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ABSTRACT Integrating electric vehicle (EV) charging infrastructures into the utility grids requires solutions
for coordinated charging of EVs. Load management systems aim at computing coordinated charging
schedules for electric vehicles based on predetermined charging objectives. Contributions on coordinated
charging for EVs predominantly assume that the EVs or the charging stations are controllable entities in
the load management systems. However, in practice, charging infrastructures may consist of controllable
and uncontrollable entities. This paper proposes architecture and control strategies for EV charging infras-
tructures consisting of controllable and uncontrollable entities. Simulations based on real-world charging
sessions show how the share of uncontrollable entities in a charging infrastructure affects the performance
of different control strategies in the system architecture. We show that a certain number of uncontrollable
entities in a charging infrastructure does not affect the scheduling objectives significantly. EV fleet and
charging infrastructure operators can develop pragmatic investment and operation strategies based on the
proposed control strategy and architecture.

INDEX TERMS Electric vehicles, scheduling strategy, aggregator, control architecture.

I. INTRODUCTION
Electric vehicles (EVs) provide an environmentally friendly
transportation form. Compared to combustion engine vehi-
cles, EVs emit negligible air pollution. Furthermore, the envi-
ronmental EV usage benefits grow even more if the power
supply comes from renewable resources [1]. However, range
anxiety1 aggravates consumers’ willingness to purchase EVs,
despite governmental incentives and increased awareness.
Li et al. [2] show that consumers’ increased desire to buy
EVs depends on charging infrastructure deployment and
corresponding public investment. Globally, the awareness
rises that charging availability is a barrier to EV diffusion.
Therefore, different countries target charging infrastructure
deployment (e.g., [3]).

With EV adoption increasing rapidly, the power grid is fac-
ing new challenges. For example, uncoordinated charging can
drastically alter the immediate demand shape [4]. Undesired
demand shapes pose concerns both on a local scale, such as
overloading the transformer [5], [6] and on a broad scale,
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1Range anxiety is a driver’s concern that the EV does not have enough

energy storage to get to his or her destination, especially if charging station
is not always available.

such as the power grid’s voltage instability [7], [8]. On the
other hand, EVs are also mobile energy storage systems
[9], [10]. Furthermore, intelligent EV charge scheduling
enables grid load shaping (reshaping undesired grid load
peaks or valleys) [11], [12]. Contributions on EV charge
scheduling have mostly covered control algorithms, control
architectures, and control strategies (see [13]–[18] for recent
reviews on these topics).

A. CONTROL ALGORITHMS AND ARCHITECTURES
With a defined scheduling objective and the corresponding
constraints, mathematical optimization techniques such as
(mixed-integer) linear programming [19]–[22] and quadratic
programming [23]–[26] or heuristic optimization approaches
such as reinforcement learning [27]–[30] are applied to find
the optimal schedule. These algorithms are usually integrated
with a centralized control architecture. In a centralized archi-
tecture, as shown in Fig. 1(a), the centralized aggregator
gathers charging behavior information from all the electric
vehicle supply equipment (EVSE)/EV nodes and computes
the charging schedules. However, using centralized architec-
tures entails potential risks. For example, the computation at
a central node may cause a single point of failure, i.e., if the
centralized aggregator fails, the whole EV fleet will stop
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charging. Besides, the centralized aggregator requires private
information, i.e. the arrival times (AT), departure times (DT),
and energy demands (ED), to compute the charging sched-
ules. Moreover, an increased node number calls for more
computational power.

FIGURE 1. Control architectures for EV charge scheduling: (a) centralized;
(b) decentralized; (c) layered.

Decentralized architectures can overcome these disad-
vantages. Decentralized architectures employ distributed or
decentralized algorithms such as the optimal decentralized
control [31], [32], the game theory approach [33]–[37],
or multi-agent reinforcement learning [38], [39]. Fig. 1(b)
shows that EVSE/EV nodes determine their schedule in a
decentralized architecture. The decentralized aggregator then
collects the charging schedules from all the nodes, based on
which it will regulate and publish the control signal, such
as virtual pricing information. The EV fleet can generally
determine the optimal schedule in a few iterations.

Layered architectures often apply for EV fleets with a
large node number. Fig. 1(c) outlines a three-layer control
architecture (the bottom layer consists of centralized and
decentralized nodes, not shown). Each general aggregator
can operate either in a centralized or decentralized manner
in this architecture. For example, Yao et al. [40] presented
a three-layer control architecture where the top and mid-
dle layers are centralized aggregators. References [41], [42]
employed the same architecture. In [43]–[45], the top layer is
a decentralized aggregator: the nodes are aggregated by cen-
tralized aggregators, and then distributed algorithms, more
specifically, the game theory approach is applied to regulate
the centralized aggregators. In contrast, Shao et al. [46] kept
the top layer as centralized but the middle layer as decen-
tralized aggregators. In [47], [48], both top and middle layers
are decentralized aggregators. Although it is common to have
purely centralized or decentralized aggregators in the middle
layer, in practice, depending on the node types, it may require
both types of aggregators in themiddle layer.Wang et al. [34]

illustrated a three-layer architecture, where the top layer is
centralized, and the middle layer combines a centralized and
a decentralized aggregator.

B. CONTROL STRATEGIES
Control strategies determine how to execute EV fleet charge
scheduling under the chosen control algorithm and architec-
ture. We distinguish between the following charging con-
trol strategies: uncontrolled, oracle, offline and online. The
uncontrolled and the oracle strategies provide the worst and
the best benchmark performance, respectively. The offline
strategy is usually applicable with day-ahead predictions of
charging behavior, and the online strategies are more appli-
cable since they get updated information upon the new time
index.

1) UNCONTROLLED STRATEGY - NO CONTROL
EVs start charging immediately upon their arrival. It is cur-
rently the most frequently used control strategy. This strat-
egy maximizes the likelihood of a full state-of-charge on
departure and does not require any additional a priori knowl-
edge about the AT, DT, and ED. The disadvantage of this
strategy lies in the high probability of peak demands due
to simultaneously charging EVs. The presented dataset from
[49], [50] showed the flexibilities reside in real-world charg-
ing sessions, and there are potential benefits to applying
controlled scheduling.

2) ORACLE-BASED CONTROL STRATEGY
The AT, DT, and ED are three crucial input parameters for
charge scheduling algorithms. An oracle-based strategy has
the perfect a priori knowledge about ATs, DTs, and EDs
over the hlentire scheduling horizon. The perfect AT, DT,
and ED knowledge are not available in a practical scenario.
Nevertheless, the oracle strategy is helpful as a benchmark
strategy.

3) OFFLINE STRATEGY
The offline control strategy determines a schedule once at the
beginning of a predetermined complete scheduling horizon
[31], [35], [36]. It assumes that it has imperfect a priori
knowledge about the ATs, DTs, and EDs within the horizon.
This imperfect knowledge can either come from the users’
self-predicted charging behavior or from a prediction the
charging station has carried out learning from historically
available data (e.g., [51]–[53]). Compared to uncontrolled
strategies, offline control strategies have the advantage that
they enable intelligent charging by employing peak shaving,
valley filling, or cost-optimized scheduling. The disadvantage
of the offline strategy lies in the AT, DT, and ED prediction
uncertainty.

4) ONLINE STRATEGY
Alternatively, online control strategies can overcome these
offline strategy-related reliability limitations. The online
strategy updates the charging schedule iteratively for each
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time index defined within the scheduling horizon [27],
[31], [54]–[58]. We further differentiate between two
subcategories:

1) Naive Online: The naive online strategy refers to
a strategy that only has the information revealed
to date, i.e., the arrived EVs’ DTs and EDs
(e.g., [31], [34], [56]).

2) Predictive Online: The predictive online strategy
refers to a strategy that, apart from the information
revealed to date, employs the predicted ATs, DTs, and
EDs of EVs to arrive in the future (e.g., [27], [54], [55],
[57]–[59]).

C. OPEN CHALLENGES AND NOVEL CONTRIBUTIONS
Available smart EV charge scheduling contributions focus
mainly on responsive EVSE/EV nodes, i.e., decentralized
and/or centralized nodes, as shown in the above subsections.
However, in practice, infrastructures include uncontrolled
nodes. Uncontrolled nodes can neither compute a sched-
ule nor provide the scheduling interface to a central entity.
Besides, some users would prefer to control the charging
window by themselves. We also refer to this node type as an
uncontrolled node.

To the authors’ best knowledge, intelligent EV charge
scheduling contributions rarely consider the existence and
integration of uncontrolled nodes. Xydas et al. [60] mod-
eled the uncontrolled nodes as unresponsive EV agents in
their multi-agent framework. They identified the importance
of forecasting the EDs from those uncontrolled nodes to
achieve the scheduling objective. We consider a practical
charge scheduling problem that includes three node types:
decentralized, centralized, and uncontrolled nodes. Further-
more, we adapt the layered control architecture to handle the
heterogeneous nodes. Wang et al. [34] designed the control
architecture where the top layer is a centralized aggregator,
and the middle layer consists of a centralized aggregator and
a decentralized aggregator. There are, in total, three aggre-
gators in their control architecture. Besides, the top layer
is a centralized aggregator, bringing in the disadvantages of
the centralized architecture. To overcome this disadvantage,
we propose a different layered architecture variant. The top
layer is a decentralized aggregator; the middle layer contains
a centralized aggregator, decentralized nodes, and uncon-
trolled nodes; and the bottom layer consists of centralized
nodes. The detailed description is in Section II.

In this paper, we provide numerical results for the proposed
control architecture to tackle the challenges with the follow-
ing contributions:

• We propose the control architecture introduced in
Section II for an EV fleet containing heterogeneous
nodes, i.e., uncontrolled, decentralized, and centralized
nodes.

• We present detailed mathematical formulations for
decentralized, centralized charge scheduling, including
uncontrolled nodes (Section III).

• We assess the proposed control architecture and analyze
the simulation results to answer the following:
1) What are the performance differences if we

apply different online control strategies? The
oracle strategy provides benchmark performance,
whereas the naive and predictive online strategies
are practically applicable. The performance differ-
ence will indicate if the predictions are necessary
or not.

2) To which percentage the responsive nodes
should be to achieve acceptable performance?
Less responsive nodes mean less initial investment
cost and less communication traffic and computa-
tional demand during operation.

We present the result focusing on a specific scheduling
objective: load flattening.2 However, we can explore other
objectives with the same approach.

II. AGGREGATOR DESIGN
We propose a variant of the layered architecture to handle an
EV fleet with heterogeneous nodes, as shown in Fig. 2.

FIGURE 2. Proposed control architecture for an EV fleet containing
heterogeneous nodes, i.e. uncontrolled, decentralized, and centralized
nodes.

The bottom layer consists of the centralized nodes, aggre-
gated by the centralized aggregator at the middle layer.
Additionally, we have the uncontrolled and the decentralized
nodes at themiddle layer. Furthermore, a decentralized aggre-
gator lies on top. The uncontrolled nodes are not responding
to any control signal, but they can share their (fixed) charg-
ing schedules (schedules, solid arrows). The decentralized
nodes iteratively update their charging schedules based on
the received control signal (information, dashed arrows) from
the decentralized aggregator. The centralized nodes must
share their charging behavior with the centralized aggregator,
i.e., ATs, DTs, and EDs (information, dashed arrows). Then,

2The objective is to distribute the load from EVs over time evenly.
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the centralized aggregator iteratively updates the charging
schedules based on the received control signal (informa-
tion, dashed arrow) from the decentralized aggregator. For
the decentralized aggregator to compute the control signal,
it must collect charging schedules (schedules, solid arrows)
from the centralized aggregator, the uncontrolled and the
decentralized nodes.

Control strategies formed based on the mix-layer control
architecture are mix-layer oracle, mix-layer offline, mix-
layer naive online, and mix-layer predictive online control
strategies. Due to the reliability concern in the offline strat-
egy, we will not cover it in this paper. The decentralized
aggregator collects the initial schedules from the central-
ized aggregator and decentralized and uncontrolled nodes to
compute the schedule based on the mix-layer oracle con-
trol strategy. The centralized aggregator gathers the charging
behavior from centralized nodes and initializes the charging
schedules. Based on the initialized charging schedules, the
decentralized aggregator calculates the control signal, such as
the virtual pricing information for each decision time slot in
the scheduling horizon. If the deviation of the control signal
is significant, the decentralized nodes will reschedule and
resend the charging schedules to the decentralized aggregator.
Meanwhile, the centralized aggregator will reschedule on
behalf of the centralized nodes. The rescheduling will result
in a new control signal. On the other hand, the stabilized
control signal means the EV fleet has reached the optimal
charging schedules. Then, the centralized aggregator will
transfer the charging schedules to the centralized nodes. Fig. 3
shows the flow chart of the processes when applying the
mix-layer oracle control strategy.

FIGURE 3. Flow chart of the processes when apply the mix-layer oracle
control strategy.

When applying mix-layer online strategies, the iterations
depicted in the flow chart in Fig. 3 occur at each time

index within the scheduling horizon. The charging schedules
computation relies on the information revealed to date when
applying the mix-layer naive online control strategy. If the
prediction is available and we apply the mix-layer predictive
online control strategy, the computation also considers the
future charging behavior.

III. PROBLEM FORMULATION
This Section presents the mathematical formulation for com-
puting the charging schedules for uncontrolled and respon-
sive nodes.

We denote vectors by lower case boldfaced letters, and
we denote the vector’s kth entry as •(k), where • is the
corresponding lower case letter. Further, let < •, • > denote
the scalar product, let ⊗ denote the Kronecker product,
let � denote element-wise smaller and equal to. Further, let
•̄, •̂, •̃, and || • || denote historical mean, predicted values,
hypothetical values, and the Euclidean norm, respectively.

Let N , N u, N r, N d, and N c represent the number of
all, uncontrolled, responsive, decentralized, and centralized
nodes, respectively. Further, let H represent the scheduling
horizon, and τ the decision time slot duration. Thus, we have
in total K = bH/τc slots.
For charging behavior, let tan , t

d
n , and en represent the

nth node’s true AT, DT, and ED for all nodes n ∈ {1, . . . ,N },
respectively. We let pmax

n represent the nth node’s max-
imum charging rate, and pn = [pn(1), . . . , pn(K )]T ∈
RK×1
≥0 the final charging schedule. The charging schedule

for responsive nodes depends on the EV connection times.
We define the kth binary connection status vector cn =
[cn(1), . . . , cn(K )]T ∈ BK×1 entry for the nth EV as:

cn(k) =

{
1, if tan 6 kτ 6 tdn
0, else.

(1)

To facilitate a convenient matrix vector representation,
we stack the charging rates for all nodes in p =

[pT1 , . . . ,p
T
N ]

T (same for uncontrolled, responsive, and cen-
tralized nodes: pu, pr, and pc); and we stack the connec-
tion time vectors, energy demands, and maximum charging
rates for responsive nodes in cr = [cT1 , . . . , c

T
N r ]T , er =

[e1, . . . , eN r ]T , and pr,max
= [pmax

1 , . . . , pmax
N r ]T , respectively

(same for centralized nodes: cc, ec, and pc,max). We define the
auxiliary matrix A as

A = 11×N ⊗ IK (2)

to express the summations over the charging schedules pn for
all n ∈ {1, . . . ,N } as

Ap =
N∑
n=1

pn. (3)

In the same way, we define the auxiliary matrices Au, Ar,
and Ac for uncontrolled, responsive, and centralized nodes,
respectively.

For online control strategies, the available information
and the computed charging schedules change over the time,
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and we let •κ denote the value at the time index κ , where
κ ∈ {1, . . . ,N }. For example, eκn denotes the nth node’s
(unfulfilled) energy demand at the time index κ; pr,κ denotes
the computed charging schedules over the scheduling horizon
for responsive nodes at the time index κ .

A. UNCONTROLLED NODES
In the uncontrolled case, the node starts charging immedi-
ately with the maximum charging rate pmax

n . The charging
stops, if the EV is fully charged. To ease the calculation and
performance comparison, we assume that the charging rate
does not change within a decision time slot. Let M denote
the number of required time-slots to reach the demand en.
Then the EV will charge with pmax

n for the duration Mτ .
Though, to finish charging, the charging rate at the last deci-
sion time slot may be smaller than pmax

n . Thus, the kth entry
of the charging profile vector pn for an uncontrolled node
n ∈ {1, . . .N u

} is:

pn(k) =


pmax
n , if tan ≤ kτ < tan +Mτ
en − pmax

n Mτ
τ

, if tk = tan +M (τ + 1)

0, else,

(4)

where, (en − pmax
n Mτ )/τ is the charging rate for the last

decision time slot to achieve the ED en.

B. RESPONSIVE NODES
For an arbitrary target total load profile in the scheduling hori-
zon pt = [pt(1), . . . , pt(K )]T ∈ RK×1

≥0 , we find the optimal
charging schedules, pr, given that there exists uncontrolled
nodes:

pr = argmin
p̃r

1
K

∥∥Aupu + Arp̃r − pt
∥∥2︸ ︷︷ ︸

L(p̃r)

s.t.

{
0 � p̃r � cr �

(
pr,max

⊗ 1K×1
)

τ (IN r ⊗ 11×K ) p̃r = er
(5)

where p̃r is the hypothetical charging schedule, and 1/K
is a constant and does not contribute to the solution. The
inequality constraint limits the individual charging rate at
each time index. The equality constraint targets fulfilling
the ED.

To flatten the load, an intuitive way to form the problem
is to minimize the load variance over the scheduling horizon.
We can then set the target load profile to the estimated average
load:

pt(k) =
1
K
< Ap̂, 1K×1 >, k ∈ {1, · · · ,K } , (6)

where p̂ denotes the estimated future charging load. The
optimal solutionwill minimize the deviation between the load
at each decision time slot and the average load, achieving the
flattest overall load. Though, a more common formulation to
achieve the load flattening is to set the target load as 0, which

has been proven to be equivalent [15]. From here on, we apply
the latter formulation.

We adapt the algorithm proposed in [31] to iteratively
update the responsive nodes’ charging schedules at each time
index κ , and the detailed algorithm is shown in Algorithm 1.
For the specific L defined in (5) and pt = 0, the virtual price
signal is:

vκi+1 =
2γ
K

Apκi /(N
d,κ
+ bκ ). (7)

Algorithm 1 Online Scheduling for Decentralized Nodes
1: Initialization: Set the iteration index i to 0 at time

index κ . Initialize the charging schedules for all nodes
by a random control strategy (eg., uncontrolled strategy),
denoted by pκi . The aggregator initializes the virtual price
signal vκi ∈ RK×1

≥0 (eg., to 0).
2: At the (i + 1)th iteration, the aggregator calculates the

virtual price signal vκi+1 by [31]:

vκi+1 = γL
′
(
pr,κi

)
/(N d,κ

+ bκ ), (8)

where the parameter γ satisfies 0 < γ < β, and β is
the Lipschitz constant for the derivative function of the
objective function L ′

(
pr,κ0

)
, N d,κ denotes the number of

considered decentralized nodes at time index κ , and bκ is
a binary number, defined as:

bκ =

{
1, if N c,κ > 0
0, else,

(9)

whereN c,κ denotes the number of considered centralized
nodes at time index κ . The vκi+1 is then broadcast to the
decentralized nodes.

3: If
∥∥vκi − vκi+1

∥∥ < ε (ε is a small constant), stop. Oth-
erwise, the decentralized node n computes its updated
schedule, pκn,i+1, by:

pκn,i+1= argmin
p̃κn,i+1

< vκi+1, p̃
κ
n,i+1 >+

1
2

∥∥pκn,i− p̃κn,i+1
∥∥2

s.t.

{
0 � p̃κn,i+1 � p

max
n cκn

τ11×K p̃κn,i+1 = eκn ,
(10)

where pκn,i is the latest schedule from prior iterations,
cκn denotes the nth node’s connection status at time
index κ , and the eκn denotes the (unfulfilled) energy
demand. The objective is to achieve the lowest vir-
tual cost, and the regularization part (least-square part)
encourages smaller update of the schedule, which makes
convergence of this algorithm more likely [31]. Set the
iteration index i to i+ 1 and go to Step 2.

For centralized nodes, the centralized aggregator computes
the charging schedules on behalf of them. Indeed, the central-
ized aggregator resembles a decentralized node. The differ-
ence is that the centralized aggregator computes the optimal
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charging schedules for multiple nodes, i.e. pc,κi+1, instead of
one, and the formulation is as following:

pc,κi+1 = argmin
p̃c,κi+1

< vκi+1,A
cp̃c,κi+1 > +

1
2

∥∥Ac(pc,κi − p̃c,κi+1)
∥∥2

s.t.

{
0 � p̃c,κi+1 � cc,κ � (pc,max

⊗ 1K×1)
τ (IN c ⊗ 11×K ) p̃

c,κ
i+1 = ec,κ .

(11)

For the naive online control strategy, the above variables
depending on the time index κ consider only arrived EVs
and their charging behavior. If we are to apply the predictive
online control strategy, we also take the predicted future to
be arrived EVs and their charging behavior into considera-
tion. As for oracle control strategy, we simply eliminate the
superscript κ .

IV. SIMULATION AND RESULT ANALYSIS
A. SIMULATION SCENARIO AND DATA PREPARATION
To simulate a realistic scenario, we take advantage of the
publicly available charging sessions collected by Caltech
ACN [50]. We downloaded the charging sessions within the
10 weeks starting from 1 Feb 2021 at the site JPL. Among the
attributes in one charging session, four are of our concern:
• ‘‘userID’’: the identification for each individual EV user
• ‘‘connectionTime’’: the time when the user connects
the EV (mapped to the AT)

• ‘‘disconnectTime’’: the time when the user disconnects
the EV (mapped to the DT)

• ‘‘kWhDelivered’’: the delivered energy to the EV in this
session (mapped to the ED)

We set the maximum charging rate to 7 kW and the schedul-
ing horizon (H ) for one day (24 h). Some EV users have two
or more charging sessions per day, and the intervals between
the sessions vary from minutes to hours. We combine the
sessions from the same user ID within a day for simplicity.
We decided to start the scheduling horizon at 9 am since the
dataset shows there was the least amount of EVs connected.
We trim a charging session if it spans over 2 scheduling hori-
zons. If a charging session spans over 2 scheduling horizons,
we cut it to the scheduling horizon where the EV had a longer
connection time. The often-used decision time slot τ in the
literature is 0.25 h (15min) [15], [61], [62], which corre-
sponds to the typical communication time between the energy
management units and the grid [63]. However, to reduce the
computation complexity and time, we set τ to 0.5 h.
To apply the predictive online control strategy, we need

to provide the predicted future charging behavior. To ease
notation, we vectorize the true AT tan , historical mean AT
t̄an , and predicted AT t̂an , where n ∈ {1, · · · ,N }, into ta, t̄a,
and t̂a, respectively. The same applies to DT and ED. For
the future charging behavior prediction, we directly use the
first moments of the historical charging behavior, i.e., the
mean values: t̄a, t̄d, and ē. Among the 10 weeks’ charging
sessions, we treat the first 9 weeks as historical charging
behavior. We then evaluate the performance from different
control strategies on 3 days from the 10th week. There were

26, 19, 25 charging sessions on those day, respectively, and
we assume it is known. The ‘‘connectionTime’’, ‘‘disconnect-
Time’’, and ‘‘kWhDelivered’’ represent the true AT, DT, and
ED, respectively. And we assume that the EV can publish the
true DT and ED upon arrival.
Table 1 summarizes the simulation parameters and their

values.

TABLE 1. Simulation parameters.

B. RESULT AND ANALYSIS
To answer the research questions from Section I, we need to
include the uncontrolled nodes in the simulation settings. For
responsive nodes, since a decentralized node can achieve an
optimal charging schedule [31], centralized nodes can also
achieve optimal charging schedules because the centralized
aggregator is a decentralized node. Thus, responsive nodes
can achieve the optimal schedule whether they are purely
decentralized nodes, purely centralized nodes, or a mix of
both nodes. So, we randomly distribute the responsive nodes
while varying the number of uncontrolled nodes. The fol-
lowing presents the answers and analyses to the research
questions:

1) What are the performance differences if we apply
different online control strategies?

Fig. 4 aims to show an example total system load on one
test day (N = 26) from different control strategies where
there are 20%, 40%, 60%, 80%, and 100% responsive nodes.

The purely uncontrolled strategy assumes no control over
nodes and gives the worst load profile (highest load vari-
ance). When all nodes are responsive, as shown in Fig. 4
(e), the mix-layer oracle control strategy forms the optimal
load profile since it assumes the complete knowledge of the
future charging behavior. Themix-layer naive online depends
solely on the published charging behavior from the EVs that
have arrived. The mix-layer predictive online control strategy
computes the charging schedules also based on the predicted
future charging behavior if the EV has not arrived at that
decision time slot.

As we see from Fig. 4, the final load profile depends
on how many nodes are responsive. Nevertheless, the load
profiles from the mix-layer predictive online control strat-
egy only differ slightly from that of the mix-layer oracle.
The reason is that we used the historical mean as the pre-
dicted future charging behavior, and the prediction is accurate
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FIGURE 4. The total system load on the day from different control strategies and with the percentages of responsive nodes at: (a) 20%; (b) 40%;
(c) 60%; (d) 80%; (e) 100%. The figure shows that more responsive nodes achieves less load variance and that predictive online control strategy in
general outperforms naive online.

enough for the mix-layer predictive online control strategy
to achieve a good performance. The overall load profile
from mix-layer naive online control strategy differs the least
from the mix-layer predictive online control strategy when
the responsive nodes’ percentage is the lowest (Fig. 4 (a)).
With the increasing percentage (Fig. 4 (b)-(e)), we can see
a difference in the total load. The reason is that when the
responsive nodes’ percentage is small, the inflexibility lying
in uncontrolled nodes overtakes the impact on the overall
scheduling. Then, with the majority being responsive nodes,
the mix-layer naive online control strategy has significantly
worse performance. The reason is that the responsive nodes
initially have low scheduled charging rates due to no predic-
tions for future charging behavior. Then, the scheduled charg-
ing rates may increase dramatically depending on the newly
observed charging behavior. The resulting load variance is
high.

Though, the final load profile depends also on which nodes
are responsive due to the nodes’ different charging behavior.
Consequently, we conduct further experiments by running
each experiment J (we set J to 30) times with randomly
chosen individuals as responsive nodes and compute the load
variance as per the defined objective function in (5). For a
fixed percentage of responsive nodes, we denote the load

variances by Lπj , where j is the jth simulation, and π

varies with the control strategies, i.e., the uncontrolled, mix-
layer oracle, mix-layer naive online, and mix-layer predictive
online control strategies. Moreover, the purely responsive
nodes with the oracle control strategy assume control over
all nodes with complete knowledge, and it provides the low-
est load variance, denoted by Lopt. For a fair comparison,
we normalize the load variances from other control strategies
by Lopt. Fig. 5 shows the final normalized load variance
comparison for the 3 test days.

The result confirms the previous findings: the load vari-
ances from the mix-layer predictive online control strategy,
compared to the naive online, are much closer to the oracle
control strategy. Besides, the mix-layer naive online con-
trol strategy differs the least from the mix-layer predictive
online and oracle control strategy when the responsive nodes’
percentage is the lowest. The higher the responsive nodes’
percentage, the higher the difference.

2) To which percentage the responsive nodes should be
to achieve an acceptable performance?

We conduct further experiments with an increased reso-
lution to answer this question: we choose the test day with
N = 26, and we conduct 27 experiments by varying the
number of responsive nodes (0 − 26). Further, we run each
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FIGURE 5. The violin plots of the load variances for the 3 test days from different control strategies where the percentage of
responsive nodes varies. The variances are normalized by that from the purely responsive and oracle control strategy, i.e., Lopt.
The violin plots show the absolute load variance distributions. They indicate that the mix-layer oracle outperforms the mix-layer
predictive online and the mix-layer predictive online outperforms the mix-layer naive online control strategy for all test days.

experiment J (J = 30) times with randomly chosen individ-
uals as responsive nodes and compute the mean load variance
as per the defined objective function in (5):

L̄πi =
J∑
j=1

Lπi,j, i ∈ {0, 1, . . . ,N }, (12)

where i is the number of responsive nodes, j is the jth simu-
lation for a fixed i, π denotes the control strategies, i.e., the
uncontrolled, mix-layer oracle, mix-layer naive online, and
mix-layer predictive online control strategies. We normalize
the mean load variance from other control strategies by Lopt:

wπi =
L̄πi
Lopt

, i ∈ {0, 1, . . . ,N }. (13)

Fig. 6 shows the final normalized mean load variance com-
parison.

As shown, the load variances from the mix-layer control
strategies generally decrease when the number of responsive
nodes increases. Moreover, we notice that the load variances
get close to Lopt (purely responsive nodes with oracle control
strategy), even with uncontrolled nodes. We observe that we
only need to control approximately 61.5% (here 16 nodes out
of 26) to stay below a 125% of the optimal load variance Lopt

(gray dashed line in Fig. 6) if we apply the mix-layer predic-
tive online control strategy. The reason is that the flexibility
in those responsive nodes can mitigate the inflexibility from
those uncontrolled nodes. However, if we apply the mix-layer
naive online control strategy, we would need around 22 nodes
out of 26 (84.6%) to be responsive nodes.
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FIGURE 6. The comparison shows the mean load variances for one test
day from different control strategies versus a varying number of
responsive nodes. To stay below 125% of Lopt (gray dashed line), the
predictive online strategy requires 16 nodes (≈ 61.5% of the nodes)
versus 22 nodes (≈ 84.6%) for the naive online strategy.

V. CONCLUSION
This paper investigated the charge scheduling for an EV
fleet consisting of heterogeneous nodes. We proposed a
variant of the layered control architecture that regulates
the charging rates for responsive nodes with the presence
of uncontrolled nodes. We conducted a case study based
on a real-world charging session dataset. We find that the
predictive online control strategy approaches the oracle con-
trol strategy. In contrast, the naive online control strat-
egy performs worse, relatively. However, the difference is
insignificant when the responsive nodes’ percentages are low.
Then, modeling the charging behavior to apply the predictive
online control strategy will not significantly improve the
performance. Besides, the simulation result shows that the
mix-layer online control strategies can already achieve good
results with part of the nodes responsive in an EV fleet.
Applying the mix-layer predictive online or naive online con-
trol strategy in an EVfleet with a certain portion of responsive
nodes can achieve a suboptimal performance (> Lopt).
In this work, we completed the computation for these

simulations at a centralized computer. However, in reality,
the computation is distributed to aggregators and nodes, hap-
pening asynchronously. Besides, the impact from in practice
occurring communication delays and failures between the
nodes and the aggregator should be investigated. Further-
more, the financial benefits from the proposed architecture
and the control strategies are interesting to study as to whether
it can surpass the investment in the infrastructure to ensure
communication and computation. Depending on the scale
of the charging network, it may require a too long time to
converge to the optimal charging profile, resulting in com-
promised performance.
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