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ABSTRACT A stack distance of a reference is the depth from which the reference must be extracted from a
stack. It has beenwidely applied to a variety of applications utilizing temporal locality information. However,
calculating an exact stack distance requires significant computational complexity that is impractical for
online production systems. This paper proposes an efficient algorithm that approximates a stack distance
based on workload characteristics. The proposed algorithm utilizes two simple reference metrics: inter-
reference distance and a quasi-unique reference count. More importantly, its approximation algorithm
requires surprisingly simple calculation. Consequently, it significantly reduces computational overhead
while exhibiting exceptional accuracy and runs extremely fast. Moreover, it allows configurable parameters
for performance optimization by making optimal use of workload characteristics. Our extensive experiments
with diverse realistic workloads demonstrate our stack distance approximation algorithm outperforms the
current state-of-the-art algorithm with higher accuracy (3.7×), lower memory footprint (3.05×) and fast
execution (less than 0.05 seconds) on average. In addition, with configuration parameters, our refined
algorithm can achieve a 28% average additional accuracy improvement.

INDEX TERMS Stack distance, reuse distance, cache, inter reference distance, MRC, miss ratio curve.

I. INTRODUCTION
A significant performance gap between computer system
CPUs and disks has introduced cachemechanisms to improve
system performance by pre-storing data objects in the
cache [1]. Access to the existing cache data objects is sig-
nificantly faster than access to the disk data. Thus, effective
cache design plays a pivotal role in notable system perfor-
mance improvement. Designing an effective cache algorithm
requires analyzing a representative workload (i.e., data access
patterns) in order to characterize data re-access patterns.
Here, a stack distance is a good measure of data reuse
pattern [2].

A stack distance is literally the depth from which a ref-
erence must be extracted from a stack [3]. It corresponds
to the number of unique accesses between two accesses to
the same address in a trace [3]. Mattson et al. [4] originally
proposed this stack distance in 1970, where they presented
an evaluation of virtual memory page replacement strategies
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with a stack [1]. Their algorithm captured memory reference
traces and constructed a stack by pushing and popping a
reference from the stack. In other words, when any reference
was accessed, the reference was pushed onto the stack. If any
reference in the stack was accessed again, it was popped and
moved to the top of the stack. This depth fromwhich a certain
reference needs extraction from the stack (due to re-access) is
called the stack distance of the corresponding reference [1].

One of representative stack distance applications is a cache
behavior simulation, which allows cache miss count esti-
mation for any cache size in a single pass throughout the
trace [1]. A miss ratio curve (MRC) can capture this cache
miss. An MRC provides fundamental cache performance
profiling information by presenting the cache miss rate as a
function of the cache size [5]. In typical practice, an MRC
exhibits the cache miss ratio or cache miss probability on the
y-axis and cache size on the x-axis. A typical MRC tends
to decrease as cache size increases (figure 1). To simulate a
cache (e.g., LRU: Least Recently Used) behavior, the cache
miss ratio with LRU cache size S corresponds to the fraction
of references with stack distance larger than S.
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In addition to this cache performance prediction, MRCs
can also estimate the amount of data a workload uses [6].
Consequently,MRCs are useful to design efficient data place-
ment policies in tiered storage systems consisting of different
storage devices with different performance characteristics,
such as high-performance persistent memories (e.g., Intel
Optane persistent memory), Solid State Drives (SSDs) and
conventional Hard Disk Drives (HDDs) [17]–[19]. MRCs can
be helpful to determine different types of storage device sizes
for effective hierarchical storage systems, capable of simul-
taneously considering both performance (i.e., data access
latency) and storage cost [2].

A stack distance can be useful to hot data identification
algorithms capturing both recency and frequency informa-
tion [3]. The stack distance is also a good measure of recency.
Recency is a valuable factor for temporally localized access
patterns and the stack distance is a measure of this temporal
locality. Small stack distances across all references indicates
good temporal locality. This implies workloads with a small
stack distance should consider recency a more crucial factor
when classifying hot data and cold data [3].

Although a stack distance is very useful for various fields
including planning and optimization, an exact stack dis-
tance calculation requires both high computational complex-
ity (O(NM ), where N is the trace length andM is the number
of distinct references in the trace) and high space consump-
tion (O(M )) [7]. To resolve these limitations, Almasi et al.
proposed a hole-based algorithm [1]. This is a new stack
distance algorithm (not approximation algorithm) adopting
a balanced binary tree (i.e., interval tree) to calculate stack
distance more efficiently. Although it notably reduced stack
distance calculation complexity (O(Nlog(M ))), its complex-
ity renders it impractical for production systems [7].

Recently, Zhang and Tay proposed PG2S, a stack dis-
tance approximation technique that is based on reference
popularity and inter-reference distance (they called this gap
distance) [2]. Popularity is the number of times an object
appears in a trace. Inter-reference distance (IRD) is defined as
the number of references between two consecutive references
to the same object [2].

PG2S approximation technique reduced computational
complexity to O(M ). However, as the authors mentioned,
their stack distance approximation equation (please refer to
equation 3) requires significant complicated mathematical
calculations, exhibiting severely prolonged total execution
times. More importantly, it requires whole trace analysis
information before stack distance approximation, implying it
is inappropriate for analyzing practical online systems.

To resolve these critical problems, this paper proposes
a novel stack distance approximation algorithm based on
workload characteristics. It adopts only one hash table that
maintains simple information for each bucket, and performs
very simple calculations to approximate stack distance. The
proposed mechanism employs two simple workload-related
factors for efficiency: inter-reference distance (IRD) and
a quasi-unique reference count. IRD is the number of all

references between two successive references to the same
address in the trace. The quasi-unique reference count emu-
lates the unique reference count between two identical ref-
erences. Both values are produced by an extremely simple
calculation that utilizes maintained hash table information.
Consequently, the proposed algorithm dramatically reduces
computational overheads.

Moreover, our extensive and comprehensive workload
studies with various real workloads found some niches for
specific access patterns the proposed algorithm can exploit.
Though our proposed algorithm exhibits remarkable per-
formance with a very high accuracy under most work-
loads, it also provides configuration parameters which can
be exploited for further performance optimization. Conse-
quently, it accommodates all workload access patterns more
effectively.

The main contributions of this paper are as follows:
• Efficient stack distance approximation: For com-
pactness, the proposed stack distance approximation
algorithm requires surprisingly simple calculation such
as just two value averages (i.e., average of both
inter-reference distance and quasi-unique reference
count). For efficient management and updating both
counts, it employs one hash table. In addition, calcu-
lating both counts is also very simple (i.e., two index
value subtraction). Though the proposed approximation
adopts an surprisingly simple mechanism, it achieves
excellent accuracy as well as low computational com-
plexity, resulting in extremely fast total execution time.
Summaries: The proposed algorithm significantly
reduces computational overheads and takes only
0.046 seconds (vs. 2,581 seconds PG2S on average)
to process 0.3 million Logical Block Address (LBA)
requests. (Section IV).

• Extensive performance evaluation: To evaluate our
proposed algorithm, we adopted 12 well-known real
workloads and performed extensive performance eval-
uation with diverse aspects: accuracy, cache miss ratio,
resource usage, execution time, etc. We compared our
approximation to exact stack distance as well as the
state-of-the-art approximation algorithm, PG2S.1 In
addition, our basic approximation algorithm employing
default configurations is also compared to our refined
algorithm with workload-optimized configurations to
verify its effectiveness.(Section IV).
Summaries: The proposed algorithm exhibits on aver-
age 3.7× higher accuracy and 3.05× less mem-
ory consumption than PG2S. Particularly, under some
workloads with a large amount of unique LBA access
patterns, our algorithm exhibits up to 282× higher
accuracy.

• Refinements with configurations: It is almost impos-
sible for approximation techniques to accommodate all
workload access patterns perfectly. Our approximation

1The authors generously shared their PG2S codes with us.
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algorithm performs very well under most workloads.
However, the proposed algorithm additionally allows
configuration parameters for further performance opti-
mization to effectively address all access patterns.
Moreover, our extensive and elaborate workload studies
provide judicious suggestions (i.e., guideline) for an
effective parameter configuration to make the best use of
our algorithm. Consequently, the proposed approxima-
tion algorithm effectively accommodates various access
patterns and further improves accuracy. Please note this
configuration is totally optional (not required) for finer
optimization for specific workloads.
Summaries:Our refined algorithm with parameter con-
figurations improves its accuracy by an average of
1.28×. (Section III-C).

The remainder of this paper is organized as follows.
Section II gives a locality and MRC overview, and presents
related and previous research studies. Section III explains
our stack distance approximation algorithm design and oper-
ations. Section IV provides a variety of experimental results
and analyses. Section V discusses diverse challenging prob-
lems and suggestions. Section VI concludes this work.

II. BACKGROUND AND RELATED WORK
This section explains localities andmiss ratio curves (MRCs),
and discusses existing stack distance studies.

A. LOCALITY MEASURES
A stack distance can be calculated from the number of distinct
references between two references to the same address in
a trace. Thus, it describes when the last time an address
was previously accessed. This stack distance has also been
referred to as a reuse distance [7]. Given t0, the stack distance
definition, SD(t) = |z|, where z is the set of unique references
between t0 and t:

z = {ref (τ )|t0 < τ < t} (1)

This stack distance concept was originally designed for
virtual page modeling [1], but has been primarily used for
modeling cache behavior since it captures temporal locality
information.

Inter-reference distance (IRD) is another locality mea-
sure [1]. It is the number of all references between two
references to the same address in a trace. IRD looks similar to
the stack distance. However, it counts all references between
two identical address accesses. In contrast, stack distance
only counts distinct accesses [2], [3], [5], [7].

When at time t , ref (t) = x, find t0 which is the last previous
x reference time,

t0 = max {τ |0 ≤ τ < t ∧ ref (τ ) = ref (t)} (2)

The IRD is defined as IRD(t) = t − t0. While the
exact stack distance calculation requires high computational
complexity, an exact IRD calculation involves very low
(i.e., almost negligible) complexity. Therefore, we adopt IRD
information to design our approximation algorithm.

FIGURE 1. A miss ratio curve (MRC) example. An x-axis presents a cache
size and y-axis shows a cache miss ratio.

B. MRC: MISS RATIO CURVE
Miss ratio curves (MRCs) are cache utility curves that effec-
tively manage cache allocations [7]. MRCs plot the cache
miss ratio or cache miss probability on the y-axis and cache
size on the x-axis (figure 1). They provide fundamental infor-
mation for cache performance profiling by presenting the
cache miss rate as a function of the cache size [5]. That is,
the higher the miss ratio, the lower the overall performance.

MRCs are very useful to plan or optimize cache utilization
in computer systems [26], [27]. However, MRC construction
is computationally intensive. Constructing an exact MRC
requires stack distance observation over the workload access
patterns. Data structures must maintain every access location
information in a trace. Thus, MRC construction requires
excessive computational complexity as well as space con-
sumption [7]. Various MRC construction methods have been
proposed according to different computational complexities
and memory requirements [1], [4], [7]–[11].

The Mattson et al.’s algorithm [4] scans traces to collect
stack distance histogram information. That is, it collects stack
distance frequency information for each stack distance while
scanning traces. Once the trace analysis completes, the his-
togram is normalized by dividing each value by the total num-
ber of requests. Adding the histogram values up to a given
capacity provides the hit ratio. The corresponding miss ratio
is obtained by its complement (i.e., 1− hit ratio). For a trace
of lengthN withM unique references, this algorithm requires
O(NlogM ) time complexity and O(M ) space cost [16], [25],
[28]–[30].

To reduce these overheads, various MRC approxima-
tion or sampling techniques have been proposed. Berg and
Hagersten [12] proposed a sampling algorithm, named Stat-
Cache. StatCache sampled every Nth reference for MRC
construction to reduce complexity. Similarly, Eklov and
Hagersten [16] proposed StatStack, which also adopted a
sampling mechanism to reduce complexity overheads and
employed both inter-reference distance (IRD) and forward
IRD to approximate stack distance.

Zhong and Chang [13] proposed a novel sampling tech-
nique, named HRS, that samples the references whose last
appearance is in the sampling interval in order to avoid
StatCache’s limitation: a biased sampling against longer
stack distances. Waldspurger et al. [7] proposed SHARDS
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(Spatially Hashed Approximate Reuse Distance Sampling),
a hash-based sampling approach to enforce the property that
the object for a sampled reference will be sampled again in
the future. However, all sampling approaches cannot avoid
their innate limitations: a trade-off between sampling ratio
and accuracy.

In addition to these sampling algorithms, Tay and Zou [14]
proposed an MRC approximation algorithm, named CME
(Cache Miss Equation) which models cache behavior adopt-
ing 4 parameters. This CME requires several cache miss
measurements for different cache sizes in order to cal-
ibrate those parameters. Since stack distance calculation
requires high complexity, some MRC construction tech-
niques employed a simpler metric, such as inter-reference
distance (also called gap distance) which is defined as the
number references between two identical references to the
same object. Shen et al. [15] proposed RTH2CTH adopting
the inter-reference distance (they called this IRD time dis-
tance) to approximate the stack distance distribution.

Recently, as a state-of-the-art stack distance approxima-
tion technique, Zhang and Tay [2] proposed PG2S (Popu-
larity, Gap distance and Stack distance) which is based on
reference popularity and IRD. They proved both popular-
ity and IRD suffice for generating MRC under independent
reference model and suggested an expected stack distance
equation. Consider a string of independent reference R =<
r1, r2, . . . > to M objects, and suppose the IRD g(i) < ∞.
Further, let p(x) be a reference popularity in R. Then, their
expected (i.e., approximated) stack distance is calculated as
follows;

E [s(i)] = M − 1−
∑
x 6=ri

(
1−

p(x)
1− p(ri)

)g(i)
(3)

PG2S exhibited good performance with respect to stack
distance approximation accuracy. In addition, it reduced
computational complexity to O(M ), where M is the number
of unique references in a trace. However, as in the equation 3,
it requires significant complicated mathematical calculation
and suffers from a severely long execution time. More impor-
tantly, it requires whole trace analysis information in advance,
implying it is not appropriate for online practical systems.

To overcome PG2S’s critical limitations, this paper pro-
poses an efficient stack distance approximation algorithm
which achieves higher accuracy with lower computational
overheads and lower memory footprint.

III. EFFICIENT STACK DISTANCE APPROXIMATION
This section describes our proposed stack distance approxi-
mation design with algorithm description.

A. MAIN DESIGN AND ARCHITECTURE
Figure 2 presents the proposed scheme’s overall architecture.
For efficiency, the proposed stack distance approximation
mechanism adopts a hash table data structure. It employs
a simple hash function (i.e., division method) to reduce

FIGURE 2. The overall architecture. Each hash bucket maintains three
metrics: a reference, a last index and a last unique reference count. The
proposed scheme adopts a simple hash function (i.e., division method) to
reduce a hash computation overhead and a chaining technique to avoid a
hash collision.

hash calculation complexity and a chaining mechanism to
avoid hash collisions. Each hash bucket stores and updates
three simple data values, (1) a last unique reference count,
(2) a reference and (3) a last index.

As described, the stack distance is defined as the number
of unique accesses between two consecutive accesses to the
same address. This unique reference count is a key factor for
stack distance calculation. Unfortunately, counting the exact
number of distinct references between two accesses requires
very high computational complexity (i.e., O(NM ), where N
is the trace length and M is the number of distinct trace
references).

To avoid this problem, using a last unique reference count,
our proposed mechanism emulates an exact unique reference
count between two identical references by storing a quasi-
unique reference count when the corresponding referencewas
recently accessed. To update this last unique reference count,
the proposed mechanism maintains another simple counter,
named the global unique reference count. This global unique
reference count increments by 1 whenever a unique trace
reference appears by utilizing a reference information in the
hash bucket.

The second information the hash bucket maintains is a
reference (i.e., accessed LBA (Logical Block Address)). The
aforementioned global unique reference counter efficiently
utilizes this reference information to check if the reference
is unique. In other words, for each trace reference, the pro-
posed algorithm first checks the reference in the bucket. If it
finds the identical reference in the hash bucket, meaning the
reference has appeared before (i.e., not unique), the global
unique reference count does not increase, otherwise the count
increases by 1 (i.e., the reference is considered unique). For
a quick reference check, a bloom filter can also be hash table
alternative.

In addition to the quasi-unique reference count, our pro-
posed algorithm adopts another metric: inter-reference dis-
tance (IRD). While the stack distance only considers unique
references, IRD counts all intervening references between
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two consecutive references. To calculate this IRD efficiently,
the proposed mechanism maintains the last index in the hash
table storing the index value whenever the corresponding
reference is accessed. Aside from this last index, it simply
manages a global index. This global index can be considered
a time stamp that increments with each reference. Please note
both the global index and the global unique reference counter
are merely simple counters maintained outside of the hash
table.

B. OPERATIONS
The proposed approximation algorithm operates as follows:
once it processes a trace request with a reference (i.e., LBA),
it first investigates the corresponding hash bucket and
acquires the aforementioned three simple values (i.e., a last
unique reference count, a last index and a reference). If it
does not exist in the hash bucket (that is, the given LBA does
not exist in the hash bucket), it simply returns infinity (∞)
for the given LBA’s stack distance since the accessed LBA
has not been previously appeared. Then, it increases a global
unique reference count because the given LBA is considered
a unique LBA.

Alternately, if the accessed LBA exists in the hash bucket
(i.e., the given LBA has been accessed before) the proposed
mechanism approximates the stack distance as follows: first,
it calculates the inter-reference distance (IRD) at a given
time t , IRD(t), by the following equation:

IRD(t) = current global index − last index (4)

Second, it induces an approximated unique reference count
at time t , UDIFF(t), by subtracting the last unique reference
count from a current global unique reference count:

UDIFF(t) = current global unique reference count

− last unique reference count (5)

Please note that since the accessed LBA is not unique, a global
unique reference count does not increment in this case.

Now it is ready to approximate the stack distance of the
given LBA at time t , SD(t), by the following very simple
equation:

SD(t) = round
(
IRD(t)+ UDIFF(t)

2

)
(6)

Finally, it updates both the last index and the last
unique reference count in the hash bucket with the current
global index and the current global unique reference count
respectively. This proposed approximation algorithm signif-
icantly reduces the computational complexity. More impor-
tantly, this approximation exhibits surprisingly high accuracy
(Please refer to our experiments in Section IV).

1) JUSTIFICATION
Our simple and accurate approximation equation (Equa-
tion 6) considers the following workload characteristics: gen-
erally, the difference between an IRD and a stack distance is

FIGURE 3. Value characteristics among three metrics: an inter-reference
distance (IRD), an ideal stack distance (Ideal SD), and an approximated
unique reference count (UDIFF). While all three metric values are
different under Financial1, they are almost identical under WebSearch3.

very close to the difference between a stack distance and a
UDIFF. Our comprehensive workload studies found that in
most cases, the IRD is always greater than a stack distance.
On the other hand, our UDIFF is always smaller than a stack
distance (figure 3 (a)). However, under a specific workload
pattern (figure 3 (b)), all three metrics exhibit very similar
(almost identical) values.

Figure 3 presents characteristics of three metrics under
two representative workloads (Financial1 and WebSearch3)
and justifies the aforementioned analyses. An IRD should be
always greater than or equal to a stack distance regardless
of workload access patterns because the stack distance only
considers unique references. On the contrary, a UDIFF should
be always smaller than or equal to a stack distance.

Financial1 has many re-accessed (i.e., not unique) refer-
ences, implying temporal localities and lower cache miss
rates. Many recurrent (re-accessed) references tend to con-
taminate (i.e., does not correctly increase) our global unique
reference count since the proposed scheme adopts a hash
table to check reference redundancy. Any re-accessed ref-
erence does not increase the global unique reference count.
Since a stack distance counts unique accesses between two
consecutive (i.e., from present to the very last) identical
accesses, the global unique reference count tends not to
address many recurrent access patterns effectively. Conse-
quently, the UDIFF exhibits smaller (e.g., workloads with
many re-accessed references) than, or equal (e.g., workloads
with many unique references) to a stack distance. Please note
our proposed algorithm provides a mechanism to resolve this
problem. In our experiments, all Financial and Microsoft
Research traces belong to Financial1’s workload character-
istic types. Thus, we omit other plots in the figure 3.

WebSearch3 traces have very different workload character-
istics from Financial1. Our studies found WebSearch3 traces
have an exceptionally large number of unique (i.e., single
accessed) references, which implies significantly low (or
almost no) temporal localities and very high cache miss rates.
Under this workload type, both an IRD and a UDIFF are
very close (nearly identical) to a stack distance (figure 3 (b)).
WebSearch and Diskmon traces in our work belong to this
access type.
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Based on these observations and our extensive workload
studies, we concluded that the average of two value (i.e., IRD
and UDIFF) effectively approximates stack distance.

2) ALGORITHM
Algorithm 1 describes our proposed approximation algo-
rithm. When any request with LBA is issued, the algorithm
first checks if the given LBA has been accessed before. If the
LBA has been previously appeared (Line 2), it calculates
both IRD and UDIFF values. If the difference between IRD
and UDIFF is greater than a predefined threshold value,
it calculates a stack distance approximation value only after
performing our stack distance correctionmechanism (Line 7).
Otherwise, it simply calculates our proposed stack distance
value (Line 27).

The stack distance correction mechanism consists of a
few steps as follows; if the trace suddenly re-accesses an
LBA with a very long distance (i.e., accessed a long time
ago), it increases an outlier count and resets (i.e., decreases)
the IRD value (Line 9–14) because it considers such LBAs
outliers. Thus, it does not employ the original IRD value to
calculate our stack distance and, instead, reduces the outlier
IRD value by half. If it keeps accessing (i.e., predefined times,
e.g., 200) the very long distance LBAs, which implies such
accesses are normal workload patterns, it does not correct
the original IRD value. If the corrected IRD value is still
exceptionally large, the predefined value is assigned to IRD
(i.e., a smoothing effect) (Line 18–19) because our exten-
sive workload analysis studies concluded this is a rare and
exceptional access pattern. Consequently, smoothing out such
an exceptional access pattern prevents severely skewing the
approximation value. As a last step, if the segment num-
ber of the given LBA is greater than that of the previously
accessed identical LBA, it increases a unique reference count
(Line 23–24). This step corrects our quasi-unique reference
count value because it is not an exact unique reference count
between two identical references, but an emulated value to
significantly reduce computational complexity.

If the given LBA has not been accessed, it initializes
IRD, UDIFF, and stack distance (SD) values respectively
(Line 29–32). We assign an infinite value (∞) to the stack
distance for miss ratio curve construction. Periodically it
resets the global unique reference count (Line 34–36) because
our unique reference count has a tendency to show a lower
value than the exact unique reference count as time goes on.

C. REFINEMENTS WITH CONFIGURATION PARAMETERS
Our extensive workload studies found some niches for spe-
cific access patterns the proposed algorithm can make best
use of. The proposed approximation algorithm exhibits excel-
lent performance under most workloads. It provides four
configuration parameters which can be utilized to optimize
performance. Someworkload access patterns can utilize these
parameters to improve their performance further. As men-
tioned, configuring these parameters in our algorithm is not
required, but is an optional process.

Algorithm 1 Stack Distance Approximation
1: procedure SdApproximation(A,B,C,D)
2: if preValue then F The LBA has been accessed.
3: // Calculate IRD and UDIFF values.
4: IRD← index − preValue.index
5: UDIFF ← uniqCnt − preValue.uniqCnt
6: // Perform our SD correction mechanism.
7: if (IRD− UDIFF) > tValue then
8: // If it suddenly accesses a far LBA.
9: if IRD > avgIRD× A then

10: outlierCnt ++
11: // Reset (reduce) an IRD value.
12: if outlierCnt ≤ B then
13: IRD← IRD/2
14: end if F If it keeps accessing far LBAs,

do not reset IRD.
15: else
16: outlierCnt ← 0
17: end if
18: if IRD ≥ C then F If the corrected IRD is

still very large.
19: IRD← C
20: end if
21: end if
22: // Unique count correction mechanism
23: if uniqSegment > preValue.uniqSegment then
24: uniqCnt ++
25: end if
26: // Calculate our stack distance.
27: SD = round((IRD+ UDIFF)/2)
28: else F The LBA has not been accessed before.
29: IRD← 0
30: UDIFF ← 0
31: uniqCnt ++
32: SD←∞ F Initial stack distance
33: end if
34: if (totalReq%D) == 0) then
35: // Reset the global unique count
36: uniqSegment ++
37: end if
38: end procedure

The proposed algorithm allows the following four configu-
ration parameters presented in Algorithm 1; an IRD threshold
for checking outliers (A), an outlier count threshold (B),
an IRD for smoothing effect (C), and unique count reset
timing (D).

First, the IRD threshold value (A) checks if the current
access belongs to typical trace access patterns. In other words,
if any request suddenly accesses an LBA that was accessed a
very long time ago (i.e., a very long IRD), the algorithm ini-
tially considers this access an outlier (i.e., abnormal) access
pattern and reduces IRD by half. This workload type has
very poor temporal locality and tends to cause a larger stack
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distance approximation value than an accurate stack distance
because of the unexpectedly large (i.e., contaminated) IRD
value. Therefore, if a workload shows a low temporal locality,
we suggest adopting a smaller A parameter value than our
predefined default value (e.g., 4), which will help improve
performance.

Second, if the algorithm considers the given LBA an out-
lier, as mentioned before, it does not employ the original IRD
value since the outlier does not belong to a typical access
pattern. Instead, it corrects (i.e., reduces) the calculated IRD
value by half until the outlier count threshold value (B).
However, if this unexpectedly large IRD appears B times in
a row, implying the workload access pattern keeps changing
(not temporarily), it subsequently accepts the original IRD
without smoothing. Although a smaller B parameter value
(default 200) is suggested for workloads with a high temporal
locality, this is the least sensitive parameter for workload
access patterns based on our observations.

Third, in the case of the aforementioned outlier access
pattern, the proposed algorithm corrects the original IRD
value. However, if this corrected IRD value is still exception-
ally large (i.e., greater than C), it assigns a predefined IRD
threshold value (C) to the IRD, instead of accepting the previ-
ously corrected IRD. This process smooths out exceptionally
skewed effect of the IRD value. Based on our workload
studies, a workload with a very low temporal locality can
benefit from a larger IRD threshold (C) than our default value
(i.e., 50,000) for a stronger smoothing effect.

Lastly, unlike the previous three parameters, the last is
related to a unique reference count. The proposed approxima-
tion mechanism maintains a reference information in a hash
table for an efficient unique reference check and increments
a global unique reference count by 1 whenever a unique
LBA appears in the trace. However, as traces come in, long
distant and recurrent LBA accesses have an impact on our
quasi-unique reference count value, causing a lower unique
reference count than an exact value. Extensive investigation
enabled us to determine that this problem occurs under a fol-
lowing specific workload access pattern: when many unique
LBAs occur between the current access and the last access
to the same LBA, where those unique LBAs were already
repeatedly accessed before the last access. To resolve this
issue, the proposed algorithm periodically (D) resets a global
unique reference count. For this, we suggest a smaller unique
count reset timing parameter (D) than the proposed default
value (i.e., for each 90,000 request by default) for such a
looping access pattern.

The suggested default parameter values of our approxi-
mation algorithm were judiciously selected by our exten-
sive and comprehensive workload analysis studies with
12 well-known real workloads. Consequently, the proposed
approximation mechanism adopting default parameter values
achieves exceptional performance. However, our configura-
tion parameters and advices can help further optimize perfor-
mance and effectively accommodate all workload patterns.

IV. EXPERIMENTS
This section provides diverse experimental results and com-
parative analysis.

A. EVALUATION SETUP
To verify our approximation algorithm’s effectiveness and
efficiency, we compared the proposed mechanism to the
state-of-the-art approximation scheme, PG2S which cur-
rently exhibits the best performance [2].

For more objective evaluation, 12 real workloads were
employed. Financial 1,2 andWebSearch 1,2,3 traces are from
the University of Massachusetts–Amherst Storage Reposi-
tory [20], [21]. Financial1 and Financial2 trace files were
collected from online transaction processing (OLTP) appli-
cations running at two large financial institutions [20]. Web-
search1, Websearch2, and Websearch3 are read-dominant
web search engine traces from Storage Performance Council
(SPC) [21].

We also adopted Diskmon and Diskmon1 trace files that
are solid state drive (SSD) trace files. They consist of one
month block I/O traces of a desktop computer in the Cen-
ter for Research in Intelligent Storage (CRIS) lab at the
University of Minnesota–Twin Cities [22]. A well-known
block I/O trace application from Microsoft, DiskMon for
Windows [23], was installed to the computer and collected
personal traces such as computer programming, running sim-
ulations, documentation work, web surfing, and watching
movies, etc.

Lastly, we utilized various MSR trace files made up of
one week block I/O traces of enterprise servers at Microsoft
Research Cambridge Lab [24]. We select hm0, prn0, proj0,
rsrch0, usr0, web0 traces for our evaluations.

Each trace consists of many read and write requests. These
I/O requests are also subdivided into several or more sub-
requests. We employed this block-level request for our exper-
iments. We conducted all experiments on a server with Intel
Xeon 2nd generation Scalable Gold 5218 (16 physical cores,
2.3GHz), 64GB RAM, and Ubuntu 20.04 LTS.

We employed a hash table with 50K entries and a divi-
sion method for our hash function. In addition, a chaining
mechanism is adopted for hash collision avoidance. The
proposed algorithm adopts default parameters described in
section III-C.

B. PERFORMANCE METRICS
We measure an average stack distance to evaluate our pro-
posed stack distance approximation (hereafter, referred to
as Ours) performance by comparing it with both an exact
average stack distance (referred to as Ideal) and a state-of-
the-art scheme, PG2S (referred to as PG2S). This average
stack distance is measured with 0.3 million requests for each
trace and we plot it for each 1,000 request unit. An ini-
tial stack distance where the given LBA is accessed first
time is typically assigned by infinity (∞). Thus, we remove
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FIGURE 4. Average stack distance error of both the proposed approximation algorithm (Ours) and the state-of-the-art algorithm (PG2S) for each
trace (the lower, the better). Here, since the average stack distance error of PG2S shows greater than 18,000, we limit its value for more effective
presentation.

FIGURE 5. Average stack distance over time for each trace: the proposed approximation algorithm (Ours) vs. the state-of-the-art algorithm (PG2S) vs. the
exact stack distance (Ideal). Here, each value corresponds to an average stack distance for each 1,000 request unit.

this initial stack distance from the average stack distance
evaluation. Furthermore, we also measure an average stack
distance error which is calculated by subtracting the approx-
imation values of respective schemes from an exact stack dis-
tance value for each request, which provides more thorough
comparison.
Cache miss ratio with LRU (Least Recently Used) is also

a widely adopted performance metric for miss ratio curves
(MRCs). To calculate this cache miss ratio, we first prepare a
stack distance histogram with a stack distance on x-axis and

frequency (i.e., count) on y-axis. Then, the cache miss ratio
with a cache size S corresponds to the fraction of references
with a stack distance greater than S. We also measure a
miss ratio error (i.e., difference between miss ratio of each
scheme and that of Ideal) and an average miss ratio error
respectively.

A total execution time (in seconds) is another crucial factor
since the computational complexity of a stack distance is
severely high. CPU and memory usage are also considerable
performance metrics to evaluate computing resource usage.
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FIGURE 6. Average stack distance error comparison over time between
the proposed algorithm and PG2S under WebSearch2 and WebSearch3
traces (the lower, the better). A zero on y-axis means an approximated
stack distance is identical to an exact stack distance (i.e., 100% accuracy).

C. RESULTS AND ANALYSIS
We discuss our evaluation results from multiple and compre-
hensive perspectives.

1) AVERAGE STACK DISTANCE
Figure 4 presents an average stack distance error of both our
proposed algorithm (referred to as Ours in the figure) and
the PG2S for all 12 traces. For the average stack distance
error calculation, we subtract the approximation values of
both Ours and PG2S algorithms from an exact stack distance
value for each request, and average them out. As in figure 4,
the proposed algorithm outperforms PG2S by an average
of 3.7×. Our algorithm dominates PG2S particularly under
Diskmon1, WebSearch2, and WebSearch3 traces by up to
282× (WebSearch2). This results from the innate limitation
of a complicated PG2S approximation equation (please refer
to the equation 3). Our extensive experiments and investi-
gation found that PG2S algorithm has a severe weak point
under the workload characteristics with a significantly large
amount of single accessed LBAs. This causes a significantly
inaccurate IRD of PG2S unfavorably affecting its stack dis-
tance approximation. Diskmon1, WebSearch1, WebSearch2,
and WebSearch3 traces belong to this workload type. Con-
sequently, as in figure 4, PG2S exhibits a significantly low
accuracy particularly under these workloads. Please note
WebSearch1 trace shows a very similar workload patterns to
WebSearch 2 and 3. Thus, we omit this WebSearch1 in the
figure and our other experiments afterward.

Interestingly, PG2S exhibits 1.24× better accuracy than
our proposed algorithm under Financial1. This results from
workload characteristics of Financial1 trace and our basic
algorithm with default parameters has a tendency not to
effectively accommodate such trace. However, our refined
algorithm with parameter configuration shows 1.67× better
performance than PG2S. This will be discussed in subsec-
tion IV-C3 in more detail.

Figure 5 presents average stack distances of three (the
proposed, PG2S, and exact stack distance) algorithms inmore
detail by plotting average stack distance values for each 1,000
request unit. Here, the nearer to the exact stack distance
values (Ideal), the higher accuracy. As in the figure, both Ours

and PG2S show very close patterns to Ideal, indicating PG2S
also achieves a very good approximation accuracy. However,
we cannot find significant performance difference between
Ours and PG2S in figure 5 (e) with WebSearch2 and (f) with
WebSearch3 even if there exist surprising performance gaps
(by an average of 99.7×) between them in figure 4.

To investigate this cause, we thoroughly compare stack
distance errors between Our and PG2S. Figure 6 presents
this result. To calculate stack distance error, we subtract
stack distance approximation values of each algorithm from
the exact stack distance value. Therefore, a zero implies the
algorithm’s approximation achieves 100% accuracy. As in
the figure, our approximated stack distance values exhibits
an excellent accuracy (i.e., all approximated values are very
close to zero), while PG2S shows a significantly lower accu-
racy under both traces. A thorough workload analysis found
both (WebSearch 2 and 3) traces as well as Diskmon1 trace
tend to have an exceptionally large number of unique (sin-
gle accessed) LBAs (more than 90%). The stack distance
for these uniquely accessed LBAs corresponds to infinity
and they were removed for the average stack distance error
comparison between Ours and PG2S in figure 6. Moreover,
we also found PG2S approximates a significantly high stack
distance value especially under these workload patterns with
a very large volume of uniquely accessed LBAs. Since the
Diskmon1 trace also shows a very similar workload charac-
teristics to both WebSearch 2 and 3 traces, we omit the plot.

2) CACHE MISS RATIO
The cache miss ratio is closely related to a stack distance and
figure 7 presents an average error of a miss ratio between
the proposed algorithm and PG2S. This error is calculated
by subtracting a miss ratio of each approximation algorithm
from an exact miss ratio. As in the figure, our proposed algo-
rithm shows a better performance than PG2S by an average of
1.51×. Like figure 4, the proposed algorithm (Ours) outper-
forms the competitor except Financial1 trace. Similarly to the
average stack distance error evaluation, PG2S shows a 1.46×
lower error rate than Ours under Financial1 trace. On the
other hand, our refined algorithm exhibits 1.85× better per-
formance than PG2S by judiciously configuring parameters,
which more effectively accommodates Financial1 trace.

In figure 4, our approximation performance dominates
PG2S particularly under Diskmon1, WebSearch 2 and
3 traces. However, such a dominating performance gap is
not recognized in figure 7 because miss ratios of these three
traces are exceptionally higher (larger than 0.99) than other
traces (please refer to figure 8 (d), (e), (f)). Consequently,
absolute error values are not noticeably large. To clarify
this problem, figure 11 is presented. This figure 11 com-
pares miss ratio errors of both approximation algorithms,
and errors are normalized by Ours. As in the figure, Ours
achieves a much lower error rate than PG2S by up to
6.66× (WebSearch2).
Figure 8 presents errors between approximate miss ratio

curves (MRCs) and exact MRCs. Thus, the closer to exact
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FIGURE 7. Average miss ratio error of both the proposed approximation algorithm (Ours) and the state-of-the-art algorithm (PG2S)for each trace
(the lower, the better).

FIGURE 8. Error between approximate (Ours and PG2S) miss ratio curves (MRCs) and exact (Ideal) MRCs (the closer to Ideal, the better). Diskmon,
Diskmon1, WebSearch 2 and 3 start with very high miss ratio values (not 0) on y-axis due to their noticeably high cache miss ratios.

MRCs (i.e., Ideal), the better performance. As shown in the
figure, our MRCs approach exact MRCs closer than PG2S’
MRCs.

3) REFINEMENT
Our proposedmechanism provides four configuration param-
eters to accommodate all workload patterns more effec-
tively. This subsection evaluates performance improvement
with parameter configurations. Figure 9 shows average stack
distance errors of both our basic algorithm and a refined

algorithm. We configured our algorithm for each trace with
the help of our workload analysis studies. As in figure 9,
our optimized algorithm improves its performance (i.e., lower
error rates) by an average of 1.28×. Especially under Finai-
cial1 trace, our refined approximation finally exhibits 1.66×
better performance than PG2S. Please note PG2S initially
showed 1.24× better performance than our basic algorithm
under Financial1 trace. For this refinement with Financial1,
as shown in figure 10, our workload studies found this
Financial1 trace, unlike other traces, has relatively short
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FIGURE 9. Performance improvement with parameter configurations (the lower, the better). Here, Refined stands for our refined approximation
algorithm by configuring parameters for each trace. Please note this parameter configuration is an optional performance optimization process.
Without this refinement, our proposed approximation algorithm already achieves excellent performance.

FIGURE 10. Financial1 trace analysis for parameter configurations. Financial1 tends to intensively access a very limited range of LBA (a). It also has a
relatively short and recurrent LBA access pattern (b). It shows (not strong) temporal localities (c).

FIGURE 11. Average miss ratio error comparison between the proposed
algorithm and PG2S under Diskmon1, WebSearch2 and WebSearch3
traces. Each performance is normalized by Ours.

recurrent LBAs, in which case, a shorter unique count reset
timing (parameter D in algorithm 1) than our default value
is suggested. Thus, we adopted 5,000 for this D parameter
and achieved 1.66× performance improvement. We omit an
average miss ratio error plots under all 12 traces since they
also show a very similar performance improvement pattern
to figure 9.

4) EXECUTION TIME AND RESOURCE USAGE
Figure 12 presents total execution time of our approxima-
tion algorithm and PG2S. For this execution time evalua-
tion, unnecessary components or source codes of PG2S were
removed (i.e., comment out). That is, only relevant PG2S
source codes for stack distance approximation were executed

for fair evaluation. As in figure 12, our proposed algorithm
displays a surprisingly superior (by an average of 56, 108×)
execution time (on average 0.046 seconds (Ours) vs. 2,581
seconds (PG2S)) to process 0.3 million requests with a hash
table of 50K entries. As a hash table size increases, the aver-
age total execution time also decreases further (please refer
to figure 14). Consequently, we can hardly find our total exe-
cution time bars in the plot. Please note Diskmon’s execution
time looks very similar to Diskmon1’s, Financial2 is similar
to Finaicial1, and WebSearch 1 and 2 also exhibit similar
execution time patterns to WebSearch3. Thus, we omit them.

Interestingly, while our proposed algorithm consistently
shows an excellent execution time regardless of workload
types, PG2S’ execution time is very sensitive to trace types.
Deep PG2S source code analysis enables us to find the
main reason: calculating PG2S’ stack distance approxima-
tion (i.e., equation 3) has high computational complexity.
WebSearch and Diskmon traces have an exceptionally large
amount of unique (i.e., single access) LBAs, which skips
stack distance calculation. Thus, they exhibit a relatively
faster execution time. On the other hand, Financial and MSR
traces retain many overlapped (i.e., accessed again) LBAs,
requiring stack distance calculation. That is to say, the more
times PG2S performs stack distance calculation, the longer
its total execution time takes.

Memory consumption is also evaluated. Figure 13 presents
both algorithms’ total memory consumption. PG2S requires
on average 3.05× higher memory footprint than the proposed
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algorithm (43.3 MiB vs. 14.2 MiB). Interestingly, though
total memory consumption of both is different, both con-
sumption patterns are nearly identical. That is, while they
consume more memory space under both Diskmon1 and
WebSearch3 traces, they require less memory space under
Financial1 and all MSR traces. This is because, similarly to
the aforementioned execution time analysis, both Diskmon1
andWebSearch3 traces have a large number of unique LBAs,
which requires more memory space for PG2S to build a larger
dictionary map (storing unique key-value pairs) as well as for
ours to generate more hash nodes (i.e., a larger hash table
or a longer overflow chain). For instance, PG2S consumes
21.6 MiB for building two dictionaries and 38.1 MiB for
processing stack distance approximation under Diskmon1.
On the other hand, it requires 10.4 MiB for dictionaries
and 24.9 MiB for approximation under MSRproj0. Sim-
ilarly, while our algorithm produces 290,278 hash buck-
ets (including both all hash table entries and chain nodes)
under Diskmon1, it produces 124,867 hash buckets under
MSRproj0.

We also measured CPU usage, but meaningful difference
is negligible noticeable because parallel programming is
not easily applied to each algorithm. Thus, each process is
assigned to only single CPU core (out of 16 cores in our
server), which seemingly consumes high CPU resource (actu-
ally, 3.1% average CPU usage with 16 cores). However, our
proposed algorithm runs lightning fast so that its resource
usage may not be a considerable issue.

FIGURE 12. Total execution time of both the proposed mechanism (Ours)
and PG2S (the lower, the better). We can barely find a total execution
time of Ours in this plot because it takes a lot less than 0.1 second (on
average 0.046 seconds). Please note Diskmon, WebSearch 1 and 2 show
very similar execution time patterns to Diskmon1 and WebSearch3
respectively. So, we remove them.

V. DISCUSSION
The significant performance improvement of the proposed
algorithm mainly results from our surprisingly simple
stack distance approximation equation, significantly low-
ering mathematical computation overheads, compared to
PG2S. Our hash table data structure also makes a con-
tribution by efficiently checking if the given LBA is
unique, which is judiciously utilized for our unique ref-
erence count approximation (i.e., quasi-unique reference
count).

This section discusses hash table configurations and their
impact on overall performance in more detail.

FIGURE 13. Total memory consumption of both the proposed
mechanism (Ours) and PG2S (the lower, the better). Workloads retaining
many unique LBAs such as Diskmon1 and WebSearch3 consume more
memory space for both algorithms. Please note Diskmon, WebSearch
1 and 2 show very similar execution time patterns to Diskmon1 and
WebSearch3 respectively. So, we remove them.

A. HASH TABLE SIZE
In our experiments, we employed a hash table of 50K entries
because it exhibitedwell-balanced performance between total
execution time and memory consumption. Figure 14 presents
an average total execution time for various hash table size
configurations under 12 traces. For a more objective com-
parison, heavy workloads (9 million requests) are employed.
A hash table size varies from 10K to 300K and we average all
12 traces’ total execution time under both 0.3 million requests
and 9 million requests respectively. As in the figure, average
total execution time intuitively decreases as a hash table
size increases. Particularly under 9 million workloads, the
total execution time noticeably decreases as a hash table size
increases. This mainly results from linear search overhead
reduction of hash overflow chains. The proposed scheme
adopted a chaining mechanism for hash collision avoidance.
This chain implements a linked list data structure. Thus,
whenever a hash collision occurs, the proposed algorithm
references the chain to check if an identical reference exists
in the chain, requiring a linear search that generates overhead.
The longer chain, the higher overhead. Under typical 0.3 mil-
lion workloads, a significant performance improvement was
not found as a hash table size increased because each hash
bucket’s chain length is short (e.g., less than 6 on average).
On the other hand, a performance gain is significant under
heavy workloads as in the figure 14 (b) because larger hash
tables can noticeably reduce overflow chain lengths, reduc-
ing linear search overhead. For example, while an average
overflow chain length of a 10K entry-hash table is 353.6,
a 50K entry-hash table has on average 70.7 chain length.
However, total memory consumption of both hash tables is
nearly identical especially under heavy workloads, because
no empty (i.e., wasted memory space) hash table buckets
exist. Therefore, we suggest a larger hash table under heavy
workloads. To further reduce linear search overhead, a bloom
filter can efficiently check if a given LBA exists in the chain
list at the cost of memory space. A bloom filter can reduce
an unnecessary lookup overhead of the overflow chain lists
by simply prepending a new node into the chain head with-
out a list search overhead if a unique LBA caused a hash
collision.
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FIGURE 14. Average total execution time for various hash table size
configurations (the lower, the better). Heavy workloads (9 million) for all
12 traces is adopted for more objective comparison. A larger hash table
exhibits a noticeable performance gain particularly under heavy
workloads. Figure (b) also shows a total execution time of our algorithm
adopting both a simple (Division) and a more complicated (CRC-variant)
hash functions. The CRC-variant takes a longer time due to its higher
computational overhead.

B. HASH FUNCTION
A hash function is another important hash table performance
factor because it controls hash key distribution over the hash
buckets. The proposed scheme adopted a simple hash func-
tion such as a division method (i.e., h(k) = k % M , where
M is a hash table size) to reduce hash calculation over-
head. More complicated hash functions, including Knuth’s
Division variant, Multiplication methods, CRC variants, PJW
hashes, etc. potentially provide more effective key distribu-
tions [31]. However, though these sophisticated hash func-
tions may more effectively (i.e., more evenly) distribute hash
key values over the hash table, they involve relatively higher
calculation complexity. To verify these concerns, extensive
experiments were performed.

Figure 15 presents hash key distribution of both a simple
(i.e., Division method) hash function and a more complex
(CRC-variant) hash function under MSRweb0 traces. As in
the figure, even the Division hash function exhibits a good
(actually, better) performance (i.e., very even key distribu-
tion). We also performed this experiment under all 12 traces
and the Division hash function showed a very good perfor-
mance (we omit them). Surprisingly, a CRC-variant hash
function exhibited a wider distribution variation for each hash
bucket.

As for hash calculation overhead, we measured a total
execution time of our proposed algorithm by adopting both
hash functions. Especially heavy workloads were employed
in this evaluation because our algorithm exhibits extremely
fast execution time (less than 0.05 seconds) under 0.3 million
workloads. As in figure 14 (b), our algorithm adopting the
CRC-variant hash function took on average 1.16× longer
time than the one using Division hash function, implying
CRC-variant causes 16% higher computational overheads
than the simple Division hash function. Based on our exten-
sive experiments, a simple Division hash function exhibited
a competitive key distribution performance. Moreover, our
proposed algorithm can benefit from its simplicity. Therefore,
our approximation design employed the simple Division hash
function.

FIGURE 15. A hash key distribution of both simple (Division) and
complicated (CRC-variant) hash functions. A Division hash function
exhibits more even distribution than CRC-variant hash function.

VI. CONCLUSION
A stack distance is defined as the number of unique accesses
between two identical accesses in a trace. Although this stack
distance concept was originally suggested for virtual page
modeling [1], it has been applied to a variety of applications
utilizing temporal locality information. The stack distance
applications include modeling cache behavior with miss ratio
curves (MRCs) [6], data placement policies in tiered storage
systems [2], and hot data classification algorithm design [3].
The stack distance is very useful for various planning and
optimization fields. However, an exact stack distance calcu-
lation requires both high computational complexity and high
space consumption.

To address these limitations, a new stack distance algo-
rithm employing an interval tree has been proposed. Though
it noticeably reduced stack distance calculation complexity
to O(NlogM ), it is not useful for practical online use in pro-
duction systems [7]. Recently, Zhang and Tay [2] proposed
a stack distance approximation algorithm, named PG2S,
that is based on reference popularity and inter-reference
distance (IRD) information. As a result, it reduced com-
putational complexity to O(M ) and achieved a high accu-
racy. However, because PG2S’ stack distance approximation
equation is so complicated, it results in an excessive total
execution time. Moreover, it requires whole trace analysis
information before running the approximation algorithm.
These critical limitations prevent PG2S from being adopted
in practical online production systems.

This paper proposed a more efficient stack distance
approximation algorithm. The proposed algorithm utilizes
simple two metrics such as inter-reference distance and a
quasi-unique reference count. Further, our stack distance
approximation equation is surprisingly simple (i.e., the two
value average). Thus, our algorithm significantly reduces
computational complexity. Moreover, the proposed algorithm
allows configuration parameters for further performance opti-
mization to make the best use of workload characteris-
tics. We also provide some guidelines for this parameter
configuration based on our extensive workload studies. The
proposed algorithm also does not require any pre-processing
or prerequisite information. Consequently, our algorithm is
extremely fast (less than 0.05 second), consumes on average
3.05× less memory, and achieves on average 3.7× higher
accuracy than PG2S.
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Future work investigates applications for our efficient
approximation technique. These include designing efficient
tiered storage systems with different storage characteris-
tics as well as efficient memory pooling designs utilizing
next-generation, cache-coherent interconnects for proces-
sors, memory expansion, and accelerators such as Compute
Express Link (CXL) [32].
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