conventional SDN control would render
the network unusable. A significant aggregated throughput
gain was achieved (e.g., roughly 28% for CPLR = 20% and
considerably more for higher CPLR) at the expense of a
modest increase in average latency in the situations examined.

SDN offers several advantages, including programme net-
work traffic, flexibility, and automation. However, load distri-
bution on servers serving these services in network contexts
presents a distinct problem. Continuous monitoring of server
load indicators and implementations of multi-parameter met-
rics (CPU load, I/O Read, I/O Write, Link Upload, Link
Download) for connection scheduling are the foundation of
the new load balancing method [33].

Key to the timely delivery of a flow is the availability of
the Software-Defined Network’s flow rule entry in the Flow
Table. When no rules are in place to govern the flow of infor-
mation, controllers are contacted for guidance. Unfortunately,
no rule has yet been established at Controller by Application
Plane. A technique for self-flow rule creation is introduced
into the controller to minimise bottlenecks caused by a lack
of rules. The study investigated an issue with the flow rules
in a typical software-defined network. In the event of an
attack or any other scenario involving missing rules, flow
rules keep network traffic flowing. Reinforcement learning
may be used to generate flow rules automatically. Automated
rule creation may eventually be accomplished via different
types of supervised learning approaches [26].

To calculate the average speed and find the optimal path
to the target, research presents a hybrid optimization strategy
that incorporates modified Ant Colony and Firefly optimiza-
tion approaches (MAF). Advances in the Internet of Vehi-
cle (IoV) are directed toward the Intelligent Transportation
System (ITS) to enhance road safety and traffic flow. For
the IoV environment, this paper presents some of the newest
bioinspired routing algorithms. The most important future
research directions in this area are underlined. To prevent
traffic difficulties, vehicle routing should also consider speed
restrictions, pollution inspections, and emergency responses
to traffic incidents. There are several ways children’s wear-
able sensors may be utilized to gather data, including the
Internet. Emotional impulses from these activities will go via
the Delta, Theta, and Alpha bands in our brains. All of these
discussed are a few examples of the application of SDN [8],
[17], [18], [35].

III. ARCHITECTURAL DESIGN
Inspired by the previous work in SDN, we propose a hybrid
architecture that provides SDN-like control up to a certain
extent. The suggested framework supports network services
like VPN [39], [46], Traffic Engineering [4], [32] run over
it. Also, The framework provides a user-defined policy to

59808 VOLUME 10, 2022



M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

FIGURE 2. Architectural view of network topology.

implement it, So that the user can get the benefit of proposing
their routing policy in architecture.

While observing the working of traditional routing proto-
col (e.g. OSPF, RIP etc.), it has been noticed that the selection
of the routing path is carried out by inspecting the destination
IP address field in the IP header [19]. However, this approach
looks very simple, but it is not efficient always. In such a case,
if all the packets have the same destination, they will follow
the same path in the network. It will cause overloading to
the active link while underutilizing other links in the case of
multi-path architecture. Similarly, if the destination subnets
connected to egress devices are independent, we need to
create a separate entry in the flow table for each destination
subnet. A large number of destination subnets will cause a
substantial space consumption of the flow table. Moreover,
this traditional but fixed policy scenario doesn’t allow users
to forward their packets differently. These two routing issues
are the building block of the proposed approach.

The proposed network architecture is designed to send the
data packet to the destination subnet differently using the free
IP address. This design provides flexibility to the network
administrator in network management as they can utilize
the free IPs in the given destination subnet. The central-
ized controller, which holds the control logic of the external
SDN router, performs the task of free IP selection for the
packet. It maintains a central repository of Free IP for each

subnet. Free IP management service, which runs inside the
controller, allocates and deallocates IPs. The external SDN
routers with flow tables only act as forwarding devices. The
centralized controller monitors their functioning. The internal
routers work according to traditional legacy fashion and are
termed as legacy forwarding devices [27]. They discover
their neighbouring devices independently and prepare their
routing tables themselves. To map/unmap destination IP to
corresponding free IP, the controller simultaneously creates
entries at ingress and egress SDN router. The ingress SDN
router performs mapping at the sending side, and the egress
router performs reverse mapping at the receiving side.

Fig. 2 demonstrates the architectural view of network
topology. As mentioned in Fig. 2, we have S1 and S2 as the
SDN capable ingress and egress routers. The core network is
composed of legacy routers that perform traditional routing
tasks. These SDN routers are connected to various subnets,
varying in size. For each subnet, the controller maintains
a free IP pool that informs regarding the available free IP
addresses.

The controller is a high-capacity server available at
the centralized location connected to the SDN router.
Various network functionalities are available in the
controller implemented using network applications. The
network operating system interfaces the controller appli-
cations and SDN router devices. OpenFlow is the

VOLUME 10, 2022 59809



M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

FIGURE 3. Flowgraph of proposed approach.

operational protocol between the controller and SDN
routers.

The SDN routers have a specific size (vendor-specific) of
the flow table. These routers communicate with the controller
in a bidirectional way. The request packet is sent to the
controller from the router. Similarly, the reply packet is sent
to routers from the controller. Legacy switches act as an
intermediator between the subnet and SDN router. The core
network architecture can have a partial mesh (as mentioned
in Fig. 2) or full mesh architecture. Consider some examples
of packet forwarding in the above network architecture.

Case 1: The TELNET application traffic, which has
subnet 1 as a source, and subnet 2 as a destination, will
follow the path P1 as S1 −→ LR1−→ LR2 −→ S2. The policy
configuration for this path is given as follows-
Mapping Process

+ Flow entries for S1

• src = 100.0.1.0/24, dst = 100.0.11.0/24,
tcp_port = 23, action: mod_dst = LR1, new_dst
= 1.0.0.5

Static Routes

+ Static routes in LR1

• match 1.0.0.0/24 to 100.0.8.200 via LR1-eth3

+ Static routes in LR2
• match 1.0.0.0/24 to 100.0.9.50 via LR2-eth2

Reverse Mapping Process
+ Flow entries for S2

• dst = 0.0.0.5/0.0.0.255, tcp_port = 23, action:
new_dst = 100.0.11.12

Case 2: The FTP application traffic (TCP port number 20),
which has subnet 1 as a source, subnet 3 as a destination, will
follow the path P2 as S1−→LR3−→LR4−→S2. The policy con-
figuration for this path is given as follow-Mapping Process
+ Flow entries for S1

• src = 100.0.1.0/24, dst = 100.0.11.0/24,
tcp_port = 20, action = mod_dst:LR3, new_dst
= 1.0.0.6

Static Routes
+ Static routes in LR3

• match 1.0.0.0/24 to 100.0.4.200 via LR3-eth2
+ Static routes in LR4

• match 1.0.0.0/24 to 100.0.5.50 via LR4-eth3
Reverse Mapping Process
+ Flow entries for S2

• dst = 0.0.0.6/0.0.0.255, tcp_port = 20, action:
new_dst = 100.0.11.13

59810 VOLUME 10, 2022



M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

TABLE 1. Address count statistics of Free-IPs in global internet.

IV. PROPOSED METHOD
The proposed routing approach is based on the concept of
utilization of free IPs of the subnet. It has been seen that not all
the IP addresses are used inside a subnet. So, we can maintain
a pool of free IP addresses at the controller. Whenever we
need to forward the packet, the controller assigns one of the
free IPs from the pool to the packet. After this, the destination
address field in the packet header gets modified and decided
by the controller previously. The controller simultaneously
installs the flow entries for mapping and reverse mapping
in the ingress and egress SDN routers. In our architecture,
only the ingress and egress routers are replaced with the SDN
router, while the other routers remain legacy routers. Fig. 3
represents the flow graph of the proposed approach. Certain
assumptions are made for the efficient functioning of the
proposed routing methods. They are as follows-

1) Every subnet in the network should be connected to
legacy routers via at least one SDN switch.

2) All the details regarding the network should be avail-
able with the controller.

3) Only Ingress and Egress routers are enabled with the
SDN functionality.

4) Topology should be in the form of a full mesh or partial
mesh.

Besides these, as mentioned in Fig. 2, the links work in
a bidirectional (duplex) fashion, and each router is capa-
ble of performing the task of ingress and egress router
(depending upon the flow direction of the packet). The
mesh topology allows a pair of subnets to have multiple
paths for communication and packet transmission. For exam-
ple, in Fig. 2, A packet can have paths S1-LR1-LR2-S2,
S1-LR3-LR4-S2 & S1-LR1-LR4-S2 from source LS1 (sub-
net 1) to destination LS4 (subnet 4). The same paths are
available in reverse order when the packets make the reverse
journey. However, selecting the most efficient path depends
on the controller.

Now, the total count of the free IPs available in the whole
world needs to be decided. The different RFCs available at

IETF and counting the free IPs for each class are used. Table 1
gives a brief idea about the count of free IPs.

The Flow table of SDN routers and the routing table of
Legacy Routers have limited memory. It might be possible
that some of the flow entries may overflow in case of many
requests. Another thing to consider is that we need to track
the total number of policies inside the system. To deal with
these conditions, we impose certain restrictions on the sys-
tem architecture, which are discussed as follows- We add
the policies inside the subnet and make it count for this.
We repeatedly apply this procedure to all subnets and finally
make a total count by adding each subnet’s counts. Eq. 1
represents the given criteria.

N∑
i=1

PPi = PPtotal (1)

where,
PPi = Number of policy path for i SDN switch
PPtotal = Total number of policy paths in the system from

any source to any destination, and
N = Number of SDN Switches satisfying the criteria of

subnets as mentioned in the assumption 1.
The flow table size of the SDN router depends upon three

factors. First, we define flow entries for the host already
present in the subnet. To convert destination IP into host-
specific IP, these entries are required at reverse mapping. Sec-
ond, we add the entries for those destination subnets which
are directly or indirectly connected by this SDN router. Third,
we check for the entries that are not used for IPmapping in the
SDN router and mark them as non-mapped entries. Finally,
we sum all these three parameters and get the final count
for total flows. This flow count should be less than the full
flow capacity of the SDN router. Eq. 2 specifies the criteria
as mentioned above.

Hn
src + FEnnon-map +

pk∑
j=1

H j
dst ≤ FTmax∀k ∈ S (2)

where-
Hn
src = Count for IPs of subnet src which are directly

connected to nth SDN switch
FEnnon-map = Count for flow entries non-mapped to nth

SDN switch
H j
dst = Count for IPs in destination subnet for jth policy

FTmax = Size of flow table for an SDN switch
Pk = Count on number of polices at SDN switch behaves

as source
S = Set of SDN switches satisfying the assumptions
The routing table of the legacy router has finite memory

to store the routing entries. So, again, it will restrict the
number of routing entries so that the overflow condition does
not affect the legacy routers. First, we calculate the routing
entries necessary for the legacy functioning of the router.
Second, we calculate the routing entries, which are created by
identifying the flow path by the controller, pass through the
legacy router. Third, we calculate the routing entries required

VOLUME 10, 2022 59811



M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

for IP clash handling when a packet is destined for another
destination available in the extranet. Finally, we sum up these
counts and make sure that this should be less than the size of
the routing table. Eq. 3 defines the above condition.

RPidef + RPiclashes + PPj ≤ RTmax∀j ∈ L (3)

where-
RPidef = Count for routing paths for ith legacy router to

perform legacy functioning
RPiclashes = Count for routing paths which can handle IP

clash issue for ith legacy router
PPj = Count for policy paths through jth legacy router
RTmax = Size of routing table for a legacy router
L = Set of legacy routers/forwarding devices, where man-

ual policies have to define
We have to define the total IPs which can exist in the

system at a particular time. This count cannot be more than
the total IP available in the universe. If we are using IPv4
architecture, then this count cannot be more than 4 bil-
lion(approximately). Eq. 4 specifies this condition.

M∑
k=1

H k
dst ≤ FIPmax (4)

where-
H k
dst = Count for the IPs in the destination subnet for k th

path
FIPmax = Total number of free IPs in the free ip pool
M = Count on total number of paths for any combination

of source and destination
From Table 1, it is clear that the total number of free IPs

for class A is 16,777,216. This count becomes sufficient to
prepare a subnet when we deal with a practical scenario.
On the other hand, the SDN router has a capacity from 500K
to 1M flows. So even if we think that the policies occupied
50% storage of the legacy routing table, the system will
perform efficiently.

The number of policy paths that the administrator can
implement in the system depends upon the size of the
Flow table of SDN routers. For example, open vSwitch [2],
which is a widely used SDN compatible switch, supports
500K – 1M flow entries.

The proposed approach is helpful in a complex core net-
work environment with a continuous stream of the data packet
to serve. For example, consider a scenario where several
forwarding requests are served between the two specific sub-
nets. In such a case, the traditional routing architecture works
where each device needs to inspect every incoming packet.
Unfortunately, this conventional approach will increase the
complexity of the forwarding devices and cause an unavoid-
able delay in packet processing.

On the other hand, the proposed network architecture
allows the device to work simplified. For a specific desti-
nation, the forwarding devices only need to send the first
incoming packet towards the controller to get the flow entries.

The rest of the packets will be served directly from the for-
warding devices using a simple look and forward approach.
However, the delay for the first packet is high, but the delay
for subsequent packets can be reduced significantly. This will
result in reducing the overall average delay of the subnet.

A. CONTROLLER MODULES
There are certain modules implemented inside the controller
so that system can perform as per the proposed model. The
modules are discussed as follows-

1) Topology Manager: The Topology Manager module
checks for the available nodes and their corresponding
links to identify the type of topology. Our article uses
the mesh topology, which can be full mesh or partial
mesh. It first sends the request message to all nodes
to identify the topology. On getting the request mes-
sage, nodes prepare a reply message which contains
the information e.g. neighbouring nodes, link cost, link
operational mode (i.e. simplex, duplex, etc.), propa-
gation delay, etc. Once this information is prepared,
it is attached to the reply packet and forwarded to the
controller. After receiving complete information from
all nodes, the topology manager prepares a graph-like
data structure where routers act as vertices and links act
as edges. The link information is stored in the form of
an adjacency matrix.

2) IP Range Allocate: This module checks for the size
of the subnet, i.e. number of hosts in the subnet etc.
Whenever a new host joins the subnet, the correspond-
ing SDN switch sends a control packet to the con-
troller to inform about the addition of a new host. After
receiving the control packet, the IP range allocates
module decides the size of the subnet and accordingly
allocates the IP addresses in multiple factor k. We set
the minimum value of k to 2 so that the fault-tolerance
features can be achieved. The network administrator
can assign the value of k as per their preference. One
thing to be noticed here is that a higher value of k leads
to a higher fault tolerance capacity of the system, but
at the same time, it leads to the allocation of a large
set of IPs to the subnet. After assigning specific IPs
from the free IP pool, the controller updates its free IP
pool information. A similar activity is carried out when
subnets release IPs. The controller should carry out the
Updation task at a regular time interval. The subnet and
controller should equally collaborate in the process of
updating.

3) Policy Translate: The Policy translate module converts
the destination IP address of the packet to one of the
free IPs in the destination subnet. This module works
in collaboration with the Topology Manager Module.
From the topology module, it gets the information on
the link statistic. Based on that, it performs themapping
operation. If it identifies that the links are not function-
ing correctly, it temporarily stops the packet transmis-

59812 VOLUME 10, 2022



M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

sion and shares this information with the corresponding
source subnet.

4) Flow Push: The flow push module works according
to the decision given by the Policy translator module.
The flow push module should perform the mapping
and reverse mapping function simultaneously. These
modules send the control information to the source and
destination SDN routers to make appropriate packet
transmission changes in their flow table. This module
interacts with the Source and destination SDN routers
only. An additional responsibility of this module is to
modify other fields, e.g. MAC address etc. if required.

5) Legacy Route Decider: As we know, the rest of the
routers in the system are legacy routers and need to
be configured manually by the network administrator.
So this legacy route Decider takes care of this activity.
It installs appropriate routing table entries in the legacy
router, which works along with policies decided by the
controller. This module ensures the proper functioning
of legacy routes. The Network administrator performs
remote access procedures e.g. Telnet, SSH, to configure
these routers.

6) NetStats Aggregator: This module is externally taken
to analyze the network behaviour e.g. current traffic,
multiple path information, etc. The data obtained from
this module is shared with the other controller modules
like the Topology manager.

The algorithmic view of the proposed approach is pre-
sented in Algorithms 1, 2, and 3.

Algorithm 1 Push Flow Entries in the SDN Devices
1: procedure FP(Src, Dst, Match)
2: for SDNR ∈ Src do
3: Insert mapping rule in Src flow table.
4: for SDNR ∈ Dst do
5: Insert reverse mapping rule in Dst flow table.
6: Return;

Algorithm 2 Legacy Route Decide for Legacy Devices
1: procedure LRD(P,LBS)
2: Prev = reverse of P
3: for ∀ R ∈ Prev do

• Install static routes to match the prefix of LBS.
• Add entries to map IPs of Dst to map
• Add appropriate next hop to next router in Prev

4: Return;

B. IP MAPPING
Whenever a packet enters for the first time at the ingress
SDN router, it needs to be forwarded to the controller. As the
controller prepares a complete view of network topology and
keeps a clear image of all paths in the network, it checks the
consistent path for the packet. After inspecting the destination

Algorithm 3 Policy Translate for Routing the Packets
1: procedure PT(IPpool, Src, Dst, NSD, Match,P)
2: Prev = reverse of P
3: sub procedure NSD ()
4: for ∀ Dst ∈ DstSwitch do
5: {
6: Sort{Dst, NSD};
7: Return LBS;
8: }
9: end sub procedure;
10: sub procedure RangeAllocator ()

• calculate the size of CN using NetStats aggregator.
• Allocate the free IPs as per size of subnet.
• Returns the free IPs to the pool, if any.

11: end sub procedure;
12: Call LR{P, LBS}
13: Call FP{LBS, Src, Dst, Match}
14: Return;

IP address, it picks up one of the free IPs from the pool, which
belongs to the destination subnet. Now controller installs a
mapping rule inside the flow table of the ingress SDN router
and simultaneously establishes the reverse mapping rule at
the egress SDN router. The destination address inside the
packet is replaced with the mapped IP. After a certain number
of hops, the packet reaches the egress SDN router, where
the router performs reverse mapping. Now The destination IP
changes into a specific host id. After entering the destination
subnet, the wild-card operation identifies the specific host.
We can understand the mapping process by the following
example.

Let’s assume, at ingress router packet has destination IP
192.168.16.10/24. Now controller maps this IP to one of
the free IPs from the pool as 192.168.16.5/24. So now,
the new packet will have an updated destination address
as 192.168.16.5/24. Mapping and reverse mapping rules are
installed simultaneously at ingress and egress routers. After
specific hops of travel, it reaches the egress SDN router
to which the destination subnet is attached. Now the desti-
nation IP is changed into the initial destination address as
192.168.16.10/24. The last thing we need to perform now is
identifying the specific host. For this, we perform a wild-card
operation of this IP with 0.0.0.255.

As we have seen, once a flow is established, there is no
need to assign extra flow entries for packets destined to the
same subnet. So all the packets which belong to the same
destination subnet will follow the same path specified by the
mapping rule. This idea helps us save space inside the flow
table as all the packets require only a single entry to travel to
the same destination.

The network administrator is responsible for allowing the
packet to travel on a consistent path. The policy Translator
module ensures consistent path selection. Consistent path
identification is carried out in reverse order so that the closest

VOLUME 10, 2022 59813



M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

consistent link to the destination subnet can be identified first.
This consistency process ensures that all the policy require-
ments should be satisfied before assigning the flow entries
to the router. If any policy fails to satisfy, the flow entries
are not updated. The legacy route module decides the internal
router’s functionalities, assigning the routing entries to their
routing table. Traditional OSPF routing protocol runs inside
them, which periodically refreshes the table at the interval
of 30 seconds. Address reuse can be performed at the legacy
router so that we can optimize the routing process.

The controller also ensures no failure occurs during the
packet transmission activity. Controller modules are designed
in such a way that they recognize the SNMP events during
the failure. Once the controller identifies the failure in the
network, it performs a rollback operation over the SDN router
and Legacy router to put the complete system at the initial
stage.

C. IP ADDRESS CLASH PROBLEM
In a real-world network scenario, it may be possible to asso-
ciate free IP available for mapping with some other host in
the universe. If the packet is required to deliver to such a
host, our network architecture will provide them to another
host. So it becomes necessary to identify such packets at the
entry gate of the network. The ingress router is the entry point
to any network architecture, so they must ensure it. Once it
identifies such a packet, it gets forwarded to the controller.
Now controller does a similar task as previously to assign
one of the free IPs from the pool. The difference lies in the
fact that a timestamp value is associated with such a packet.
If the packet is not delivered in the given time interval, it gets
discarded, and the IP gets returned to the free IP pool. Such
a dynamic process can help deliver the packet to the correct
destination in case of an IP clash.

Besides this, the controller should analyze the traffic activ-
ity and performs optimization if needed. For example, the
controller should decide the timestamp value efficiently so
that packet does not travel in the network for a large time
frame. Transmission delay should be kept as minimum as
possible by applying optimization techniques.

D. PROCESSING OVERHEAD
The separation of control and data plane presents a little over-
head during packet processing as the packet needs to transfer
from SDN router to controller and vice versa. However, this
overhead is only for the first packet, as initially, the flow
table in the SDN router is empty. Once the flow entry for
the packet of a specific destination is installed, subsequent
packets can be forward quickly by observing the header
information. These observations do not need further complex
routing algorithms to run because forwarding devices are
simplified now. We can also observe that not every packet
needs to be forward to the controller side for processing.

This small overhead has no impact on the system when
many packets are continuously transmitted from one sub-
net to another subnet. As the transmitted packets increase

FIGURE 4. Procedure of time stamp packet based flow table update
consistency scheme.

in quantity, the average delay for the destination reduces
significantly. However, for the first packet transmission, the
overhead associated with this approach is comparatively high
from the traditional routing approach.

So we can claim that, however, this architecture will
increase the processing delay for the first packet, but it will
improve performance for subsequent packets. We can also
limit the queueing delay for the first packet by incorporating
the multithreaded architecture. Now, each thread can serve a
specific packet from the queue and can reduce the waiting
time.

E. FLOW TABLE UPDATE APPROACH
The flow tables are updated in both proactive and reactive
manners in the proposed approach. The proactive approach
is adopted by the controller when some changes occur in the
network state (i.e. addition or deletion of a network element).
Similarly, the reactive approach is adopted for those packets
whose flow rules do not match/exist in the flow table. Table 2
defines the various delays incurred during the installation of
flow entries in the table.

When the flow table is updated in a reactive manner then
the total delay experienced for the flow table update is given
as follow-

Tflow_update = Tlookup + Tpkt_in + Tprop + Tproc + Tpush
(5)

Similarly, when the flow table is updated in a proactive
manner then the total delay experienced for the flow table
update is given as follow-

Tflow_update = Tproc + Tpush (6)

From Eq. 5 and Eq. 6, it can be observed that the flow table
updates propagate quickly when a new node is added into the
core network. However, for the new packet, the flow table
updates propagate in a similar manner to the conventional
update scheme. Considering both the methods (proactive
& reactive), the proposed architecture performs an efficient
update of the flow table when network changes occur.

59814 VOLUME 10, 2022



M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

TABLE 2. Specification of various delay for flow table update.

F. FLOW TABLE UPDATE CONSISTENCY
The controller adopts a timestamp packet-based scheme for
the flow table update consistency in the proposed approach.
In this scheme, the controller first generates a packet out
message named time stamp packet, which indicates the SDN
routers for the arrival of the new flow entries. Figure 4 rep-
resents the procedure of flow table update consistency. The
step by step procedure for the flow table update is mentioned
below-

Step1: When the update starts, the controller sends two
types of messages. First, packet out message com-
prising the time stamp packet and the speci-
fied actions. The second is the modified state
message, which indicates the modification in the
flow rules. Once the source SDN router receives
the time stamp packet, it buffers the incoming
packet related to this old rule until the update
occurs.

Step2: Once the source SDN router process the time stamp
packet, it forwards the packet to the next hop
where the legacy routers are available. These legacy
routers forward the time stamp packet to the desti-
nation SDN router.

Step3: The time stamp packet is processed and forwarded
back to the controller at the destination SDN route.
Once the controller receives its time stamp packet,
it starts the flow modification procedure where the
modified state message is propagated to source and
destination SDN routers.

Step4: Once the update has taken place completely and
flow rules are installed in the SDN nodes, the
buffered messages can be resumed according to the
new flow rules.

G. FLOW TABLE MANAGEMENT
Flow table management involves the addition and removal
of the flow entries from time to time. Since the switches
don’t have the control logic, so the flow entries in the flow
table are added only after getting instructions from the con-
troller. On the other hand, the flow entries from the table
can be removed in two ways. First, the controller can request
to delete the specific entries. Second, a switch flow expiry
mechanism can be used for the removal of flow entries.
The proposed architecture supports the switch flow expiry

mechanism. Each flow entry has two parameters associated
with it which are-

• Idle Timeout: The number of seconds after which a flow
entry is removed from the flow table because no packet
matches it.

• Hard Timeout: The number of seconds after which a
flow entry is removed from the flow table whether a
match is found or not.

Since the proposed architecture uses the OpenvSwitch for
the SDN devices, the Idle timeout and Hard timeout value is
set to 10 seconds and 0 seconds, respectively. If no packet
match is found for the entry in 10 seconds, it can be removed
from the flow table. Similarly, no specific deadline is imposed
on the hard timeout limit for the flow entry.

V. RESULTS AND DISCUSSIONS
In this simulation study, The major performance metrics
taken for the comparison are- flow table usage, network
stretch, and average bandwidth utilization. The experimental
setup and the performance analysis of the proposed architec-
ture are as follows.

A. SIMULATION ENVIRONMENT
The proposed network environment is simulated in
Mininet [1] simulator with OpenFlow version 1.5.0. Wire
shark [3] is taken as a packet analyzing tool and works
in integration with Mininet. In mininet, the openVswitch
and openVrouter are taken as forwarding devices to create
the SDN portion of the environment. In each subnet the
number of hosts is limited (e.g. 3 in our case). An equal
number of hosts have been considered for all the subnets,
but they can also have a variable number. Table 4 provides
the specification of various network topologies based on the
different number of SDN and legacy nodes. Below is the
description of the notation of the topology.

• Hosts: A, B, and C (Available in each subnet and take IP
addresses to which they belong)

• Legacy Switches: LS1, LS2, LS3 and LS4 (Repre-
sent the intermediate device between SDN switch and
subnet)

• SDNSwitches: S1 and S2 (Connected to legacy switches
and controlled by the centralized controller)

• Legacy Router: LR1, LR2, LR3 and LR4 (Prepare the
carrier network of the system)

• Controller: OpenDayLight & NOX (Centralized Server
to forward the logic of the SDN devices and logically
connected to them.)

B. FLOW TABLE ENTRIES CONSUMPTION
The flow table entries consumption depends upon the size of
the network topology. Figure 5 shows the graphical repre-
sentation of the flow entries usage by the various topology.
Observation clearly states that the proposed policy-based
hybrid SDN routing approach saves flow table space in the
range of 87.512% - 81.052%. The maximum saving occurs

VOLUME 10, 2022 59815



M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

TABLE 3. Advancements, drawbacks and proposed solutions for the existing state-of-the-art approaches.

TABLE 4. Specification of various topology for experimentation.

in the case of the OpenDayLight controller, where an average
of 12488.75 flow entries are consumed for a varying range
of topology. A slight variation of 0.029% of flow entries
consumption has been seen in the NOX and OpenDayLight
controller.

Figure 5 provides the graphical representation of the flow
entries consumption by various topologies on the different
controller platforms.

Apart from the controller-based comparison, the pro-
posed approach is compared with two flow table aggregation
approaches Tag-in-Tag & SDN-OSPF. Figure 6 & Figure 7
represents the comparison of the maximum number of flow

FIGURE 5. Average flow table entry consumption for varying size of
topology.

rules used by the three approaches using the OpenDayLight
and NOX controllers over the various topologies.

The experimental results show that the proposed approach
consumes an almost similar number of flow table entries as
compared to Tag-in-Tag for some topology (i.e. TP1 to TP3).

59816 VOLUME 10, 2022



M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

FIGURE 6. Comparison of average flow table entry consumption over
OpenDayLight.

FIGURE 7. Comparison of average flow table entry consumption over
NOX.

For some of the topology (i.e. equal number of flow entries
in the flow table. The Tag-in-Tag’s less flow entry consump-
tion is based on its two dedicated flow table availability at
each SDN node. On the other side, the proposed approach
uses only one flow table per SDN device, providing a cost-
effective solution. However, the performance of the proposed
approach is always superior to the SDN-OSPF approach in
terms of flow entry consumption.

C. NETWORK PATH STRETCH
The Network path stretch can be defined as the difference
between the best available path and the actual path taken by
the packet during its journey in the network. The path stretch
should be minimal because an increase in the path stretch
denotes the sub-optimal usage of the network resources.
Figure 8 provides the graphical representation of the Average
Network path stretch by various topologies on the different
controller platforms. The results clearly state that the Average
network path stretch is minimum when using the OpenDay-
Light controller. However, the approach also performs well
on the NOX controller where a minimum path stretch is

FIGURE 8. Average network path Stretch for varying size of topology.

FIGURE 9. Comparison of average network path stretch over
OpenDayLight.

computed, but the OpenDayLight outperforms the other two
controllers for the more extensive network.

Similarly, on comparing the network path stretch of the
proposed hybrid approach with the other two approaches,
it is observed that the results of the proposed approach are
promising compared to the Tag-in-Tag approach results. The
Figure 9 & Figure 10 presents the graphical demonstration
of average network path stretch for all the approaches over
OpenDayLight and NOX controller respectively. Except for
the few cases (TP6 & TP8 in Figure 10), the proposed
approach is the winner in the category of the average network
path stretch. Once the path is decided in the proposed hybrid
approach, this is the only path that a packet follows until
the network change. On the other hand, in the Tag-in-Tag
approach, the alternate paths are stored proactively, increas-
ing the probability for the higher network path stretch.

D. THROUGHPUT ANALYSIS
The throughput analysis of the proposed approach in a mul-
tithreaded environment is represented in Figure 11. The pro-
posed network environment is tested along with three differ-
ent controllers namely OpenDayLight [15], NOX [68], POX
[69]. OpenDayLight is an open-source multithreaded SDN

VOLUME 10, 2022 59817



M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

FIGURE 10. Comparison of average network path stretch over NOX.

FIGURE 11. Throughput in multi-threaded environment.

controller, while POX and NOX are highly multithreaded
SDN controllers. From Figure 11, it is clear that when the
number of threads is increased in the range of 1-16, a steady
increase in the system performance can be seen in terms
of throughput (number of requests satisfied in unit time).
It can be observed from the graph that when the number
of threads is limited up to 8, both the OpenDayLight and
NOX controller give similar performance. Beyond 8, when
the threads are increased from 9 to 16, NOX performs supe-
rior over OpenDayLight. NOX’s superior performance over
OpenDayLight is that NOX is highlymultithreaded compared
to OpenDayLight. On the other hand, The POX controller
performs worst among the selected controller in terms of
throughput. The average throughput for OpenDayLight is
calculated at 2.31 similarly, for NOX and POX, it is calculated
as 2.625 & 1.273, respectively. The experimental results indi-
cate that NOX is the preferred choice for the multithreaded
application environment.

The throughput of the proposed hybrid approach is also
compared with the Tag-in-Tag & SDN-OSPF approaches
using OpenDayLight and NOX controllers. Figure 12 &
Figure 13 represents the throughput values for all approaches
over various topologies. From both the figures, it is clear that
the proposed approach utilizes the bandwidth maximum and

FIGURE 12. Comparison of throughput in multithreaded environment
over ODL.

FIGURE 13. Comparison of throughput in multithreaded environment
over NOX.

hence has maximum throughput among all approaches. The
proposed approach selects the path based on the predefined
policy. So every packet belongs to the same policy forwarded
through the same path, which makes the proper utilization
of the link. Besides this, the alternate paths are selected only
when they are needed.

E. LATENCY ANALYSIS
The Latency comparison of the proposed architecture over
the OpenDayLight, NOX and POX controller instances is
presented in Figure 14. The IP header is taken in different
sizes. Different IP header sizes consume different latency
times for searching and forwarding operations. In OpenDay-
Light and POX, the packet experienced a higher latency delay
than NOX. From the graph, it can be observed that there is a
moderate gap in latency when the header gradually increases
from 40. The average Latency time for OpenDayLight is
calculated at 66.796 µs, and similarly, for NOX and POX,
it is calculated as 55.782 µs & 67.501 µs respectively.

Figure 15 & Figure 16 provide the graphical representation
of average latency for the three approaches. In this case,
the proposed approach behaves almost like the Tag-in-Tag
approach. However, for the few topologies, the Tag-in-Tag

59818 VOLUME 10, 2022



M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

FIGURE 14. Latency experienced by packet with different IP header size.

FIGURE 15. Comparison of average latency over OpenDayLight.

FIGURE 16. Comparison of average latency over NOX.

approach possesses high latency because of its multiple
entries in multiple flow tables for the same destination sub-
nets. On the other hand, The proposed approach is superior in
every respect from the SDN-OSPF approach while consider-
ing the average latency for various topologies.

VI. CONCLUSION
This paper proposes an effective network architecture that
supports policy-based routing in a hybrid SDN scenario.

Experimental results demonstrate the algorithm’s effective-
ness over the three different multithreaded controllers. Ini-
tially, the experiment is limited to up to three controller
instances. Still, from the future point of view, the architec-
ture can be simulated with the other controllers to verify
its effectiveness. Similarly, Each subnet has a fixed and a
similar number of end-host devices, but the idea can be
extended over the variable number of end-host devices per
subnet. The suggested framework supports network services
like VPN [39], [46], Traffic Engineering [4], [32] run over
it. This approach is a good mixing of IP and SDN concepts
which provides a cost-effective solution and can benefit the
organization to migrate from the traditional IP networks to
SDN while keeping the overall cost of migration as low as
possible.

ACKNOWLEDGMENT
The authors wish to thank all the anonymous reviewers for
their valuable suggestions.

REFERENCES
[1] Mininet. Accessed: Jun. 16, 2021. [Online]. Available: http://mininet.org/
[2] Open vSwitch. Accessed: Jun. 16, 2021. [Online]. Available: http://

openvswitch.org/
[3] Wireshark. Accessed: Jun. 16, 2021. [Online]. Available: https://www.

wireshark.org/
[4] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, ‘‘Research chal-

lenges for traffic engineering in software defined networks,’’ IEEE Netw.,
vol. 30, no. 3, pp. 52–58, May/Jun. 2016.

[5] Z. Albanna, K. Almeroth, D. Meyer, and M. Schipper, IANA Guidelines
for IPv4 Multicast Address Assignments, IEF, Fremont, CA, USA, docu-
ment RFC3171, 2001.

[6] R. Amin, M. Reisslein, and N. Shah, ‘‘Hybrid SDN networks: A survey
of existing approaches,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3259–3306, 4th Quart., 2018.

[7] R. Amin, N. Shah, and W. Mehmood, ‘‘Enforcing optimal ACL policies
using K -partite graph in hybrid SDN,’’ Electronics, vol. 8, no. 6, p. 604,
May 2019.

[8] S. Ansari and K. K. Nagwanshi, ‘‘An empirical study of soft comput-
ing approaches in wireless sensor networks,’’ J. Cases Inf. Technol.,
vol. 24, no. 4, pp. 1–10, Oct. 2022. [Online]. Available: https://www.igi-
global.com/article/empirical-study-soft-computing-approaches/296722

[9] J. Arkko, L. Vegoda, and M. Cotton, ‘‘IPv4 address blocks reserved for
documentation,’’ 2010.

[10] S. Banerjee and K. Kannan, ‘‘Tag-in-tag: Efficient flow table management
in SDN switches,’’ in Proc. 10th Int. Conf. Netw. Service Manage. (CNSM)
Workshop, Nov. 2014, pp. 109–117.

[11] M. Bano, A. Qayyum, R. N. B. Rais, and S. S. A. Gilani, ‘‘Soft-mesh: A
robust routing architecture for hybrid SDN and wireless mesh networks,’’
IEEE Access, vol. 9, pp. 87715–87730, 2021.

[12] S. Bradner and J. McQuaid, Benchmarking Methodology for Network
Interconnect Devices, IEF, Fremont, CA, USA, document RFC1944, 1999.

[13] S. Cheshire, B. Aboba, and E. Guttman, Dynamic Configuration of IPv4
Link-Local Addresses, IEF, Fremont, CA, USA, document RFC3927,
2005.

[14] C.-C. Chuang, Y.-J. Yu, A.-C. Pang, and G.-Y. Chen, ‘‘Minimization of
TCAM usage for SDN scalability in wireless data centers,’’ in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–7.

[15] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, ‘‘On the effect of
forwarding table size on SDN network utilization,’’ in Proc. IEEE Conf.
Comput. Commun. (IEEE INFOCOM), Apr. 2014, pp. 1734–1742.

[16] M. Cotton, L. Vegoda, R. Bonica, and B. Haberman, Special-Purpose Ip
Address Registries, IEF, Fremont, CA, USA, document RFC6890, 2013.

[17] R. Dhanare, K. K. Nagwanshi, and S. Varma, ‘‘Enhancing the route opti-
mization using hybridMAF optimization algorithm for the internet of vehi-
cle,’’Wireless Pers. Commun., pp. 1–21, Mar. 2022, doi: 10.1007/s11277-
022-09629-7.

VOLUME 10, 2022 59819

http://dx.doi.org/10.1007/s11277-022-09629-7
http://dx.doi.org/10.1007/s11277-022-09629-7


M. Paliwal, K. K. Nagwanshi: Effective Flow Table Space Management Using Policy-Based Routing Approach

[18] R. Dhanare, K. K. Nagwanshi, and S. Varma, ‘‘A study to enhance
the route optimization algorithm for the internet of vehicle,’’ Wireless
Commun. Mobile Comput., vol. 2022, Apr. 2022, Art. no. 1453187, doi:
10.1155/2022/1453187.

[19] B. Fortz, J. Rexford, and M. Thorup, ‘‘Traffic engineering with traditional
IP routing protocols,’’ IEEE Commun. Mag., vol. 40, no. 10, pp. 118–124,
Oct. 2002.

[20] S. S. A. Gilani, A. Qayyum, R. N. B. Rais, and M. Bano, ‘‘SDNMesh:
An SDN based routing architecture for wireless mesh networks,’’ IEEE
Access, vol. 8, pp. 136769–136781, 2020.

[21] Z. Guo, Y. Xu, M. Cello, J. Zhang, Z. Wang, M. Liu, and H. J. Chao,
‘‘JumpFlow: Reducing flow table usage in software-defined networks,’’
Comput. Netw., vol. 92, pp. 300–315, Dec. 2015.

[22] A. Gushchin, A. Walid, and A. Tang, ‘‘Scalable routing in SDN-
enabled networks with consolidated middleboxes,’’ in Proc. ACM SIG-
COMM Workshop Hot Topics Middleboxes Netw. Function Virtualization,
Aug. 2015, pp. 55–60.

[23] S. Huang, J. Zhao, and X. Wang, ‘‘HybridFlow: A lightweight control
plane for hybrid SDN in enterprise networks,’’ in Proc. IEEE/ACM 24th
Int. Symp. Quality Service (IWQoS), Jun. 2016, pp. 1–2.

[24] C. Huitema, An anycast Prefix for 6to4 Relay Routers, IEF, Fremont, CA,
USA, document RFC3068, 2001.

[25] G. Huston, M. Cotton, and L. Vegoda, IANA IPv4 Special Purpose Address
Registry, IEF, Fremont, CA, USA, document RFC5736, 2010.

[26] S. Iqbal, H. Maryam, K. N. Qureshi, I. T. Javed, and N. Crespi,
‘‘Automised flow rule formation by using machine learning in soft-
ware defined networks based edge computing,’’ Egyptian Informat. J.,
vol. 23, no. 1, pp. 149–157, Mar. 2022. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1110866521000682

[27] C. Jin, C. Lumezanu, Q. Xu, Z.-L. Zhang, and G. Jiang, ‘‘Telekinesis:
Controlling legacy switch routing with OpenFlow in hybrid networks,’’ in
Proc. 1st ACM SIGCOMM Symp. Softw. Defined Netw. Res., Jun. 2015,
p. 20.

[28] K. Kannan and S. Banerjee, ‘‘Compact TCAM: Flow entry compaction in
TCAM for power aware SDN,’’ in Proc. Int. Conf. Distrib. Comput. Netw.
Berlin, Germany: Springer, 2013, pp. 439–444.

[29] S. Khorsandroo, A. G. Sánchez, A. S. Tosun, J. Arco, and
R. Doriguzzi-Corin, ‘‘Hybrid SDN evolution: A comprehensive survey of
the state-of-the-art,’’ Comput. Netw., vol. 192, Jun. 2021, Art. no. 107981,
doi: 10.1016/j.comnet.2021.107981.

[30] V. Kotronis, X. Dimitropoulos, and B. Ager, ‘‘Outsourcing the routing
control logic: Better internet routing based on SDN principles,’’ in Proc.
11th ACM Workshop Hot Topics Netw., 2012, pp. 55–60.

[31] A. P. Kumbhare, D. G. Kamath, V. A. Pandey, and N. Mukherjee, ‘‘Switch
routing table utilizing software defined network (SDN) controller pro-
grammed route segregation and prioritization,’’ U.S. Patent 9 225 635,
Dec. 29, 2015.

[32] X. Li, J. Yan, and H. Ren, ‘‘Software defined traffic engineering for
improving quality of service,’’ China Commun., vol. 14, no. 10, pp. 12–25,
Oct. 2017.

[33] T. Malbašić, P. D. Bojović, Ž. Bojović, J. Šuh, and D. Vujošević, ‘‘Hybrid
SDN networks: Amulti-parameter server load balancing scheme,’’ J. Netw.
Syst. Manage., vol. 30, no. 2, p. 30, Jan. 2022, doi: 10.1007/s10922-022-
09642-y.

[34] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, 2008.

[35] K. K. Nagwanshi, A. Noonia, S. Tiwari, N. V. Doohan, V. Kumawat,
T. A. Ahanger, and E. T. Amoatey, ‘‘Wearable sensors with Internet of
Things (IoT) and vocabulary-based acoustic signal processing for moni-
toring children’s health,’’ Comput. Intell. Neurosci., vol. 2022, Apr. 2022,
Art. no. 9737511, doi: 10.1155/2022/9737511.

[36] M. Osman and J. Mangues-Bafalluy, ‘‘Hybrid SDN performance: Switch-
ing between centralized and distributed modes under unreliable con-
trol communication channels,’’ J. Sensor Actuator Netw., vol. 10,
no. 3, p. 57, Aug. 2021. [Online]. Available: https://www.mdpi.com/2224-
2708/10/3/57

[37] M. Paliwal and D. Shrimankar, ‘‘Effective resource management in SDN
enabled data center network based on traffic demand,’’ IEEE Access, vol. 7,
pp. 69698–69706, 2019.

[38] M. Paliwal, D. Shrimankar, and O. Tembhurne, ‘‘Controllers in SDN: A
review report,’’ IEEE Access, vol. 6, pp. 36256–36270, 2018.

[39] H. Redžović, A. Smiljanić, and B. Savić, ‘‘Performance evaluation of
software routers with VPN features,’’ in Proc. 24th Telecommun. Forum
(TELFOR), Nov. 2016, pp. 1–4.

[40] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear,
Address Allocation for Private Internets, IEF, Fremont, CA, USA, docu-
ment RFC1918, 1996.

[41] C. Ren, S. Bai, Y. Wang, and Y. Li, ‘‘Achieving near-optimal traffic
engineering using a distributed algorithm in hybrid SDN,’’ IEEE Access,
vol. 8, pp. 29111–29124, 2020.

[42] G. Rétvári, A. Gulyás, Z. Heszberger, M. Csernai, and J. J. Bíró, ‘‘Com-
pact policy routing,’’ Distrib. Comput., vol. 26, nos. 5–6, pp. 309–320,
Oct. 2013.

[43] J. Reynolds and J. Postel, Assigned Numbers, IEF, Fremont, CA, USA,
document RFC1700, 1994.

[44] Y. Shen, C. Wu, Q. Cheng, and D. Kong, ‘‘AFTM: An adaptive flow table
management scheme for OpenFlow switches,’’ in Proc. IEEE 22nd Int.
Conf. High Perform. Comput. Commun.; IEEE 18th Int. Conf. Smart City;
IEEE 6th Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), Dec. 2020,
pp. 917–922.

[45] R. Silva, D. Santos, F. Meneses, D. Corujo, and R. L. Aguiar, ‘‘A hybrid
SDN solution for mobile networks,’’ Comput. Netw., vol. 190, May 2021,
Art. no. 107958.

[46] A. Skarmeta and G. Perez, ‘‘Policy-based dynamic provision of IP services
in a secure VPN coalition scenario,’’ IEEE Commun. Mag., vol. 42, no. 11,
pp. 118–124, Nov. 2004.

[47] B. R. Smith and J. J. Garcia-Luna-Aceves, ‘‘Efficient policy-based routing
without virtual circuits,’’ in Proc. 1st Int. Conf. Quality Service Heteroge-
neous Wired/Wireless Netw. (QSHINE), 2004, pp. 242–251.

[48] J. Weil, V. Kuarsingh, C. Donley, C. Liljenstolpe, and M. Azinger, IANA-
Reserved IPv4 Prefix for Shared Address Space, IEF, Fremont, CA, USA,
document RFC6598, 2012.

[49] H. Xu, X. Y. Li, L. Huang, H. Deng, H. Huang, and H.Wang, ‘‘Incremental
deployment and throughput maximization routing for a hybrid SDN,’’
IEEE/ACM Trans. Netw., vol. 25, no. 3, pp. 1861–1875, Jun. 2017.

[50] H. Zhu, H. Qiu, J. Zhu, andD. Chen, ‘‘SMSEI-SDN:A suppressionmethod
of security incident impact for the inter-domain routing system based
on software-defined networking,’’ Wireless Commun. Mobile Comput.,
vol. 2021, pp. 1–16, May 2021, doi: 10.1155/2021/5539790.

MANISH PALIWAL received the Ph.D. degree
from the Visvesvaraya National Institute of
Technology, Nagpur, India. He is currently work-
ing as an Assistant Professor with the Depart-
ment of Computer Science Engineering, School of
Technology, Pandit Deendayal Energy University,
Gujarat. His research interests include software
defined networks, wireless networks, and network
function virtualization.

KAPIL KUMAR NAGWANSHI (Senior Member,
IEEE) received the Ph.D. degree from Chhatisgarh
Swami Vivekanand Technical University, Bhilai,
India. He is currently working as an Associate Pro-
fessor with ASET, Amity University Rajasthan,
Jaipur, India. He has awarded five patents. He has
an extensive publication record in SCI, SCOPUS,
and other reputed indexed journals. He edited five
proceedings of the Shaastrarth International Con-
ference series, four books, two datasets, many

book chapters, and presented his research work at national and national inter-
national conferences. He is highly motivated, dynamic, and single-minded
in a fair for connecting with young minds and nurturing and fostering their
development to their utmost potential. His primary domain of teaching and
research interests include the Internet of Things, digital image processing,
cyber forensics, data science and engineering, AI, and computer networking.
He is a SeniorMember of YHAI. He is a LifeMember of CSI, IETE, IAENG,
IACSIT, and other professional bodies. He is a Reviewer of reputed journals,
such as IEEE ACCESS, The Imaging Science Journal, Journal of Real-Time
Image Processing, and International Journal of Computer and Electrical
Engineering.

59820 VOLUME 10, 2022

http://dx.doi.org/10.1155/2022/1453187
http://dx.doi.org/10.1016/j.comnet.2021.107981
http://dx.doi.org/10.1007/s10922-022-09642-y
http://dx.doi.org/10.1007/s10922-022-09642-y
http://dx.doi.org/10.1155/2022/9737511
http://dx.doi.org/10.1155/2021/5539790

