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ABSTRACT Artificial Neural Networks (ANNs) have amassed unprecedented success in information
processing ranging from image recognition to time series prediction. The success can largely be attributed
to the availability of large datasets for training and the increased complexity of the models. Unfortunately,
for some applications only a limited amount of samples is available for training. Fewer training samples
increases the risk of over-fitting and poor generalization especially in high complexity models. Moreover,
complex models with a large number of trainable parameters require more energy to train and optimize
compared to simpler ones. In this paper, to the best of our knowledge, we propose the first use of ANNs
for Early Stage Alzheimer Disease classification (ES-AD) from the handwriting (HW). We propose using
a framework for building Recurrent Neural Networks (RNNs) known as Reservoir Computing (RC), both
numerically and experimentally, that simplifies training by optimizing the output layer only.We also propose
the Bidirectional Long Term Short Term (BiLSTM) and Convolutional Neural Network (CNN) methods for
comparison. For a fairer comparison, we not only consider the accuracies but also the energy costs incurred
to obtain the respective accuracies in order to assess the accuracy-efficiency trade-off. Our numerical and
experimental results show that RC yields a classification accuracy of 85%, which is 3% worse than that of
BiLSTM and 2% better than that of CNN, at a relatively lower training and significantly lower inference
costs. We hope that our findings highlight the importance of examining the accuracy-efficiency trade-off of
various models in the community in order to reduce the overall impact of ANNs training on the environment.

INDEX TERMS Alzheimer’s, artificial neural networks, handwriting, reservoir computing, green AI.

I. INTRODUCTION
Alzheimer’s is a brain disease caused by the progressive
destruction of nerve cells in various parts of the brain. It falls
under dementia, an umbrella term describing the symptoms
associated with the decline of individual’s ability to think,
to learn and to memorize information. In its severe forms, the
disease interferes with patients’ work and social lives making
them incapable of handling everyday tasks. Of the various
forms of dementia, Alzheimer’s is the most common type and
accounts for between 60− 80% of all the neurodegenerative
diseases [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Dominik Strzalka .

Like all other types of dementia, Alzheimer’s is strongly
correlated with the ages of the patients and hence it is
more prevalent in senior members of the population. With
the increase in life expectancy, it should be expected for
Alzheimer’s disease to be an alarming cause of dependency
among the elderly. In the USA and in France, for example, the
prevalence of Alzheimer’s is as high as 13.8% (year 2021) [1]
and 17.8% (year 2015) [2] for people aged above 75 years of
age and older, respectively.

Unfortunately, Alzheimer’s disease has an insidious onset
due to its slow and progressive nature. In early stages, it is
asymptomatic, then it passes through a spectra of mild cogni-
tive impairment (MCI) symptoms before evolving into severe
forms which could be fatal. This progression makes early
detection of the disease difficult while late diagnosis, in turn,
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reduces the effectiveness of the treatments for slowing the
development of severe symptoms. The need for Early Stage
Alzheimer Detection (ES-AD) is therefore a crucial area of
research.

Traditional methods for the detection of the disease are
based on the recommendations of the report [3] proposing
that physicians use a set of various tools to make the diagno-
sis. Thesemethods are prone to bias and offer poor repeatabil-
ity of the test. More accurate methods include methods such
as the Positron Emission Tomography (PET) of brain amy-
loid [4] or the examination of the Cerebrospinal Fluid (CSF)
after lumbar puncture procedure [5]. These methods offer
good sensitivity to Alzheimer, however, they are intrusive and
expensive [6].

Neurodegenerative diseases are known to impair the
control of finemotormovements [7] of patients. Sincewriting
requires fine motor control, the impact of the diseases man-
ifests itself in the handwriting (HW) of patients. This makes
the handwriting kinematic patterns important bio-markers
that are discriminatory for certain pathologies. In the lit-
erature, we find investigations on Alzheimer’s [7]–[14],
Parkinson’s [16], [17], [25] and Huntington [19], [20] dis-
eases, among many others. We interest ourselves in the
ES-AD problem using HW dynamics for two reasons: Firstly,
because Alzheimer’s is the most prevalent cause of dementia
and secondly, because HW analysis is an inexpensive yet
effective tool for the task.

The HW acquisition for pathology detection can be
either dynamic (online) [21] or paper-based (offline) [22].
The dynamic acquisition means that the HW trajectory is
recorded in real time hence the temporal information for
every point is available. The offline method records only
the positional information of the trajectory. The temporal
information allows to capture the kinematics of the entire
writing or drawing process which is not the case for the
offline paper-based counterpart. As a result, the dynamic
HW has richer data while the paper-based approach lacks
the subtle temporal patterns that may be discriminatory
for the pathology. It is for this reason that we work with
the dynamic HW, as it has proven crucial for the task at
hand.

In the literature, most works on HW for AD are based on
statistical tests of the HW [7]–[9]. Some approaches con-
sidered Machine Learning-based classification methods. The
authors of [10]–[12] used the Linear Discriminant Analysis
method. These works, however, are based on the assump-
tion that there is a unique behavioral pattern associated
with Alzheimer’s disease, and as a result, the problem was
approached by extraction of global kinematic parameters (e.g.
average velocity) of the HW for the Alzheimer Detection
(AD). The authors of [13] pointed out the flaws of this
heavy assumption, as it denied classifiers the rich temporal
information that could be useful for detection. Their results
indicate the advantage of exploring the full dynamics of the
raw data and highlight the limits of working on the global
kinematic parameters.

The authors of [14] also used the full kinematics of HW
pattern in a temporal clustering based on k-Medoids to
uncover clusters using Dynamic Time Warping (DTW) as
a dissimilarity measure. For classification, they consider a
Bayesian classifier that aggregates the contributions of the
resultant clusters to each class and obtained the state-of-the-
art classification accuracy of 74%. Inspired by [13], [14] we
process the full HW dynamics in our work as well, to ben-
efit fully from information contained in the raw time-series.
However, unlike these previous works, and to the best of our
knowledge, we propose the first use of ANNs approaches for
the ES-AD task using HW dynamics as a time series.

We work with Bidirectional Long Short-Term Mem-
ory (BiLSTM) and Reservoir Computing (RC), two meth-
ods adapted for processing serial data. BiLSTM is a well
known special class of Recurrent Neural Networks (RNNs)
and has been considered on a stand-alone basis [23] or in
combination with Convolutional Neural Networks (CNNs),
for Parkinson’s disease detection [24]. Moreover, we imple-
ment a stand-alone CNN, a class of neural networks that are
often regarded as referencemodels for classification tasks and
have also been applied successfully for Parkinson’s disease
detection [25]. One potential downside to BiLSTMs and
CNNs is the high complexity and the large number of train-
able parameters which makes them prone to over-fitting and
poor generalization especially when the number of training
samples is small. The high complexity also results in higher
training costs in terms of energy consumed in the process.
On the other hand, RC, another special class of RNNs, sig-
nificantly simplifies the learning process and reduces con-
siderably the number of trainable parameters by training the
output layer only. This hints lesser energy consumption for
training RCs compared to BiLSTM, CNN and a potential
for lower inference costs as well. Lower inference cost of
a model is advantageous in cases where the classification
is run repeatedly; whether locally on a portable electronic
device or on a distant server in the cloud. Moreover, unlike
BiLSTM, RCs’ recurrent part can be implemented in analog
hardware setups which comes with further energy and speed
advantages. We test the performance and efficiency of a
hardware RC setup and compare it to BiLSTM, CNN and
the equivalent digitally simulated RC in this work. It is worth
noting that, despite the simplicity and versatility of the con-
cept, RC has proven successful, both in numerical and hard-
ware experiments, in processing serial tasks such as speech
recognition [26]–[28], Chaotic Time Series Prediction [29]
and non-linear optical channel equalization [30], [31].

The success and progress of ANNs can be largely attributed
to the increase in their depth and complexity, with a conse-
quential increase in the cost of training them. Researchers
tend to focus solely on reaching or surpassing state-of-the-
art accuracies with little attention paid to the energy costs
incurred. Oftentimes, an insignificant increase in accuracy
comes at a consequential increase in the training costs. This
approach is not environmentally friendly and has been coined
the term Red-AI [32]. Red-AI not only increases the cost of
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running the models but also complicates the implementation
of the ANN models on mobile devices such as telephones
or tablets [33] which could be useful in certain applications,
such as the ES-AD task. The greener approaches on the other
hand, termed Green-AI, should incorporate the energy effi-
ciency analysis as an added metric for both model selection
and optimization as we do in this paper.

Our contribution is therefore three-fold. First, we propose
a relatively simple but powerful concept known as Reservoir
Computing (RC) for the ES-AD task in both numerical and
hardware implementations. Secondly, we benchmark the per-
formance of our approach with that of Bidirectional Long
Short-Term Memory (BiLSTM) k-Medoids and the Convo-
lution Neural Network (CNN) on the full HW dynamics
taken as a time-series for the classification of healthy control
patients (HC) and patients with the Alzheimer Disease (AD).
Finally, we highlight the importance of extending the model
analysis and selection to include energy consumption by
adding energy efficiency on top of prediction accuracy during
themodel selection, training and inference [32], [34].We note
that, the proposedwork-flow is not specific to the ES-AD task
but can be generalized to assess accuracy-efficiency trade-off
for any other task.

We structure the rest of this paper as follows: in Section II,
we detail the proposed methods, that is, the Reservoir Com-
puting, BiLSTM, CNN and then the technique for models’
efficiency comparison. In Section III, we explain the task
at hand, the data used and our designed experiments for
gauging the classification systems. In Section IV we present
and discuss the results obtained and finally in Section V we
give our concluding remarks.

II. PROPOSED MODELS
A. RESERVOIR COMPUTING
Reservoir Computing was independently introduced as Echo
State Networks (ESN) [35] and Liquid State Machines
(LSM) [36]. The two are fundamentally similar, with the
LSM closely mimicking the sophistication of the spiking
biological neurons while the ESN, the variant of focus in this
work, is based on the traditional Recurrent Neural Networks
(RNNs).

RC architecture typically consists of three layers, the input
layer, the reservoir layer and the output (read-out) layer,
as shown in Fig. 1. The input layer receives the input signal
u(n) ∈ RF where n is the discrete time n = 1, 2, . . .T and
F the number of features. Then a random projection of the
input signal according to a randomly generated N ×F matrix
Win (1) gives the input signal s(n) where N is the number
of neurons/nodes in the reservoir layer. This matrix is called
an input mask and has the role of enriching the dynamics by
breaking all the symmetries that may occur in the input before
being injected into the reservoir layer [37].

s(n) =Winu(n). (1)

The signal s(n) drives the second layer called the reser-
voir layer. It consists of highly recurrent neurons that carry

the nonlinear expansion of the inputs. The neurons will be
referred to as non-linear nodes or just nodes in this paper.
The number of these nodes N determines the capacity of
the reservoir [35]. The nodes are interconnected spatially
according to a sparse N × N connectivity matrix Wres. Like
Win, Wres may in general be a randomly generated matrix
from any zero-mean probability distribution. The node states
x(n) ∈ RN evolve in discrete time n according to (2):

x(n) = fNL(αWinu(n)+ βWresx(n− 1)+ b). (2)

The α and β are called the input and feedback scaling
factors respectively and are responsible for controlling the
resultant scaling of the dynamics of the reservoir layer and
b accounts for the bias term. The function fNL can be any
nonlinear activation function, which in practice is typically a
hyperbolic tangent or a sigmoid.

The third layer of the RCs is the output layer also known
as the readout layer. This layer takes the node states and
linearly transforms them to an output ŷ(n) ∈ RC . This
is accomplished by the multiplication of the recorded node
transient states x(n) by a C × N matrix Wout where C is the
number of classes as in (3):

ŷ(n) =Woutx(n). (3)

For RCs, only the readout weights in the Wout matrix are
to be optimized through training. This simplifies the learning
when compared to traditional methods where every layer is
trained by the back-propagation method. The training in RCs
aims tominimize theMean Squared Error (MSE) between the
expected and predicted target vectors as given in the equation
below:

MSE =
1
T

T∑
n=1

∥∥∥y(n)− ŷ(n)
∥∥∥2
2
, (4)

where y(n) is the expected output vector and ŷ(n) is the
predicted output at instant n.
We compute the optimalWout using ridge regression at the

output layer to compute the optimalWopt
out . From (4), using the

generalized Moore–Penrose pseudo-inverse, (5) is obtained
where Y and X are large matrices from the column-wise
concatenation of y(n) and x(n) for all n respectively. I is
an identity matrix and λ is a regression parameter aimed at
combating over-fitting. We set λ = 10−8 manually after
testing different values.

Wopt
out = YXT (XXT

+ λI)−1. (5)

1) DIGITAL RESERVOIR COMPUTER
We implement a numerical simulation of an architecture
similar to the one introduced by the authors of [38]. They
proposed an approach where the spatial nonlinear nodes are
replaced by one node coupled to a delayed feedback. The
previous spatial nodes are virtually distributed along a delay
line using Time Division Multiplex (TDM). This is shown
in Fig. 1b, placed side by side with Fig. 1a to highlight
the similarity between the original ESN architecture and the
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FIGURE 1. (a) A spatiotemporal architecture showing the input, reservoir and output layers. The reservoir nodes are randomly distributed
in space. (b) The NDN architecture where a single non-linear node is coupled to a delay line along which the virtual nodes are distributed.
Nodes correspond to the TDM intervals i.e. t1, t2 up to tN .

equivalent Non-linear Delay Nodes (NDN) architecture with
their nodes in spatial and temporal fashion, respectively. The
NDNapproach rendered feasible the experimental implemen-
tations of RCs leading to the opto-electronic [26]–[28], [39],
[40] and the optical implementations [41], [42] respectively.
The non-linear function proposed in the experiments of [26]
is the Mach-Zehnder Modulator transfer function, the sin2,
particularizing (2) to:

x(n) = sin2(αWinu(n)+ βWresx(n− 1)+ φ). (6)

The bias parameter φ now controls the operating regime
which in physical implementations corresponds to the Mach-
ZehnderModulator (MZM) bias voltage. Its value determines
whether the dynamics of the reservoir fall on the highly
linear or highly non-linear regime of the MZM sinusoidal
transfer function. For an in-depth understanding of the NDN
architectures, we refer the reader to [26]–[28], [39]–[42].
In this work, we implement the NDN type of RCs previously
described both as numerical simulation on a CPU and then
proceed to implement an equivalent hardware setup in the lab.

In practice, it is generally recommended to make Win and
Wres sparse. The sparsity has two advantages: it speeds up
matrix computations when sparse matrix representations are
used especially in large reservoirs [43], and it encourages the
emergence of sub-networks with richer localized dynamics
which may improve performance [35]. We, therefore, gen-
erate Win with its elements sampled from the probability
distribution below:

P
(
Win(i, j) = wi,j

)
=

{
1
5 , if wi,j = −1, 1.
3
5 , if wi,j = 0.

(7)

The weights of the matrixWres in our digital RC simulation,
rather than being completely random, are generated with
inspiration from our subsequent hardware implementation.
In the hardware RC, Wres elements are governed by the
coefficients of a first order low-pass filter h(t) = e−t/TR of a
response time TR ≈ 240ns sampled at intervals equal to node
duration θ . The ratio TR

θ
= 4.6 implies that 5 neighboring

nodes are strongly coupled and are weakly coupled to the rest.
We emulate this when setting upWres in our digital RC sim-
ulations, using coefficients sampled from hi = h(iθ ) where
θ = 52.18ns, and placing them in Wres while respecting the
causality condition as follows:

Wres =



h0 0 0 0 0 . . . 0
h1 h0 0 0 0 . . . 0
h2 h1 h0 0 0 . . . 0
h3 h2 h1 h0 0 . . . 0
h4 h3 h2 h1 h0 . . . 0
. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . h4 h3 h2 h1 h0


(8)

The rest of simulation parameters, such as the size of the
reservoir (N ), the input (α) and the feedback (β) factors are
determined through an exhaustive search optimization proce-
dure to determine their optimal values provided in Section IV.

2) HARDWARE RESERVOIR COMPUTER
Compared to a classical Von-Neumann based architecture for
the aforementioned digital RC, an optoelectronic physical
implementation has a potential of large savings in terms of
processing time [27]. We, therefore, extend the analysis of
the simulated digital RC in Section II-A1 by implementing
an equivalent optoelectronic hardware counterpart. The setup
we use in this work is a physical implementation of the
scheme shown in Fig. 2. This setup was provided to us by
Laurent Larger one of the authors of [26] from FEMTO-ST
in Besançon, France. It consists of several components:
• A distributed feedback (DFB) laser diode emitting light
at wavelength 1550nm.

• A Digital-to-Analog Converter (DAC) that carries the
masking operation Winu(n), then encodes this discrete
information into a continuous electric signal uI (t) using
a sample and hold procedure.
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FIGURE 2. Optoelectronic setup from FEMTO-ST. (Reprinted with
permission from [26] c© The Optical Society.)

• A Mach-Zehnder Modulator (MZM) modulated by the
signal from the DAC with a sinusoidal transfer function
encoding the electric signal into the phase of the laser
light.

• A 4.2 kms fiber spool acting as a delay line (of τD ≈
20.87µs) through which the modulated light propagates.

• A photodiode that converts the optical intensity varia-
tions into electric variations.

• An electronic feedback circuit acting as a low-pass filter
with response time TR whose exact coefficients are not
known. The circuit also enables the summation of the
input uI (t) and the feedback signal x(t − τD).

This system can be described by the scalar differential equa-
tion below:

TR
dx(t)
dt
+ x(t) = � sin2(αuI (t − τD)+ βx(t − τD)+ φ),

(9)

where φ is the MZM bias and� is the nonlinearity gain. Like
the simulated counterpart, with the delay-spacing between
consecutive nodes of θ ≈ 52.18 ns [26], this setup allows
the creation of up to N = 400 along the delay line. The filter
response time TR = 4.6θ allows for local coupling between
the virtual nodes emulating the sparse connections of reser-
voir nodes. Since the exact filter weights are unknown, the
coefficients of Wres for the hardware are unknown. Finally,
part of photo-detected x(t) is recorded and used for the offline
post-processing of the output layer.

B. BIDIRECTIONAL LONG-SHORT TERM MEMORY
Long Short-Term Memory (LSTM) neural networks are a
special class of RNNs with special gates that can store, read
and reject information from both recent and previous outputs
further back in time (short and longmemories) [44]. BiLSTM
is a variant of LSTM that exploits, simultaneously, the past
and future (hence bidirectional in time) for computation
which makes it well suited for certain tasks. Fig. 3 shows
the principle of operation with the classifier having the serial
information (u(n)) processed in both past-future and future-
past directions to give the output (d(n)) for processing in
the subsequent dense layers. BiLSTM is extensively studied
in the literature (we direct the reader to [45]–[47]). We use
Python’s Tensorflow to implement the BiLSTM models for
this paper.

FIGURE 3. Block diagram illustrating the BiLSTM working principle. The
serial inputs features are introduced to the hidden layers both in
past-future (right arrows) and future-past (left arrows) directions.

FIGURE 4. Block diagram illustrating the CNN working principle.

C. CONVOLUTIONAL NEURAL NETWORKS
CNNs are a special class of ANN notorious for image pro-
cessing. They consist of stacked layers performing con-
volution operations with a number of filters automatically
deduced from the data during training. The layers extract
various discriminatory features from images. These features
are then sent to the dense layer(s) for neural processing and
classification as shown in Fig. 4. In this work, for comparison,
we implement a CNN architecture similar to the one in [25]
that proved successful for the detection of Parkinson’s disease
from HW features.

D. MODEL ENERGY EFFICIENCY
In line with our discussion on the environmental impact of
AI in the Introduction, we gauge the efficiency of our mod-
els by examining the cost incurred during the optimization,
training, and inference to attain the reported performances.
Various metrics are proposed in the literature for model’s
cost estimation such as the time it takes to run the algorithm
[48]–[50], the energy consumed [49], [50], and the count of
Floating Point Operations (FPOs) [50], [51]. A framework
for estimating the energy consumed by machine learning
algorithms was introduced in [52]. This framework, named
the experiment-impact-tracker, tracks the energy consump-
tion of the target algorithm and then estimates the mass of
carbon dioxide gas or equivalent green house gasses (CO2eq)
emissions. It does so by making use of the models from [53]
that take into account the nature of the power lines in the
selected geographical location for more accurate estimation
of the CO2eq emissions. We use the proposed framework
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FIGURE 5. Patient cursive-` data entry.

to obtain the energy costs of hyperparameter optimization
and model selection. Additionally, to estimate the relative
cost of training and inference for the RC, CNN, BiLSTM
and k-Medoids we will compare the number of trainable
parameters and the FPOs carried on the processors using
a tool called PAPI [54]. For the hardware implementation,
we use the duration of the experiment and the sum of powers
consumed by various components of the setup to estimate the
energy consumption when running the experiment.

III. DATASET AND METHODOLOGY
A. DATASET
The HW data used in our work is the cursive-` data where
participants were asked to write four sets of four ` letters,
i.e., ```` on a tablet to form a pattern shown in Fig. 5. The
data were collected at Broca Hospital in Paris from 54 par-
ticipants, evenly split into 27 healthy control patients (HCs)
and 27 with Alzheimer’s Disease patients (AD), and aged
between 68 and 86. They were collected using a WACOM
Intuos Pro Large Tablet at a sampling rate of 125Hz. The
tablet recorded the x-coordinate (X ), y-coordinate (Y ), pen-
pressure (P), pen-azimuth (Az) and altitude of the pen on its
on air trajectory (Al). The tablet allowed for the dynamic
acquisition by also recording the corresponding time-stamps
throughout the acquisition process.

B. DATA PREPROCESSING
The dataset is small, with only 54 participants. In RC, like
for all other machine learning methods, the need for enough
training data is crucial to ensure proper generalization and
reduce over-fitting during the optimization process. The data
was augmented by segmenting the four ```` letters into
individual loops in order to use each loop as a separate data
sequence. The segmentation process is done in three steps:
(i) computation of the velocity of the pen in the y-direction to
obtain Vy as presented in the Fig. 6, (ii) filtering by a low-pass
filter Vy where the cut-off frequency is set to its fundamental
frequency F0 to obtain a smoothed version shown in Fig. 7,
(iii) the individual loops are obtained by selecting sets of two
consecutive points where the smoothed-out Vy = 0. These
points correspond to the top and bottom points of the loop
where Vy changes its sign. These points were also used to
segment the rest of the features such that we obtain 16 loops
for each patient making the total number of loops 866 (two
patients made one extra loop each) [14].

FIGURE 6. Raw y-velocity (Vy ) before filtering.

FIGURE 7. Smoothed Vy after low-pass filtering. The red crosses show
points used for segmentation.

A single loop, therefore, has the following set of time-
series features associated to it: x-position (X ), y-postition
(Y ), x-velocity (Vx), y-velocity (Vy), pen-pressure (P), pen-
azimuth (Az), pen-altitude (Al) and a corresponding label
(AD or HC). Fig. 8 shows 16 loops (8 from HC and 8 from
AD patients) that were extracted through this segmentation
with a color-map showing the corresponding velocities at
each point. For the CNN, the image inputs are obtained by
converting these time-series to the Gramian Angular Field,
a polar coordinate representation of the time-series [18].

C. CLASSIFICATION SETUP
The ES-AD task is essentially a classification task with labels
being either AD (1) for Alzheimer’s patients or HC (0) for
healthy control patients. We start by optimizing the hyperpa-
rameters of the models using the grid search algorithm over
the RC parameters such as the reservoir size N, α, and β
(see (6)) with one important addition: the feature combina-
tion index (k) referring to one of the feature combinations
indicated on the Parameters column of Table. 4 was also set
as a parameter to be optimized.

Since our data is small and we wish to minimize potential
over-fitting while we tune the hyperparameters and select the
final model, we adopted the Nested-Cross Validation (NCV)
technique [55], [56]. With this technique, we have two loops,
the inner loop for hyperparameter optimization using 7

9 (42
subjects) and 1

9 (6 subjects) of the data for training and
validation respectively. We use the remaining 1

9 (6 subjects)
of the data for testing and final model selection in the outer
loop. The NCV, unlike the traditional Cross Validation (CV),
guarantees that the 1

9 (6 subjects) held out for test are never
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FIGURE 8. (a) and (b) show loops extracted from HC and AD patients
respectively. The color gradient corresponds to the velocity of the pen
along its loop trajectory.

used for optimization of the hyperparameters in the inner
loop. For the 7-1-1 split, we used the stratified sampling
method to ensure class homogeneity and we used the clas-
sification accuracy as the metric for gauging the models’
performances. The accuracy was expressed as the percentage
of the correctly classified patients after voting from all their
individual `− loop classification scores using the maximum
voting approach. The reported performance metrics are aver-
ages obtained on the test set from the 7

9 -
1
9 -

1
9 splits turnovers.

We use the nested cross-validation for both the RC, CNN
and BiLSTM models with an addition of the energy tracker
as described in Section II-D for cost estimation. The results
on accuracy and energy costs incurred are presented in the
Section IV.

IV. RESULTS AND DISCUSSIONS
We run the nested cross-validation technique for the hyper-
parameters tuning and model selection as described in
Section III-C for the digital RC and BiLSTM approaches.
Tables 1 and 2 show the characteristics of the resultant
models for RC and BiLSTM respectively. The optimal size
of the reservoir was found to be N = 300. The digital
RC model summarized in Table. 1 corresponds to the use
of only the velocity features (Vx and Vy), hence F = 2.
We note that F = 3 is another possibility when we run
the nested cross-validation. The T = 100 here shows the
already predefined number of discrete time-steps obtained
after the preprocessing of the dataset making the input a
F × T matrix. The optimal scaling factors for the input and
feedback for the digital RC models are found to be α = 0.6
and β = 0.1 respectively, and φ manually set to 0 rads
since it only impacts the non-linearity of the system. For

TABLE 1. Resultant digital RC model architecture.

TABLE 2. Resultant BiLSTM model architecture.

TABLE 3. The CNN model architecture.

the BiLSTM, using the Adam optimizer to minimize binary
cross-entropy loss function, the best resultant BiLSTMmodel
is obtained with a learning rate of 10−3 with a sigmoid
function. We obtain the size of the recurrent BiLSTM layer to
beH = 32 and the dense layer responsible for final prediction
has the size of D = 128. Table. 3 shows a CNN architecture
not deduced through the model selection procedure used for
RC and BiLSTM as described above but adapted from the
model that already proved successful for Parkinson’s disease
detection in [25]. Notice the Trainable parameters’ column
showing the number of variables to be optimized through
training for each layer.

A. COMPARISON ON PREDICTION ACCURACY
The hyperparameter tuning and model selection experiments
results are listed in Table. 4. Comparing the best accuracies
for each of the input feature combination, we find digital
RC attained the best accuracy of 85% using the velocity fea-
tures alone. This observation is in agreement with the results
obtained for the k-Medoids method in [14], and we observed
that it remains true for all other classification models under
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TABLE 4. Feature combination results for the digital RC.

TABLE 5. Comparison of accuracies for all models under consideration
for the ES-AD task.

consideration (i.e. CNN and BiLSTM).We also observed that
the addition of more parameters to those of velocity adds
noise and degrades digital RC performance. It is well-known
that irrelevant features can hurt the overall accuracy [15],
which can explain why using all features (k = 8) actually
leads to the lowest accuracy in our experiments. We compare
the best results of digital RC to those of other methods
in Table. 5 where the performance metrics are defined as
follows:
• Accuracy (Acc): The percentage of correctly classified
individuals

• Sensitivity (Sens): The percentage of correctly classified
Alzheimer patients

• Specificity (Spec): The percentage of correctly classi-
fied healthy control (HC) individuals.

The accuracy obtained using the BiLSTM counterpart is at
88% which is an improvement over the digital RC model.
Notice that the recurrent methods, i.e., the digital RC and
BiLSTM surpass both CNN and k-Medoids algorithms in
accuracy. On that note, before we conclude that the BiLSTM
is indeed the best model here, we will analyze the cost that
comes with the extra gain (3% gain w.r.t RC) in accuracy of
BiLSTM in the subsequent sections.

B. COMPARISON ON EFFICIENCY
Mobile devices such as smart-phones and tablets are not
only expedient to collect the raw features as described in
Sec. III-A, but they can at the same time be used for a fast
and personalized diagnostic delivery. However, since mobile
devices are limited by their battery discharge cycle, mea-
suring the energy efficiency of the classification algorithms
we consider is of paramount importance. With that in
mind, we complement the results on accuracy described

TABLE 6. Energy consumption for hyperparameter tuning and model
selection for the RC and BiLSTM.

TABLE 7. Estimates of FPO counts necessary for training.

in Section IV-A by reporting the costs incurred to obtain
them. To this end, we use the experiment-impact-tracker
framework [52] to estimate the energy consumed in the
nested-cross validation method for both digital RC and
BiLSTM, i.e. the two best methods in terms of accuracy in
Table. 5 (however, wewill also elaborate on the complexity of
the CNN and k-Medoids in the sequel). Table. 6 summarizes
the electric energy in kWh consumed and the corresponding
mass in kilograms of the CO2 released by our optimization
experiments carried out in France. The energy consumed by
the BiLSTM approach is 9.312 kWh which is more than
8 times the 1.156 kWh consumed by the digital RC approach
during 44 and 21 hours, respectively.

We further estimate the relative cost of training each model
using the optimal parameters, obtained in Section IV-A by
counting the number of trainable internal model variables and
the number of Floating Point Operations (FPOs) carried on
the CPU during the training. For RC, the trainable parameters
are the weights in the readout matrix (5), while for BiLSTM
and CNN it is the number of biases and weights of each
neuron in the network. We obtain the results presented in
Table. 7 when we train each of the models to convergence
on the same hardware. Training the digital RC necessitates
63% of the number of FPOs required by the BiLSTM hinting
a lower energy consumed in a single training of digital RC.
The CNN consumed the most as a result of its increased
depth and complexity compared to BiLSTM whereas for
the k-Medoids, the most computationally expensive part is
the computation of the distances between the loops with the
DTW while clustering.

We also compare the number of FPOs for inference of
the trained models for a single patient. The number of FPOs
counted cover those from loading the saved model, loading
the data and the whole process of inference to obtain a single
prediction. Table. 8 shows that, even in inference, the digital
RC and BiLSTM will consume the least with the RC requir-
ing only 15.7% the number of FPOs for BiLSTM. The impli-
cation here being that RC requires fewer computations and
lower energy consumption by the CPU for the predictions.
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TABLE 8. Estimates of FPO counts necessary for inference.

TABLE 9. Estimated end-to-end energy consumption in the reservoir
layer.

The reason for higher gain in inference (15.7%w.r.t BiLSTM)
compared to training (63% w.r.t BiLSTM) is the fact that
training the RC necessitates multiple projections in the reser-
voir (see (6)), the inversion and multiplication of large matri-
ces (5). These calculations account for most of the energy cost
in training and their absence in inference drastically reduces
the number of FPOs. This makes digital RC an even better
candidate when implementing the models on mobile devices
running on batteries (i.e the very tablets on which the patterns
are drawn). Also, RCs will incur lower costs of running tests
on a distant server in the cloud or edge computing.

C. HARDWARE PERFORMANCE
In Section IV-B we have given the FPOs count necessary
on the processor for training the digital RC. Further analysis
shows that 49% of these operations are spent in carrying
the projection, that is in computing the reservoir states as
described in (6). The rest of the operations are for the actual
training by the ridge regression described by (5). We can save
these FPOs by carrying the projection on the optoelectronic
setup described in II-A2. In this case, only the regression
part is carried by a processor. For a fair comparison, the
hardware RC uses the same feature combination as the dig-
ital RC (i.e. the one indexed by k = 4 in Table. 4), both
during the training and the inference phase. We estimate the
energies consumed by the processor and the optoelectronic
setup for the projection and compare them in Table. 9. The
power consumed by the setup was computed by summing the
energies consumed by the setup’s constituent components.
Although the estimated values for the hardware setup are
rough estimates, they hint a lower energy cost incurred by the
setup. There is a marginal reduction in accuracy by 2% that
can be explained by either the noisier nature of the hardware
experiments and/or the difficulties in fine-tuning the physical
components.

V. CONCLUSION
In this paper, we have proposed the use of Artificial Neu-
ral Networks (ANNs) for Early-Stage Alzheimer Detection

from the handwritten (HW) temporal data by studying
the trade-off between accuracy and efficiency (number of
parameters, number of FPOs and energy consumed). We
found that BiLSTM and Reservoir Computing are the best
approaches for the task, compared to alternative meth-
ods using k-Medoids or CNNs. Both methods showed an
improvement in accuracy compared to state-of-the-art with
the digital RC yielding an accuracy of 85% whilst that of
BiLSTM is 88%, that is, an increase in 3% in accuracy
for the BiLSTM. However, further analysis has shown that,
with the digital RC, we incur significantly lower costs in
optimization (8 times less energy), training (only 63% of
FPOs) and inference (only 15.7% of FPOs) when compared
to BiLSTM. The lower energy requirements for optimiza-
tion and training makes RC the more efficient and the more
environmentally friendly approach, especially when the small
performance penalty is tolerable. Moreover, the digital RC’s
lower inference energy cost makes it ideal to run on the same
mobile devices used to record the HW pattern running on
battery power for a longer period of time in between recharges
compared to running themore costy BiLSTMmethod. If even
slightly lower performances can be tolerated in favor of lower
energy cost, the hardware RC implementations can provide a
good route to even greener solutions by reducing the com-
putation load on power-hungry electronic processors. Future
works will consider improved hardware RC architectures
with even lower energy consumptions and better classifica-
tion accuracies.
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