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ABSTRACT This paper presents a new framework for island formation prior to windstorms, which considers
tree-caused failures of distribution networks. In the proposed framework, both direct and indirect effects of
windstorms on distribution lines are quantified. Thus, a novel discrete Markov chain model is proposed for
representing the failure modes of trees in each time interval of windstorm duration. This model categorizes
‘‘healthy’’, ‘‘uprooted’’, ‘‘stem breakage’’, and ‘‘branch breakage’’ states of a tree. In addition, a new line-tree
interaction model is presented for calculating tree-caused failure probability of overhead lines. The results
of the proposed Markov model are taken as inputs by the developed line-tree interaction model. In these
models, the different characteristics of windstorms are taken into account. Tree vulnerability to windstorms is
characterized by different factors such as their species, height, and critical wind speeds. Windstorm duration
is sectionalized into multiple time intervals, and the proposed models are applied to trees and distribution
system components in each interval. Moreover, the interdependency between the intervals is captured by the
Markov model. The results of the models are used by an optimization model, thereby dividing a distribution
system into multiple islands before storm onset. Subsequently, the framework is extended as a two-stage
stochastic optimization problem to address the uncertainties of loads. In addition, this framework considers
the allocation of mobile emergency resources. The proposed models are implemented on the IEEE 33- and
123-bus test systems, as well as a practical distribution feeder, and their effectiveness is demonstrated through
several case studies.

INDEX TERMS DiscreteMarkov chain, distributed energy resources (DERs), distribution system resilience,
microgrids, mobile emergency resource (MER), tree failures, windstorms.

NOMENCLATURE
A. INDICES AND SETS
s Index of scenario.
ω Index for stage number of stochastic

programming problem.
t, τ Index of time and storm time interval.
T , �T Index and set of trees.
i, �N Index and set of nodes.
j, �B Index and set of distribution branches.
g, �DER Index and set of DERs.
cl, �CL Index and set of critical loads.
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approving it for publication was Fabio Mottola .

m, �MER Index and set of mobile emergency resources,
respectively.

B. PARAMETERS AND CONSTANTS
Pf Failure probability.
νmax
g,n Maximum wind speed at time interval n

of storm.
CWUp,CWSB The critical wind speeds at which a tree

is uprooted and trunk snapped,
respectively.

0(n) The stochastic transitional probability
matrix of a tree in time interval n.

π̃ (n) Vector of state probability for a tree in
time interval n of windstorm.
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hT , heT The tree height and the effective tree
height, respectively.

he,imT Image of the effective tree height on the
ground.

hL The height of distribution lines above the
ground.

ϑT A binary parameter indicating whether
the stem or branches of tree T can fall on
the adjacent
line or not, with regard to wind direction.

1ϕ The fluctuation parameter in the wind
direction.

ζ A fraction of tree stem that is broken by
storm and falls on the ground.

d The horizontal distance between a tree
and its adjacent distribution line.

rij, xij Resistance and reactance of branch ij.
δ A binary parameter indicating a

distribution component is in a healthy
condition or not.

PDi,t ,Q
D
i,t Active and reactive demand at bus i,

at time t .
Tr Vulnerability threshold.
χ1, χ2 Min(d1, d2) and Max(d1, d2),

respectively.

C. VARIABLES AND FUNCTIONS
α A binary variable indicating if a distribution

component is energized or not. (1/0)
ψm,i A binary variable specifying if mobile

emergency resource m is allocated to node i
before storm arrival or not. (1/0)

Pshi,t ,Q
sh
i,t Active and reactive amount of load shedding

at node i, at time t
Pij,t ,Qij,t Active and reactive power flow in

distribution branch ij, at time t.
PGg,t ,Q

G
g,t Active and reactive power generation by

DER g, at time t .
Vi,t Voltage magnitude of node i, at time t

D. SYMBOLS AND ACRONYMS
f Symbol for failure.
l, p Symbols for line and pole, respectively.
di, ind Symbols for direct and indirect, respectively.
Up, SB Symbols for uprooted and stem breakage.
He,BB Symbols for healthy and branch breakage,

respectively.
Min, max Symbols for minimum and maximum,

respectively.
SE Priority-weighted supplied energy.

I. INTRODUCTION
Weather-related incidents can make adverse impacts on
power grids [1]. In this context, resilience-oriented mea-
sures should be taken by system operators. In particular,

operation-oriented proactive measures play a critical role
in improving distribution system resilience [2]. In order to
implement these measures, it is necessary to anticipate out-
ages in distribution systems (DSs) [3], [4].

Severe windstorms have catastrophic impacts on power
system components. In this context, development of the mod-
els that can predict component outages prior to the storms
is a crucial task for power grid utilities [5]. Indeed, outage
prediction can significantly impact the storm-related efforts
of electric utilities [6]. Based on the results of the outage
prediction, they can plan their emergency storm response.
For example, the utilities can estimate the amount of repair
resources required to repair the possible damages. In the
case of windstorms, trees are the dominant cause of DS
component failures [7], [8]. In this regard, trees must be
incorporated into the storm-related studies of DSs. How-
ever, modeling the tree-caused failures is a difficult task.
The difficulty lies in the stochastic behavior of trees during
storms [9].

In the literature, several methods have been developed
for modeling the tree failures during windstorms, which can
be divided into three groups: 1-explanatory, 2-mechanistic,
and 3-statistical models [10]. In the explanatory models, the
causal relationships between different factors, such as species
and dimensions, are investigated. These models are suitable
for the conditions in which there are not sufficient historical
data [10]. In the mechanical wind-risk models, wind loading
on trees is analyzed, and accordingly the failure probabil-
ity of trees during windstorms is calculated [11], [12]. The
mechanical models require some detailed data for each tree,
such as tree mass [13]. Nonetheless, it is very difficult to
collect such detailed data for all trees. Statistical modeling
techniques aim at predicting tree damage probability using
the machine learning methods [14], [15]. To do so, they need
tree-related data such as tree locations and heights for differ-
ent windstorms and locations. Based on the above discussion,
it can also be confirmed that the referred papers only focus
on tree damage modeling, and do not investigate the effects
of tree failures on power lines.

There are some studies that have focused on power outage
prediction during normal weather condition [16]–[18], which
are not applicable under windstorms. To address this concern,
a variety ofmethods have been proposed in the past-published
studies to predict the storm-caused outages, which can be
broadly classified into two main categories: 1- fragility-
based approaches 2- statistical models [19]. In the first cat-
egory, [19] estimates power outages during disasters based
on fragility curves. In the second category, [20] develops an
outage-forecastingmodel based on the random forest method.
Likewise, a statistical model in [21] is presented for power
outage prediction during typhoons. In addition to the power
grid data, this model considers meteorological and geograph-
ical factors. However, there are few papers that quantify
tree-induced failures of DS components during windstorms.
In this group, the authors in [22] propose a method in which
the effects of windstorms on DSs are evaluated through
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sequential Monte Carlo simulation method. In this paper,
a linear relationship between the failure rate of components
in normal and windstorm conditions is established. Like-
wise, [5] proposes a framework for assessing transmission
system availability in the case of extreme weather events.
In this study, the effect of tree falling on power compo-
nents is considered through failure rates of components. The
authors in [23] proposed an outage prediction model for
DSs during storms. In this model, machine learning method
is used for predicting power outages. Reference [8] uses
a statistical model to predict the locations and number of
hurricane-caused outages for a utility located in the coastal
Gulf of Mexico areas. In this model, some tree-related vari-
ables such as tree species are added to the model. Never-
theless, trees have different failure modes whose effects on
distribution branches are not identical. Hence, it is necessary
to distinguish between them. Moreover, possible impacts of
damaged trees on power lines have not been properly ana-
lyzed in the existing literature.

Microgrid formation against extreme events has been rec-
ognized as an effective strategy for reducing the impacts of
extreme events on DSs [24]. In this regard, several studies in
the literature investigated the role of microgrids in serving
critical loads in the event of natural disasters. They can
be classified into two categories of post-disaster and pre-
disaster microgrid-forming studies. The studies in the first
group construct microgrids in the aftermath of disasters.
For example, a distributed secondary control strategy is
developed in [25], which forms microgrids with dynamic
borders after natural disasters. The authors in [26] propose
an integrated optimization model that dynamically forms
microgrids after extreme events. In this study, the optimal
dispatch of repair crews is determined as well. In [27],
an algorithm for the construction of network microgrids after
a natural disaster is developed. In this algorithm, Petri nets
are utilized for recognizing the status of healthy components.
In contrast, a few papers in the second category have focused
on constructing microgrids before the arrival of disasters.
For example, the authors in [28] propose a heuristic method
for solving the two-stage optimization problem. In the first
stage, the optimal locations of distributed generators (DGs)
are determined prior to disaster onset, and the second stage
constructs microgrids in the aftermath of the disasters. In [29]
and [30], a proactive microgrid formation against windstorms
and floods is presented. Nevertheless, to the best of authors’
knowledge, none of these studies covers the task of modeling
the tree-caused failures. However, there are some studies
that propose hardening-oriented measures for improving DS
resilience against windstorms. For example, an optimal hard-
ening strategy is presented in [31] that enhances the resilience
of a DS against storms. Three resilience-enhancement strate-
gies are considered, including the vegetation management.
Nonetheless, operational and hardening measures are two
complementary actions to make a DS more resilient against
windstorms. Consequently, utility companies should imple-
ment these two resilient-oriented measures.

Motivated by the aforementioned challenges, this paper
proposes a novel framework that not only models the three
main failure modes of trees during windstorms, but also eval-
uates the effects of each tree failure mode on its adjacent dis-
tribution lines. In this framework, the duration of a windstorm
is divided into multiple time intervals. In addition, both direct
(wind-induced damages) and indirect (tree-caused damages)
effects of windstorms on overhead structures are addressed.
Since the stochastic behavior of a tree during storms can
be modeled by analyzing Markov models in series, a new
discrete Markov chain model is developed to categorize the
possible states of an individual tree during each time interval
of windstorm duration. In this context, ‘healthy’, ‘uprooted’,
‘stem breakage’, and ‘branch breakage’ are recognized for
a tree by the Markov model. Transition probabilities of this
Markov model are computed based on the characteristics of
trees and windstorms in each time interval. Subsequently,
a novel line-tree interaction model is presented, whereby
the tree-caused failure probability of overhead distribution
lines is calculated. To this end, the probability of residing
in each state of the Markov model is imported as inputs to
the line-tree interaction model. Subsequently, the line-tree
interaction model is employed to quantify the impact of each
failure mode of trees on their adjacent overhead lines. In the
next step, the results of the line-tree interaction models are
utilized as inputs to the optimization problem, thereby identi-
fying storm-vulnerable lines. Finally, the optimization prob-
lem for constructing islands prior to windstorms is expressed
in the form of a mixed-integer linear programming (MILP)
model. The objective is to maximize the priority-weighted
supplied energy to critical loads, while minimizing the vul-
nerability of energized lines during windstorms. In order
to address the uncertainty associated with load demands,
the proposed deterministic framework is extended, and a
two-stage stochastic framework is proposed. In this stochas-
tic framework, the optimal allocation of mobile emergency
resources (MERs) is incorporated. On these bases, the main
contributions of this paper can be listed as follows:

• A new Markov model is proposed for identifying the
states in which a tree can reside in each time interval of
the storm duration, and the associated transition proba-
bilities are calculated based on the tree and windstorm
characteristics. The obtained transition probabilities are
subsequently used to calculate the probability of residing
in each tree state during a storm.

• A novel line-tree interaction model is proposed for
calculating tree-induced failure probability of overhead
lines for each failure mode of a tree during windstorms.

• The vulnerable branches to an approaching storm are
identified using the proposed framework, and an opti-
mization model is presented that constructs islands prior
to the storm.

• The proposed deterministic framework is extended to
consider load demand uncertainties and pre-storm allo-
cation of MERs.
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FIGURE 1. General structure of the proposed framework.

The rest of this paper is organized as follows. Section II
presents the general overview of the proposed deterministic
framework. The details of the proposed Markov and line-tree
interaction models are presented in Section III. Section IV
formulates the proposed island formation framework in form
of a MILP problem. In Section V, the two-stage stochastic
framework and its formulation are introduced. Section VI
presents and discusses the simulation results on three test
systems and finally, summary conclusions are provided in
Section VII.

II. PROPOSED FRAMEWORK
In this section, the general structure of the proposed frame-
work is described. Subsequently, an illustrative example is
shown so as to implement the framework on a simple distri-
bution network.

A. GENERAL DESCRIPTION OF THE PROPOSED
FRAMEWORK
The overall structure of proposed method is depicted in
Fig. 1. The proposed framework consists of two stages.
In the first stage, all of the distribution lines vulner-
able to windstorms are identified. To do so, the pro-
posed Markov and line-tree interaction models are utilized.
In the second stage, the proposed framework is imple-
mented to form the islands, using the results of the first
stage as inputs. The proposed framework is constructed
based on the above methodology through the following steps
(in each stage):

Stage 1) The first stage calculates the failure proba-
bility of overhead distribution lines under
direct and indirect effects of windstorms.
This stage can be divided into five steps as
follows:

Step 1) The information about trees, distribution
overhead structures, and windstorm forecasts
is collected.

Step 2) The proposed Markov model is constructed
for a tree in each time interval of storm dura-
tion. In addition, its transition probabilities
are calculated based on the characteristics of
the tree and the windstorm in that time inter-
val. Based on the results of this model, the
failure probability of the tree in each state is
computed, for the time interval of interest.

Step 3) Based on the probability values obtained in
the previous step, the tree characteristic, and
thewindstorm features, the proposed line-tree
interaction model calculates the tree-caused
failure probability of each distribution line
(indirect effect) in each time interval of the
storm

Step 4) Using the fragility curves, the failure proba-
bilities of the distribution lines and the poles
under the direct effect of windstorms are
calculated.

Step 5) Based on the obtained results of Steps 3 and 4,
the windstorm-vulnerable branches are iden-
tified, which are used as the inputs into the
second stage.

Stage 2) The second stage optimally constructs
islands prior to windstorms, which can be
summarized in the following steps:

Step 1) The proposed optimization framework is run.
Step 2) The configurations of the constructed islands

are determined.

B. ILLUSTRATIVE EXAMPLE
In this part, the proposed framework is implemented on a
sample distribution network, which is shown in Fig. 2. It is
assumed that an upcoming windstorm will hit the network,
thereby causing three permanent faults along the distribution
network.

Using the first-stage results of the proposed framework,
three branches 2-3, 6-10, and 14-15 are recognized as vul-
nerable to the upcoming storm. Two branches 2-3 and 14-15
will be damaged by the fallen trees (indirect effect of storm),
while branch 6-10 will be directly damaged by the storm.
Afterward, the second stage determines the island borders
such that the amount of priority-weighted supplied energy
after storm is maximized. At the same time, the vulnerability
of the energized branches during the storm is minimized.
Thus, two islands are constructed to supply the critical loads.
In island 1, three branches are energized. DG 1 supplies
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FIGURE 2. Illustrative example of implementing the proposed framework
on a sample electricity distribution network.

critical load 1 through branches 1-2 and 2-8. This is because
the vulnerability of this path to the upcoming storm is lower
than the path involving: 8-7, 7-6, 6-5, and 5-1 branches.
In addition, critical load 3 is energized through the island
number 2. Moreover, by implementation of this framework,
since a tree is located near branch 5-13, this branch will
not be energized. This will minimize the vulnerability of the
network through energized branches to the upcoming storm.

III. TREE-CAUSED FAILURE MODELING
In this section, the indirect effects of windstorms on distribu-
tion lines are modeled. During windstorms, the damages to
trees and distribution system components are closely associ-
ated with gust wind speeds [32]. Thus, windstorms are char-
acterized by time-based gust speed profile and wind direction
in this study. This profile is subsequently divided into some
time intervals. In each time interval, the maximum wind
speed is used in order to calculate the storm-caused failure
probability of the components. On these bases, windstorm
dynamic is considered in the proposed framework.

In addition, a tree is modeled considering its general phys-
ical features as well as its critical wind speeds. The pro-
posed models are developed for each distribution line and
its adjacent trees in each time interval of a storm event. The
spatial information about DSs can be accessed through the
Geographic Information System (GIS) [33]. Moreover, tree
data, such as height, can be derived from LiDAR, tree maps,
and satellites [23].

A. DIRECT EFFECT OF WINDSTORMS ON LINES
In order to calculate the failure probability of distribution
system components under the direct effects of windstorms,
the concept of fragility curves is utilized [34]. To do so, the
maximum wind speed during each time interval is mapped
onto the fragility curves of overhead components. As a result,
the failure probabilities of the components under direct effect
of a storm are obtained in each interval.

FIGURE 3. Schematic illustration of the dependency between Markov
models of a tree during storm time intervals.

B. MODELING INDIRECT EFFECTS OF WINDSTORMS
In this part, a new model is proposed that calculates the
tree-induced failure probability of overhead distribution lines
during windstorms. This model includes two sub-models.
The first one models the random response of an individual
tree during windstorms (the Markov model). The second sub-
model, however, mathematically computes the tree-induced
failure probability of overhead distribution lines for different
failuremodes of a tree (the line-tree interactionmodel). These
models are constructed in each time interval of storm dura-
tion. In addition, the line-tree interaction model is formed in
each time interval based on the results of the related Markov
model(s) for that interval. In the proposed Markov model,
a tree condition at the end of a time interval is considered
as the initial state of the tree Markov model in the next time
interval. Thus, a chain of Markov models is constructed for
modeling the response of a tree during a windstorm. The
number of theMarkovmodels used for modeling a tree equals
the number of time intervals. This process is schematically
illustrated in Fig. 3.

1) PROPOSED DISCRETE MARKOV MODEL
The random behavior of trees during storms can comply with
the requirements of Markov models [35]. Therefore, the con-
cept of discrete Markov chain is used in this paper. As men-
tioned earlier, maximum wind speed is the primary cause of
tree failures and power outages during storms. With this in
mind, the maximumwind speed in each time interval of storm
duration is used to calculate the failure probability of the
trees and overhead components. In doing so, the transitional
probabilities between different states of the Markov model
are a function of maximum wind speed, and they remain
constant during a specific time interval. Thus, the stochastic
response of a tree in a time interval can be modeled using
discrete Markov model. Fig. 4 shows the proposed Markov
model for representing the behavior of an individual tree in a
time interval of storm duration.

In the proposed Markov model, the states represent differ-
ent situations of the tree during windstorms. The proposed
Markov model addresses four main states for a tree during
storms [36], [37]. These states are ‘healthy’, ‘uprooted’,
‘stem breakage’, and ‘branch breakage’. In addition, this
model represents all of the feasible transitions between the
different states of a tree during storms. For example, the
uprooted state and the stem breakage state are completely
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FIGURE 4. Proposed four-state Markov chain for modeling tree response
during wind storms in a time interval.

independent. However, in branch breakage state, the trunk
of the tree is considered healthy. Thus, a tree which is in
the branch breakage state may experience uprooted or stem
breakage state in the continuation of a storm event.

If a tree stays healthy in a time interval, the model resides
in state 1, with a probability of p11. However, if the tree
is uprooted by the windstorm, a transition from state 1 to
state 2 occurs with a probability of p12. The windstorm can
also cause stem breakage, which makes a transition to state
3 with a probability of p13. Branch breakage is another possi-
ble failure mode of the tree, which takes the model to state 4.
In this situation, there are three possibilities for the tree. If the
wind causes uprooting, the model is taken from state 4 to state
2with probability p42. In addition, if the tree experiences stem
breakage, the model transfers to state 3. Otherwise, it resides
in state 4 with probability p44. However, when the model
transfers to state 2 (uprooted) or state 3 (stem breakage),
it remains in state 2 or state 3 with a probability of 1.

2) MARKOV MODEL TRANSITION PROBABILITIES
The probabilities of the transitions between theMarkov states
are a function of different parameters, such as wind speed.
In this regard, the transition probabilities are determined
for each time interval of the windstorm duration, and thus
the stochastic transitional probability matrix is constructed
for each time interval. On these bases, different transition
probabilities of the proposed Markov model are calculated
as follows:

p11 + p12 + p13 + p14 = 1 (1a)

p22 = p33 = 1 (1b)

p44 + p42 + p43 = 1 (1c)

Equations (1a)-(1c) account for the probabilities of resid-
ing in states 1, 2, and 3 of the proposedMarkovmodel given in
Fig. 4. These three equations are derived based on the fact that
the summation of the transition probabilities from a Markov

state must be equal to unity [35]. Thus, the relationships
between the transition probabilities from state 1 and state
4 are respectively expressed by (1a) and (1c). However, if the
model enters states 2 or 3, it will remain there. Thus, the value
of the corresponding transition probability is equal to unity,
which is given by (1b).

The probability of departure from state 1 due to uprooting
(p12) and stem breakage (p13) can be calculated using the
fragility curves of trees [38]. There are different methods
for constructing the fragility curves of trees. In this study,
the fragility curves of trees are supplied to the algorithm
as inputs, and they can be derived based on the approach
presented in [38]. Nonetheless, the proposed framework is
general, and when it is difficult to construct such curves
for all individual trees, logistic models can be used [39].
These models approximately estimate the windthrow defect
(uprooting or stem breakage of trees during highwind speeds)
probabilities of the trees. Although when there are a huge
number of tree species that have grown in the vicinity of
distribution lines, it is difficult to construct the fragility curves
for all of them however, it is possible to give the priority of
fragility curve construction to the tree species with greater
height, shorter distances form lines, and greater majority.

However, p12 and p13 depend on the critical wind speed
for uprooting and the critical wind speed for stem breakage.
When the wind speed is lower than both critical speeds, the
values of p12 and p13 are equal to zero [40]. If the wind
speed in a time interval is higher than the critical speed and
CWsb < CWup, the tree is snapped, otherwise it will be
uprooted [36]. The other possibility occurs when the wind
speed exceeds these two critical wind speeds. In this situation,
the tree is either uprooted or snapped. On these bases, p12 and
p13 can be estimated [36]. It should be notified that when a
tree is in the standing condition (state 1 or 4), the probabilities
of leaving states 1 and 4 due to uprooting or stem breakage
are the same. It is due to the fact that the main difference
of states 1 and 4 is the broken branches, and the factors that
affect the probability of uprooting and stem breakage are not
influenced by the broken branches. Therefore, Eqs. (2a) and
(2b) are considered.

p12 = p42 (2a)

p13 = p43 (2b)

Subsequently, using (1) and (2), the stochastic transitional
probability matrix, 0, is constructed for a tree in each time
interval of a storm. Finally, the time-dependent probability
of being in each tree state after n time intervals is calculated
as [35]:

π̃ (n) = π̃ (0)× 0(1)× 0(2)× . . .× 0(n) (3)

In which, π̃ (0) is the initial probability vector of the
Markov states.

3) LINE-TREE INTERACTION MODEL
In this subsection, a model is developed for calculating tree-
induced failure probability for overhead distribution lines
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FIGURE 5. Schematic representation of interaction between a damaged
tree and its adjacent power line.

during windstorm events. The model is based on the obser-
vations made on the tree-caused failures during several wind-
storms [41]–[43].

The parameters of the line-tree interaction model are
illustrated in Fig. 5. In practice, falling trees are in wind direc-
tion [36]. In addition, there are a few variations in the direc-
tion of windstorm at a region. With this in mind, the wind
direction variation is incorporated into the model, which is
specified by1ϕ (in degrees). In Fig. 5, d1 and d2 indicate the
borders of wind direction variation at tree location. In other
words, they draw the area borders in which a tree may fall
in, if uprooted or broken by wind. The intersection of d1
and d2 with the nearest overhead distribution line specifies a
fictitious line that a treemay touch, which is represented by lv.
In other words, this fictitious line represents the fraction of a
line-section onwhich tree stem or branches can fall, regarding
the direction of windstorms. This line is characterized by
wind direction.

Stem breakage occurs at the height of (1−ζ )×hT above the
ground. However, in case of uprooting, the whole height of
tree is toppled. In order to distinguish between uprooted and
stem breakage states, the effective height (heT ) is introduced
in this model, which stands for the fraction of a tree height
that is blown down by windstorms. The effective height for
an uprooted tree is represented by heT ,up and for a snapped
tree is represented by heT ,sb, which are defined through the
following relations:

heT ,sb = ζ × hT (4a)

heT ,up = hT (4b)

he,imT =

√
(heT )

2 − (hL − (1− ζ )hT )2 (4c)

In (4c), he,imT stands for the image of the effective tree
height on the ground. If the height of tree is shorter than that of
distribution lines, the tree does not threaten its adjacent lines.

FIGURE 6. Top view of the tree in Fig. 5 for calculation of lT .

In addition, if he,imT is shorter than horizontal distance d , the
distribution line is not touched by the fallen trees. On these
bases, line lT is introduced in the model. This line models the
fraction of a line that can be touched by tree stem, considering
the physical characteristics of the tree located near the tree.
Thus, in contrast to lv, this fictitious line is characterized by
both wind direction and effective tree height.

Based on the tree height as well as the location of a tree
with respect to its adjacent line, four possibilities for lT
are considered. Based on the parameters given in Fig. 5,
the length of lT for these four possibilities is calculated as
follows:

lT =



0 he,imT < dorhT < hL

2×
√
(he,imT )2 − d2

d ≤ he,imT < χ1&hL ≤ hT√
(χ1)2 − d2 +

√
(he,imT )2 − d2

χ1 ≤ h
e,im
T < χ2&hL ≤ hT

lv χ2 ≤ h
e,im
T &hL ≤ hT

(5)

The first possibility occurs when he,imT is smaller than the
distance between the tree and the distribution line. In this
situation, the length of lT is set to zero, because the fallen tree
cannot touch the line. If he,imT exceeds the horizontal distance
(d), it can touch and damage overhead lines. Therefore, the
second, third, and fourth possibilities are considered based on
the length of d1 and d2. In the fourth possibility, h

e,im
T exceeds

both d1 and d2. In this condition, the fallen tree can touch
any point of line between the intersections of the distribution
line with d1 and d2, and the length of lT is equal to lv.
Fig. 6 illustrates how the length lT is calculated, if the second
set of inequalities in Eq. (5) are satisfied. In this condition,
he,imT exceeds d . However, it is smaller than both d1 and d2.
Thus, based on the Pythagorean theorem, the length of lT
is computed by the second relationship in Eq. (5). Similar
figures can be drawn for other relationships in Eq. (5).

In order to compute the tree-caused failure probability for a
distribution line, the concept of continuous probability theory
is used [44]. Based on this concept, lv is the continuous
sample space, and lT represents the event of concern. In this
case, the concerned event is ‘‘fall of the tree on distribution
lines’’. Thus, the failure probability of a line due to uproot-
ing or stem breakage of tree T is determined based on the
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following definitions:

PTfa =
Length of concerned event
Length of sample space

=
lT
lv
.ϑT (6a)

PTfa,up =
lT ,up
lv,up

.ϑT (6b)

PTfa,sb =
lT ,sb
lv,sb

.ϑT (6c)

In (6a),ϑT incorporates the effect of wind direction into the
tree-induced failure probability of distribution lines. When
the wind blows in a direction that a tree does not fall on the
distribution lines, the value of ϑT is set to 0. Otherwise, it is
set to 1. It can be estimated based on forecasted wind speed
direction at each location. It should be notified that PTfa is
calculated for a line section. In (6b) and (6c), PTfa,up and P

T
fa,sb

account for the failure probability induced by tree T due to
uprooting and stem breakage, respectively. Thus, Eqs. (6b)
and (6c) are derived from (6a) for uprooted and stem breakage
states of tree T, respectively. If tree T threatens more than one
distribution line, lT is computed for each line section.
The uprooted, stem breakage, and branch breakage states

might contribute to distribution line failures. Likewise, bro-
ken tree branches can result in permanent faults on lines.
Furthermore, it is experimentally demonstrated that as the
distance between trees and distribution lines increases, the
impact of broken tree branches on overhead line failure
decreases, which can be modeled by an exponential func-
tion [45]. Therefore, the failure probability of a line section,
given that some branches of tree T have been broken,
is estimated by:

PTfa,bb = e−(d .σ ) × κ × ϑT (7)

In (7), σ is a positive parameter that has correlation with
the tree height [45]. In addition, κ stands for the fraction of the
falling tree branches that causes permanent faults, and can be
estimated using the historical data. Asmentioned earlier, each
tree state has an occurrence probability that was calculated by
(3). Therefore, the tree-induced failure probability of a distri-
bution line due to the three failure modes of an individual
tree (i.e. uprooting, stem breakage, and branch breakage) is
expressed by:

Pf ,indl,T = (PTfa,up × πup)+ (PTfa,sb × πsb)+ (PTfa,bb × πbb)

(8)

When a distribution line is surrounded by nT trees, eq. (8) is
reformed as follows:

Pf ,indl = 1−
nT∏
T=1

(1− Pf ,indl,T ) (9)

Next, the failure probability of a line-section, including
both direct and indirect effects of windstorms, is calculated
as follows:

Pfl = Pf ,dil + P
f ,ind
l − (Pf ,dil .Pf ,indl ) (10)

FIGURE 7. The results of the Markov and line-tree interaction models for
tree T1 in Fig. 2.

Finally, the failure probability of a distribution branch
(with np poles and nl line sections) is calculated as:

PfB = PfLine + P
f
pole − (PfLine.P

f
pole) (11a)

Pfpole = 1−
np∏
p=1

(1− Pfp) (11b)

PfLine = 1−
nl∏
l=1

(1− Pfl ) (11c)

Equations (11b) and (11c) respectively stand for the failure
probability of distribution branch B due to failure of its poles
and line-sections.

C. ILLUSTRATIVE EXAMPLE FOR THE PROPOSED MODELS
To clarify the application of the proposed models, they are
established for the illustrative example shown in Fig. 2. It is
assumed that the duration of the upcoming storm is divided
into three time intervals. Therefore, three Markov models
are constructed for tree T1. The Markov models indicate 43

possible combinations for the states of this tree during the
storm. Some combinations are associated with tree damage
states, in which the tree experiences at least one damage
mode. Fig. 7 represents one of the combinations that the
tree is uprooted. In this combination, tree T1 remains in the
healthy state during the first interval of the storm. However,
the tree is uprooted during the second interval, and it stays in
the uprooted state during the continuation of the storm.

Now, three line-tree interaction models are constructed to
investigate the possible outcomes of each tree state on its
adjacent line, namely line 2-3. For the combination illustrated
in Fig. 7, the tree named T1 is in healthy state in the first inter-
val. Therefore, it does not threaten the line. However, using
the line-tree interaction model for the second interval, the
probability related to ‘‘line 2-3 is damaged due to uprooted
tree T1 (PT1fa,up)’’ is determined. Considering the direction of
the storm as well as the height of this tree, the uprooted tree
can cause a permanent fault on line 2-3.

Using Eq. (8), the failure probabilities of other damaging
states are added to the failure probability of this combination.
As a result, the indirect failure probability of line 2-3 due to
tree T1 is obtained (Pf ,ind2−3,T1). In order to calculate Eq. (8), it is
required to compute the state probabilities of the tree at the
end of each time interval. These probabilities are calculated
based on Eq. (3) as follows:

π̃ (1) = π̃ (0)× 0(1)n = 1 (12a)

π̃ (2) = π̃ (0)× 0(1)× 0(2)n = 2 (12b)
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π̃ (3) = π̃ (0)× 0(1)× 0(2)× 0(3)n = 3 (12c)

In this example, tree T1 is in healthy condition prior to
the storm arrival. Thus, π̃ (0) = [1 0 0 0]. In addition, the
stochastic transitional probability matrix for this tree in the
first time interval is constructed as:

0(1) =


p11,1 p12,1 p13,1 p14,1
0 p22,1 = 1 0 0
0 0 p33,1 = 1 0
0 p42,1 p43,1 p44,1

 n = 1

(13)

In a similar manner, this matrix can be constructed for this
tree in the second and third intervals.

D. IDENTIFYING THE VULNERABLE COMPONENTS
Using the probabilities obtained in the previous subsection,
the storm-vulnerable components are identified. To this end,
if the failure probability of a distribution branch in a time
interval exceeds the vulnerability threshold, the distribution
branch is recognized as vulnerable [29]. However, if a dis-
tribution branch fails in any time interval, the status of the
distribution branch over the scheduling horizon (withNT time
intervals) is considered as damaged. This can be expressed in
a compact form as follows:

δ =

{
0 Pf ,τB ≥ Tr
1 o.w.

∃τ ∈ {1, 2, . . . ,NT } (14)

Equation (14) ensures that if the failure probability of a
branch at any time interval exceeds the vulnerability thresh-
old, the branch is considered as a vulnerable branch to the
upcoming windstorm (i.e. δ = 0).

IV. PROBLEM FORMULATION
In this section, the mathematical formulation for optimal
formation of islands is provided. This section employs the
isolation constraints developed in previous section. In the
optimization problem, the linear version of DistFlow equa-
tions is utilized as power flow equations [46]. In order to
measure the resilience level of DSs, the priority-weighted
supplied energy is employed in this paper, which includes
both the load lost and its duration. In addition, the analysis
in this study is conducted in steady-state condition. However,
there are several resilience measures [47], which address
different aspects of power systems under extreme events.

A. OBJECTIVE FUNCTION
The objective function of the proposed deterministic frame-
work consists of two terms as follows:

Fobj = Max(ε1.
∑
∀cl

∑
∀t

(PDcl,t − P
sh
cl,t ).Dcl

− ε2.
∑
∀ij

∑
∀τ

(αbij.P
f ,NT
ij )) (15)

The objective of the optimization model is to maximize
the priority-weighted value of the energy supplied to the

critical loads, while the vulnerability of energized distribution
branches during a storm is minimized. Each objective term
is normalized by its maximum value, and the coefficients of
objective terms are selected so that ε2 � ε1.

B. CONSTRAINTS
The optimization problem satisfies five groups of constraints,
namely component isolation, load curtailment limits, power
flow equations, island radial operation, and island connectiv-
ity constraints, which are listed as follows:

0 ≤ αbij ≤ δij ∀ij ∈ �B (16a)

0 ≤ αbj ≤ δij ∀ij ∈ �B (16b)

0 ≤ PDi,t − P
sh
i,t ≤ M .α

cl
i ∀i ∈ �CL , ∀t

(16c)

0 ≤ QDi,t − Q
sh
i,t ≤ M .α

cl
i ∀i ∈ �CL , ∀t

(16d)

0 ≤ Pshi,t ,Q
sh
i,t ∀i ∈ �CL , ∀t (16e)

PGi,t − P
D
i,t + P

sh
i,t

=

Pij,t∑
∀ij

∀i ∈ �N , ∀t (16f)

QGi,t − Q
D
i,t + Q

sh
i,t

=

∑
∀ij

Qij,t ∀i ∈ �N , ∀t (16g)

−M .(1− αbij) ≤ Vi,t − Vj,t −
rij.Pij,t + xij.Qij,t

V0
≤ M .(1− αbij) ∀ij ∈ �B, ∀t (16h)

Vmin
i .αni ≤ Vi,t ≤ Vmax

i .αni ∀i ∈ �N , ∀t (16i)

−Pmax
ij .αbij ≤ Pij,t ≤ Pmax

ij .αbij ∀ij ∈ �B, ∀t (16j)

−Qmax
ij .αbij ≤ Qij,t≤Qmax

ij .αbij ∀ij∈�B, ∀t (16k)

PG,min
i .α

g
i ≤ PGi,t ≤ P

G,max
i .α

g
i ∀i ∈ �DER, ∀t

(16l)

QG,min
i .α

g
i ≤ QGi,t ≤ Q

G,max
i .α

g
i ∀i ∈ �DER, ∀t

(16m)

Vulnerable branches are isolated by (16a). If branch ij
is recognized as vulnerable, it must be de-energized during
storm (αbij = 0). Likewise, constraint (16b) de-energizes
the ending nodes of the vulnerable switchable branches that
have sectionalizing switches at their sending end. Constraints
(16c) and (16d) set the active/reactive value of load curtail-
ment to the amount of active/reactive loads for de-energized
loads (αcli = 0). For the energized loads, these constraints
ensure that the amount of active/reactive load curtailment
must not exceed the total active/reactive load at each time
interval. In (16c) and (16d),M is a large positive real number
[48]. In addition, the active/reactive load shedding must be
equal or greater than zero, which is ensured by (16e). Active
and reactive power balances at each node are respectively
enforced by equality constraints (16f) and (16g). In these two
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equations, the active/reactive load curtailments and the power
generated by distributed energy resources (DERs) are taken
into account.

Constraint (16h) expresses the relationship between the
voltage magnitudes of two connected nodes. However, note
that the energization status of nodes and branches has not
been determined before solving the optimization problem.
Therefore, the big-M approach [49] is utilized in (16h) to
guarantee that (16h) is only applied to the nodes connected
through an energized branch. However, when the branch is
not energized (αbij = 0), (16h) is relaxed for related nodes of
i and j. In this constraint, V0 stands for the reference voltage.
Inequality constraint (16i) sets the voltage magnitude of a
de-energized node (αni = 0) to zero and maintains the voltage
magnitude within the acceptable bounds when the node is
energized. Constraints (16j) and (16k) set the active/reactive
flow of a de-energized line to zero, respectively. In addition,
these constraints put limits on active/reactive power flow of
each energized line. Constraints (16l) and (16m) ensure that
only the committed DERs can inject power to the network.
In addition, the active/reactive power outputs of the com-
mitted dispatchable DERs are respectively restricted by (16l)
and (16m). The connectivity and island radial operation con-
straints, as configuration-related constraints, are taken into
account in this paper. To this end, the connectivity and island
radial operation constraints of [50] and [51] are utilized.

By solving this optimization problem, the optimal val-
ues of the unknown variables are determined, which
are: the branch operational status, the node energiza-
tion status, the load energization status, the node voltage
magnitude, the active/reactive power flowing from node
i to node j through branch ij, the active/reactive power
generated by DERs, the commitment status of the dis-
patchable DERs, and the active/reactive amount of load
shedding.

V. AN APPROACH FOR UNCERTAINTY MODELING AND
MER ALLOCATION
The developed optimization model in (15) and (16) is deter-
ministic, and it does not take uncertainties into account.
To account for uncertain parameters in the developed model,
a more complex formulation should be employed. Thus,
a two-stage stochastic programming approach is employed in
order to model the uncertainty associated with load demands.
In addition, this framework allocates MERs before storm
arrival. There are two groups of decisions to be taken in this
problem, as summarized in the following:

The first-stage (here-and-now) variables: The optimal val-
ues of these variables are determined prior to the realization of
the scenarios, and accordingly the decisions are implemented
before storm arrival. In/out status of branches, on/off status of
dispatchable DERs and MERs, energization status of nodes,
voltage magnitude of nodes, active/reactive power flowing
through branches, amount of active/reactive load shedding at
each load point, amount of active/reactive power generated by
DERs andMERs, and the variables related toMER allocation

are determined before a storm strikes. Thus, the configura-
tions of the constructed islands are determined before the
strike of an upcoming storm.

The second-stage (wait-and-see) variables: After the
uncertain parameters are revealed, the variables associated
with the realized scenario are implemented. In this study,
except for MER allocation variables, the second-stage vari-
ables are similar to the first-stage variables. Nonetheless, they
are optimally determined for each scenario under study.

A. STOCHASTIC PROBLEM FORMULATION
Based on the discussions presented in the last section, the
general expression of the two-stage stochastic framework is
as follows:

Maximize Fobj

s.t.

{
(16a)− (16m), (19) ω = 1
(20a)− (20p) ω = 2

(17)

Constraints (16a)-(16m) combined with constraint (19)
guarantee the feasibility of solutions in the first stage (ω = 1)
of the two-stage stochastic optimization problem. In addition,
constraints (20a)-(20p) are associated with the second stage
(ω = 2) of the stochastic problem. The constraints (20o) and
(20p) are related to the operational constraints of the allocated
MERs in the second stage of the stochastic problem.

1) OBJECTIVE FUNCTION
Similar to (15), the objective function of the stochastic prob-
lem includes two terms. The first objective term aims at
maximizing the expected value of the energy supplied to the
critical loads. On the other hand, the second one tends to min-
imize the expected vulnerability of the energized branches
during a storm. The objective function of this problem is
given as:

Fobj = Max(ε1.
∑
∀s

µs.
∑
∀cl

∑
∀t

(PD,scl,t − P
sh,s
cl,t ).Dcl

− ε2.
∑
∀s

µs.
∑
∀ij

∑
∀τ

(αb,sij .P
f ,τ
ij )) (18)

In (18), µs accounts for the occurrence probability of
scenario s.

2) CONSTRAINTS
a: FIRST-STAGE CONSTRAINTS
This set of constraints encompasses two categories, namely
constraints (16a)-(16m) and constraint (19).∑

∀i

ψm,i ≤ 1 ∀m ∈ �MER (19)

Constraint (19) is related to MER allocation and specifies
that each MER cannot be allocated to more than one candi-
date node.
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b: SECOND-STAGE CONSTRAINTS
The constraints of the second stage are imposed
on each scenario, and they are expressed as
follows:

0 ≤ αb,sij ≤ δij ∀ij ∈ �B, ∀s (20a)

0 ≤ αb,sj ≤ δij ∀ij ∈ �B, ∀s (20b)

0 ≤ PD,si,t − P
sh,s
i,t ≤ M .α

cl,s
i

∀i ∈ �CL , ∀t, s (20c)

0 ≤ QD,si,t − Q
sh,s
i,t ≤ M .α

cl,s
i

∀i ∈ �CL , ∀t, s (20d)

0 ≤ Psh,si,t ,Q
sh,s
i,t ∀i ∈ �CL , ∀t, s

(20e)

PG,si,t − P
D,s
i,t + P

sh,s
i,t =

∑
∀ij

Psij,t ∀i ∈ �N , ∀t, s (20f)

QG,si,t − Q
D,s
i,t + Q

sh,s
i,t =

∑
∀ij

Qsij,t ∀i ∈ �N , ∀t, s (20g)

−M .(1− αb,sij ) ≤ V s
i,t − V

s
j,t −

rij.Psij,t + xij.Q
s
ij,t

V0
≤ M .(1− αb,sij ) ∀ij ∈ �B,∀t, s

(20h)

Vmin
i .α

n,s
i ≤ V s

i,t ≤ V
max
i .α

n,s
i

∀i ∈ �N , ∀t, s (20i)

−Pmax
ij .α

b,s
ij ≤ Psij,t ≤ P

max
ij .α

b,s
ij

∀ij ∈ �B, ∀t, s (20j)

−Qmax
ij .α

b,s
ij ≤ Qsij,t ≤ Q

max
ij .α

b,s
ij

∀ij ∈ �B, ∀t, s (20k)

PG,min
i .α

g,s
i ≤ PG,si,t ≤ P

G,max
i .α

g,s
i

∀i ∈ �DER, ∀t, s (20l)

QG,min
i .α

g,s
i ≤ QG,si,t ≤ Q

G,max
i .α

g,s
i

∀i ∈ �DER, ∀t, s (20m)

0 ≤ αg,sm,i ≤ ψm,i ∀i ∈ �N ,

∀m ∈ �MER, ∀s (20n)

PG,min
m .α

g,s
m,i ≤ PG,sm,i,t ≤ P

G,max
m .α

g,s
m,i

∀i ∈ �N , ∀m ∈ �MER, ∀t, s

(20o)

QG,min
m .α

g,s
m,i ≤ QG,sm,i,t ≤ Q

G,max
m .α

g,s
m,i

∀i ∈ �N , ∀m ∈ �MER, ∀t, s

(20p)

The explanation for constraints (20a)-(20m) is the same
as (16a)-(16m). Constraint (20n) ensures that MER m can
inject power to the network through node i if it is allocated
to this node. The active and reactive output power of a
committed MER (αg,sm,i =1) are respectively restricted by
(20o) and (20p).

FIGURE 8. The 33-bus test system.

VI. NUMERICAL RESULTS
In this section, the proposed framework is implemented on
the 33- and 123-bus distribution test systems, as well as
a practical feeder through nine case studies. Fig. 8 shows
the schematic representation of the 33-bus test system. The
information about this test system can be found in [52].

A. TEST SYSTEMS AND ASSUMPTIONS
1) 33-BUS DISTRIBUTION SYSTEM
Six types of critical loads are considered in the test system.
The critical loads are located at nodes 1, 2, 4, 15, 18, 21,
and 30. Hourly load variations of these critical loads can be
observed in [53]. As can be traced in Fig. 8, the grid includes
four dispatchable DERs. The DERs are rated at 100 kW and
60 kVAr.

2) TREES
Ten trees are located adjacent to the distribution branches
of the 33-bus test system. The proposed framework is gen-
eral, and different types of trees can be considered in this
framework. However, for the sake of simplicity, it is assumed
that all of the trees are of the spruce species type (which is
common in some countries, such as Finland and Norway).
In addition, it is assumed that each tree has grown adjacent
to the middle of its adjacent line-section. Tree height and
distance from the distribution lines are listed in Table 1 [54].
It is assumed that height of all distribution lines is 10.5 m.
The critical wind speeds for the uprooting and stem breakage
of the spruce are assumed to be 37 and 46 m/s, respectively
[55]. In the simulations, it is assumed that the values of κ and
ζ are 0.3 and 0.6, respectively [36].

3) WINDSTORM
It is assumed that the windstorm hits the distribution system
for three hours, and the duration of the windstorm is divided
into three equal intervals. The maximum wind speed and
wind direction for each interval are listed in Table 2. To iden-
tify the vulnerable branches, the vulnerability threshold of
distribution branches is assumed to be 0.25.
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TABLE 1. General information on trees and their locations.

TABLE 2. Maximum wind-speed and direction of storm in each interval.

FIGURE 9. The constructed islands developed in case study I.

B. RESULTS AND DISCUSSION
Nine case studies are defined in order to explore the effec-
tiveness of the proposed models. Without loss of generality,
it is assumed that the upstream network is faulty during wind-
storm. The results of the simulations are expressed in terms
of the priority-weighted supplied energy (SE) and vulnerable
branches. In these simulations, the values of ε1 and ε2 are
assumed to be 0.99 and 0.01, respectively.
Case Study I: Impacts of tree fall/breakage on island for-

mation (considering tree-caused failures)
In this case study, both direct and indirect effects of wind-

storms on lines are considered, and islands are constructed
prior to storm arrival. The islands are formed such that the
priority-weighted curtailed energy is maximized. At the same
time, the vulnerability of energized branches is minimized.
Fig. 9 depicts the constructed islands.

The CNG station is not supplied by any DERs. It is due to
the presence of tree T1 which is located adjacent to branch
1-2. Although tree T1 has not been identified vulnerable to
the approaching storm, this configuration of island A1 is
less vulnerable to the storm. Thus, branch 1-2 remains un-
energized. Likewise, the gas station at bus 18 is isolated due
to two vulnerable branches connected to it. The vulnerable

FIGURE 10. The constructed islands before and after windstorms in case
study II.

branch 16-17 is threatened by tree T10. On the other hand,
vulnerable branch 18-33 can directly be damaged by the
windstorm. As a consequence, the gas station is not supplied
through the formed islands.

As can be seen in Fig. 9, although tree T2 is not labeled as
a storm-vulnerable tree, it may damage branch 20-21 during
storm. However, the proposed framework serves the water
station through island A1, and energizes this branch. The
reason for this lies in the importance of the water facility in
satisfying the basic needs of human life. As can be traced
in Table 1, the fallen stem or branches of tree T4 would not
touch branch 6-26 due to the wind direction. As a note, the
computation time of this case study is 18 s.
Case Study II: Island formation where the tree-caused

failures are ignored, and comparison of the results with Case
Study I.

In this case study, the proposed framework is compared
with a model in which the tree-caused failures are neglected.
In other words, only direct effects of windstorms on distri-
bution lines are considered. Obviously, the number of distri-
bution branches recognized as vulnerable prior to windstorm
in this case study is lower than case study I. In fact, two
branches 7-8 and 18-33 are recognized as vulnerable, and the
five tree-caused failures are neglected. The formed islands
before and after the windstorm are shown in Fig. 10.

However, when the windstorm hits the DS, seven distri-
bution branches are damaged in this case. The tree-induced
faults occur at the beginning of the second time interval.
In this condition, the protection systems of the DERs detect
the faults, and the DERs are put out of service. Consequently,
the critical loads are de-energized. In this condition, the repair
crews are dispatched to the DS. They will find the fault
locations first. Subsequently, the faulty branches are isolated
form the rest of the DS. In doing so, the initially formed
island is divided into two islands that are shown via the
hatched area in Fig. 10. In the first island, DER 4 supplies
hospital 2. Likewise, the water facility, lighting, CNG sta-
tion, and hospital 1 are energized through DERs 2 and 3.
Therefore, pre-storm formed island B1 cannot properly deal
with the windstorm. The value of SE and vulnerable branches
for case studies I and II are listed in Table 3. The value of
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TABLE 3. Comparison between results of case studies I and II.

FIGURE 11. SE and number of vulnerable branches.

SE in case study I is 53.3 percent higher than SE in case
study II. It should be notified that the faulty branches after
the windstorm onset are the same for case studies I and II,
and are equal to the vulnerable branches in case study I. The
only difference lies in the pre-windstorm actions, which can
prevent some post-windstorm load interruptions.
Case Study III: Sensitivity analysis on ζ .
In this case study, the impact of various values of ζ (frac-

tion of tree stem that is broken by storm and falls down on the
ground) is investigated. For a tree, this parameter is impacted
by different factors, such as tree height and diameter [36].
Thus, the value of ζ is increased from zero to one. It means
that a larger fraction of tree trunk is blown down by the
windstorm. Thus, the probability that a branch is damaged
by its adjacent tree trunk increases. In this situation, ‘‘stem
breakage’’ makes greater contribution to tree-induced failure
probability of distribution branches. The results of this study
in terms of SE and the number of vulnerable branches are
shown in Fig. 11.

When the value of ζ increases from 0 to 0.6, the amount
of supplied energy and the number of vulnerable branches do
not change. However, once it reaches 0.8 or higher, branch
1-2 is considered vulnerable, and it is added to the vulnerable
branches. In this situation, eight branches can be damaged
during the upcoming storm, and the value of supplied energy
decreases from 3.6379 to 3.3737 pu. Despite the variation of
ζ , the obtained results show low sensitivity to the value of this
parameter. This observation can be justified as follows: for the
spruce species, the critical wind speed for uprooting (37 m/s)
is lower than that for stem breakage (46m/s). Thus, it is highly
probable that the trees are uprooted during storms. Indeed,
the observations made during different storms confirm this
observation [43]. In particular, when the value of ζ is equal
to zero, only uprooted trees or broken branches can touch
the lines. Thus, five lines are vulnerable under these failure
modes of trees during the storm (in addition to two lines that

FIGURE 12. Constructed islands prior to the upcoming storm in case
study IV.

TABLE 4. The results of case study IV.

can directly be damaged by the storm, as discussed in Case
Study II). Regarding the tree heights and the distances given
in Table 1, branch 1-2 is considered vulnerable if ζ exceeds
0.8. Thus, only for tree T1, stem breakage state can contribute
to making branch 1-2 vulnerable to the approaching storm,
and tree-caused failures will mainly occur due to uprooting.
Case Study IV: Impacts of the distances between the trees

and their adjacent branches.
This case study investigates the impacts of the distances

between the trees and distribution branches. To this end, all
the distances given in Table 1 are decreased by 3 m. Other
assumptions remain the same as Case Study I. Consequently,
the number of vulnerable branches to the upcoming storm
increases. Fig. 12 shows the constructed islands in this case.

As can be traced in Fig. 12, the distribution network is
divided into four islands prior to storm arrival. Compared
to Case Study I, branches 1-2 and 13-14 are added to the
vulnerable branches, and they are de-energized. As a conse-
quence of de-energization of these branches, island A1 (in
Case Study I) is split into two islands C1 and C4. Further-
more, in island C2, the fire station is served via a longer path
compared to island A2. This is because branch 13-14 is rec-
ognized as vulnerable to the upcoming storm. The amount of
supplied energy as well as the number of vulnerable branches
are listed in Table 4. The results of this study imply that the
characteristics and locations of trees can considerably impact
the network fault locations in distribution systems during
wind storms, and they should be considered in proactive
scheduling of islands against windstorms.
Case Study V: Impacts of the duration of time intervals.
In order to investigate the impacts of windstorm dynamic

behavior, a sensitivity analysis in terms of the duration of
storm time intervals is conducted. In fact, as the number of
storm time intervals increases, more data on the storm speed
variations and storm movement can be incorporated into the
framework. As mentioned earlier, the upcoming storm will
hit the region for 3 hours. In this case study, the duration of
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TABLE 5. Maximum wind speeds for different time intervals.

TABLE 6. The results of case study V.

the storm time intervals is changed. As the number of time
intervals increases, their duration decreases. In each interval,
the maximum forecasted wind speed is used. Subsequently,
these wind speeds along with other required data are fed
as inputs into the proposed framework. Table 5 shows the
maximum wind speeds during the storm, considering four
conditions for the number of time intervals during the storm.

The obtained results of this analysis in terms of SE, number
of vulnerable branches, computation time, and number of
constraints for each condition are reported in Table 6.

The results demonstrate that by decreasing the duration
of time intervals, more information about storm dynamic is
utilized by the framework. Thus, in this case, the size of
problem increases. Nonetheless, as can be traced in Table 6,
the computation time does not significantly rise. In addition,
when the duration of interval is decreased from 180 to 15min,
the SE and number of vulnerable branches indicate small
variation. This is because the maximum wind speeds are
associated with storm-caused damages, and they are also
included in the problem when the number of time intervals is
low. Using the results of this analysis, the decisionmakers can
divide the storm duration into a desired number of storm time
intervals based on the available data, computational burden,
and desired accuracy.
Case Study VI: ConsideringMERallocation and the uncer-

tainty associated with load demands.
In this case study, the proposed stochastic framework in

Section V is implemented on the 33-bus test system. The
uncertainty associated with load demands is considered, and
200 initial scenarios for load demands are generated using
the Monte Carlo simulation method [56]. To this end, it is
assumed that load prediction errors follow normal distribu-
tion [57]. Their standard deviations are equal to 10% of the
predicted values at each time interval. Subsequently, in order
to reduce the computational complexity of the optimization
problem, the initial scenarios are reduced to 10 final scenarios
using the backward reduction algorithm [58]. It is assumed
that there are two MER units available. The rated power for

FIGURE 13. Constructed islands prior to the upcoming storm in case
study VI.

TABLE 7. The results of case study VI.

both MERs is 20 kW and 15 kVAr. The proposed two-stage
stochastic framework is applied to the 33-bus test system, and
the optimal values of the first- and second-stage variables are
determined. Fig. 13 shows the constructed islands in the first
stage of the proposed framework (i.e. ahead of coming storm).

As shown in Fig. 13, the two MERs are allocated to the
nodes 28 and 29. The special reason for this allocation is the
location of the two hospitals with respect to this distribution
network. The electricity demand of the hospitals is relatively
high if compared with the other critical loads of this system.
However, the capacity of DER 4 is not sufficient to supply
hospital 2, and even the curtailed load of hospital 2 is high.
Furthermore, these hospitals have the highest priority factor
among the existing critical loads in the system. On these
bases, the two available MERs are allocated to the buses of
island D3.The configurations of the pre-storm constructed
islands in this case study is the same as Case Study I. Because,
the characteristics of the storm, DS components, and the trees
are the same for both case studies, and these factors determine
the locations of vulnerable branches. In contrast, the optimal
values of other variables differ in these two case studies.

To determine the impact of MER allocation, the proposed
stochastic framework is run another time without MER allo-
cation. The results of this comparison in terms of the expected
supplied energy (ESE) and vulnerable branches are presented
in Table 7.

The results for the case withMER allocation show the great
advantages of MER allocation in the face of storms. In this
study, although the capacity of MERs is small (20 kW), the
ESE is improved by 13.87 percent. The reason is that the
available MERs are allocated to the nodes (28 and 29) that
make greater contribution to the value of priority-weighted
supplied energy after storm onset.
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FIGURE 14. Constructed islands prior to the upcoming storm in case
study VII.

TABLE 8. The results of case study VII.

Case Study VII: Implementing the framework on the
123-node distribution test feeder.

In order to implement the proposed deterministic frame-
work on a large practical system, the IEEE 123-bus test sys-
tem is employed [59]. There are five DERs in the test system.
For the sake of simplicity, the characteristics of trees T11-T20
are respectively assumed similar to those of trees T1-T10 (i.e.
T11 is identical to T1, T12 is identical to T2, etc). Other
assumptions are the same as Case Study I. By implementing
the proposed framework on the test system, four islands are
constructed before storm arrival, which are shown in Fig. 14.

In addition, 14 distribution branches are identified as vul-
nerable, and they are proactively de-energized, which can be
observed in Table 8. The value of SE is also reported in this
table.

As can be seen in Fig. 14, DER1 is isolated from the grid
and cannot inject power into the DS. The reason is the vul-
nerability of branch 15-34. Similarly, the fire station, lighting,
and CNG station are isolated from the rest of the system, and
they are not supplied by any DERs. The computation time for
this case study is 42 s, which confirms the computation time
efficiency of the proposed model for large distribution grids.
Case Study VIII: Implementing the framework on an exist-

ing distribution feeder.
In this part, in order to explore the performance of the pro-

posed framework on a practical distribution network, a large

FIGURE 15. Single-line diagram of the practical distribution feeder under
study in case study VIII (pink circles denote 20/0.4 kV substations).

TABLE 9. The results of case study VIII.

feeder of a distribution utility company in Iran is utilized.
The single line diagram of the feeder under study is shown
in Fig. 15.

This feeder includes 279 load points. In addition,
1656 trees have grown near the overhead lines. The tree
heights range from 6 m to 31.6 m. The species of the trees
are Platanus, locust, and white poplar. There are three DERs
in the feeder. Other assumptions and information are similar
to Case study I. The proposed framework is tested on the
distribution network. The results in terms of SE and number
of vulnerable lines are given in Table 9.

The results imply that when the tree-caused failures are
considered, 29 line sections are vulnerable to the upcoming
storm. In addition, the value of SE is 77.3 percent higher than
the condition in which only direct effects of storms are taken
into account. When the trees are ignored, the distribution
company predicts six power outages in the feeder. However,
once the storm strikes the feeder, 29 distribution lines are
damaged by the storm and the trees. Thus, the distribution
company cannot properly supply the critical loads based on
its restoration strategy. Nonetheless, the proposed framework
predicts all the storm-related outages, and accordingly con-
structs the islands. Thus, the value of SE is improved.

Although the species of the trees in this case study have
larger branches with respect to the spruce, the tree trimming
programs are regularly performed by the company, in par-
ticular in autumns and springs. Thus, tree-caused failures
due to branch breakage can be controlled. The trees may
mainly threaten their adjacent lines via uprooting and stem
breakage damage modes. In addition, the constructed islands
serve the local critical loads after the storm strikes. The
computation time for the distribution network is 223 s, which
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TABLE 10. Different scenarios for the maximum wind speed at each time
interval of the storm (m/s).

TABLE 11. The results for different wind speed scenarios.

FIGURE 16. Constructed islands prior to the upcoming storm for scenario
2 of wind speed profile.

clearly verifies the computational tractability of the proposed
framework for large DSs with a large number of trees. This is
because the trees and their characteristics do not impact the
size of the optimization problem. However, they determine
the vulnerable lines, and these lines are used as inputs of
the optimization problem for island formation. Furthermore,
this computation time is significantly smaller than the time
available for making decisions before storm arrival.
Case Study IX: Impacts of different wind speed profiles.
In this case study, four different wind speed profiles

are employed for the storm. Subsequently, the maximum
wind speed at each time interval is determined and is
used as the input to the proposed deterministic framework.
Table 10 shows the maximum wind speeds for each scenario.

Using the data of Table 10, the proposed deterministic
framework is implemented on the IEEE 123-bus test sys-
tem for each of the wind speed scenarios, while the other
assumptions are the same as those in the Case Study VII. The
results of the simulation, in terms of the supplied energy and

the number of storm-vulnerable branches, are determined and
reported in Table 11.

As can be seen in Table 11, maximum wind speeds have
considerable impacts on the results. Thus, the wind speed
profile is an important input parameter of the models. In this
regard, forecasting the weather features of the approaching
windstorms plays a significant role in the preparedness mea-
sures in DSs. For example, in scenario 2, eight distribution
branches are recognized as vulnerable to the upcoming storm,
and accordingly the suitable islands are constructed, which
are different from the islands constructed under scenario 3
(Case StudyVII). The configurations of the islands developed
under scenario 2 are depicted in Fig. 16.

As can be traced in Fig. 16, island B1 in this case study
includes islands A1, A2, and A4 of Case Study VII. In addi-
tion, the street lighting is supplied via island B1. Therefore,
the amount of SE is increased to 4.5 pu. Based on the
results of this case study, the decision-makers can explore
the impacts of different wind speed profiles on the required
preparedness measures, and how to form the islands based on
preferred conservativeness level.

VII. SUMMARY AND CONCLUSION
This paper proposes a new framework for incorporating tree
failure modes into the restoration of critical loads in the case
of windstorms. A new discrete Markov chain is developed
that simulates the response of a tree during a time interval
of storm duration. In addition, a novel line-tree interaction
model is proposed for quantifying the impacts of each tree
failure mode on its adjacent distribution lines. The proactive
island formation was modeled as a MILP optimization prob-
lem. Subsequently, a two-stage stochastic framework is pro-
posed in order to characterize the uncertainty associated with
load demands. This stochastic framework considers MER
allocation problem as well.

The proposed models are implemented on two distribution
test systems and a practical distribution feeder through nine
case studies. In each case study, storm-vulnerable branches
are identified, and they are de-energized. Thus, the systems
are sectionalized into a number of islands prior to wind-
storms. Moreover, the results of the proposed framework
are compared with a model in which the effects of tree
fall and breakage are ignored. The comparison shows 53.3
percent improvement in the amount of supplied energy to
the critical loads. A sensitivity analysis was conducted in
order to explore the impact of ζ on the results. These results
and comparison demonstrate how trees contribute to the
distribution line failures during windstorms through differ-
ent mechanisms. In addition, a sensitivity analysis on the
number of storm intervals was performed to determine how
the simulation results and complexity will change if more
data about storms are available. Based on the results of this
analysis, the decision makers can make a tradeoff between
computational burden and solution accuracy. Furthermore,
the simulation results indicate that using the proposed models
for characterizing tree failure modes, the decision makers
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can more realistically evaluate the vulnerability of overhead
distribution lines to windstorms. Thus, operation-oriented
measures, such as MER allocation, can be done in a way
that the supplied energy is maximized. Future work will
focus on planning strategies for DS resilience enhancement.
In particular, optimal sectionalizing switch placement in DSs
and optimal expansion of DSs will be studied when the
tree-caused failures are taken into account.
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