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ABSTRACT Water quality prediction (WQP) plays an essential role in water quality management for
aquaculture to make aquaculture production profitable and sustainable. In this work, we propose hybrid
deep learning (DL) models, convolutional neural network (CNN) with the long short-term memory (LSTM)
and gated recurrent unit (GRU) for aquaculture WQP. CNN can effectively fetch the aquaculture water
quality characteristics, whereas GRU and LSTM can learn long-term dependencies in the time series data.
We conduct experiments using the two different water quality datasets and present an extensive study on
the impact of hyperparameters on the performance of the proposed hybrid DL models. Furthermore, the
performance of hybrid CNN-LSTM and CNN-GRU models are compared with different baseline LSTM,
GRU and CNN DL models and also with attention-based LSTM and attention-based GRU DL models. The
results show that the hybrid CNN-LSTM outperformed all other models in terms of prediction accuracy and
computation time.

INDEX TERMS Aquaculture, CNN, deep learning, GRU, hybrid models, LSTM, water quality prediction.

I. INTRODUCTION
Aquaculture is a vital component for ensuring global food
security, as the world’s population is predicted to exceed
9.8 billion by 2050 [1]. Fishing from the sea is currently
far beyond its limits and will not be in a position to meet
the growing demand for food. Aquaculture has progressed
steadily to meet the demand for fish as food while protecting
marine life from overfishing by maintaining a consistent fish
supply [2]. Nowadays, with the application of IoT, artifi-
cial intelligence, data analysis, etc., aquaculture systems are
upgraded to smart aquaculture systems for improving perfor-
mance and efficiency [3], [4].

To maintain and manage aquaculture, water quality moni-
toring and water quality prediction (WQP) are essential [5].
In aquaculture, water quality is the most influential and crit-
ical factor that affects production as well as product qual-
ity. The vital water quality parameters in aquaculture are
salinity, pH, dissolved oxygen (DO), and temperature [6].
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Water quality is affected by many factors, such as fish den-
sity, quality of the feed, feeding interval, climate, and more.
The change in water quality will upset the balance of the
system with algae bloom, bacterial growth, etc. [7]. This
can lead to severe problems, such as trigger stress, lack of
food intake, vulnerability to diseases, and increased mortality
rate of fish [8]. Hence, if we forecast the trend in water
quality changes, we can employ safeguards in advance to
avoid imbalances in the ecosystem and also ensure suit-
able conditions for optimum growth of the fish. Therefore,
accurate WQP can drastically improve productivity to make
aquaculture more profitable and sustainable.

Aquaculture water quality is affected by meteorological
conditions and complex interdependency relations between
different water quality parameters. Hence the change of
water quality parameters exhibit non-linear characteristics,
which results in low prediction accuracy. The time-series
data shows periodic variations depending on the seasons and
climatic conditions. Time series data is used for analysis
and prediction in various fields such as the stock market,
medical field, energy consumption, weather forecasting,
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solar radiation etc. [9]–[14]. The major approaches for
WQP include classical prediction mechanisms such as the
autoregressive moving average model (ARMA), autore-
gressive integrated moving average (ARIMA), seasonal
autoregressive integrated moving average model (SARIMA),
seasonal auto-regressive integrated moving average with
exogenous factors (SARIMAX), Holt-Winters exponential
smoothing (HWES),Markovmodel, Greymodel, and support
vector regression (SVR) etc. [15]. However, these models are
least suitable for aquaculture WQP because they assume a
linear relationship with water quality parameter data. These
models are less accurate and take a long prediction time, mak-
ing them unsuitable for predicting the non-linear aquaculture
water quality parameters [16], [17].

The deep learning (DL) models like long short-term mem-
ory (LSTM), gated recurrent unit (GRU), and convolutional
neural network (CNN) have the flexibility in capturing the
non-linear nature of the aquaculture WQP [18]. These DL
models have overcome the limitations of Recurrent neural
networks (RNNs) and achieved great success in various appli-
cations. Recent advancements in artificial intelligence have
made DL one of the most proficient methods, and DL is
popularly applied in different fields such as image processing,
speech recognition, text prediction, etc. [19]–[21]. DL makes
time series prediction more precise and efficient in terms
of training time and required processing power. In addi-
tion, DL models consider the non-linear characteristics of
water quality changes. LSTM is the widely used DL method
for WQP due to its remarkable performance in time series
prediction [22].

LSTM and GRU models are not very capable of maintain-
ing long-term memory for time series prediction, especially
for long sequences [23]–[25]. In time series forecasting, the
prediction value at the current time step is impactedmainly by
past observations. In some cases, the ones with a significant
influencemight have appeared at the time step long back from
the current one. Hence the neural networks must have the
prolonged memory holding capacity to hold memory for the
learned long-term dependencies. The ability of LSTMmodels
to capture long-term dependencies information from histor-
ical observations is still considered a critical performance
bottleneck, as indicated in recent studies [26], [27]. The
work [23] has theoretically proven that standard LSTM does
not have long memory from a statistical perspective. Hence,
building a time-series prediction model capable of capturing
and remembering complex dependencies is a crucial problem
that needs to be addressed.

In [25], [28], the authors have discussed how incorporating
an attention module can improve the prediction accuracy of
LSTM. Different works have combined the attention model
to LSTM to capture the relevant data from long time series
data, helping to improve its prediction performance. LSTM
network with an attention mechanism has an adaptive decay
rate of long-termmemory. This decay rate is much lower than
the polynomial or exponential decay rate. In the work [29],

the reading of the geo-sensor is predicted for a few hours by
using multi-level attention-based RNN by feeding data from
multiple sensors and meteorological data along with spatial
information of these sensors. This work uses the attention
mechanism to model the dynamic spatio-temporal relations
within the sensors. A fusion module is designed to input
the effects of external factors from different domains. The
authors have tested their model on a water quality and air
quality dataset.

The hybrid CNN-LSTM models also work similarly, help-
ing the LSTMmodel capture the relevant data. In hybridmod-
els, CNN with maxpooling is used to reduce the length of the
input sequence, which is fed into the LSTMandGRUmodels.
The hybrid models are not affected by exponential decay,
as the CNN with maxpooling will input the key features
and helps LSTM in forecasting with better accuracy. Thus
the hybrid models can achieve higher accuracy in prediction.
Hybrid models aim to build neither overfit nor underfit mod-
els with strong generalization ability and require less training
time for fitting themodels. The convolutional layer with max-
pooling enhances the capacity of the LSTM and GRUmodels
to learn and store the critical features in the non-linear water
quality parameters. Thus convolution layer with maxpooling
reduces exponential decay in LSTM and GRU, bypassing
selective information to the LSTM/GRU layer using convo-
lution and maxpooling [30], [31]. CNNs are faster by design
since the computations in CNNs can happen in parallel, while
RNNs need to be processed sequentially since the subsequent
steps depend on previous ones. In [32], authors introduced
the Quasi-Recurrent Neural Networks that use some of the
CNN components to imitate RNNs while speeding them up.
CNN leads to various complexity reductions by concentrating
on the key features. The use of convolution layers leads to a
reduction in the size of tensors and with Maxpooling leads to
a further decrease in training time. Reducing the training time
of the hybrid models.

CNN and its hybrid variations are used in many research
work for time series prediction. DL models have been
extensively used in many fields of time series prediction,
including finance (stock price, cryptocurrency, and precious
metal prediction) [33], [34]. The authors [35] have used
the CNN-LSTM model for gold price prediction. They have
proposed two simple hybrid models and compared the results
with other DL models. The authors also compared LSTM
models with the hybrid models and observed that hybrid
models perform better. In [36] to predict blood glucose (BG)
levels, authors have used multiple layers of CNN along with
LSTM. This hybrid model has shown superior performance
in BG prediction. In another work, the authors have used
Bi-LSTM with CNN for air quality prediction [37]. They
have done an extensive study with two datasets and shown
results proving the model’s capability for accurate air quality
prediction. There have been multiple works based on hybrid
DL models for the prediction of air quality (PM2.5) based on
CNN and LSTM models [38], [39].
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A. MAIN CONTRIBUTIONS OF THE WORK
In this work, we propose to combine RNN and CNN, making
a new hybrid model for WQP having the advantages of
both models. RNN has a vanishing gradient problem while
training with large data and affects the learning from large
datasets [40]. This problem is solved by introducing two
specialised variants, LSTM and GRU. LSTM and GRU can
learn long term dependencies from training data, while CNN
is good with feature extraction [41]. We propose hybrid DL
models that combine the advantages of CNN with LSTM and
GRU for aquaculture WQP. The significant contributions of
this research work are as follows:

1) Three years of data (January 2016 to December 2018)
is collected from aquaculture ponds located in Kerala
under ADAK. The data is pre-processed to remove
abnormalities in data affecting the prediction accuracy.
The linear interpolation (LIN) and smoothing methods
are used to fill the missing data and correct abnormal
data, respectively.

2) We have proposed hybrid DLmodels, CNN-LSTM and
CNN-GRU, that combine the advantages of CNN with
both LSTM as well as GRU for aquaculture WQP. The
proposed hybrid models are trained and tested with the
data collected from ADAK.

3) We have also trained and tested the proposed
CNN-LSTM and CNN-GRU models with another
water quality parameters dataset provided in [16]. This
data is collected from the marine aquaculture base
in Xincun Town, LingShui County, Hainan Province,
China.

4) The performance of hybrid CNN-LSTM and CNN-
GRU models are compared with baseline DL mod-
els LSTM, GRU, and CNN and with attention-based
LSTM and attention-based GRU DL models. Results
show that the hybrid models significantly improve
accuracy compared to the baseline models for aquacul-
ture WQP. Also, the hybrid models outperform all the
DL models in terms of computation time.

To the best of the authors’ knowledge, this is the first
research work to propose and analyse the performance of
hybrid CNN–LSTM and CNN-GRU models to predict water
quality parameters for aquaculture.

B. PAPER ORGANIZATION
The reminder of the paper is arranged as follows: In
Section II, the materials and methods are described, in which
we have explained in detail the data that we have collected.
Section III explains the proposed hybrid CNN-LSTM and
CNN-GRU models. Section IV explains in detail the exper-
iments that we have done to analyse and compare the per-
formance of proposed hybrid DL models with the baseline
DL models for different hyperparameters (hp) variations.
Section V further analyse the performance of all the DLmod-
els for a selected set of hp and give the final results comparing
the models. Finally, section VI summarise the results and
concludes the work.

TABLE 1. Average water quality parameters monitored in 2016, 2017 and
2018.

II. MATERIALS AND METHODS
A. ACQUISITION OF DATA
The data of aquaculture water quality parameters used in this
work is collected from an aquaculture farm under ADAK
at Kollam, Kerala, India. We have collected water quality
parameter data for three years, from January 2016 to Decem-
ber 2018. Water quality parameters are collected from the
pond on a daily basis. The trends in variations of water quality
parameters of the aquaculture pond are studied. Fig. 1 shows
the annual trends of salinity, pH, DO, and temperature. From
the plots, it is clear that all water quality parameters are
non-stationary in nature.

Table 1 shows the average of the water quality param-
eter data of each year. The salinity in 2016 was between
13.18 ppt and 15.73 ppt; in 2017, it was between 14.26 ppt
and 17.39 ppt, and in 2018 it was between 14.30 ppt and
16.82 ppt. The pH in 2016 was between 7.20 and 7.45, and
in 2017, it was between 7.19 and 7.46. Moreover, in 2018,
it was between 7.24 and 7.48. The DO in 2016 was between
5.23 ml/L and 5.51 ml/L; in 2017, it was between 5.05 ml/L
and 5.49 ml/L, and in 2018 it was between 5.11 ml/L and
5.39 ml/L. The temperature value in 2016 was between
23.30 ◦C and 25.69 ◦C; in 2017 it was between 22.99 ◦C
and 27.27 ◦C, and in 2018 it was between 24.29 ◦C and
26.68 ◦C. The mean DO minimum in 2018, where the mean
temperature is also highest, indicates the relation between
DO and temperature. When temperature increases, DO will
decrease. In all three years, the average salinity value is
coming down in June - July, coinciding with the monsoon
season in Kerala.

B. CORRELATION ANALYSIS
Correlation analysis is performed on data from January
2016 and December 2018 to analyse the relationship between
these water quality parameters (salinity, pH, DO and tem-
perature). Pearson’s correlation coefficient shows the cor-
relation between the variables. A correlation ratio of more

60080 VOLUME 10, 2022



K. P. Rasheed Abdul Haq, V. P. Harigovindan: WQP for Smart Aquaculture Using Hybrid DL Models

FIGURE 1. Water quality parameters variation trend of ADAK water quality dataset.
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TABLE 2. Correlation coefficient matrix of ADAK water quality parameters
dataset.

than 0.5 indicates a direct correlation with the parameter
and a significant interdependence between the parameters.
A value between 0.5 to 0.2 demonstrates a correlation with
interdependence between them to some extend. A value of
less than 0.1 suggests a poor correlation with the parameter
and an insignificant interdependence between the parameters.
The data is standardised to eliminate dimensional influence,
and then the Pearson correlation coefficient matrix is applied.
Table 2 shows the correlation coefficient matrix. The corre-
lation between salinity, pH, DO, and temperature is given in
Table 2. The findings in Table 2 show that temperature and
salinity have a significant influence on the DO. Moreover,
pH does not have any impact on the other water quality
parameters monitored here.

Temperature and DO show the most correlation. Whereas
temperature and pH show the minimum correlation. The
pH has an insignificant correlation with salinity, DO and
temperature. DO has a higher correlation with temperature,
followed by salinity and an insignificant correlation with pH.
Similarly, the temperature has a high correlation with DO and
a moderate correlation with salinity. However, the correlation
of temperature with pH is insignificant.

C. DATA PRE-PROCESSING
Aquaculture water quality parameters data measured from
the ponds may have anomalies such as missing data or
abnormal data. This can be due to problems with sensors
or possible errors while storing the data. These variations
will lead to excessive deviation of predicted values from
actual monitored values. In order to improve the accuracy
of prediction, we must provide predictive models with clean,
reliable and succinct data. Unavailable data can no longer
be retrieved, and missing data can only be computed as
accurately as possible. Throughout this work, themissing part
of the water quality parameters data is first filled using LIN
algorithm [42], [43], and then this data is used to forecast the
water quality parameters. As illustrated in Fig. 1, the water
quality parameters show continuous seasonal variation and
also exhibit correlation with time.

Any data which is taken in a definite time interval is time-
series data. The data set of water quality parameters obtained
from a source is also time series data. It is an organized set
consisting of measured values of water quality parameters at
regular intervals. Water quality parameters are measured at a
specified time every day.

TSi,n = ((yi,1,T1), . . . , (yi,n,Tn)) (1)

In (1) TSi,n is defined as n-length time-series with ith water
quality parameter. The sampling interval for all parameters is
one day i.e., all parameters are measured at the same time on
a daily basis. If the value yi,v at Tv is missing, then we can
obtain its approximated value using the LIN algorithm. The
LIN function can be constructed as:

Yi,v = yi,u +
yi,u − yi,w
Tu − Tw

(Tv − Tu) (2)

When a water quality data is missing at any point, the LIN
algorithm first finds the two closest moments represented as
Tu and Tw. Then calculate themissing value at that moment Tv
by utilizing the parameter values yi,u and yi,w at the moments
Tu and Tw respectively based on (2). Where Yi,v is the esti-
mated value of missing value yi,v.

D. DESCRIPTIVE STATISTICS
Descriptive statistics of the water quality parameter data used
in this work, including minimum, mean, maximum, median,
standard deviation, skewness and kurtosis, can be found in
Table 3. Standard deviation is highest for salinity (0.7400 ppt)
and temperature (0.6522 ◦C), while DO (0.0759 ml/L) and
pH (0.0540) have the lowest standard deviation. The DO
concentration ranged between 5.06 and 5.51 ml/L, with a
mean of 5.31 ml/L. The minimum and maximum values of
temperature are 22.99 and 27.27 ◦C respectively (with a mean
of 24.89 ◦C). The skewness and kurtosis for the salinity, pH,
DO, and temperature are provided in Table 3. The skew-
ness and kurtosis were within − 2 to + 2, indicating that
these water quality parameters follow a normal (Gaussian)
distribution.

III. PROPOSED HYBRID CNN-LSTM/GRU MODEL
A. LSTM DL NEURAL NETWORK
LSTM DL neural network was proposed in 1997 by authors
of [44] to avoid long-term dependency problems in RNN.
In LSTM, a control unit is introduced to store information,
unlike a hidden layer in RNN. This hidden state is divided to
memory cells ct and working memory ht . The ct is respon-
sible for sequence features retention, and previous sequence
memory is controlled by the forgetting gate f . The portion of
the current memory ct is controlled by output gate ot and ht is
used as the output. The current state ht−1 and current input xt
written to memory cells are responsibility of the input gate i.
The LSTM architecture [45] is shown in Fig. 2, and memory
units are defined as follows in 3:

ft = σ (Wf × [ht−1, xt ]+ bf )

it = σ (Wi × [ht−1, xt ]+ bi)

c̃t = tanh(Wc × [ht−1, xt ]+ bc)

ct = ft × ct−1 + it × c̃t
ot = σ (Wo × [ht−1, xt ]+ bo)

ht = ot × tanh(ct ) (3)

In this architecture ft , it , and ot are forget, input and output
gate layer respectively. c̃t and ct are new and final memory
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TABLE 3. Statistical summary of the ADAK water quality parameters dataset.

FIGURE 2. LSTM cell structure.

cell, w is weight matrices, b is bias vectors, σ is the sigmoid
activation function.

B. GRU DL NEURAL NETWORK
GRU DL neural network was proposed by authors of [46]
in 2014. It similar to LSTM, but required less computing
power. GRU is an improved version of RNN with only two
gates, an update gate and a reset gate. There are no additional
memory cells to store information; GRU can control infor-
mation inside the unit. The update gate decides whether to
pass the previous output ht−1 to the next cell. The reset gate
reads the input sequences when the gate is set to zero and
forgets the previously calculated state. As a result, GRU has
fewer tensor operations than LSTM and runs typically faster
than LSTM. The GRU architecture [45] is shown in Fig. 3
and memory units are defined as follows:

zt = σ (Wz × [ht−1, xt ])

rt = σ (Wr × [ht−1, xt ])

h̃t = tanh(w× [rt × ht−1, xt ])

ht = (1− zt )× ht−1 + zt × h̃t (4)

In this architecture zt is the reset and rt is the update gate,
h̃t is process input, and ht is hidden state update, w is weight
matrices and σ is the sigmoid activation function.

C. HYBRID CNN LSTM/GRU DL NEURAL NETWORK
The Hybrid CNN-LSTM and CNN-GRU DL neural network
structures are shown in Fig. 4 and Fig. 5. The two models
are the hybrid of CNN with LSTM and CNN with GRU. The
first part of the model is CNN, to which the data is fed, and
it extracts the features. There is a dropout layer after the con-
volution layer (Conv1D) and pooling layer (MaxPooling1D).

FIGURE 3. GRU cell structure.

The second part has the LSTM or GRU, followed by a dense
layer to give the output.

In the CNN-LSTM model, we use Conv1D with 32 filters,
a kernel size of 3 and ReLU is used as the activation function.
A pooling layer MaxPooling1D follows this with a pooling
size of 2. The CNN layer extracts all the features and then
feeds them to the LSTM layer. The output of the CNN layer is
fed to the LSTM layer after pooling through the flatten layer.
Then, the LSTM layer outputs its output to the dense layer
through the flatten layer, and finally, the prediction is output
at the dense layer.

The CNN-GRU models use Conv1D with 64 filters, and a
kernel size of 5 and ReLU is used as the activation function.
A pooling layer MaxPooling1D follows this with a pooling
size of 4. The CNN layer extracts all the features and then
feeds them to the GRU layer. The output of the CNN layer
is fed to the LSTM layer after pooling and 0.2 dropout. After
that, the LSTM layer outputs its output to the dense layer, and
finally, the prediction is output at the dense layer.

The structure of both CNN-LSTM and CNN-GRU is fur-
ther detailed in Table 4. These models use a learning rate of
0.0008 and Adam for optimisation [47]. Here, MSE is used as
the loss function. The algorithm is based on CNN, LSTM, and
GRU DL neural network implemented using Python, Keras
and Tensorflow.

D. MODEL IMPLEMENTATION
The water quality dataset is used to train the DL models
to predict each water quality parameter. First, the dataset
is divided into two; 80% for the training and 20% for the
testing. The training dataset is used to develop the models,
while the testing dataset is used to validate and compare
the performance of models developed. All input and output
variables were scaled between 0 and 1 via normalization
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FIGURE 4. Proposed Hybrid CNN-LSTM DL neural network model structure.

FIGURE 5. Proposed Hybrid CNN-GRU DL neural network model structure.

TABLE 4. The structures of proposed hybrid CNN-LSTM and CNN-GRU DL
models.

and minimum-maximum scaling techniques, using the Min-
MaxScaler in the scikit-learn preprocessing library using
Python [48]. The training and testing datasets are transformed
into supervised learning frames with various array manipula-
tion techniques. The time series sequences are converted to
input-output equations using the sliding window procedure.
This transformed data is used to train the models for WQP.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
This research is to analyse the performance of hybrid mod-
els CNN-LSTM and CNN-GRU. We use two water quality

data sets to conduct experiments, analyse and evaluate the
performance of the proposed models. Furthermore, by com-
paring proposed models with other DLmodels, the prediction
performance and effectiveness of the proposed models are
validated.

A. DATASETS
1) ADAK WATER QUALITY DATASET
The first dataset used in this research work is the aquaculture
water quality data that we have collected from aquaculture
farms under ADAK, Kerala, which includes the data of water
quality parameters such as salinity, pH, DO and temperature.
The preprocessing and cleaning of this data was done as part
of this work. We have three years of data with 1096 samples.
The data is collected on a daily basis at the same time. This
is a medium-size dataset compared to the MAC dataset used
in this research work.

2) MAC WATER QUALITY DATASET
The second dataset is taken from another researchworkwhich
is made available publically by the authors [16]. This data
is collected from the marine aquaculture base in Xincun
Town, LingShui County, Hainan Province, China. It also
includes water quality data parameters such as salinity, pH,
DO, and temperature and the data is collected every 5 min-
utes. This data have a total of 23200 samples collected over
80 days. This is a large dataset compared to the ADAK
dataset.
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B. EXPERIMENTAL SETUP
The experimental environment is Microsoft Azure Virtual
Machines with specifications: Inter(R) Xeon (R) 8272CL
CPU @2.60GHz, 32 GB RAM, Windows 10 (64-bit) oper-
ating system, Visual studio code IDE, and we have imple-
mented the neural network model using Python 3.9.6, Keras
2.6.0 and Tensorflow 2.6.0.

The hybrid models are compared with CNN, LSTM, and
GRU DL models. We use 80% of data to train the model, and
the remaining 20% is utilised to test the prediction accuracy of
results. Themost critical part of building aDLmodel is tuning
and optimisation of the hp. For the model to be most effective
and efficient, we need to tune as many hp. In this work,
we have selected four hp for tuning: learning rate, epochs,
window size and batch size. In each of the models, we have
kept other hp, the number of layers and neurons in each layer
fixed. A dropout of 0.2 is applied after the primary layers
to avoid over-fitting, and ReLU is applied as the activation
function. In addition, the optimiser adopted in all the DL
models in this work is Adam.

C. MODEL PERFORMANCE METRICS
The performance of the predictionmodels are evaluated using
mean absolute error (MAE), mean square error (MSE), root
mean squared error (RMSE) and mean absolute percent-
age error (MAPE), computed by the set of equations given
below:

MAE =
1
n
6n
i=1| (Ai − Yi) |

MSE =
1
n
6n
i=1(Ai − Yi)

2

RMSE =

√
1
n
6n
i=1(Ai − Yi)

2

MAPE =
1
n
6n
i=1
|(Ai − Yi)|

Ai
(5)

where Ai is the actual value of ith sample, Yi is the predicted
value of ith sample and n is the number of samples.

D. EXPERIMENTS
This work aims to improve the accuracy of aquaculture WQP
and reduce the computation time. We have done five sets of
experiments. Four sets are done by varying each of the hp,
and the fifth experiment is done by changing the step size.
We have plotted learning rate, epoch, window size, and batch
size versus RMSE. We have plotted each hyperparameter
versus the computation time as well. The experiments are
done on both datasets (ADAKdataset andMACdataset). This
will help to analyse the performance of these DL models on
a medium-sized dataset and large dataset. The ADAK water
quality dataset, even though it has three years of data, it has
only 1096 data points, as the data is recorded only once a day.
In comparison, theMACwater quality dataset has 23200 data
points, which is from 80 days since data is recorded every
5 minutes.

1) EPOCH
The outcome of choosing different epochs {10, 50, 100, 150,
200, 300, 400, 500} for each DL model is studied. Fig. 6
shows the RMSE vs epoch for different water quality param-
eters using ADAK water quality dataset for the proposed
hybrid DL models and LSTM, GRU as well as CNN DL
models. Here the proposed hybrid DL models CNN-LSTM
and CNN-GRU maintain better performance than baseline
DL models LSTM, GRU and CNN. Hybrid models achieve
good performance within 50 to 100 epochs, and the gener-
alization is attained within 100 epochs. Prediction accuracy
performance is maintained for all four water quality param-
eters for epochs 10 to 500. Also, the prediction performance
of our hybrid DL models is higher compared to the baseline
DL models. As well as baseline DL models are taking at
least 400 epochs to achieve generalization and is under-fitting
training data for epochs less than 400. The baseline DL
models are close to the performance of the proposed models
at 500 epochs. The baseline models require more computa-
tion resources to achieve similar results. The hybrid models
start to overfit a little after 150 epochs for the ADAK water
quality dataset. Still, the accuracy is maintained, indicat-
ing the adaptability of the proposed DL model to different
datasets.

To further evaluate the performance, we have repeated the
experiment with the MAC water quality dataset. Fig. 7 shows
the RMSE vs epoch for all four water quality parameters
on the MAC dataset of the proposed hybrid DL models,
LSTM, GRU and CNN. Here the proposed hybrid DLmodels
CNN-LSTM maintain better performance than the other DL
models for predictions of water quality parameters. In this
dataset, our model attained the required accuracy and gen-
eralization in 50 epochs. Furthermore, the accuracy loss is
minimal after increasing epochs, and the CNN-LSTM model
is neither over-fitting nor under-fitting the training data as we
increase the epochs from 10 to 500 epochs.

2) WINDOW SIZE
The influence of choosing different window size {10, 20,
30, 40, 50, 60, 70, 80} for each DL model is analysed.
Fig. 8 shows the RMSE vs window size for different water
quality parameters on the ADAK water quality dataset with
the proposed hybrid DL models and the baseline DL models.
The proposed hybrid DL models perform better than baseline
DL models. As the window size is increased from 10 to 80,
the error remains constant for hybrid DL models. In this
experiment, we can see those baseline models are comparable
in performance with hybrid DL models for some window
sizes for each water quality parameter. However, no baseline
models are performing consistently well for all four water
quality parameters. For example, the performance of LSTM is
slightly better than CNN-LSTM at window size 40 and 80 for
pH. However, for the other three water quality parameters, the
performance of LSTM is not good. In comparison, proposed
hybrid models consistently show good performance for the
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FIGURE 6. Comparison of RMSE values for prediction using LSTM, GRU, CNN, CNN-LSTM and CNN-GRU DL models for
different epochs {10, 100, 150, 200, 300, 400, 500 } and other hyper parameters constant (window size = 30, learning
rate = 0.0008, batch size = 32) on the ADAK dataset.

FIGURE 7. Comparison of RMSE values for prediction using LSTM, GRU, CNN, CNN-LSTM and CNN-GRU DL models for
different epochs {10, 100, 150, 200, 300, 400, 500 } and other hyper parameters constant (window size = 30, learning
rate = 0.0008, batch size = 64) on the MAC dataset.
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FIGURE 8. Comparison of RMSE values for prediction using LSTM, GRU, CNN, CNN-LSTM and CNN-GRU DL models for
different Window sizes {10, 20, 30, 40, 50, 60, 70, 80 } and other hyper parameters constant (epoch = 100, learning
rate = 0.0008, batch size = 32) on the ADAK dataset.

FIGURE 9. Comparison of RMSE values for prediction using LSTM, GRU, CNN, CNN-LSTM and CNN-GRU DL models for
different Window sizes {10, 20, 30, 40, 50, 60, 70, 80 } and other hyper parameters constant (epoch = 50, learning
rate = 0.0008, batch size = 64) on the MAC dataset.
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FIGURE 10. Comparison of RMSE values for prediction using LSTM, GRU, CNN, CNN-LSTM and CNN-GRU DL models for
different learning rates {0.01, 0.001, 0.0009, 0.0008, 0.0007, 0.0001 } and other hyper parameters constant (epoch = 100,
window size =30, batch size = 32) on the ADAK dataset.

FIGURE 11. Comparison of RMSE values for prediction using LSTM, GRU, CNN, CNN-LSTM and CNN-GRU DL models for
different learning rates {0.01, 0.001, 0.0009, 0.0008, 0.0007, 0.0001 } and other hyper parameters constant (epoch = 50,
window size =30, batch size = 64) on the MAC dataset.
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FIGURE 12. Comparison of RMSE values for prediction using LSTM, GRU, CNN, CNN-LSTM and CNN-GRU DL models for
different batch sizes {16, 32, 64, 128, 256, 512 } and other hyper parameters constant (epoch = 100, window size = 30,
learning rate = 0.0008) on the ADAK dataset.

FIGURE 13. Comparison of RMSE values for prediction using LSTM, GRU, CNN, CNN-LSTM and CNN-GRU DL models for
different batch sizes {16, 32, 64, 128, 256, 512} and other hyper parameters constant (epoch = 50, window size = 30,
learning rate = 0.0008) on the MAC dataset.
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FIGURE 14. Comparison of computation time for prediction using LSTM, GRU, CNN, CNN-LSTM and CNN-GRU DL models.
(a) epochs {10, 100, 150, 200, 300, 400, 500}, (b) window sizes {10, 20, 30, 40, 50, 60, 70, 80}, (c) learning rates {0.01, 0.001,
0.0009, 0.0008, 0.0007, 0.0001}, and (d) batch sizes {16, 32, 64, 128, 256, 512} on ADAK dataset.

FIGURE 15. Comparison of computation time for prediction using LSTM, GRU, CNN, CNN-LSTM and CNN-GRU DL models.
(a) epochs {10, 100, 150, 200, 300, 400, 500}, (b) window sizes {10, 20, 30, 40, 50, 60, 70, 80}, (c) learning rates {0.01, 0.001,
0.0009, 0.0008, 0.0007, 0.0001}, and (d) batch sizes {16, 32, 64, 128, 256,512} on MAC datset.
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FIGURE 16. Comparison of RMSE values for prediction using LSTM, GRU, CNN, CNN-LSTM and CNN-GRU DL for different Step
sizes {2, 4, 6, 8, 10, 12} and other hyper parameters constant (epoch = 100, learning rate = 0.0008, window size =30, batch
size = 32) on the ADAK dataset.

FIGURE 17. Comparison of RMSE values for prediction using LSTM, GRU, CNN, CNN-LSTM and CNN-GRU DL models for different
step sizes {2, 4, 6, 8, 10, 12} and other hyper parameters constant (epoch = 50, learning rate = 0.0008, window size =30, batch
size = 64) on the MAC dataset.

VOLUME 10, 2022 60091



K. P. Rasheed Abdul Haq, V. P. Harigovindan: WQP for Smart Aquaculture Using Hybrid DL Models

four water quality parameters and window sizes that we
experimented with.

To further analyse the performance of these models,
we repeat the experiment with theMACwater quality dataset.
Fig. 9 shows the RMSE vs window size for all four water
quality parameters on the MAC dataset with the proposed
hybrid DL models, LSTM, GRU as well as CNN. Further-
more, we can observe from Fig. 9 that the hybrid CNN-LSTM
model is having good performance consistently when com-
pared to the other models.

3) LEARNING RATE
The impact of learning rate {0.01, 0.001, 0.0009, 0.0008,
0.0007, 0.0001} on the performance for each of the DL
models is analysed. In Fig. 10, we compare RMSE vs learn-
ing rate performance of proposed hybrid DL models with
baseline models using the ADAK water quality dataset. The
proposed hybrid DL models perform consistently better than
baseline DL models. However, the performance of baseline
DL models is not consistent for various learning rates and
different water quality parameters. Hence using the baseline
DL models for WQP is not practical.

To further analyse the performance of these models,
we repeat the experiment with theMACwater quality dataset.
In Fig. 11, we compare RMSE vs learning rate performance
of proposed hybrid DL models with baseline models using
the MAC water quality dataset. LSTM, GRU and CNN-GRU
show moderate performance at some learning rates. How-
ever, the performance of CNN does not come close to the
performance of hybrid models at any point. Here, we can
observe from Fig. 11 that the hybrid CNN-LSTM model
has the best and consistent performance compared to other
models.

4) BATCH SIZE
In this experiment, we analyse the performance of each DL
model on different batch sizes {16, 32, 64, 128, 256, 512}.
Fig. 12 shows the RMSE vs batch size for different water
quality parameters on the ADAKwater quality dataset for the
proposed hybrid DL models with the baseline DL models.
Compared to the proposed hybrid DL models, it can be
observed that the performance of the baseline DL models is
inconsistent and inferior. Furthermore, we can see that the
performance of CNN is reducing with the increase of the
batch size.

Fig. 13 shows the RMSE vs batch size for different water
quality parameters using the MAC water quality dataset with
the proposed hybrid DL models and the baseline DL models.
As this dataset has more data points, we can see from the plots
the performance difference of each model. From the results,
it can be observed that the proposed hybrid CNN-LSTM
models have better performance compared to other baseline
models and the hybrid CNN-GRUmodel. Here also, the base-
line DL models are inconsistent and underperform compared
to the proposed hybrid DL models.

5) COMPUTATION TIME
In the above four experiments, the computation time was
also simultaneously measured and stored. Fig. 14 and Fig. 15
plot the computation time for each hyperparameter for the
ADAK water quality dataset and MAC water quality dataset,
respectively.The computation time required by each DL
model is different. Here we can observe some common trends
from the plots. One among them is that the computation
time increases with an increase in epochs and window size.
But computation time is reduced with an increase in batch
size. We cannot notice much change in computation time for
different learning rates since we have selected the learning
rate within a limited range for both of the datasets for all
models.

In summary, for WQP, the proposed CNN-LSTM model
maintains the best performance in various experimental
conditions in terms of accuracy and computation time, indi-
cating the adaptability of the proposed CNN-LSTM DL
model.

6) MULTI-STEPS PREDICTION
In this experiment, we have analysed the performance of each
of the DL models for different step sizes {2,4,6,8,10,12}.
Fig. 16 shows the RMSE vs step size for various water
quality parameters in the ADAK water quality dataset for
the proposed hybrid DL models with the baseline DL mod-
els. The results show that the proposed hybrid DL models
perform much better than the baseline DL models. Further-
more, we can see that the performance of CNN-LSTM and
CNN-GRU is reducing with the increase in the step size.

Fig. 17 shows the RMSE vs step size for different
water quality parameters in the MAC water quality dataset
with the proposed hybrid DL models and the baseline
DL models. From the results, it can be observed that the
proposed hybrid CNN-LSTM models have better perfor-
mance compared to other baseline models and the hybrid
CNN-GRU model. Compared to the proposed hybrid DL
models for both datasets, the baseline DL models are
underperforming.

V. RESULT ANALYSIS
The objective is to analyse the performance of hybrid
DL models, CNN-LSTM and CNN-GRU, in compari-
son with LSTM, GRU, CNN, attention-based LSTM and
attention-based GRU DL models to predict aquaculture
water quality parameters (salinity, ph, DO and tempera-
ture). In this section, the performance of proposed hybrid
DL models is compared with baseline DL models and
attention-based DL models with a fixed set of hp on the two
datasets.

The hp is selected by studying the performance of the
DL models for various hyperparameters (epochs, window
size, learning rate and batch size) in terms of prediction
accuracy and computation time. The performance of each
model is studied through various experiments by varying
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the hyperparameters. The optimal set of hyperparameters in
terms of prediction accuracy and computation time is selected
to run the final experiment for comparing the performance of
all the DL models.

A. ADAK WATER QUALITY DATASET
Fig. 18 compares the predicted values with the true data on
the ADAK water quality dataset using different DL models.
All these models are trained using 80% of the ADAK water
quality dataset and tested with 20% of the data. The predicted
values are compared with the true data. Here we have a
fixed set of hp (epochs = 100, learning rate = 0.0008, batch
size = 32, window size = 30 and Adam optimizer). The
models are evaluated using performance metrics MAE,MSE,
RMSE, and MAPE in the training and testing periods. The
computation time required for each of the models is also
calculated.

For the ADAK water quality dataset, the predic-
tion performance of all models is shown in Table 5.
From the results its clear that the proposed CNN-LSTM
model (MAE = 0.2509 ppt, MSE = 0.1035 ppt,
RMSE = 0.3217 ppt and MAPE = 0.0164 ppt) outper-
forms all baseline DL models in the training and test-
ing period. For the salinity prediction, the LSTM model
(MAE= 0.3942 ppt,MSE= 0.2230 ppt, RMSE= 0.4722 ppt
and MAPE = 0.0257 ppt) outperforms the CNN model
(MAE= 0.4800 ppt,MSE= 0.4180 ppt, RMSE= 0.6466 ppt
and MAPE = 0.0312 ppt). When we compare the perfor-
mance of WQP in other works [49], we can see similar
results where LSTM have outperformed CNN in prediction
accuracy. However, it is noticeable that the computation time
required for training CNN is just 5.55s which is only 23.64%
the computation time required by LSTM, which requires
23.72s. The LSTM model has the ability to learn from long-
term dependencies, and CNN can learn features from a large
dataset. However, the hybrid CNN-LSTM requires a compu-
tation time of 10.27s only for training the model, which is
43.75% of the computation time of LSTM saving 56.24%
in computation time and outperforming all other models
in terms of prediction accuracy except the attention-based
LSTM and GRU models. The attention-based models have
slightly better performance than the hybrid models. But the
computation time required for training the attention-based
LSTM is 21.54s, and the attention-based GRU is 22.57s
which is more than twice the computation time required by
the hybrid CNN-LSTM model.

For pH also, the CNN-LSTM model (MAE = 0.0237,
MSE = 0.0010, RMSE = 0.0317 and MAPE = 0.0032)
outperforms all other baseline DL models in terms of
prediction accuracy. The same performance is repeated
for DO (MAE = 0.0250 ml/L, MSE = 0.0010 ml/L,
RMSE = 0.0321 ml/L, and MAPE = 0.0047 ml/L) and
temperature (MAE = 0.2471 ◦C, MSE = 0.1036 ◦C,
RMSE = 0.3219 ◦C, and MAPE = 0.0098 ◦C) prediction as
well. Also, the computation time required for CNN-LSTM
is around 45% of the computation time needed by LSTM,

GRU, attention-based LSTM and attention-based GRU mod-
els. CNN-LSTM outperforms CNN with prediction accuracy
even though the CNN model requires lesser computational
time when compared to CNN-LSTM. The attention-based
models have slightly better performance than the hybrid
CNN-LSTM models in terms of prediction accuracy. The
hybrid model outperforms them in training time. Hence,
we can conclude that CNN-LSTM is the best DL model for
ADAK water quality data.

We have also compared the performance of classical model
ARIMA with all the DL models for the ADAK dataset
in Table 7. The results show that all the DL models per-
form better than the classical model ARIMA for the ADAK
dataset.

B. MAC WATER QUALITY DATASET
Fig. 19 compares the prediction of all DLmodels with the true
data on the MAC water quality dataset. All these models are
trained using 80%of theADAKwater quality dataset and pre-
dicted the 20% values. The predictions are compared with the
true data. Here we have a fixed set of hp (epochs= 50, learn-
ing rate = 0.0008, batch size = 64, window size = 30 and
Adam optimizer). The models are evaluated using MAE,
MSE, RMSE, and MAPE in the training and testing periods.
The computation time required for each of the models is also
calculated.

For the MAC water quality dataset, the prediction
performance of all models is shown in Table 6. From
the table, it is clear that the proposed CNN-LSTM
model (MAE = 0.0381 ppt, MSE = 0.0068 ppt,
RMSE = 0.0827 ppt and MAPE = 0.0011 ppt) outper-
forms all baseline DL models in the training and test-
ing period. For the salinity prediction, the LSTM model
(MAE= 0.0535 ppt,MSE= 0.0860 ppt, RMSE= 0.2933 ppt
and MAPE = 0016 ppt) outperforms the CNN model
(MAE= 0.4783 ppt,MSE= 0.7089 ppt, RMSE= 0.8240 ppt
andMAPE= 0.0141 ppt). But it is noticeable that the compu-
tation time required for training CNN is just 21.88s which is
only 19.57% the computation time required by LSTM, which
requires 111.75s. The hybrid CNN-LSTM requires a com-
putation time of 36.83s only for training the model, which
is 32.95% of LSTM saving 67.04% in computation time
and outperforming all other models in terms of prediction
accuracy except the attention-based LSTM and GRUmodels.
The attention-based models have slightly better performance
than the hybrid models. But the computation time required
for training the attention-based LSTM is 122.42s, and the
attention-based GRU is 117.30s, which is more than three
times the computation time required by the hybrid CNN-
LSTM model.

For pH also, the CNN-LSTM model (MAE = 0.0042,
MSE = 0.00004, RMSE = 0.0063 and MAPE = 0.0005)
outperforms all other models in terms of prediction accu-
racy. The same performance is repeated for DO (MAE =
0.0566 ml/L, MSE = 0.0065 ml/L, RMSE = 0.0804 ml/L,
and MAPE = 0.0145 ml/L) and temperature (MAE =
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FIGURE 18. Plots of predicted values using LSTM, GRU, CNN, CNN-LSTM, CNN-GRU, Attention-based LSTM and
Attention-based GRU predictions, and ADAK water quality observed data. (a) Salinity, (b) pH, (c) DO, (d) Temperature.

TABLE 5. Evaluation of Prediction accuracy of LSTM, GRU, CNN, CNN-LSTM, CNN-GRU, Attention-based LSTM and Attention-based GRU for ADAK water
quality dataset.
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FIGURE 19. Plots of predicted values using LSTM, GRU, CNN, CNN-LSTM, CNN-GRU, Attention-based LSTM and Attention-based
GRU predictions, and MAC water quality observed data.(a) Salinity, (b) pH, (c) DO, (d) Temperature.

TABLE 6. Evaluation of Prediction accuracy of LSTM, GRU, CNN, CNN-LSTM, CNN-GRU, Attention-based LSTM and Attention-based GRU for MAC water
quality dataset.
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TABLE 7. Evaluation of Prediction accuracy of ARIMA, LSTM, GRU, CNN, CNN-LSTM, CNN-GRU, Attention-based LSTM and Attention-based GRU for ADAK
and MAC water quality datasets.

0.0216 ◦C, MSE = 0.0009 ◦C, RMSE = 0.0303 ◦C, and
MAPE = 0.0008 ◦C) prediction as well. Also, the compu-
tation time required for CNN-LSTM is around 33% of the
computation time needed by LSTM, GRU, attention-based
LSTM and attention-based GRU models. CNN model has
lesser computational time when compared to CNN-LSTM.
The attention-based models have slightly better performance
than the hybrid CNN-LSTM models in terms of prediction
accuracy. The hybrid model outperforms them in training
time. Hence, we can conclude that CNN-LSTM is the best
DL model for MAC water quality data.

We have also compared the performance of classical model
ARIMA with all the DL models for the MAC dataset in
Table 7. The results show that all the DL models perform
better than the classical model ARIMA for the MAC dataset.

VI. CONCLUSION
In this research work, we have proposed hybrid DL mod-
els, CNN-LSTM and CNN-GRU, for aquaculture WQP. The
developed hybrid prediction models were trained and tested

on two distinct datasets. The water quality parameters data
was collected from aquaculture ponds located in Kollam,
Kerala, under ADAK. Another dataset used was the MAC
dataset which was collected from the marine aquaculture
base in Xincun Town, LingShui County, Hainan Province,
China. We have also extensively analysed the impact of
varying the hp. For performance comparison and further
analysis, optimal hp were used.We have compared the perfor-
mance of these hybrid DL models (CNN-LSTM and CNN-
GRU) with baseline DL models (LSTM, GRU, and CNN)
and attention-based DL models (attention-based LSTM and
attention-based GRU) in terms of MAE, MSE, RMSE, and
MAPE. Results show that the CNN-LSTM hybrid model pro-
vides significant improvement in prediction accuracy as well
as computation time compared to the baseline DL models.
The hybrid models have a similar performance compared
with the attention-based models. Still, they outperform the
attention-based models in computation time, offering a real-
istic solution for predicting water quality parameters in smart
aquaculture.
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