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ABSTRACT We propose a three-dimensional (3D) image inpainting system using the 3D encoder–decoder
generative adversarial network (IISU3EDGAN) for providing accurate detection results in vision-based
rotor dynamic balancing processes. The proposed IISU3EDGAN system integrates 3D sensors with a deep
learning network to reconstruct corrupted rotor images, thereby optimizing the detection parameters. In rotor
component detection processes, overexposed images caused by reflections of the metallic rotor shaft affect
the accuracy and performance of vision-based inspection systems. Traditional image restoration technologies
or inpainting methods are inadequate for solving this problem. By contrast, our proposed system can repair
3D overexposed images of rotors. Comparedwith traditional image processingmethods, the proposed system
can adequately manage the complexity of corrupted images. In addition, it can be used to process complex
overexposed rotor images and maintain image details. The proposed system can be applied to a wider range
of rotor types, and it can be used to optimize the parameters of vision-based rotor detection systems to
improve the accuracy of rotor component detection. We conducted experiments and observed that by using
3D sensors and deep learning, the proposed system improved the success rate in the first round of rotor
dynamic balancing, reduced the number of rounds required for balancing, and increased the rotor production
output. These results thus indicate that the IISU3EDGAN system is applicable and robust and that it can be
used to improve the overall efficiency of dynamic balancing on rotor production lines.

INDEX TERMS Dynamic balancing, 3D sensor, GAN, image inpainting, manufacturing automation, rotor.

I. INTRODUCTION
Motor technology is extensively used in diverse applications,
including heavy industrial equipment and small toys. The
rotor of a motor may be affected by the centrifugal force
engendered by rotational eccentricity. Therefore, the dynamic
balancing of rotors is crucial. ISO 1940-1:2003 [1] specifies
11 balance quality grades for a rotor during rotation. If a
rotor exceeds the specified imbalance tolerance, it causes
vibration and noise andmay even causemachinemalfunction.
Accordingly, rotor balance [2] is a critical consideration in
motor manufacturing processes.
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Several factors contribute to rotor imbalance, including
uneven rotor materials, unbalanced couplings, and rotor
machining errors. Rotor imbalance can be divided into two
primary categories: static and dynamic [3]. In motor man-
ufacturing, the field balancing method is widely used to
correct dynamic imbalance [4]. In this method, a dynamic
balancing machine is used to measure and acquire rotor
vibration data, in addition to calculating the imbalance angle
and magnitude to provide rotor balancing instructions to an
operator. Dynamic balancing machines can be classified into
two categories according to the mechanism through which
the rotor is supported on pedestals: hard-bearing and soft-
bearing machines [4]. In soft-bearing machines, the rotor
suspension vibrates during a rotation test. The frequency
and amplitude of this imbalanced vibration can be measured

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 60025

https://orcid.org/0000-0002-8551-5120
https://orcid.org/0000-0001-7717-9393
https://orcid.org/0000-0003-3406-8954


Y.-H. Chung, Y.-L. Chen: 3D Image Inpainting System Using 3D-ED-GAN for Efficient Vision-Based Detection

using a vibration sensor, and the dynamic imbalance can be
corrected to be within the allowable range.

Numerous dynamic balancing strategies and methods have
been proposed over the years. By considering both resid-
ual vibration and correction mass as performance func-
tion parameters, Fujisawa et al. [5] proposed an improved
balancing method that reduces the magnitude of the cor-
rection masses. To reduce the imbalance of a high-speed
spindle system, Zhang et al. [6] developed an automati-
cally controlled pneumatic online dynamic balance system.
Zhao et al. [7] proposed a transient characteristic–based bal-
ancing method (TCBM) in combination with a dynamic
load identification (DLI) technique for identifying the imbal-
ance parameters of a general rotor system. Green et al. [8]
performed a nonlinear bifurcation analysis of the dynamics
of an automatic dynamic balancing mechanism for rotating
machines. They deployed two or more masses that could
freely travel around a race at a fixed distance from the hub
and could then balance any eccentricity in the rotor. In [9],
an adaptive imbalance control method for active magnetic
bearings, called generalized notch filter, was proposed to
increase the efficiency of dynamic balancing; this method
was used to restrain the synchronous vibration of a rotor and
identify the distribution of rotor imbalance, and it was applied
to decrease the vibration amplitude. By utilizing multisensor
fusion instead of a single sensor, Liu and Qu [10] proposed
a holo-balancing method for rotor systems; specifically, they
successfully applied the holospectral principle to traditional
balancing methods for flexible rotor systems.

Ostlund and Brokemper [11] presented a digital control
algorithm based on rotor saliency under no load for detecting
the initial rotor position in order to estimate the rotor position.
Schmidt et al. [12] presented a technique for calculating the
absolute angular position of a permanent magnet rotor by
selecting an appropriate voltage pulse width and applying it
to each phase winding to discern the absolute rotor position.
Jansen and Lorenz [13] tracked the magnetic saliency of
rotors through the injection of an inverter-generated balanced
three-phase high-frequency signal, followed by the execution
of appropriate signal demodulation and processing combined
with a closed-loop observer. Degner and Lorenz [14] ana-
lyzed the effects ofmultiple spatial harmonic saliencies on the
estimation of flux angle, position, and velocity; they also pre-
sented methods entailing the use of multiple spatial harmonic
saliencies to provide wide-bandwidth and highly accurate
estimates of flux angle, rotor position, and velocity. However,
applying the field balancing method in a rotor factory would
require individual rotors to be positioned on the balancing
machine before they can be assembled with stators.

In the field balancing method, a balancing machine rotates
a rotor to measure the angle of imbalance and magnitude of
the imbalance vector. Before a dynamic balancing machine
rotates a rotor, the position of the key phasor (KP) must
be marked—with the shaft sleeve serving as the reference
position—so that the dynamic balancing machine can calcu-
late the rotation phase and speed. After the dynamic balancing

machine calculates the imbalance vector, the operator mounts
washers of a specificweight at the specific balance sprue (BS)
positions to offset the imbalance vector. Fig. 1 illustrates the
positions of the KP, BS, and different types of rotors. Oper-
ator experience determines the number of operation rounds
required for dynamic balancing, which affects the production
capacity of motors and introduces uncertainty in dynamic
balancing. For human operators, completing the dynamic bal-
ancing process in a single round is difficult, which engenders
redundant dynamic balancing rounds. This not only increases
the processing time of dynamic balancing and reduces the
production capacity but also increases the wear and tear of
the balancing machine.

To address the uncertainty of human judgment, Chung
and Chen [15], [16] have proposed an adaptive vision-based
method (AVBM) that uses three-dimensional (3D) time-of-
flight (ToF) sensors [17] to capture 3D images of the rotor,
followed by the use of depth and amplitude data fusion tech-
nology [18] for pattern recognition. The ToF camera works
by illuminating the target with a modulated light source and
observing the reflected light. The depth engine generates a
3D point cloud by calculating the phase shifts between the
illumination and reflection [19]. Fig. 2 illustrates the concept
of the ToF sensor. Through the use of fusion technology,
the AVBM can accurately detect the center position of the
KP and the angles between the KP and BS. In summary,
this method analyzes the imbalance vector and determines
the optimal washer installation configuration, which consid-
erably reduces the number of redundant rounds in existing
dynamic balancing process. Nevertheless, during the process
of capturing two-dimensional (2D) rotor amplitude and 3D
rotor depth images, overexposed rotor images cause detection
errors, thus reducing the robustness of the AVBM.

To compensate for overexposed 2D images in vision-
based methods, studies have proposed various meth-
ods. Guo et al. [20] introduced an overexposure correction
method based on an overexposure likelihood; in this method,
the color of each overexposed pixel is corrected through
neighborhood propagation, and the correction is based on
the confidence of the original color. Lee et al. [21] combined
an overexposure correction method with lightness correc-
tion and chrominance restoration. They corrected lightness
by retaining a 2D Gaussian function model and preserving
the gradients of the original lightness. Moreover, they pre-
dicted the color of the overexposed areas by propagating the
stretched color of the neighboring non-overexposed region.
Zhang et al. [22] proposed an automatic exposure correction
method that separately achieves underexposure and over-
exposure correction by estimating the illumination of the
input image and inverted input image. Through dual illumi-
nation estimation and multiexposure image fusion, a globally
well-exposed image can be adaptively obtained by blending
two intermediate exposure correction images with the input
image. In addition to the aforementioned overexposure repair
methods for color images, Huang et al. [23] repaired overex-
posed computed tomography images by using amixed one-bit
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compressive sensing (M1bit-CS) technique, which acquires
information from both regular and saturated measurements.
However, overexposed grayscale amplitude images of rotors
are severely corrupted, and the aforementioned image cor-
rection technique cannot completely repair the corrupted
areas. In our previous study [24], we leveraged the alignment
between 3D depth and 2D amplitude images to detect over-
exposed areas by using 3D depth data; we repaired the 2D
amplitude image by using the mean value of nonoverexposed
amplitude image pixels. However, differences in rotor types
and the complexity of overexposed images engender chal-
lenges in our method. To improve rotor detection accuracy,
one can adopt deep learning models to effectively overcome
the complexity of overexposed rotor images and directly
compensate for overexposed 3D depth images.

Effective deep learning methods for image restoration
include generative adversarial network (GAN) methods that
are based on deep learning networks. A GAN is an unsu-
pervised learning model proposed by Goodfellow et al. [25]
in 2014. It is composed of a generator and a discrimina-
tor. The generator outputs the predicted data, and the dis-
criminator distinguishes whether the predicted data are true.
On the basis of the mutual confrontation of the generator
and discriminator, predictions provided by the generator are
expected to be hardly distinguished by the discriminator.
Denton et al. [26] introduced a generative parametric model
that applies a cascade of convolutional networks within
a Laplacian pyramid framework to generate high-quality
samples of natural images in a coarse-to-fine fashion.
Radford et al. [27] proposed a class of convolutional neural
networks (CNNs) called deep convolutional generative adver-
sarial networks (DCGANs) and demonstrated that a pair of
DCGANs can learn a hierarchy of representations from object
parts to scenes in both the generator and discriminator.

In recent years, 3D computer-aided design datasets
[28], [29] have been used to develop a new data-driven
approach for 3D generative modeling. Achlioptas et al. [30]
introduced a deep autoencoder network with state-of-the-art
reconstruction quality and generalization ability. By focusing
on the generator in a GAN and defining a graph convolution
method, Valsesia et al. [31] studied the unsupervised problem
of a generative model by using exploiting graph convolution.
Yan et al. [32] investigated an encoder–decoder (ED) net-
work that considers projection transformation as regulariza-
tion. Girdhar et al. [33] proposed the TL-embedding network
architecture consisting of an autoencoder and a convolutional
network to learn an embedding space. Wu et al. [34] intro-
duced a 3D GAN by leveraging a volumetric convolutional
network and generative adversarial nets.

Studies have developed several GAN extension methods
for repairing 3D data. Pathak et al. [35] presented context
encoders based on aCNN that was trained to generate the con-
tent of an arbitrary image region conditioned on its surround-
ings. Wang et al. [36] proposed a 3D mesh repair method
based on a 3D deep convolutional GAN composed of a local
GAN and a global GAN. The two GANs can generate the

repaired area while maintaining the details of the region.
Dai et al. [37] introduced a 3D encoder–predictor network
composed of 3D convolutional layers for predicting and fill-
ing in missing data. Yu et al. [38] developed a point encoder
GAN that can process point cloud data directly without any
labeling or assumptions. This method applies a max-pooling
layer and two T-nets [39] to ensure a suitable feature repre-
sentation of the point cloud. By using a novel 3D-RecGAN,
Yang et al. [40] reconstructed the complete 3D structure of
a given object from a single depth view. Wang et al. [41]
proposed a hybrid framework combining a 3D-ED-GAN
and a long-term recurrent convolutional network to cap-
ture the global contextual structure and localize fine-grained
details.

Balancing machines implemented in factories use pho-
toelectric mark sensors to detect the KP position for rotor
position detection. By detecting the position of the marker
on the rotor shaft sleeve, these machines can calculate the
rotor center and KP angle. However, slippage of the rotor
rotation belt reduces the accuracy of the derived KP angle.
Moreover, photoelectric mark sensors detect only the KP
position but not the BS position. Accordingly, this study
proposes a 3D-vision-based system for rotor position detec-
tion and for repairing overexposed 3D images. Our previ-
ously proposed depth-information-based image restoration
method for rotors [24] can reconstruct 2D amplitude data
of the rotor shaft; however, the 3D depth data of the rotor
shaft must be further processed to accurately detect the KP
angle. Therefore, a deep-learning-based 3D-ED-GAN can be
used to solve this problem. Our previous study presented
a preliminary 3D image inpainting method for rotors, but
we applied the method for low-resolution image inpaint-
ing. To accurately detect the KP center position by using
3D depth data, a high-resolution image inpainting method
can provide high-integrity 3D images. Hence, the present
study proposes a 3D image inpainting system using 3D-ED-
GAN(IISU3EDGAN), which can efficiently correct overex-
posed 3D rotor images, thereby increasing the accuracy of
visual rotor detection and improving the production effi-
ciency of dynamic balancing. By processing 3D voxels
directly, the proposed system can efficiently process complex
overexposed rotor images and significantly improve the accu-
racy of rotor detection.

The main contributions of this paper are outlined as
follows:

1) We present an efficient deep learning GAN for optimal
image restoration.

2) Compared with the 2D image repair method in [24]
and low-resolution deep learning method in [42], the
proposed method facilitates the direct inpainting of
high-resolution 3D depth data.

3) The proposed method can overcome the problem of
inpainting complex overexposed images with different
types of rotors in production lines.

4) The proposed method can substantially improve the
production efficiency of actual motor production lines.
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The remainder of this paper is organized as fol-
lows. Section II provides the problem statement. Section III
presents the proposed system. Section IV presents the exper-
imental results and discussions. Finally, Section V concludes
this paper.

FIGURE 1. KP and BP of a rotor.

FIGURE 2. Concept of ToF sensor.

II. PROBLEM STATEMENT
The IISU3EDGAN system for rotor dynamic balancing uses
two 3D sensors to obtain 3D images of the left and right
sides of a rotor. The 3D sensors are placed vertically at a
specific distance from the rotor shafts and face the shafts;
the lenses are aligned vertically with the center of the rotor
shaft to obtain images of various regions, including the rotor
shaft plane and the BSs. Fig. 3 presents a schematic of
the arrangement of the rotor and 3D sensors. The dynamic

balancing process in the IISU3EDGAN system involves the
following steps: 3D image grabbing, rotor component recog-
nition, imbalance vector analysis, and balance configuration
optimization. By using the optimized washer and BS configu-
ration recommendations, the operator can effectively reduce
the number of redundant balancing rounds, thus increasing
the overall rotor manufacturing productivity. In the 3D rotor
image recognition process, the rotor components, including
the positions of the shaft center, KP center, and BS positions,
must be recognized. Fig. 4 illustrates the plane figure for rotor
component detection. The IISU3EDGAN system accurately
calculates the angle θp between the KP position P and the BS
position B1 on the basis of the positions of these rotor com-
ponents. After the dynamic balancing machine calculates the
imbalance vector V with angle θv, the IISU3EDGAN system
uses the angles θb4 and θb5 between the BS andV to calculate
the vector components on B4 and B5, after which it generates
the optimized configurations for dynamic balancing.

Rotor image overexposure constitutes the most com-
mon problem associated with the detection of KP positions
through 3D vision. A 3D sensor actively emits infrared light,
which leads to the generation of overexposed images owing
to reflections from the surface of the rotor’s metal shaft.
Fig. 5 illustrates various overexposed 3D rotor images. The
distribution of the overexposed areas in these images varies
with the rotor type. Overexposed images have a unique fea-
ture in that the depth data in overexposed areas exceed the
unambiguous range of the 3D images; therefore, the AVBM
leverages this feature to repair the corresponding 2D ampli-
tude images. In addition, the types of rotors on production
lines are rather different. This leads to incomplete 2D image
restoration owing to the complexity of the overexposure,
which affects the accuracy of KP position detection. Our
proposed IISU3EDGAN system can reconstruct overexposed
3D images of rotors, which effectively helps to negate the
effects of differences in rotor types and helps repair complex
overexposed images. Fig. 6 illustrates the architecture of
the proposed IISU3EDGAN system for dynamic balancing.
Because this system was designed with the aim of directly
repairing 3D images, it improves the accuracy of rotor center
detection and KP center point detection, thus improving the
overall performance of the dynamic balancing process.

III. 3D IMAGE INPAINTING USING 3D-ED-GAN
The traditional image inpainting method is inadequate for
managing the complexity arising from different rotor types on
a production line. Deep-learning-based 3D-ED-GAN algo-
rithms provide an effective solution in this scenario. Accord-
ingly, we developed our proposed IISU3EDGAN system
with the primary objective of reconstructing overexposed 3D
images of a rotor shaft and improving the rotor detection
accuracy, thereby improving the efficiency of rotor dynamic
balancing. The operating process is described as follows.
First, 3D-ED-GAN training can be performed by preparing
overexposed and ground-truth 3D voxel datasets. Second, the
discriminator model can be trained to distinguish simulated
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FIGURE 3. Arrangement of rotor and 3D sensor.

FIGURE 4. Plane figure for rotor component detection.

FIGURE 5. Images of overexposed 3D voxel of a rotor.

images and improve the ability of the generator model to fool
the discriminator model. Finally, the combined model can be
used to predict the 3D voxel that can maintain the integrity
of the rotor shaft image. The repaired image can then be used

for subsequent rotor component position detection and rotor
dynamic balancing.

A. DATASET AND TRAINING PROCESS
To prepare the rotor dataset for 3D-ED-GAN training in this
study, 3D ToF sensors installed on the left and right sides
of the rotor were used to capture 3D depth data and 2D
amplitude images of the rotor. The 3D depth data were then
normalized to the size of 64 × 64 × 64 and converted to the
3D voxel format.We applied amatting spray on the rotor shaft
to eliminate metal reflections and obtain nonoverexposed
rotor images. Moreover, we prepared an overexposed rotor
image dataset and a ground-truth rotor image dataset without
overexposure. The training process is described as follows
(Fig. 7):

1) Overexposed and ground-truth datasets were prepared
before training.

2) The 3D point cloud data were prepared and normalized
to the 3D voxel format.

3) The ground-truth and predicted voxels were used to
train the discriminator.

4) The combined generator and discriminator model was
also trained.

5) The combined model was used to predict 3D voxels.
The repaired 3D voxels predicted using the combined

model were reviewed to check whether they fulfilled the
system criteria. If they did not meet the criteria, Steps 3–5 of
the training process were repeated until the predicted voxels
fulfilled the criteria.

B. STRUCTURE OF 3D-ED-GAN
The 3D-ED-GAN algorithm is composed of a generator and
a discriminator. The generator is composed of an ED pair.
Fig. 8 illustrates the structure of the 3D-ED-GAN algorithm.
The encoder transfers the 64× 64× 64 3D voxels into a prob-
abilistic latent space, and the decoder generates the predicted
voxel from the latent feature representation. The discrimi-
nator classifies whether the predicted voxel is true or false.
Through contextual and adversarial loss minimization, the
3D-ED-GAN algorithm can be trained to generate inpainted
3D voxels and contextual consistency can be preserved.

C. GENERATOR AND DISCRIMINATOR OF 3D-ED-GAN
The 3D-ED-GAN algorithm consists of three convolutional
networks, namely an encoder, a decoder, and a discriminator.
Fig. 9 illustrates the architecture of the 3D-ED-GAN algo-
rithm. The generator accepts overexposed data as the input
and generates predicted images by using the 3D encoder
and 3D decoder. The 3D encoder, which consists of four 3D
convolutional layers (Conv3D) of kernel size 3 × 3 × 3 and
stride 2, takes the corrupted 3D voxels of size 64 ×
64 × 64 as the input. Each Conv3D layer contains 64,
128, 256, and 512 filters, separately, and these layers use a
rectified linear unit (ReLU) as the activation function. The
tensor is then calculated using four 3D deconvolution layers
(Deconv3D), which constitute a 3D decoder. Each Deconv3D
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FIGURE 6. Architecture of IISU3EDGAN for rotor dynamic balancing.

contains 512, 256, 128, and 64 filters, separately, of kernel
size 3× 3× 3 and stride 2. The activation function of the first
three layers is ReLU, and that of the last layer is tanh. The
discriminator and 3D Encoder have the same architecture;
that is, they take the predicted and ground-truth voxels as
inputs. The discriminator contains four Conv3D layers, and
its activation function is ReLU; the sizes of the core and
stride are the same as those in the 3D encoder. Finally, the
discriminator ends with a flatten layer and a dense layer that
use sigmoid function as the cross-entropy function.

IV. EXPERIMENTAL RESULTS
The proposed IISU3EDGAN system was validated on the
production line of TECO Co., Ltd. [43]. We executed our
rotor dynamic balancing test by using a dynamic balancing
machinemanufactured byNan Jung Electronic Co., Ltd. [44],
as illustrated in Fig. 10. We used RL100Pro 3D sensors
manufactured by FocusVision Technology Co., Ltd. in our
experiments [45]. Table 1 presents a summary of the sensor
specifications. The training platform for our experiments was
a computer equipped with an Nvidia GeForce GTX 1080Ti
graphics processing unit and running Ubuntu 16.04 with
Python 3.6.8, Keras 2.2.0, and TensorFlow 1.14.0 (TABLE 2).
We acquired 3D data of the rotor shaft and applied the
3D-ED-GAN algorithm to repair overexposed rotor images.
The rotor shaft center, radius, KP center position, balance fin,
andBS positionwere detected using the 3D depth data and 2D
amplitude data of the rotor, as displayed in Fig. 11. By using
the detected information and the imbalance vector provided
by the balancing machine, we computed the optimized bal-
ance configuration, as shown in Fig. 12.

FIGURE 7. Training the 3D-ED-GAN.

We scanned 20 different rotor models with five differ-
ent sizes to prepare the 3D-ED-GAN training dataset. This
dataset was composed of 12 000 3D images. Rotor images
derived for each size were divided into training images and
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FIGURE 8. Structure of 3D-ED-GAN.

FIGURE 9. Architecture of proposed 3D-ED-GAN.

test images at a ratio of 4:1, resulting in 9600 training images
and 2400 test images. Each scan contained overexposed and
nonoverexposed ground-truth images. The dataset was vox-
elized into a 643 grid file format. To evaluate the experimental
results, we first reviewed the 3D-ED-GAN image inpainting
results. Subsequently, we selected two rotors from each of the

five rotor size groups (i.e., 10 rotors in total) as the test sam-
ples for comparing theAVBMwith the IISU3EDGAN system
in terms of rotor component detection. Finally, we evaluated
the performance of the IISU3EDGAN system in rotor KP
angle detection as well as its overall performance in rotor
dynamic balancing.
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FIGURE 10. Dynamic balancing machine for IISU3EDGAN.

TABLE 1. 3D Sensor specifications.

TABLE 2. Training platform for IISU3EDGAN.

FIGURE 11. Rotor component detection: (a) shaft center and radius,
(b) KP center, (c) balance fin, And (d) BS positions.

A. 3D IMAGE INPAINTING
We used 2400 3D scan images obtained using 20 differ-
ent rotor models of five different sizes as the test data.
We derived the mean square error (MSE) and peak signal-
to-noise ratio (PSNR) as performance metrics to evaluate the

FIGURE 12. Optimized balancing configuration.

FIGURE 13. Training convergence curves of different rotor models.

FIGURE 14. 3D image inpainting quality evaluation: (a) average mean
square error and (b) average PSNR.

performance of the 3D-ED-GAN algorithm. The equation of
MSE for 3D models is expressed in (1):

MSE =
1

Nwidth × Nhight × Ndepth
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FIGURE 15. Results of 3D image inpainting.

×

Nwidth−1∑
x=0

Nhight−1
∑

depth−1∑
v=0

2∑
z=0

(f (x, y, z)

− f̂ (x, y, z))2 (1)

whereNwidth,Nheight , andNdepth denote the numbers of pixels
in the three dimensions, respectively. f (x, y, z) represents the
ground-truth 3D voxels, and f̂ (x, y, z) denotes the inpainted
3D voxels. The MSE indicates the difference between the
ground-truth and inpainted data.

The PSNR can be defined as follows:

PSNR = 20× log10

(
Imax
√
MSE

)
(2)

where Imax can be set to 1 because the 3D voxel grid is a (0, 1)
sparsematrix.PSNR is an indicator of the degree of distortion.
A higher PSNR indicates superior image restoration.

We calculated MSE values for four different rotor models,
and Fig. 13 presents the training convergence curve obtained
using the proposed system. TheMSE values derived for mod-
els 1 and 2 initially tended to diverge with a few oscillations
at approximately 250 epochs. The MSE values for model 3
also oscillated at approximately 600 epochs. However, the
values for all rotor models subsequently converged steadily
over time. Moreover, we compared the performance of the
proposed system with that of GAN [25] and BiGAN [46]
algorithms. The average MSE and PSNR were calculated for
rotors of five sizes. Fig. 14 displays the comparison results.
According to the curves of the average MSE and PSNR,
the proposed system had the lowest MSE and the highest
PSNR. These results prove that the results obtained using the
proposed method were the closest to the ground-truth data.

To repair overexposed rotor images, we voxelized 3D
images into 64 × 64 × 64 3D grids as the test data to
compare the overexposed images, ground-truth images, and
inpainted images. Fig. 15 illustrates the image inpainting
results obtained using the proposed system for rotor shafts of
different sizes at the same distance. According to the input
voxel column, the overexposed areas created holes in the
input voxels, and the exposure area occupied nearly one-third
of the shaft area. In the figure, the ground-truth column
represents unexposed rotor 3D voxels, and the blue area
represents overexposed pixels. The inpainted voxel column
presents the results obtained using the 3D-ED-GAN algo-
rithm. The results revealed that the 3D-ED-GAN algorithm
could restore 3D voxels with different overexposed ranges
and areas. According to these results, the proposed system
can accurately generate repaired 3D voxels without affecting
the KP data. This is helpful for detecting the KP center and
BS positions. The proposed system performs well in terms of
repairing overexposed areas in different positions and ranges.

B. ROTOR DETECTION EVALUATION
We selected two rotors from each of the five rotor size groups,
resulting in a total of 10 rotors, as the test sample. Subse-
quently, we conducted two rounds of testing (with 10 rotors
being used in each round) for the left and right sides of the
rotor shafts. We detected the angle between the rotor KP and
BS positions after repairing the overexposed rotor images by
using the AVBM and IISU3EDGAN system. We detected
and calculated the angle between the KP and the nearest BS,
recorded the deviations between the detected angles and the
real angles, and then calculated the average and maximum
values.

We compared the performance of the AVBM and
IISU3EDGAN system in terms of rotor angle detection,
as displayed in Figs. 16–19. According to the experimental
results obtained for the left side of the rotor shaft in the first
round of testing, the average angle deviation derived for the
AVBM was 0.94◦, and the maximum deviation was 1.7◦;
the average angle deviation derived for the IISU3EDGAN
systemwas 0.7◦, with the maximum deviation being 0.9◦. For
the right side of the rotor shaft, the average and maximum
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FIGURE 16. Comparison of detected angle deviations on left side of rotor
shaft in Round 1.

FIGURE 17. Comparison of detected angle deviations on right side of
rotor shaft in Round 1.

FIGURE 18. Comparison of detected angle deviations on left side of rotor
shaft in Round 2.

angle deviations derived for the AVBM were 0.93◦ and 1.8◦,
respectively, and those derived for the IISU3EDGAN system
were 0.72◦ and 1.1◦, respectively. In the second round of
testing, we used the same test method. Regarding the test
results obtained for the left side of the rotor shaft, the aver-
age and maximum angle deviations derived for the AVBM
were 0.98◦ and 2.1◦, respectively, and those derived for the
IISU3EDGAN system were 0.72◦ and 0.9◦, respectively.
Regarding the test results obtained for the right side of

FIGURE 19. Comparison of detected angle deviations on right side of
rotor shaft in Round 2.

the rotor shaft, the average and maximum angle deviations
derived for the AVBM were 0.9◦ and 1.9◦, respectively,
and those derived for the IISU3EDGAN system were 0.64◦

and 0.8◦, respectively.
According to the preceding comparison results, the

IISU3EDGAN system produced lower average and maxi-
mum angle deviations than did the AVBM. Therefore, the
IISU3EDGAN system is effective for the inpainting of over-
exposed images of rotors of various sizes, and it can improve
the accuracy of rotor angle detection.

C. PERFORMANCE EVALUATION
We selected two rotor models from each of the five size
groups and then evaluated the dynamic balancing perfor-
mance achieved using the IISU3EDGAN-repaired images
by conducting two rounds of experiments. After generating
the optimized dynamic balancing configurations, we com-
pared the estimated results with the actual magnitude and
angle of imbalance to determine the performance of our
system. In each round of testing, dynamic balancing data
were recorded for the left and right sides of the rotor shaft.
Moreover, we recorded the deviations between the esti-
mated and actual data, including the magnitude and angle of
imbalance.

Tables 3 and 4 present a summary of the comparison
between the estimated and actual magnitudes of imbalance
after the completion of dynamic balancing. In the first round
of testing, the average magnitudes of deviation for the left
and right sides of the rotors were 0.461 g and 0.388 g,
respectively, and the maximum magnitudes of deviation for
these sides were 0.77 g and 0.69 g, respectively. In the second
round, the average magnitudes of deviation for the left and
right sides of the rotors were 0.472 g and 0.478 g, respec-
tively, and the maximum magnitudes of deviation for these
sides were 0.71 g and 0.78 g, respectively. Tables 5 and 6
present a comparison between the estimated and actual angles
of imbalance after the completion of dynamic rotor balancing.
In the first round of testing, the average deviation angles
derived for the left and right sides of the rotors were 7.2◦ and
7.4◦, respectively, and the maximum deviation angles derived
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for these sides were 11◦ and 12◦, respectively. In the second
round, the average deviation angles derived for the left and
right sides of the rotors were 7.4◦ and 7.3◦, respectively, and
the maximum deviation angles derived for these sides were
13◦ and 12◦, respectively.
Fig. 20 summarizes the results obtained using the

IISU3EDGAN system, including the detected angle devia-
tions, magnitude deviations and angle deviations. It shows
the 40 test data obtained for both the left and right sides of
the rotor shafts in the two rounds of testing. Table 7 presents
a comparison of the magnitude and angle deviations derived
for the AVBM and IISU3EDGAN system. The average and
maximum deviations obtained for the IISU3EDGAN system
were smaller than those obtained for the AVBM. Therefore,
the IISU3EDGAN system significantly improved the angle
detection in the dynamic balancing of rotors.

Compared with the AVBM, the IISU3EDGAN system can
be applied not only to a wider range of rotor weights but
also to wider ranges of BS counts, washer limits, and washer
weights. Moreover, it can be used to solve complex rotor
overexposure problems and increase the accuracy of rotor
angle detection. In terms of the overall production efficiency
of rotor dynamic balancing, Table 8 presents a comparison
of the number of rounds required by the dynamic balancing
machine to balance a rotor by using different methods. In the
first round, successful rotor dynamic balancing was achieved
in 92% of the cases for the AVBM; for the proposed system,
successful rotor dynamic balancing was achieved in 97% of
the cases.

TABLE 3. Comparison of estimated and real magnitudes of rotor
imbalance in round 1.

Table 9 presents a comparison of dynamic balancing
times recorded for a manual method, the AVBM, and the
IISU3EDGAN system. The manual method required three
rounds to complete the dynamic balancing process, and the
total dynamic balancing time was 184 s. The AVBM and
proposed system required fewer rounds for balancing, and
the total balancing times were 123 and 112 s, respectively.
Compared with the manual method, the AVBM and proposed
system reduced the dynamic balancing time by 33% and

TABLE 4. Comparison of estimated and real magnitudes of rotor
imbalance in round 2.

TABLE 5. Comparison of estimated and real rotor imbalance angles in
round 1.

TABLE 6. Comparison of estimated and real rotor imbalance angles in
round 2.

39%, respectively. In other words, the IISU3EDGAN system
not only effectively reduced the dynamic balancing time but
also outperformed the AVBM in terms of image restoration.
Considering the overall rotor dynamic balancing process,
we compared the processing times required by the manual
method, AVBM, and proposed system, as listed in Table 10.
The total processing time required by the manual method was
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FIGURE 20. IISU3EDGAN balancing results.

TABLE 7. Comparison of imbalance data between the AVBM and
IISU3EDGAN methods.

TABLE 8. Number of rounds required to complete balancing.

TABLE 9. Comparison of time required for machine balancing.

TABLE 10. Comparison of rotor balancing operation times.

358.9 s, whereas the processing times required by the AVBM
and proposed system were 297.9 and 286.9 s, respectively.
For an 8-h working day, the numbers of rotors processed by

the manual method, AVBM, and proposed system could be
estimated be 80, 97, and 100, respectively. Thus, the AVBM
and the proposed IISU3EDGAN system could increase the
number of rotors produced by 21% and 25%, respectively.
Overall, the IISU3EDGAN system could effectively increase
rotor production by 25%, and it was determined to be supe-
rior to the AVBM. Therefore, the IISU3EDGAN system
has extensive applicability and a considerably high detection
accuracy, and it can improve overall rotor productivity.

V. CONCLUSION
We developed an IISU3EDGAN system based on a 3D-ED-
GAN for performing 3D image inpainting to achieve effi-
cient vision-based detection for rotor dynamic balancing. The
system can reconstruct overexposed 3D rotor images while
retaining their detailed features. The system also exhibits
improved detection accuracy for the angles of rotor com-
ponents, which can increase the overall rotor dynamic bal-
ancing performance. The main contribution of this study
is the integration and development of deep learning and
GAN-based methods for 3D image inpainting. In practical
industrial applications, the proposed IISU3EDGAN system
can solve the complex problem of inpainting overexposed
images caused by differences in rotor types on a produc-
tion line. Compared with the AVBM, which uses traditional
image processing methods for image restoration, the pro-
posed IISU3EDGAN system can be applied to more diverse
types of rotors in terms of rotor weight, BS count, washer
limit, and washer weight. Moreover, it is more accurate in
terms of rotor component detection. The IISU3EDGAN sys-
tem also reduces the number of rounds required for rotor
balancing, thus improving production efficiency. The system
was noted to improve the balancing time by 5% compared
with the AVBM. In a comparison of a manual method and
the IISU3EDGAN system, we observed that the proposed
system improved the rotor balancing time and the overall
rotor production by 39% and 25%, respectively. Accordingly,
we conclude that the proposed IISU3EDGAN system for
rotor dynamic balancing improves production efficiency on
actual production lines. Notably, the effectiveness of the
IISU3EDGAN system was confirmed by Taiwan-based man-
ufacturers who use rotor dynamic balancing machines.
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