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ABSTRACT Quaternions have appeared in many practical fields, such as image processing and data mining,
and so on. This paper focuses on designing an efficient quaternion-valued neurodynamic approach (QNA)
based on multi-agent systems to solve nonsmooth convex quaternion distributed optimization prob-
lems (QDOPs) with inequality and affine equality constraints. Each agent in the system cooperatively solves
the minimum of the global objective function through the information of itself and its neighbors. At first, the
related convex analysis of the quaternion field is given, which provides a theoretical basis for solving the
nonsmooth QDOP. Then the considered QDOP is equivalently transformed by using the connectivity of
the communication topology. After that, a distributed QNA is presented, where the adaptive controller is
introduced to ensure that the penalty terms with respect to the inequality constraints can self-adjust according
to the local states. It is shown that all agents reach a consensus while obtaining the optimal solution to the
related QDOP. Finally, a numerical example and an application in dictionary sparse representation of color
images based on quaternion are realized to intuitively describe the effectiveness and practical significance
of the proposed QNA.

INDEX TERMS Adaptive controller, multi-agent system, nonsmooth, quaternion distributed optimization
problem (QDOP), quaternion-valued neurodynamic approach (QNA).

I. INTRODUCTION
Since W.R.Hamilton introduced the well-known quaternion
in [1], the quaternion field has been regarded as the field of
generalized complex numbers with three independent imag-
inary parts. With the development of 3D technology and the
exploration of high-dimensional problems, the importance
of quaternion distributed optimization problems (QDOPs)
has gradually emerged in fields of science and technology,
such as color image processing [2], [3], satellite tracking [4],
bearings-only tracking [5] and so on. In particular, in the field
of color image processing [2], the color image is abstracted
into a quaternion array by using three imaginary parts of
quaternion to represent the gravity of the three primary colors,
respectively, thus keeping each signal channel from interfer-
ing with others.

The associate editor coordinating the review of this manuscript and

approving it for publication was Azwirman Gusrialdi .

Generally, the form of a distributed optimization problem
with quaternion decision variables (hereafter referred to as
QDOP) can be represented as follows

min g(p) ,
N∑
i=1

gi(p)

s.t. hi(p) ≤ 0, Dip = di, i = 1, 2, · · · ,N (1)

where p = (p1, p2, · · · , pn)T ∈ Hn is the decision
variable,Hn is the set of n-dimensional quaternion vectors,
gi : Hn

→ R and hi : Hn
→ Rmi with hij : Hn

→ R (j =
1, 2, · · · ,mi) are quaternion-variable functions, Di ∈ Hsi×n

and di ∈ Hsi . The optimization objective is to find the quater-
nion p satisfying the constraint conditions so as to minimize
the value of the objective function g, which is different from
the real-valued optimization problem because of the different
domain of decision variables. As the world has entered the
information age, multi-agent systems that can protect the
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security of private information have been applied in various
aspects, such as optimal control [6]–[8] and network function
virtualization [9]. Thus proposing an efficient algorithm to
solve QDOP (1) with a multi-agent system has become a hot
topic for many researchers. Inspired by the neural networks
proposed by Tank and Hopfield in [10] and [11], various
real-valued neurodynamic approaches have emerged to solve
real-valued distributed optimization problems in [12]–[16]
and references therein until now. However, when studying
QDOP (1) and the affine transformation of high-dimensional
sets similar to [17] and [18], it is necessary to propose QNAs
for searching the minimum of such problems.

As the extension of real-valued and complex-valued neuro-
dynamic approaches, QNAs have the following advantages:

• The structure of quaternions enables QNAs to maintain
the integrity of the original structure and the coupling
of internal structure in data modeling and processing of
three-dimensional or four-dimensional space.

• Quaternions can improve the compactness of the model,
preserve the structural framework of the system, and
reflect the physical properties of the original problem
better.

Therefore, much research in the quaternion field appears,
such as [19]–[25]. However, the special properties of quater-
nion bring many difficulties to the study of QNAs. As we
all know, whether in the real or complex field, the design of
neurodynamic approaches for solving distributed optimiza-
tion problems are inseparable from gradients or sub-gradients
of the objective function and constraint functions. To
design efficient neurodynamic approaches in the quaternion
field, [20] and [21] proposed Hamilton-real calculus, general-
ized Hamilton-real calculus, and the definitions of quaternion
derivative and quaternion Hessian matrix, which provided
the theoretical support for solving the nonsmooth QDOP
later. In [22], the stability of QNAs with continuous-time
and discrete-time were analyzed by the complex factorization
of quaternions, and [23] adopted quaternion matrix theory
to solve the state estimation problem of QNA with delay.
As for the existing QNAs used to solved quaternion optimiza-
tion, [24] promoted the real-valued neurodynamic approach
in [12] to solve the quaternion optimization problem with
affine equality constraints and set constraints by the penalty
method, and [25] further proposed a QNA for the nonsmooth
QDOP with inequality constraints.

However, as far as we know, there are still few
quaternion-valued neurodynamic approaches for solving
nonsmooth convex QDOPs with inequality constraints and
affine equality constraints. Inspired by the QNAs in [24]
and [25], a continuous-time QNA is constructed in this paper
and other main contributions are listed below.

• In comparison with the existing QNAs to solving
QDOPs in [24], [25], this paper further studies the sub-
differential properties of the global objective function
and the optimality condition for QDOPs and takes the
inequality and affine equality constraints into account by
using multi-agent system.

• Instead of introducing penalty parameters that need to
estimate the lower bounds in advance like [16], [24]–[27],
this paper designs a novel QNA by introducing the
adaptive controller to ensure that the state solution
finally enters the feasible region of the QDOP with less
computation amount.

• The QNA proposed in this paper can be further sim-
plified as a real-valued neurodynamic approach for
solving real-valued distribution optimization problems
with inequality and affine equality constraints. Com-
pared with the real-valued neurodynamic approaches
in [12]–[16], the approach herein can avoid using global
information of the optimization with the help of the
adaptive controller.

The remaining part consists of the introduction of basic
knowledge and quaternion-related theories in Section II, the
equivalent transformation of QDOP (1) in Section III, the
convergence analysis of the proposed QNA in Section IV,
the corresponding numerical simulations in Section V, and
the conclusion in Section VI.

II. PRELIMINARIES
A. NOTATIONS AND GRAPH THEORY
Throughout this paper, we adoptR as the set of real numbers,
H denotes the set of quaternions. For any vector v ∈ Rn (or
Hn), matrix A ∈ Rm×n (or Hm×n), vi is the ith component
of the vector v, aij represents the entry located in the ith
row and jth column of matrix A = (aij)m×n. In represents
the n-dimensional identity matrix. (·)T means the transpose
and ‖ · ‖ means the Euclidean norm. The notations d

dv and
∂
∂v denote the differential operator and partial differential
operator with respect to v. As for any set S, int(S), bd(S),
and S mean the interior, boundary, and closure of the set
S, respectively. col(x, y) = (xT, yT)T for any vectors x, y;
diag(A,B) denotes the partitioned diagonal matrix with A and
B as diagonal elements and A ⊗ B stands for the Kronecker
product of A and B.

Let G(V, E) be a graph consisting of nodes i ∈ V =
{1, 2, · · · ,N } and corresponding edges E ⊆ V × V where
(i, j) ∈ E if and only if nodes i and j are connected. The
neighbor set of the node i is defined as N i

= {j ∈ V :
(i, j) ∈ E}. A = (aij)N×N is the adjacency matrix of G
and the connection weight aij = 1 when j ∈ N i, aij =
0 otherwise. In particular, the graph G(V, E) is an undirected
graph when aij = aji for any i, j ∈ V . If there further
exists a path {(i, i1), (i1, i2), · · · , (ik , j)} from node i to node
j for any i, j ∈ V , then the graph G(V, E) is connected.
The Laplacian matrix is defined as L = D − A where
D = diag{D11,D22, · · · ,DNN } and Dii =

∑N
j=1 aij. It is well

known that L is positive semidefinite when G is connected,
and xTLx = 0 if and only if Lx = 0.

B. QUATERNION ALGEBRA ANALYSIS
The quaternion concept proposed by W.R.Hamilton in [1] is
as follows:

H : = span{1, i, j,k}

= {x + yi+ zj+ wk : x, y, z,w ∈ R}
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where the imaginary units i, j,k satisfy the following
Hamilton rule

i2 = j2 = k2 = −1, ijk = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j. (2)

Based on the definition of the quaternion field H, for any
p = px + pyi+ pzj+ pwk ∈ H,

R(p) = px ,

I(p) = pyi+ pzj+ pwk,

are the real part and imaginary part of p, respectively. In addi-
tion, take

I i(p) = py, Ij(p) = pz, and Ik(p) = pw,

the quaternion conjugate of p is

p∗ = px − pyi− pzj− pwk,

and the norm of p is

‖p‖ =
√
pp∗ =

√
p2x + p2y + p2z + p2w.

For any p ∈ Hn, pT and pH denote the transpose and
transpose conjugate of p, respectively. Define B(p, r) = {q :
‖p − q‖ < r}, projection operator PS (p) = argminq∈S ‖p −
q‖, the distance from p to S as d(p, S) = inf{‖p−q‖ : q ∈ S},
and the normal cone of S at p as NS (p) = {o ∈ Hn

:

R(oH(p− q))≥0,∀q ∈ S}.

C. NECESSARY DEFINITIONS AND LEMMAS
Through the Hamilton rule (2), it can be concluded that
quaternion does not satisfy the general commutative law of
multiplication, that is, for any p1, p2 ∈ H, the equation
p1p2 = p2p1 is not necessarily hold. In addition, the convex
analysis theory in the quaternion field is not complete yet,
which makes it difficult to solve QDOPs.

In this case, to solve the nonsmooth QDOP, the gradient
or subgradient of quaternion function needs to be considered
first. According to [24] and [25], some necessary defini-
tions and lemmas are given. In addition, the subdifferential
properties of quaternion-variable functions and the optimality
condition for QDOPs are studied as shown in the following.
Definition 1 ([24]): The linear invertible mapping 9 :

X → Y is defined as follows
1) When X=Hn and Y=R4n, for any p ∈ X ,

9(p) =


R(p)
I i(p)
Ij(p)
Ik(p)

 ∈ Y ; (3)

2) When X=Hm×n and Y=R4m×4n, for any P ∈ X ,

9(P) =


R(P) −I i(P) −Ij(P) −Ik(P)
I i(P) R(P) −Ik(P) Ij(P)
Ij(P) Ik(P) R(P) −I i(P)
Ik(P) −Ij(P) I i(P) R(P)

.

It is easy to obtain that 9 is a bijective mapping and
establishes a one-to-one correspondence between quaternion
field and real field, so the Definition 1 lays the foundation
for the convex analysis theory on quaternion field. Therefore,
there are some useful propositions about 9.
Proposition 2 ([24]): For any vectors p, q ∈ Hn, matrix

P ∈ Hm×n, invertible matrix O ∈ Hn×n and σ ∈ R, one
has 9 is additive and homogeneous. In addition, it has the
following properties

1) 9(PH) = 9(P)T, R(pHq) = 9(p)T9(q);
2) 9(PO) = 9(A)9(O), 9(Pp) = 9(A)9(p);
3) 9(O)−1 = 9(O−1);
4) ‖9(p)‖ = ‖p‖, ‖9(p)‖1 = ‖p‖1;
5) −‖p‖‖q‖ ≤ R(pHq) ≤ ‖p‖‖q‖.
Generally, the objective function (or cost function) of the

considered QDOP is usually quaternion-variable (QR) func-
tion, that is, its domain is a subset of Hn and its range is a
subset in R. On the basis of the existing work on real-valued
distributed optimization problems, considering the quater-
nion gradient and subgradient (for nonsmooth case) of QR
functions is instrumental for practical applications. Thus,
the definition of the auxiliary function is shown next for
convenience.
Definition 3: For the QR function g : Hn

→ R, the
real-valued function f : R4n

→ R is called the auxiliary
function of g, if it satisfies f (9(p)) = g(p) for any p ∈ Hn.
Lemma 4 ([24]): For the differentiable QR function g(p) :

H→ R and p = x + yi+ zj+ wk, it follows

1) dg(p) = 4R
(
∂g(p)
∂p dp

)
;

2) the quaternion gradient of g(p) is

∇Hg(p) = ∂x f (x, y, z,w)+ ∂yf (x, y, z,w)i

+ ∂zf (x, y, z,w)j+ ∂wf (x, y, z,w)k,

where f is the auxiliary function of g and ∂ιf (x, y, z,w)
is the partial derivative of f with respect to ι ∈

{x, y, z,w}.
By introducing the mapping 9 in Definition 1 and the

existing theoretical results of convex analysis of real-valued
functions in [28], it is easy to prove that the convexity of
the QR function g : Hn

→ R and its auxiliary function
f : R4n

→ R is equivalent by using the properties of the
g and f . For convenience, let

S̃ = {x ∈ R4n
: x = 9(p), p ∈ S} (4)

be the auxiliary set of S ⊆ Hn, it also can be obtained that the
bounded closed convexity of S is equivalent to that of S̃, and
for any p ∈ Hn, it follows d(p, S) = d(9(p), S̃) and p ∈ S if
only if 9(p) ∈ S̃.
Lemma 5 ([28]): Suppose f (x) : Rn

→ R is convex and
Lipschitz on the convex set K ⊆ Rn, the subdifferential of f
at x is af (x) = {ξ ∈ Rn

: f (x + v)− f (x) ≥ ξTv,∀v ∈ Rn
}.

Based on Lemma 5, define the partial subdifferential of the
convex function f (x, y) at x as

ax f (x, y)
= {ξ ∈ Rn

: f (x + v, y)− f (x, y) ≥ ξTv,∀v ∈ Rn
}. (5)
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Definition 6 ([29]): Suppose that g(p) : Hn
→ R is a

convex function, for any p = x + yi + zj + wk ∈ Hn, the
quaternion subdifferential of g(p) is defined as

aHg(p) = ax f (x, y, z,w)+ ayf (x, y, z,w)i
+azf (x, y, z,w)j+ awf (x, y, z,w)k (6)

where ax f (·), ayf (·), azf (·) and awf (·) are the partial subd-
ifferential of f with regard to x, y, z and w, respectively.
Remark 7: From equation (6), it is worth pointing out that

when the convex QR function g is differentiable, aHg =
{∇Hg} and ∇Hg is defined in Lemma 4. Therefore, the above
result can be regarded as a generalization of the subdif-
ferential of real-valued functions over the quaternion field.
Therefore, it is obvious that aHg(p) is a nonempty compact
convex set of Hn.
Lemma 8 ([28]): Let f (x) be a convex function at x =

(x1, x2, x3, x4), then

af (x) ⊆ ax1 f (x1, x2, x3, x4)× ax2 f (x1, x2, x3, x4)
×ax3 f (x1, x2, x3, x4)× ax4 f (x1, x2, x3, x4).

(7)

Proposition 9: For any p ∈ Hn, let g(p) be convex QR
function and f be the auxiliary function of g, then

9(aHg(p)) = af (9(p)).

Proposition 10: For the convex QR function g : Hn
→ R,

∀ p, q ∈ Hn, we have

aHg(p) = {η ∈ Hn
: g(q)− g(p) ≥ R(ηH(q− p))},

and

R((η − ς )H(p− q)) ≥ 0

where η ∈ aHg(p), ς ∈ aHg(q).
Proposition 11: Suppose that S,Q⊆Hn are nonempty

closed convex sets, g : Hn
→ R,

1) if g(p) is local Lipschitz and attains a minimum over S
at p ∈ S, then 0 ∈ aHg(p)+ NS (p);

2) if 0 ∈ int(S − Q), then for any p ∈ S ∩ Q, NS∩Q(p) =
NS (p)+ NQ(p).

The proofs of Proposition 9, 10, and 11 can be seen in
Appendix- A, B, and C, respectively.

As described in [25], the differential inclusion is expressed
as

ṗ(t) ∈ F(p(t)), t ≥ 0 (8)

where F is a set-valued map that for any p ∈ Hn, there is
always a corresponding set satisfying F(p) ⊆ Hn. If there is
a measurable function η(t) ∈ F(p(t)) such that ṗ(t) = η(t)
for a.e. t ∈ [0,T ] where T > 0, then p(t) is a local solution
of (8). Moreover, if V (p) : Hn

→ R is a locally Lipschitz
function, p(t) : [0,+∞) → Hn is absolutely continuous on
any compact interval of [0,+∞), then for a.e. t ∈ [0,+∞),
the derivative of V (p) with respect to t along (8) is V̇ (p(t)) =
{ξ ∈ R : ∃ν ∈ F(p(t)) such that 4R(ηHν) = ξ, ∀ η ∈

aHV (p)} fromLemma 4. Then, the following is the invariance
principle in the quaternion field for nonsmooth functions.

Some important conclusions in this section are derived
from works of literature [20], [21], [24], and [25], which
provide a theoretical basis for us to establish the QNA for
solving QDOPs of the form (1) and prove its convergence.
In addition, the convex QDOP (1) is meaningful for various
practice areas, like color image processing, satellite tracking,
and bearings-only tracking.

III. PROBLEM DESCRIPTION
Consider a network consisting ofN agents, and the communi-
cation topology between agents is described asG(V, E) where
V = {1, 2, · · · ,N }. When graph G is a connected graph and
pi is used to represent the state of agent i, the convex QDOP
(1) is equivalent to the following QDOP

min g(p) ,
N∑
i=1

gi(pi)

s.t. h(p) ≤ 0

Dp = d

Lp = 0 (9)

where p = col{p1, p2, · · · , pN } ∈ HNn, the global
objective function g(p) : HNn

→ R is the sum of
the local objective functions gi(pi) (i ∈ V), h(p) =
col{h1(p1), h2(p2), · · · , hN (pN )} : HNn

→ Rm with

m =
∑N

i=1mi, D = diag(D1,D2, · · · ,DN ), d =

col(d1, d2, · · · , dN ), L = L⊗In and L is the Laplacian matrix
of the communication topology G.

For convenience, note

X1 = {p ∈ HNn
: h(p) ≤ 0} =

N∏
i=1

X i1,

X2 = {p ∈ HNn
: Dp = d} =

N∏
i=1

X i2,

X3 = {p = 1N ⊗ p ∈ HNn
: p ∈ Hn

},

where X i1 = {p ∈ Hn
: hi(p) ≤ 0} and X i2 = {p ∈ Hn

: Dip =
di}. Then the feasible region of QDOP (9) is denoted as

X = X1 ∩ X2 ∩ X3.

In this paper, we suppose that X 6= ∅ and the optimal solution
set O ⊆ Hn of QDOP (9) is nonempty.
Assumption 12:
1) There are p̂ ∈ int(X i1) ∩ X

i
2 and ri > 0 such that X i1 ⊆

B(p̂, ri) for every i ∈ V .
2) For every i ∈ V , hi = col{hi1, hi2, · · · , himi}, hij :

Hn
→ R (j = 1, 2, · · · ,mi) are convex QR functions

but may be nonsmooth, Di ∈ Hsi×n is full row-rank.
3) For every i ∈ V , gi : Hn

→ R is convex but may be
nonsmooth, and gi is Lipschitz.

Assumption 13: The communication topology G is an
undirected connected graph.
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Lemma 14: Under Assumption 12, for the global function
g(p) =

∑N
i=1 gi(pi) defined as (9), we have

aHg(p) = col(aHg1(p1),aHg2(p2), · · · ,aHgN (pN )).

(10)

The proof of Lemma 14 can be seen in Appendix-D.
Compared with Theorem 2 in [25], it is obvious that

Lemma 14 above relaxes the assumptions of the strong
convexity of the local objective functions and aHg(p) ⊂
col(aHg1(p1),aHg2(p2), · · · ,aHgN (pN )).
Lemma 15 ( [24]): Under Assumption 12, let Ii ,
{1, 2, · · · , mi}, then Ui(p) ,

∑mi
k=1max{0, hik (p)} is convex

and

aHUi(p) =



∑
k∈I+i (p)

aHhik (p)

+

∑
k∈I0

i (p)

[0, 1]aHhik (p), p ∈ Hn
\X i1∑

k∈I0
i (p)

[0, 1]aHhik (p), p ∈ bd(X i1)

{0}, p ∈ int(X i1)
(11)

where I+i (p) = {k ∈ Ii : hik (p) > 0} and I0
i (p) = {k ∈ Ii :

hik (p) = 0}.
By means of the exact penalty method, the convex QDOP

(9) can be equivalently transformed as follows.
Theorem 16: Under Assumptions 12 and 13, p∗ ∈ HNn

is an optimal solution of QDOP (9) if and only if there is
a0 > 0 such that p∗ ∈ HNn is an optimal solution of the
following QDOP with ui > a0 (i ∈ V)

min G(p) ,
N∑
i=1

gi(pi)+
N∑
i=1

uiUi(pi)

s.t. Dp = d

Lp = 0 (12)

where Ui(pi) is from Lemma 15.
Proof: We prove this theorem from two aspects.

Necessity: If p∗ is an optimal solution to the QDOP (9),
then there exists p∗ ∈ Hn such that p∗ = IN ⊗ p∗ and p∗ is
an optimal solution of the QDOP (1), that is p∗ ∈ X i1 ∩ X

i
2.

Based on Assumption 12, NX i1∩X
i
2
(p∗) = NX i1

(p∗)+NX i2
(p∗).

Due to Proposition 11, we can find θik ∈ [0,+∞) satisfying

0 ∈
N∑
i=1

aHgi(p∗)+
N∑
i=1

∑
k∈I0

i (p
∗)

θikaHhik (p∗)

+

N∑
i=1

NX i2
(p∗).

Then there exist−ξ∗ ∈
∑N

i=1 aHgi(p∗), η∗ik ∈ aHhik (p∗), and
γ ∗ ∈

∑N
i=1NX i2

(p∗), such that ξ∗ =
∑N

i=1
∑

k∈I0
i (p
∗) θikη

∗
ik+

γ ∗. We claim that for any k ∈ I0
i (p
∗) (i ∈ V),

θik ≤ Nlr/ĥ , a0 (13)

where l = maxi∈V li, li is the Lipschitz constant of gi, r =
maxi∈V ri, ĥ = −max{h1(p̂), h2(p̂),hm(p̂)}, hk (p) is the kth
component of h(p) = col {h1(p1), · · · , hN (pN )} :HNn

→ Rm

and p̂ = 1⊗ p̂.
When I0

i (p
∗) = ∅ (i ∈ V), it is obvious that θik =

0 satisfies (13). On the other hand, when there is ĩ ∈ V such
that I0

ĩ
(p∗) 6= ∅, we next prove (13) still holds. If (13) does

not hold, there is at least one k̃ ∈ I0
ĩ
(p∗) such that θĩk̃ > a0.

Thus, by the convexity of hik (p), it has〈
− ξ∗, p∗ − p̂i

〉
=

N∑
i=1

∑
k∈I0

i (p
∗)

θik
〈
η∗ik , p

∗
− p̂i

〉
+
〈
γ ∗, p∗ − p̂i

〉

≥

N∑
i=1

∑
k∈I0(p∗)

θik (hik (p∗)− hik (p̂i)) ≥ θĩk̃ ĥ > Nlr,

which implies that Nl < ‖ξ∗‖ by Assumption 12 and contra-
dicts ‖ξ∗‖ < Nl. Therefore, when ui ≥ a0,∑

k∈I0
i (p
∗)

θikaHhik (p∗) = ui
∑

k∈I0
i (p
∗)

θik

ui
aHhik (p∗)

⊆ ui
∑

k∈I0
i (p
∗)

[0, 1]aHhik (p∗).

Therefore, from (11), it is easy to obtain∑
k∈I0

i (p
∗)

θikaHhik (p∗) ⊆ uiaHUi(p∗)

for any ui ≥ a0. As a result, we have

0 ∈

N∑
i=1

aHgi(p∗)+
N∑
i=1

∑
k∈I0

i (p
∗)

uiaHUi(p∗)

+

N∑
i=1

NX i2
(p∗)

for all ui ≥ a0. That is p∗ = col(p∗, p∗, · · · , p∗) ∈ HNn is an
optimal solution of QDOP (12) from Proposition 11, which
means that the optimal solution to (9) must be the optimal
solution to (12) with ui > a0.
Sufficiency: If p∗ is an optimal solution to QDOP (12).

Without loss of generality, assume that p̃ is an optimal
solution to QDOP (9). Then p∗ ∈ X2 ∩ X3, and p̃ =
col(p̃, p̃, · · · , p̃) ∈ HNn is also an optimal solution to the
following QDOP

min g(p)+ a0U (p)

s.t. p ∈ X2 ∩ X3.

where a0 = lr/ĥ and U (p) =
∑N

i=1Ui(pi). Thereby,

N∑
i=1

gi(p̃)+ a0
N∑
i=1

Ui(p̃) ≤
N∑
i=1

gi(p∗)+ a0
N∑
i=1

Ui(p∗).

(14)
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In addition, by the choice of p∗, there is a p∗ ∈ Hn such that
p∗ = col(p∗, p∗, · · · , p∗) ∈ HNn satisfies

N∑
i=1

gi(p∗)+
N∑
i=1

uiUi(p∗) ≤
N∑
i=1

gi(p̃)+
N∑
i=1

uiUi(p̃)

(15)

when ui > a0. By combining (14) and (15), we get that

N∑
i=1

(ui − a0)Ui(p∗) ≤
N∑
i=1

(ui − a0)Ui(p̃) = 0.

From the definition of Ui(p), p ∈ X i1 if and only if Ui(p) = 0.

As a result, it is clear that p∗ ∈ X i1 for all i ∈ V . Then it implies

that g(p∗) =
∑N

i=1 gi(p
∗) =

∑N
i=1 gi(p

∗)+
∑N

i=1 uiUi(p
∗) =

G(p∗) ≤ G(p) = g(p), ∀p ∈ X1 ∩ X2 ∩ X3. Thus p∗

is an optimal solution to the QDOP (9), which means that
the optimal solution to (12) must be the optimal solution
to (9). �
Remark 17: It can be known from Theorem 16 that when

establishing the equivalence between QDOP (9) and QDOP
(12), the penalty parameters need to be larger than a uni-
form lower bound. However, calculating the lower bound
of the penalty parameters will involve global information
and cause additional computational burden. Therefore, intro-
ducing adaptive controllers that can be self-adjusted has the
following advantages.

1) Drive the state solution into the constraint set;
2) Make the adaptive control terms remain constant after

entering the constraint set to avoid penalty parameters
becoming ill-conditioned;

3) Reduce the amount of calculation, and avoid using the
global information of the multi-agent system.

IV. MAIN RESULTS
In this section, a QDOP (1) with affine equality and inequal-
ity constraints is solved. The proposed QNA is based on
a multi-agent system with adaptive controllers under undi-
rected and connected topology, and it is theoretically proved
that the state solution exists globally and converges to an
optimal solution to the QDOP.

Next, benefiting from the Theorem 16, we propose the
following QNA for agent i ∈ V in the multi-agent system
in order to solve the QDOP (9),

ṗi(t) ∈ −α(t)(I − Qi)
(
aHgi(pi(t))+ ui(t)aHUi(pi(t))

+

N∑
j=1

aij(zi(t)− zj(t))
)
−

N∑
j=1

aij(pi(t)− pj(t))

−aH‖Dipi(t)− di‖1
u̇i(t) = Ui(pi(t)), ui(0) > 0

żi(t) = α(t)
N∑
j=1

aij(pi(t)− pj(t)),

(16)

where pi is the estimate of the optimal solution for agent
i, ui is the adaptive penalty variable of agent i and zi is
auxiliary variable of agent i, I is the identity matrix and
Qi = DH

i (DiD
H
i )
−1Di is the projection matrix and Ki(pi) =

‖9(Di)9(pi) − 9(di)‖1 , Bi(9(pi)). Let tX2 be the latest
time to enter constraint set X2 and define α(t) as

α(t) =

{
0, t < tX2
1, t ≥ tX2 .

(17)

From the definition of Bi(·), it holds

aBi(9(pi)) = 9(Di)Th[−1,1](9(Di)9(pi)−9(di))

where h[−1,1](x) = (h[−1,1](x1), · · · , h[−1,1](xn)) for x ∈ Rn

and

h[−1,1](xk ) =


1, xk > 0
[−1, 1], xk = 0
−1, xk < 0

(18)

for k = 1, 2, · · · , n. Let

ψ[−1,1](p) = h[−1,1](R(p))+ h[−1,1](I i(p))i

+ h[−1,1](Ij(p))j+ h[−1,1](Ik(p))k,

then it follows from Proposition 9 that aHKi(pi) =

DH
i ψ[−1,1](Dipi − di).
It is worth pointing out that penalty parameters ui in

Theorem 16 are local information for agents, which can
guarantee the complete distribution properties of the QNA
(16). Actually, the role of the term aHgi(pi(t)) is to minimize
the objective function gi(pi(t)), ui(t)aHUi(pi(t) is to ensure
that the state solution enters inequality constraint set X i1 and
α(t)(I − Qi) as well as −aH‖Dipi(t) − di‖1 are to ensure
the state solution enters equality constraint set X i2, while
−
∑N

j=1 aij(zi(t) − zj(t)) and zi(t) play the role in driving all
agents to reach the consensus.
Denote I = I ⊗ IN , Q = diag(Q1,Q2, · · · ,QN ),

u = col(u1, u2, · · · , uN ), z = col(z1, z2, · · · , zN ), diag(u) =
diag(u1, u2, · · · , uN ), diag(u) = diag(u) ⊗ In, and W (p) =
col(U1(p1),U2(p2), · · · ,UN (pN )). Let K (p) =

∑N
i=1 Ki(pi)

and U (p) =
∑N

i=1Ui(pi), then from (10), aHU (p(t)) and
aHK (p(t)) can be computed similarly. Therefore, the QNA
(16) can be rewritten in a compact form

ṗ(t) ∈ −α(t)(I − Q)
(
aHg(p(t))+ diag(u(t))×

aHU (p(t))+ Lz(t)
)
− Lp(t)− aHK (p(t))

u̇(t) = W (p(t)), u(0) > 0
ż(t) = α(t)Lp(t).

(19)

Remark 18: As we all know, the Karush-Kuhn-Tucker
(KKT) condition and negative gradient systems play an
important role in designing continuous-time neurodynamic
approaches such as [12]–[18], [24]–[27], and the Lyapunov
stability theory is always used to study their convergence
performance. As the importance of quaternions gradually
emerging in real life, this paper is no longer limited to solving
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real-valued convex optimization problems, but proposes a
novel QNA for solving QDOPs with inequality and affine
equality constraints by means of the adaptive controller u(t).
From the dynamic properties of u(t), it can be seen that when
the state solution doesn’t enter the constraint set, u(t) will
increase to intensify the penalty for the points outside the
constraint set, and u(t) stops increasing until the state solution
enters the constraint set. This not only ensures that the state
solution advances in the direction of the feasible region, but
also avoids the occurrence of infinite variables that may cause
the system to collapse.

In addition, when the imaginary part of the quaternion
takes zero, the QNA proposed in this paper can be simpli-
fied to a real-valued neurodynamic approach. According to
the dynamic behavior of the adaptive controller that can be
adjusted with its own state, it is capable of avoiding the
calculation of the lower bound of the penalty parameter while
solving the optimization problem with constraints, which
makes the QNA in this paper also have the competitive advan-
tage of reducing the amount of calculation than ones in [16],
[24]–[27] when solving both convex QDOPs and convex real-
valued distributed optimization problems.
Theorem 19: Under Assumption 12, there is TX2 > 0 such

that the state solution (p(t),u(t), z(t)) of QNA (19) from the
initial solution (p(0),u(0), z(0)) ∈ HNn

×RN
>0×HNn, fulfills

p(t) ∈ X2 when t ≥ TX2 > 0.
Proof: For K (p) = B(9(p)) = ‖9(D)9(p) − 9(d)‖1,

it is easy to obtain that there are ξ (t) ∈ aHK (p(t)) and η(t) ∈
ψ[−1,1](Dp(t)− d) satisfying ξ (t) = DHη(t), thus 9(ξ (t)) ∈
aB(9(p(t))) and 9(ξ (t)) = 9(D)T9(η(t)) ∈ aB(9(p(t))).
From Proposition 9, it has

d
dt
B(9(p(t))) = 〈9(D)T9(η(t)), 9(ṗ(t))〉.

Since D(I − Q) = 0, if p(t) ∈ HNn
\X2 for any t ≥ 0 and

p0 = p(0) ∈ HNn, we have 9(p(t)) ∈ R4Nn
\X̃2, where X̃2 is

defined as same as S̃ in (4). Therefore, it follows from the
definition of 9 and QNA (19) that

9(D)9(ṗ(t)) = −9(D)aB(9(p(t))).

Obviously, from9(p(t)) ∈ R4Nn
\X̃2,9(D)9(p)−9(d) 6= 0

holds. Then it obtains ‖9(η(t))‖ ≥ 1 and

d
dt
B(9(p(t)))

= −9(η(t))T9(D)9(D)T9(η(t))

≤ −λmin‖9(η(t))‖2 ≤ −λmin

where λmin > 0 is the minimum eigenvalue of 9(D)9(D)T.
Through integrating the above inequality from t0 = 0 to t ,
we have

B(9(p(t))) ≤ B(9(p(0)))− λmint.

Hence, when t = ‖9(D9(p(0)))−9(d)‖1
λmin

, TX2 ,B(9(p(t))) = 0,
namely, 9(p(t)) ∈ X̃2 if and only if p(t) ∈ X2. If there is t1 ≥
TX2 such that p(t1) ∈ bd(X2) and p(t) /∈ X2 for t ∈ (t1, t2),

then K (p(t1)) = B(9(p(t1))) = 0. It can be known from the
previous proof that B(9(p(t))) < 0 when t ∈ (t1, t2), which is
a contradiction with B(9(p)) ≥ 0. Therefore, when t ≥ TX2 ,
one has p(t) ∈ X2. �
Before revealing the correspondence between (9) and (19),

we assume (p∗,u∗, z∗) ∈ HNn
×RN

>0×H
Nn is an equilibrium

solution of QNA (19), that is,
0 ∈ −(I − Q)

(
aHg(p∗)+ diag(u∗)aHU (p∗)+ Lz∗

)
−aHK (p∗)

0 = W (p∗)
0 = Lp∗.

(20)

Theorem 20: Under Assumptions 12 and 13, if (p∗,u∗, z∗)
∈ HNn

× RN
>0 × HNn is an equilibrium solution of QNA

(19), then p∗ ∈ HNn is an optimal solution to the QDOP
(9). Conversely, if p∗ ∈ HNn is an optimal solution to the
QDOP (9), then there are u∗ ∈ RN

>0 and z
∗
∈ HNn such that

(p∗,u∗, z∗) ∈ HNn
× RN

>0 × HNn is an equilibrium solution
of QNA (19) when u∗ > a0 ⊗ 1N .

Proof: First, assume (p∗,u∗, z∗) ∈ HNn
× RN

>0 × HNn

is an equilibrium solution of QNA (19), then from (20) that
p∗ ∈ X3 and Ui(p∗) = 0 for all i ∈ V . Thus p∗ =
col(p∗, p∗, · · · , p∗) ∈ X1 ∩ X3. From the conclusion of
Theorem 19, it is obvious that p∗ ∈ X1∩X2∩X3 and α∗ = 1.

Based on (20) and Theorem 19, it follows that there is ξ∗ ∈
aHg(p∗), ζ ∗ ∈ aHU (p∗), η∗ik ∈ ψ[−1,1](Dp∗ − d) such that

−(I − Q)[ξ∗ + (diag(u∗))ζ ∗ + Lz∗]− DHη∗ik = 0. (21)

Multiplying (21) byD from the left, it deduces thatDDHη∗ik =

0 due to D(I −Q) = 0. Therefore, we have η∗ik = 0 from the
Assumption 12. Then (21) degenerates as follows

−(I − Q)[ξ∗ + (diag(u∗)⊗ In)ζ ∗ + Lz∗] = 0.

According to the definition of 9 and Proposition 9, we have

−(9(I)−9(Q))

× [9(ξ∗)+ (diag(u∗)⊗ In)9(ζ ∗)+9(L)9(z∗)] = 0

where9(ξ∗) and9(ζ ∗) is a subgradient of the corresponding
auxiliary function f (9(p)) = g(p) and J (9(p)) = U (p),
respectively.

Let %∗ = ξ∗ + (diag(u∗) ⊗ In)ζ ∗ + Lz∗ and y∗ =
−(DDH)−1D%∗, then

%∗ = Q%∗ = DH(DDH)−1D%∗ = −DHy∗.

Since Z(p) = g(p) + diag(u∗)U (p) is a convex
quaternion-valued function and the graph G is undirected,
so for any p ∈ X1 ∩ X2 ∩ X3, it holds

Z(p)− Z(p∗) ≥ R((p− p∗)H(%∗ − Lz∗)

= −R((p− p∗)HDHy∗ + (p− p∗)HLHz∗) = 0.

Thus,

p∗ = arg min
p∈X1∩X2∩X3

Z(p)
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= arg min
p∈X1∩X2∩X3

g(p),

that is, p∗ is an optimal solution to the QDOP (9).
Conversely, if p∗ is an optimal solution to the QDOP (9),

then Ui(p∗i ) = 0, Dip∗i − di = 0 and p∗i = p∗j for all i, j ∈ V ,
i.e. W (p∗) = 0 and Lp∗ = 0. From Theorem 16, there is
a0 > 0 such that

p∗ = arg min
p∈X2∩X3

{

N∑
i=1

gi(pi)+
N∑
i=1

uiUi(pi)}.

Thus, take u∗ = col(u∗1, u
∗

2, · · · , u
∗
N ) with u

∗
i > a0 (i ∈ V),

it holds that

p∗ = arg min
p∈X2∩X3

{g(p)+ diag(u∗)U (p)},

then from Proposition 11, we have 0 ∈ aHZ(p∗) +
NX2∩X3 (p

∗), which implies that

0 ∈ (I − Q)aHZ(p∗)+ (I − Q)NX2∩X3 (p
∗).

Since there is z∗ ∈ HNn such that Lz∗ = NX2∩X3 (p
∗), then

0 ∈ (I − Q)(aHZ(p∗) + Lz∗). Because p∗ ∈ X2, it obtains
0 ∈ DHψ(Dp∗ − d) = aHK (p∗). As a result,

0 ∈ −(I − Q)
(
aHg(p∗)+ diag(u∗)aHU (p∗)

+Lz∗
)
− aH‖Dp∗ − d‖1,

which means (p∗,u∗, z∗) ∈ HNn
× RN

>0 ×HNn is an equilib-
rium solution of QNA (19). �
Theorem 21: Under Assumptions 12 and 13, the state

solution (p(t),u(t), z(t)) of QNA (19) from any initial solu-
tion (p(0),u(0), z(0)) ∈ HNn

× RN
>0 × HNn is bounded and

exists globally.
Proof: Since the right hand of QNA (19) is a set-valued

mapping with nonempty compact convex values, then there
is at least a local solution (p(t),u(t), z(t)) for any initial
solution (p(0),u(0), z(0)) ∈ HNn

×RN
>0×HNn for t ∈ [0,T )

with T > 0.
In particular, for the local solution (p(t),u(t), z(t)),

there exist measurable quaternion-valued functions ξ (t) =
col(ξ1(t), ξ2(t), · · · , ξN (t)) ∈ aHg(p(t)) with ξi(t) ∈
aHgi(pi(t)), ζ (t) ∈ aHU (p(t)) and η(t) ∈ ψ[−1,1](Dp(t)− d)
such that

ṗ(t) = −α(t)(I − Q)
(
ξ (t)+ diag(u(t))ζ (t)+ Lz(t)

)
−Lp(t)− DHη(t)

u̇(t) = W (p(t))
ż(t) = α(t)Lp(t)

(22)

for a.e. t ∈ [0,T ). Let p∗ be an optimal solution to
the QDOP (9), then from Theorem 20, there is u∗ =
col(u∗1, u

∗

2, · · · , u
∗
N ) ∈ RN

>0 with ui > a0 (i ∈ V) and

z∗ ∈ HNn such that (p∗,u∗, z∗) ∈ HNn
× RN

>0 × HNn is

an equilibrium solution of QNA (19). Based on Theorem 19,
it has p∗ ∈ X2, so

0 = −(I − Q)
(
ξ∗ + diag(u∗)ζ ∗ + Lz∗

)
− DHη∗ik

0 = W (p∗)
0 = Lp∗

(23)

where ξ∗ = col(ξ∗1 , ξ
∗

2 , · · · , ξ
∗
N ) ∈ aHg(p∗) with ξ∗i ∈

aHgi(p∗i ) for i ∈ V , ζ ∗ ∈ aHU (p∗) and η∗ik ∈ ψ[−1,1](Dp∗ −
d). Due to Assumption 12, it has η∗ik = 0, so 0 = −(I −
Q)
(
ξ∗ + diag(u∗)ζ ∗ + Lz∗

)
.

Consider the candidate Lyapunov function

V1(p(t),u(t), z(t))

=
1
2
(‖p(t)− p∗‖2 + ‖u(t)− u∗‖2 + ‖z(t)− z∗‖2).

(24)

Then the trajectory of V1 along QNA (19) satisfies

V̇1 = 4R{(p(t)− p∗)H[−α(t)(I− Q)
(
ξ (t)

+ diag(u(t))ζ (t)+ Lz(t)
)
− Lp(t)− DHη(t)]}

+ 4R{(u(t)− u∗)HW (p(t))}

+ 4R{(z(t)− z∗)Hα(t)Lp(t)}.

If p(0) /∈ X2, by Theorem 19, there is TX2 > 0 such that
p(t) /∈ X2 when t ∈ [0,TX2 ) while p(t) ∈ X2 when t ≥ TX2 .
When t ∈ [0,TX2 ), according to (17), it has α(t) = 0 and

V̇1 = 4R{−(p(t)− p∗)HDHη(t)}

− 4R{(p(t)− p∗)HL(p(t)− p∗)}
+ 4R{(u(t)− u∗)HW (p(t))}

≤ K (p∗)− K (p(t))

− 4R{(p(t)− p∗)HL(p(t)− p∗)}
≤ −4R{(p(t)− p∗)HL(p(t)− p∗)}

because the convexity of K (p) and the nonnegativity of K (p)
andW (p). When t ≥ TX2 , α(t) = 1 and Dp = Dp∗ = d , then
Qp = Qp∗ = q , DH(DDH)−1d . Therefore,

V̇1 = 4R{(p(t)−p∗)H[−(I − Q)
(
ξ (t)+ diag(u(t))ζ (t)

+Lz(t)
)
− Lp(t)− DHη(t)]}

+ 4R{(u(t)− u∗)HW (p(t))}

+ 4R{(z(t)− z∗)HLp(t)}
= 4R{(p(t)− p∗)H[−ξ (t)− diag(u(t))ζ (t)− Lz(t)

+
(
ξ∗ + diag(u∗)ζ ∗ + Lz∗

)
− DHη(t)]}

+ 4R{(u(t)− u∗)HW (p(t))}

+ 4R{(z(t)− z∗)HLp(t)}
− 4R{(p(t)− p∗)HL(p(t)− p∗)}

= −4R{(p(t)− p∗)H(ξ (t)− ξ∗)}
− 4R{(p(t)− p∗)H[diag(u(t))ζ (t)−diag(u∗)ζ ∗]}
− 4R{(p(t)− p∗)HDHη(t)]}

+ 4R{(u(t)− u∗)HW (p(t))}
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− 4R{(p(t)− p∗)HL(p(t)− p∗)}

≤

N∑
i=1

[(pi(t)− p∗i )
H(u∗i ξi − ui(t)ξi(t))

+ (ui(t)− u∗i )
HUi(pi(t))]

− 4R{(p(t)− p∗)HL(p(t)− p∗)}.

Since Ui(·) is convex, it follows that

N∑
i=1

[(pi(t)−p∗i )
H(u∗i ξi−ui(t)ξi(t))+(ui(t)−u

∗
i )
HUi(pi(t))]

≤

N∑
i=1

ui∗H(Ui(pi(t))−Ui(p∗i ))+
N∑
i=1

ui(t)H(Ui(p∗i )−Ui(pi(t)))

+

N∑
i=1

(ui(t)− u∗i )
HUi(pi(t))

=

N∑
i=1

(ui(t)− u∗i )
HUi(pi) = 0.

Thus, we have V̇1 ≤ −4R{(p(t)− p∗)HL(p(t)− p∗)} ≤ 0.
Combined with the above conclusions, it holds V1(t) ≤ V1(0)
for t ∈ [0,T ), which means (p(t),u(t), z(t)) is bounded when
t ∈ [0,T ). Consequently, it follows that from any initial
solution (p(0),u(0), z(0)) ∈ HNn

× RN
>0 × HNn, the state

solution (p(t),u(t), z(t)) of QNA (19) is bounded and exists
globally. �
Theorem 22: Under Assumptions 12 and 13, from any

initial solution (p(0),u(0), z(0)) ∈ HNn
×RN

>0×H
Nn, the state

solution (p(t),u(t), z(t)) of QNA (19) converges to an equi-
librium solution of QNA(19). In particular, p(t) converges to
an optimal solution to the QDOP (9).

Proof: Let (p(t),u(t), z(t)) be the state solution of QNA
(19) and (p∗,u∗, z∗) be the equilibrium solution of QNA (19),
then from Theorem 20, p∗ is an optimal solution to the QDOP
(9). By Theorem 19, we have p(t) ∈ X2 for all t ≥ 0.
Define the function

V2(p(t),u(t), z(t)) = g(p(t))+u(t)HW (p(t))−1TNu(t)

+ p̃(t)HL̃z̃(t)−
1
2
p(t)HLp(t)+ K (p(t))

where p̃ = 9(p), z̃ = 9(z) and L̃ = 9(L). Then
there are ξ (t) ∈ aHg(p(t)), ζ (t) ∈ aHU (p(t)) and η(t) ∈
ψ[−1,1](Dp(t)− d) such that

V̇2 = 4R{
(
ξ (t)+ diag(u(t))ζ (t)+ Lz(t)− Lp(t)

+DHη(t)
)Hṗ(t)} − ‖Lp(t)‖2

+ 4R{
(
(W (p(t)− 1N )

)HW (p(t))}

≤ 4R{
(
ξ (t)+ diag(u(t))ζ (t)+ Lz(t)− Lp(t)

+DHη(t)
)Hṗ(t)}

+ 4R{
(
(W (p(t)− 1N )

)HW (p(t))}

= −4‖(I − Q)[ξ (t)+ diag(u(t))ζ (t)+ Lz(t)]

−Lp(t)+ DHη(t)‖2

+

N∑
i=1

U2
i (pi(t))−

N∑
i=1

Ui(pi(t)).

where the last equality holds due to QNA (19) and
(I − Q)2 = I − Q.
Moreover, based on Theorem 21, the state solution

(p(t),u(t), z(t)) of QNA (19) from any initial solution
(p(0),u(0), z(0)) ∈ HNn

× RN
>0 × HNn is bounded. Thus,

it holds Ui(pi(t)) → 0 (i ∈ V) as t → +∞ by the dynamic
of ui(t). As a result, there is T0 = T0(p(0),u(0), z(0)) >
0 satisfies

U2
i (pi(t))− Ui(pi(t)) ≤ −

1
2
Ui(pi(t))

when t ≥ T0, which implies

V̇2 ≤ −‖(I − Q)[ξ (t)+ diag(u(t))ζ (t)+ Lz(t)]

−Lp(t)+ DHη(t)‖2 −
1
2

N∑
i=1

Ui(pi(t)).

Define V = V1+V2 where V1 is defined in (24), by the proof
of Theorem 21, we have

V̇ ≤ −‖(I − Q)[ξ (t)+ diag(u(t))ζ (t)+ Lz(t)]

−Lp(t)+DHη(t)‖2−p(t)HLp(t)−
1
2
U (p(t)) (25)

for t ≥ T0. According to results in [25], it can obtain that
(p(t),u(t), z(t)) converges to M which is the largest weakly
invariant subset of ϒ ∩ Ll , ϒ = {(p,u, z) : 0 ∈ V̇ (p,u, z)}
and Ll = {(p,u, z) : V ((p,u, z)) ≤ V ((p(0),u(0), z(0)))}.
By the definition of M and (25), if (p(t),u(t), z(t)) ∈ M ,
it must satisfy 0 = ‖(I −Q)[ξ (t)+ diag(u(t))ζ (t)+Lz(t)]−
Lp(t) + DHη(t)‖2, p(t)HLp(t) = 0 for any t ≥ 0 and
U (p(t)) = 0. Therefore, (p(t),u(t), z(t)) is an equilibrium
solution of QNA (19).

Further, since φ(t) , (p(t),u(t), z(t)) is bounded, there
exist φ̃ , (p̃, ũ, z̃) and a increasing sequence {tk} such that
φ(tk ) → φ̃ as k → +∞. Thus, φ̃ ∈ M , i.e. (p̃, ũ, z̃) is
an equilibrium solution of QNA (19). On the other hand, the
definition ofV1 implies the fact that each equilibrium solution
of QNA (19) is Lyapunov stable. Hence, for any ε > 0,
there are δ > 0 and T1 > 0, φ(t) ∈ B(φ̃, ε) when t ≥ T1.
Because φ(tk ) → φ̃ (k → +∞), there is m > 0 such that
φ(tm) ∈ B(φ̃, ε) for all t ≥ tm. Consequently, (p(t),u(t), z(t))
converges to an equilibrium solution of QNA (19), and then
p(t) converges to an optimal solution to the QDOP (9). �
Remark 23: Compared to the centralized QNA in [24],

the proposed QNA can effectively protect the security of
privacy by means of the multi-agent system. Because one of
the most significant advantages of distributed optimization is
that agents store the information related to the optimization
problem in a distributed way, the private information of each
agent will be protected.

Specifically, the private information of agent i involved in
the QNA (16) includes the local objective function gi, local
constraint information hi, Di and di and its estimation of the
optimal solution pi of theQDOP (1). Although pi and zi can be
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obtained by some agents of the multi-agent system, it is only
available to those agents with permissions, i.e. neighbors of
agent i. In addition, the QNA (16) does not require agents to
exchange their more important private information, such as
gradient, objective function, local constraints, etc.
Remark 24: The QNA (19) for solving QDOPs can also be

used to solve real-valued or complex-valued distributed con-
vex optimization problemswith inequality and affine equality
constraints. For example, when the imaginary parts of p ∈ Hn

reduce to zero, the QDOP (1) becomes the following real-
valued distributed optimization problems

min f (x) ,
N∑
i=1

fi(x)

s.t. hi(x) ≤ 0, Dix = di, i = 1, 2, · · · ,N . (26)

Correspondingly, the QNA (16) is simplified as

ẋi(t) ∈ −α(t)(I − Qi)
(
afi(xi(t))+ ui(t)aUi(xi(t))

+

N∑
j=1

aij(zi(t)− zj(t))
)
−

N∑
j=1

aij(xi(t)− xj(t))

−aH‖Dixi(t)− di‖1
u̇i(t) = Ui(xi(t)), ui(0) > 0

żi(t) = α(t)
N∑
j=1

aij(xi(t)− xj(t)),

(27)

where xi ∈Rn, fi : Rn
→R, gi : Rn

→R and hi : Rn
→Rmi

with hij : Rn
→ R (j = 1, 2, · · · ,mi), Di ∈ Rsi×n and

di ∈ Rsi . ui is the adaptive control variable and zi is the aux-
iliary variable. The remaining symbols are as defined in the
QNA (16). Compared with most of the existing real-valued
neurodynamic approaches for solving real-valued distributed
optimization problems such as [12], [15], and [16], neurody-
namic approach (27) not only avoids calculating the lower
bound of the penalty parameters by introducing the adaptive
controller, but also has lower dimension and looser initial
conditions.

V. NUMERICAL SIMULATION
Example 25: Consider a network consisting of ten agents

interacting over an undirected communication graph shown
in FIGURE 1 to collaboratively solve the following optimiza-
tion problem:

min g(p) =
10∑
i=1

‖pi‖2

s.t. ‖pi − a‖2 ≤ 4; R(pi1)+ iR(pi2) ≥ 0;

(−2+ i+ j+ k)pi1 + (1− 2i− 2j− 2k)pi2
= −0.14i+ 0.15j− 0.91k (28)

where pi = (pi1, pi2) ∈ H2 for i = 1, 2, . . . , 10, p =
col{p1, p2, . . . , p10} ∈ H20 and

a =
(
1+ i+ j+ k
1+ i+ j+ k

)
.

Obviously, problem (28) is a convex QDOPwith inequality
constraints and affine equality constraints. Here, the con-
sidered QNA (19) demonstrates that the state solution p(t)
from a random initial point converges to an optimal solution
p∗ = (0.3+0.41i+0.1j+0.25k, 0.15+0.18i+0.3j+0.125k)
to the QDOP (28). FIGURE 2 displays that the trajectories
of all agents reached a consensus while the optimal solu-
tion is obtained, which illustrates the effectiveness of the
QNA (19).

The algorithm (29) in [24] is applied to solve the following
centralized version of the QDOP (28),

min g(p) = ‖p‖2

s.t. ‖p− a‖2 ≤ 4;

R(p1)+ iR(p2) ≥ 0, i = 1, 2, · · · , 10;

(−2+ i+ j+ k)p1 + (1− 2i− 2j− 2k)p2
= −0.14i+ 0.15j− 0.91k (29)

the corresponding state solution trajectory is shown in
FIGURE 3. Compared with FIGURE 2 of the result generated
by the QNA (19) in this paper, it takes a little longer time to
find the optimal solution, which is due to the stronger parallel
computing capability of distributed algorithms. In addition,
with the self-adjustment ability of adaptive control, QNA (19)
also has advantages in algorithm structure and solution space
dimension, and thus has less computation.
Example 26: Color image restoration is an important task

in imaging science. Many variational models treat a color
image as a Euclidean vector or a direct combination of three
monochromatic images, which ignores the inherent color
structure between channels. To better describe the connection
between color channels, we represent the color image as a
pure quaternion matrix, that is, each pixel of image u is rep-
resented by a quaternion. K -means clustering singular value
decomposition (K -SVD) based on dictionary learning has the
advantage of preserving image texture. If the image u ∈
Hm×m satisfies u = DA (or u ≈ DA), where A ∈ Hm×m is the
sparse coefficient matrix, that is, there are only a few non-zero
numbers, then we call the dictionary sparse representation of
u is sparse (or nearly sparse) under dictionary D ∈ Hm×m,
which is an important step in color image restoration. In order
to obtain the sparse representation of image u based on fixed
dictionary D, the following optimization problem generally
need to be solved:

min ‖A‖0
s.t. ‖u− DA‖22 ≤ ε (30)

where ‖ · ‖0 defines `0-norm, ε > 0 is a parameter related to
the noise level. Since `0-norm is difficult to solve optimally
(NP-hard problem), and large-scale matrix calculation in the
solving process should be avoided, a network consisting ofm
agents is introduced. Thus, the problem (30) is deformed to
obtain the following QDOP

min
m∑
i=1

‖Vec(Ai)‖1
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FIGURE 1. Communication topology of the multi-agent system in
Example 25.

FIGURE 2. Trajectories of the state solution p(t) in Example 25.

FIGURE 3. Trajectories of the state solution p(t) by Algorithm in [24].

s.t. ‖Vec(u− DAi)‖22 ≤ ε1, Ai = Aj,

i, j = 1, 2, · · · ,m (31)

where Vec(A) = (A11,A12, · · · ,A1m,A21, · · · ,Amm)T ∈
Hm2

, ε1 > 0.
For numerical simulation, let m = 3 and the communica-

tion diagram of three agents is shown in FIGURE 4, ε1 = 0.2,

u =

 0.2i− 0.6j+ 0.68k 0.07i+ 0.1k 0.2i
0.68i+ 0.5k −0.1i− 0.07k −0.2k

0.9i+ 0.1j+ 0.68k −0.03i 0.2i



FIGURE 4. Communication topology of the multi-agent system in
Example 26.

FIGURE 5. Trajectories of the state solution p(t) in Example 26.

and

D =

 1 i i
j 1 k
1 j k

.
Therefore, through applying the QNA (19), we get the

dictionary sparse representation of u under D is

A =

 0.2i+ 0.1j+ 0.71k 0.07i 0.2i
0.7k 0 0
0 0.1j 0


and the trajectories of the state solution p(t) of the QNA (19)
is showed in FIGURE 5.

VI. CONCLUSION
In this paper, we have designed an effective QNA for
nonsmooth convex QDOPs based on multi-agent systems.
The QNA has been proven that that it is capable of
addressing convex QDOPs with inequality and affine
equality constraints. After the convexity analysis of the
quaternion-variable functions is given, the equivalent trans-
formation of the QDOP has been carried out by using the con-
nectivity of the communication topology and penalty method,
and then a distributed QNA with adaptive controllers has
been proposed. Finally, both theoretical results and numerical
examples show the validity of the proposed QNA.

In the future, we will focus on QNAs with finite-time or
fixed-time convergence rates and QNAs with event-triggered
mechanisms for solving QDOPs. In addition, we believe the
potential application of QDOPs will be also interesting.
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APPENDIX
A. PROOF OF PROPOSITION 9
According to the propositions of 9 and (6), for p = x + yi+
zj+wk, it has9(aHg(p)) = ax f (x, y, z,w)×ayf (x, y, z,w)×
azf (x, y, z,w) × awf (x, y, z,w). Thus, based on Lemma 8,
we have af (9(p)) ⊆ 9(aHg(p)).
Conversely, from Theorem 1 in [24] for any η ∈ aHg(p)

and q ∈ Hn, let u = 9(p) and v = 9(q), then f (v)− f (u) =
g(q)− g(p) ≥ R(ηH(q− p)) = 9(η)T9(q− p) = 9(η)T(v−
u), that is, 9(η) ∈ af (u) = af (9(p)). Thus, 9(aHg(p)) ⊆
af (9(p)). In a word, 9(aHg(p)) = af (9(p)) holds.

B. PROOF OF PROPOSITION 10
As the proof of Theorem 1 in [24], it can be obtained that
aHg(p) ⊆ {η ∈ Hn

: g(q)− g(p) ≥ R(ηH(q− p))} , Y . But
for any η ∈ Y , we have g(q)− g(p) ≥ R(ηH(q− p)) for any
q ∈ Hn.

According to Definition 1 and Proposition 9, it implies
f (v)− f (u) = g(q)− g(p) ≥ R(ηH(q− p)) = 9(η)T(v− u),
where u = 9(p) and v = 9(q). Thus,

9(η) ∈ af (u) = af (9(p)) = 9(aHg(p)),

that is, η ∈ aHg(p). As a result, Y ⊆ aHg(p). To sum up,
aHg(p) = {η ∈ Hn

: g(q)− g(p) ≥ R(ηH(q− p))}.
In addition, for any η ∈ aHg(p), ς ∈ aHg(q), there is

g(q)−g(p) ≥ R(ηH(q−p)) and g(p)−g(q) ≥ R(ςH(p−q)).
After adding the above two inequalities, it comes to R((η −
ς )H(p− q)) ≥ 0.

C. PROOF OF PROPOSITION 11
1) Let f : R4n

→ R be the auxiliary function of g that
g(p) = f (9(p)). Since g(p) is local Lipschitz on S, there exists
l > 0 such that |g(p) − g(q)| ≤ l‖p − q‖ for any p, q ∈ S.
Therefore, it follows

|f (9(p))− f (9(q))| = |g(p)− g(q)|

≤ l‖p− q‖ = l‖9(p)−9(q)‖

for any p, q ∈ S from Proposition 2, that is, f is local
Lipschitz on S̃ where S̃ = {x ∈ R4n

: x = 9(p), p ∈ S}.
Moreover, since NS (p) = {o ∈ Hn

: R(oH(p − q)) ≤
0,∀ q ∈ S} = {9(o) ∈ R4n

: 9(o)T(9(p) − 9(q))) ≤
0,∀ 9(q) ∈ S̃} = NS̃ (9(p)) and if g(p) attains a minimum
over S at p ∈ S, f (9(p)) attains a minimum over S̃ at 9(p).
Then from [28], it has 0 ∈ af (9(p)) + NS̃ (9(p)), which
means 0 ∈ aHg(p)+ NS (p).
2) It is obvious that 0 ∈ int(S−Q) if and only if 0 ∈ int(̃S−

Q̃). Then for any p ∈ S ∩ Q, 9(p) ∈ S̃ ∩ Q̃, so NS̃∩Q̃(p) =
NS̃ (9(p))+NQ̃(9(p)) [28]. Thus, it has NS∩Q(p) = NS (p)+
NQ(p).

D. PROOF OF LEMMA 14
For any λ ∈ [0, 1], p = col(p1, p2, · · · , pN ) and
q = col(q1, q2, · · · , qN ), there is g(λp + (1 − λ)q) =∑N

i=1 gi(λpi + (1 − λ)qi) ≤
∑N

i=1 λgi(pi) + (1 − λ)gi(qi) =

λg(p)+ (1−λ)g(q), which implies g is convex. Moreover, the
proof of Theorem 1 in [25] has confirmed

col(aHg1(p1),aHg2(p2), · · · ,aHgN (pN )) ⊆ aHg(p).

So we just need to prove that aHg(p) ⊆ col(aHg1(p1),
aHg2(p2), · · · ,aHgN (pN )) is true.
In fact, by introducing the auxiliary functions f and fi

(i ∈ V) such that g(p) = f (9(p)) and gi(pi) = fi(9(pi)),
where 9 is defined in Definition 1, there is f (9(p)) =∑N

i=1 fi(9(pi)). Define a bijection ϕ : R4Nn
→ R4Nn

such that ϕ(9(p)) = col(9(p1), 9(p2), · · · , 9(pN )). For
every η ∈ aHg(p), let 9̃ = ϕ ◦ 9, then similar to
Proposition 9, we have ζ = 9̃(η) ∈ 9̃(aHg(p)) =

af (9̃(p)). Since g is convex, f is convex. Thus, af (9̃(p)) =
col(af1(9(p1)),af2(9(p2)), · · · ,afN (9(pN ))) and there
exist ζi ∈ afi(9(pi)) such that ζ = col(ζ1, ζ2, · · · , ζN ).
So it is obvious that ζi ∈ 9(aHgi(pi)) (i ∈ V), and
ζ ∈ col(9(aHg1(p1)), 9(aHg2(p2)), · · · , 9(aHgN (pN ))).
It follows

9(η)

∈ ϕ−1(col(9(aHg1(p1)), 9(aHg2(p2)), · · · , 9(aHgN (pN )))

=9(col(aHg1(p1),aHg2(p2), · · · ,aHgN (pN )))

and η ∈ col(aHg1(p1),aHg2(p2), · · · ,aHgN (pN )) from the
bijectivity of ϕ and 9.

Therefore, aHg(p) ⊆ col(aHg1(p1),aHg2(p2), · · · ,
aHgN (pN )) holds, which completes the proof.
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