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ABSTRACT The field of Deep Learning (DL) has seen a remarkable series of developments with
increasingly accurate and robust algorithms. However, the increase in performance has been accompanied
by an increase in the parameters, complexity, and training and inference time of the models, which means
that we are rapidly reaching a point where DL may no longer be feasible. On the other hand, some specific
applications need to be carefully considered when developing DL models due to hardware limitations or
power requirements. In this context, there is a growing interest in efficient DL algorithms, with Spiking
Neural Networks (SNNs) being one of the most promising paradigms. Due to the inherent asynchrony and
sparseness of spike trains, these types of networks have the potential to reduce power consumption while
maintaining relatively good performance. This is attractive for efficient DL and, if successful, could replace
traditional Artificial Neural Networks (ANNs) in many applications. However, despite significant progress,
the performance of SNNs on benchmark datasets is often lower than that of traditional ANNs. Moreover,
due to the non-differentiable nature of their activation functions, it is difficult to train SNNs with direct
backpropagation, so appropriate training strategies must be found. Nevertheless, significant efforts have
been made to develop competitive models. This survey covers the main ideas behind SNNs and reviews
recent trends in learning rules and network architectures, with a particular focus on biologically inspired
strategies. It also provides some practical considerations of state-of-the-art SNNs and discusses relevant
research opportunities.

INDEX TERMS Artificial neural networks, computer vision, efficient deep learning, event-driven, machine

learning, neuromorphic computing, neuromorphic hardware, spiking neural networks.

I. INTRODUCTION
In the past decade, the field of Deep Learning (DL) has
seen a remarkable series of developments, with ever more
accurate and robust algorithms that have revolutionized many
areas, such as computer vision or natural language process-
ing. Considerable advances in hardware and the introduction
of GPU-enabled DL have permitted significant boosts in pro-
cessing speed and efficiency. Consequently, more complex
and robust models have been developed, but the computing
power used in cutting-edge algorithms grew even faster.
Often, the starting point of this accelerated growth in
DL is marked by the 2012 ImageNet competition, where a
team of scientists from the University of Toronto proposed
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a deep Convolutional Neural Network (CNN), AlexNet [1],
an algorithm that had a top-5 error 10.8 % lower than the
second-best solution. As a result, deeper networks have been
investigated, with an ever-increasing number of parameters
and complexity. In the subsequent years, we witness the
rapid emergence of several known deep model architec-
tures (e.g., VGGNet [2], ResNet [3], GPipe [4], BERT [5],
GPT-3 [6]). However, such outstanding improvements of
model capabilities have been correlated with an increase in
models’ parameters, complexity, prediction latency, training
time, etc. Nowadays, training a single top-performing model
requires many hardware and energy resources, which results
in a large carbon footprint [7]. On the contrary, costs scale
at roughly the same rate as the demand in computing power,
meaning we are fast reaching a point where DL might become
unsustainable [8]. Moreover, some applications might require
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Several features of biological neural networks have been explored in Spiking Neural Networks
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FIGURE 1. Spiking Neural Networks (SNN) are considered efficient artificial neural network models as
they are biologically plausible. However, its activation functions are non-differentiable, meaning
backpropagation (BP) cannot be directly employed. Although Spike Timing Dependent Plasticity (STDP),
ANN-SNN conversion, and BP with surrogate gradients have been used, the performance is behind
conventional ANNs, and the optimum learning strategy is to be found.

thorough consideration of models’ parameters and efficiency.
A recent survey [9] highlights some key ideas. For instance,
specific applications, such as mobile, robotics, or critical
systems might require the models to be optimized for the
device they will be deployed. Furthermore, special attention
must be given when integrating multiple models in the same
infrastructure since resources might be exhausted. Therefore,
in the face of these challenges, there is a growing interest in
developing efficient DL algorithms.

Several strategies can be adopted on multiple levels to
approach the challenge of efficient DL. For instance, whereas
compression techniques target the representational efficiency
of the unified model, learning techniques focus on the training
stage. Plus, one could choose to handle the problem at the
level of the models’ architecture. Nonetheless, a growing
paradigm with efficient DL is that of Spiking Neural Net-
works (SNNs) [10].

Although significant advances have been achieved, the
performance of SNNs on benchmark datasets such as
MNIST [11], CIFAR-10 [12], or Fashion-MNIST [13] is
often lower than conventional Artificial Neural Networks
(ANNS5s). In part, this can be explained by the fact that images
on those datasets were acquired resorting to traditional sen-
sors instead of event-driven cameras. However, there are other
major drawbacks with SNNs, such as the non-differentiable
nature of activation functions due to discrete spike trains,
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the difficulty in propagating spike information in multilayer
unsupervised SNNs, or the local characteristic of biologically
inspired learning rules, such as Spike Timing Dependent
Plasticity (STDP).

This work covers the main ideas behind SNN models,
approaching recent trends in learning rules, network architec-
tures, and biologically inspired strategies (see Figurel). It will
also address some practical considerations of state-of-the-
art SNNG, further discussing relevant research opportunities.
Previous works [14]-[18] have already investigated the main
developments in the field of SNNs, but our work differs
from these since it is particularly focused on the working
principles of biological neural networks. In general, most
SNN researches only address a subset of biological mecha-
nisms and different works present distinct strategies, but we
argue that maximizing the extent of biological neural network
properties exploited in SNNs is a very promising approach
and could lead to significant improvements in the perfor-
mance of SNN models. Moreover, there exist in the literature
many promising ideas and conclusions regarding bio-inspired
strategies to train SNN models, however, many works are
predominantly focused on demonstrating the feasibility and
viability of particular components (e.g. learning rules, con-
nection types, etc.) which means there is still the lack of
a unifying strategy to develop and train SNN algorithms.
Therefore, this work intends to contribute towards bridging
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that gap by aggregating most of the already existing knowl-
edge regarding SNNs that simulate the working mechanisms
of biological neural circuits. To that end, it summarizes the
leading ideas and conclusions of recent works, emphasizing
the most promising findings and possible future directions in
bio-inspired strategies.

Besides this introduction, this work is structured as fol-
lows: Section II presents the fundamental principles of SNNs,
including neuron models and synapses. Next, section III
details the main properties of biological neural networks
and summarizes the results of main works that are inspired
by the working mechanisms of biological neural networks.
Section IV, on the other hand, highlights the main informa-
tion encoding schemes in biological neuronal networks and
how SNNs can mimic those mechanisms further summariz-
ing the relevant findings. In section V we discuss different
learning strategies and how the SNN community is address-
ing the problem. But we also present the results of both
the main papers reviewed and of our work in section VI.!
Finally, we conclude this work and wrap our main findings
in section VIIL.

Il. FUNDAMENTALS OF SPIKING NEURAL NETWORKS

A SNN architecture consists of neurons interconnected by
synapses that determine how information is propagated from
a presynaptic (source) to a postsynaptic (target) neuron. The
activity of the presynaptic neurons modulates the activation
of the corresponding postsynaptic neurons and, unlike the
conventional ANNS, the information in SNNs is encoded and
transmitted in the form of spikes. Each input is presented for
a prespecified amount of time (T), meaning that instead of
a single forward propagation, SNNs typically have multiple,
S—Tt, forward passes. But as in its biological counterpart, once
a presynaptic neuron activates, it sends a signal to its post-
synaptic equivalent, in the form of a synaptic current, that is
proportional to the weight, or conductance, of the synapse.

In general, as the synaptic current reaches the target neu-
ron it will alter its membrane potential (vy.,) by a certain
amount, §v. If vy, reaches a predefined threshold (Viresn),
the postsynaptic neuron will emit a spike and reset its mem-
brane voltage to the resting potential (v, ). Notwithstanding,
many strategies can be adopted to model the neuron and
synapse dynamics. On top of that, different network architec-
tures and applications might require specific combinations of
learning rule, v;,e;,, dynamics, and neuron model.

There is a broad pool of neuron models and often the litera-
ture reports networks that establish the Mcculloch-Pitts, [19],
Izhikevich, [20], CSRM or SRMO [10] neuron models as its
basic units. However, the Leaky Integrate and Fire (LIF) and
its variants is one of the most popular. In LIF models, the neu-
ron is modelled as a parallel Resistor-Capacitor (RC) circuit
with a “leaky” resistor [21], as represented in Figure 2a. The
output voltage V (¢) of this circuit, (analogous to vy, ) is then

ISource code available at: https://github.com/joao-nunes/spiking-neural-
networks-a-survey.git
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(a) LIF neuron model as a parallel RC circuit.

| | wn

(b) Evolution of vynem, in a LIF neuron for a set of input spike trains.

FIGURE 2. If there is no input current, V (t) will decay to its resting
potential E;, otherwise it will increase by év, as established by

Equation 2. The capacitor will discharge (comparable to a neuron
emitting a spike) when V (t) reaches the predefined threshold. The
synaptic conductance is here represented by the W vector. It is possible to
observe that if the input is not sufficient, the neuron will not fire. Also,

it is observable that in the first moments after the neuron has emitted a
spike (t.ef, ), it cannot fire again, regardless of the input it is receiving.

mathematically defined as:

av
CE =—g(V(@)—EL)+I1(@) M

From 1, we see that V(¢) is dependent on the conductance,
g1, of the resistor, the capacitance, C, of the capacitor, on the
resting voltage (Er) and of a current source I (¢). If we
multiply 1 py R = %, we obtain dv;":’” in terms of the
membrane time constant, T,,:

Tm dV:;[em = — [Vinem (£) — Vyese] + RI (1) (2)
We observe that, due to the leaky behaviour of the model,
Vmem 18 constantly decaying to its rest value. Another impor-
tant consideration for LIF-neurons is that it can endure a
refractory period, i.e., a period after reset during which the
neuron cannot fire again, regardless of its input. Figure 2b
illustrates the behaviour of a LIF node on spike train input.
The activation function, A(¢), of LIF neurons is thus
defined as:

Ar) = 0, lf Vmem < Vithresh 3)

L, if Vinem = Vihresh
A major drawback of SNNGs is the non-differentiable nature
of its activation function 3, meaning that Backpropagation
(BP), the most widely used learning algorithm in ANNSs,
cannot be directly employed [22]. But for the network to
be able to learn, we must decide proper strategies to update
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the synaptic weights, W. One of the prevailing methods is
the biologically inspired STDP. STDP results from a set of
neurobiological findings that started in 1949, with Donald
Hebb, who proposed a fundamental principle of synaptic
plasticity to describe how learning might be accomplished in
the brain. In “The Organization of Behaviour: A Neuropsy-
chological Theory” [23] he famously states: “When an axon
of Cell A is near enough to excite a Cell B and repeatedly
or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.” Later,
his work was supported with the discovery of Long Term
Potentiation (LTP) [24], a neural mechanism that describes
a persistent increase in synaptic strength if a presynaptic
neuron fires briefly before its postsynaptic equivalent [25].
On the contrary, Long Term Depression (LTD) refers to the
process of decreasing the synaptic effectiveness of a presy-
naptic neuron when there is no evident causal relationship
between its spiking activity and that of the postsynaptic neu-
ron [25]. More specifically, STDP is an asymmetric form of
Hebbian learning rules and it establishes that the synaptic
weight change is proportional to the relative timing between
pre-and postsynaptic activations [26]. Equation 4 formally
describes this mechanism:
Ae™ P i e — oy < 0

—(ltpre—tpost ) . (4)
Be T , i tpre — thost > 0

Aw =

where A > 0 and B < 0 define the learning rates, t is the
timing window constant, #,,, and £, are the absolute timings
of pre- and postsynaptic spikes and Aw is the synaptic weight
update. From this system of equations, it is observable that
the first branch refers to LTP and the second branch to LTD.
Notably, STDP is a local learning rule, meaning it does not
consider global information for weight updating and, as this
work will discuss later, it becomes challenging to train SNNs
with direct BP.

Ill. FROM THE RETINA TO THE VISUAL CORTEX:
BIOLOGICALLY INSPIRED SPIKING

NEURAL NETWORKS

ANNSs are inspired by the mammalian brain, yet their princi-
ples are fundamentally different, more specifically in what
refers to their structure, learning rules, and computations.
For instance, whereas ANNs approximate neurons as non-
linear continuous functions, biological neurons compute
asynchronous event streams through discrete and temporally
precise action potentials [15]. Although ANNs (e.g., CNNs,
Recurrent Neural Networks (RNNs), Transformers, etc.) have
achieved outstanding results in many Machine Learning
(ML) tasks, they are incredibly inefficient in comparison with
biological neural circuits. SNNs, on the other hand, exhibit
many properties in common with biological neural networks,
namely sparsity of computations, low power consumption,
fast inference, or a considerable degree of parallelism [15].
For this reason, there is a growing effort from neuroscientists
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FIGURE 3. On-centre- and Off-centre-surround bipolar cells’ response to
light stimuli. If there is maximum overlap between light incidence and the
cell’s RF, it outputs a maximum response pattern, demonstrated by the
highest firing rates. However, if there is a weak correspondence,

we observe a weak firing response or no spikes at all.

to better understand the principles behind learning and infor-
mation processing in the mammalian brain. Notably, one
of the most widely understood brain functions is the visual
system and the Primary Visual Area (V1). Many correlates of
human vision have thus served as inspiration for several SNN
strategies and their applications to computer vision tasks.

A. THE MAMMALIAN RETINA: INPUT

STIMULI SELECTIVITY

As stated previously, SNNs are promising for event-driven
computations. This is primarily encouraged by the biolog-
ical structure and working mechanisms of the mammalian
retina. The mammalian retina is a multilayer system, con-
taining thousands of photoreceptors. Photoreceptors act as
transducers, converting light signals to discrete electric sig-
nals (spikes) which are further processed by the brain. In turn,
the photoreceptors connect to ON-centre and OFF-centre
bipolar cells. ON-centre cells are depolarized by stimulating
the centre of the Receptive Field (RF), whereas OFF-centre
cells are depolarized by lack of stimuli at the centre of
their respective RF. Moreover, ON/OFF bipolar cells pos-
sess a surrounding region in their RFs with inverse proper-
ties [27]. Figure 3 illustrates the response of ON-centre- and
OFF-centre-surround cells to different light inputs.

These mechanisms demonstrate the retina’s role in pre-
processing input stimuli and suggest some form of selec-
tivity. ON-centre/OFF-centre bipolar cells are responsible
for coding contrasts in luminance, meaning that they ignore
redundant information and instead focus on relevant intensity
changes (events). Next, bipolar cells connect to ganglion
cells, the output neurons of the retina. Evidence supports
that ganglion cells are selective to a plethora of input stimuli
features, including colour, luminance contrasts, object size,
and stimulus direction and orientation [28]. Notably, at the
retina level, the RFs present a more basic structure and encode
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FIGURE 4. On-centre/Off-centre DoG filters. Source: [31].

a broad range of spatial frequencies [29]. Many of such
properties have already been explored in the development
of bioinspired SNNs. For example, the work of [30] pro-
poses a 3 stages SNN architecture to process Dynamic Vision
Sensor (DVS) data. Their algorithm contains an Unsuper-
vised Learning (UL) layer for spatio-temporal pattern extrac-
tion, that mimics ganglion cell selectivity, and a Supervised
Learning (SL) layer inspired in the retinotopic organization
of the visual cortex to classify the MNIST-DVS dataset.
In turn, [31] apply ON-OFF Difference of Gaussian (DoG)
filtering, before encoding the input images into spike trains
and feeding them to a convolutional SNN classifier. Figure 4
illustrates the obtained DoG filters as well as 2 example
outputs, after convolution with On- and Off-DoG filters.
Similarly, [32] use ON-centre and Off-centre DoG convo-
lutions in a hierarchical multilayer SNN for corner detection
and, recently, [33] proposed the use of on-centred input neu-
rons with a 5x5 receptive field to mimic how ganglion cells
perceive the visual scene. But despite these developments,
it remains challenging to model the behaviour of ganglion
cells in ML models, partly due to their diversity, apparent
fine-tuning for specific features of the visual scene, distinct
functions, subtypes, and connections to downstream visual
processing pathways [34], [35]. A possible solution could be
to model the retina using CNNSs. Indeed, there is a certain
degree of realism in this approach since the eyes contain
very few Feedback (FB) connections, meaning Feedforward
(FF) networks, like CNNs can be used [36]. Nevertheless,
modelling the behaviour of the retina and ganglion cells
seems to be a promising avenue for the development of high-
performing and efficient SNNs. More concretely, by mimick-
ing the ability of these cells to encode the visual scene into
a potentially abstract subset of features, multilayer hierarchi-
cal SNNs models could better discriminate between classes

60742

by taking advantage of more relevant and complementary
information.

B. THE NEURAL CIRCUITS: INFORMATION
TRANSMISSION

Ganglion cells will subsequently send output spikes to visual
processing centres in the brain. Information is thus propa-
gated and processed through an intricate network of neurons
that form complex circuits. Notwithstanding, these networks
can be decomposed into much simpler circuits that perform
elementary operations. The most widely used neural circuit is
the FF excitation (Figure 5), and although simple, it permits
the flow of information through the network. At each layer,
every neuron receives input from multiple presynaptic nodes
through converging connections and is itself divergently con-
nected to multiple postsynaptic equivalents. Another advan-
tage of this circuit is it can increase the Signal to Noise
Ratio (SNR) considering that different neurons process simi-
lar inputs but uncorrelated noise [37]. Although FF excitatory
circuits fulfil a prominent role in propagating information to
deeper brain regions, other mechanisms occur locally that
regulate the relationship between input stimulation and output
spiking activity. Two of said mechanisms are FF and FB
inhibition circuits.

In FB inhibition, a layer of presynaptic excitatory neurons
will stimulate postsynaptic excitatory neurons as well as the
inhibitory neurons that project back to the presynaptic exci-
tatory layer. In turn, FF inhibition refers to the case where
the postsynaptic population of inhibitory neurons connects
to postsynaptic neuron populations. It is believed that FF/FB
inhibition act dynamically to perform a plethora of functions.
These include: controlling of synchronous or oscillatory spik-
ing activity, regulation of neuron sensitivity to input stimuli,
through the promotion of a fast response, and preventing qui-
escence or saturation of postsynaptic firing rates [38]-[42].
Lateral inhibition circuits also partake in neural networks.
It consists of the capacity that some neurons present to reduce
the activity of parallel pathways. Through this, it is possible
to exacerbate some activity whilst reducing the transmission
of less relevant spikes. Lateral inhibitory circuits enhance
contrasts and carry out a significant role in decorrelating
neural responses, therefore, promoting the discrimination of
similar stimuli [43]. For example, it is believed to occur at the
retina, where active photoreceptors, through horizontal cells,
will inhibit neighbouring photoreceptors [37].

The work of [44] has demonstrated positive results when
using FB inhibition to promote the separability of similar
input stimuli. The increase in selectivity is explained by
the suppression of non-informative activity. But there are
a few considerations with this approach. The solution is
supported on the basis that FF connections from uninfor-
mative neurons, coding stimuli overlap, will dominate the
discriminative connections. Beyond a certain degree of over-
lap, it can even prevent the informative output neurons from
firing at all. To overcome such limitations, a mechanism
of dynamic excitation/inhibition was proposed, where FB
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FIGURE 6. Unsupervised SNN architecture proposed by [45]. It shows the
input connections to an example excitatory neuron. Excitatory neurons
are connected to inhibitory neurons via one-to-one connections,

as shown for the example neuron. The red shaded area denotes all
connections from one inhibitory neuron to the excitatory neurons. Each
inhibitory neuron is then connected to all excitatory neurons, except for
the one it receives a spike from. Source: [45].

inhibitory connections were strengthened (with anti-Hebbian
learning) every time excitatory connections were potentiated.
The results show this strategy promotes the learning of selec-
tive responses and increases the discrimination of similar
input patterns. This is a biologically realistic approach, since
neural circuits of multilayer excitation/inhibition could par-
take in the suppression of uninformative stimuli. Remarkably,
the authors suggest this strategy could be incorporated in hier-
archical multilayer networks, with FB inhibition from higher
to lower layers, to allow the recognition of more complex
patterns.

All things considered, inhibition regulates spatio-temporal
dynamics of fundamental importance to determine the per-
formance of neural networks and specifically in the context
of SNNs, it has already been explored. For instance, [45] use
lateral inhibition to promote competition between neurons.
With this, they propose a model where each neuron’s RF,
encoded in its synaptic weights, will correspond to a single
data sample or the average of a limited subset of data samples.
Then, when a single input is presented, the firing response
of each prototype is used to predict the corresponding class.
Figure 6 illustrates the presented network.

[33] on the other hand, propose an ensemble of hierarchi-
cal unsupervised SNNs. They interactively combine excita-
tory and inhibitory neurons. This strategy allows regulating
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network states and promotes distinguishable activations.
Considerably, they add lateral inhibition to perform the classi-
fication task. [46], in turn, argue that dynamic excitatory and
inhibitory neural circuits facilitate convergence and improve
the performance of neural networks. The authors propose a
deep SNN that resorts to the mechanisms of adaptive self-
FB and balanced excitatory and inhibitory neuron circuits,
whilst suggesting such strategies could accelerate the training
of SNNs. Another work [47] demonstrates the potential of
global FB connections and local learning rules for multilayer
SNNs. They train the network in a 2-step approach. First, a FF
pass to obtain the predictions, then FB is used to obtain the
targets of the various hidden layers. In the second step, the
loss is computed at the last layer, and the prediction error is
propagated to hidden layers, through global FB connections.
The weights of hidden layers are thus updated locally, resort-
ing to STDP. In this way, the proposed architecture solves the
BP challenges of SNNs, whilst avoiding transmitting the error
layer by layer. FB connections are equally suggested by [48].
They introduce a novel way of training FB SNNs, based on
the implicit differentiation on the equilibrium state. In this
work, it is suggested a certain similarity to Hebbian learning,
but the weight updating strategy considers both average firing
rates and temporal information.

Despite the aforementioned contributions, there exist other
relevant circuit designs that could potentially lead to per-
formance gains and increased versatility of SNN. Often,
traditional ANNs perform several steps of dimensionality
expansion (feature generation) and dimensionality reduction
(feature selection). This is largely inspired by the neural cir-
cuits of living organisms. Furthermore, it is firmly established
that dimensionality expansion increases the separability of
neural representations. More concretely, lower-dimensional
representations produce distinct responses to specific fea-
tures, whereas expansion allows the representation of said
separable representations as well as their conjunction, thus
augmenting the expressive basis and subsequent linear sep-
arability of classes [49]. For instance, a study [50] high-
lights that sparse expansion implemented by FF connections
increases robustness to the variability of the input signal,
i.e., increases de SNR. Furthermore, it can also decrease
the dissimilarity between classes by encoding input statistics
into the expanding connections’ synaptic weights. Besides,
increasing the dimensionality of the inputs also augments the
performance of the classifier [S0]. However, the separability
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achieved through dimensionality expansion comes at the cost
of generalizability. Meaning, it increases the sensitivity to
noise [49]. But to overcome such limitations, compression
can reduce the dimensionality and extract meaningful rep-
resentations from the data. Put differently, there is a need
of achieving a balance between expansion and compression,
depending on the task objectives. Figure 7a illustrates a
simplified neural circuit of dimensionality expansion and
reduction. There are many well-known examples of ANNs
that have defined dynamic pathways of expansion and com-
pression (e.g., RNNs [51]). Similarly in SNNs, a few works
also revolve around these concepts. For instance, [52] pro-
pose reservoir computing techniques, namely Liquid State
Machines (LSMs), and optimization strategies to develop net-
works suitable for neuromorphic computing. With this learn-
ing approach they are able to find an optimum SNN network
topology (i.e., connections) and corresponding hyperparame-
ters (e.g. number of neurons, leakage constants, etc.) that can
serve as the Liquid of a LSM. This model thus incorporates
the dynamic (time-varying) behavior of recurrent SNNs. The
readout layer is then trained to classify information from
the extracted reservoir state vectors. [53], on the other hand,
propose deep LSMs with randomly initialized hidden layers,
interleaved with Winner-Take-All (WTA) layers, trained with
STDP, to achieve a low-dimensional representation of the
information captured by high-dimensional hidden layers. The
authors argue this leads to hidden layers capable of processing
information over multiple time-scales. The hidden neurons
are set to 10x the dimension of the input space and consist of
primary neurons, connected to the input layer, and auxiliary
neurons which only have recurrent connections within the
hidden layer. An attention-modulated readout layer is then
stacked on top of the Liquid to perform classification on
the DogCentric [54] video recognition dataset. In turn, [55]
suggest the readout layer of a LSM to be trained with
Backpropagation Through Time (BPTT). In their work, the
authors propose the Liguid to have recurrent connections and
static weights, randomly initialized. They then transfer their
GPU-trained network to neuromorphic hardware, suggest-
ing competitive performance on the N-MNIST [56] dataset.
Nonetheless, we argue that despite challenging, leveraging
these strategies in SNNs could lead to performance gains by
augmenting the expressive basis of neuron populations.

C. THE VISUAL CORTEX: INFORMATION PROCESSING

We have seen that light stimuli will be pre-processed at the
retina and then propagated through an intricate network of
several simple circuits. But it remains to discuss how infor-
mation is processed at the different building blocks of the
visual pathway. Indeed, it is supposed that the mammalian
brain processes visual information in a bottom-up approach,
where each subsequent layer is more specialized than the
previous. The goal is to extract salient points, or groupings,
of low-level features that can reduce redundancy and com-
plexity of the scene but encode relevant information. It all
starts at the retina, where ON- and OFF-centre- surround
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(a) Schematic of dimensionality expansion and reduction in neural circuits.
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FIGURE 7. Information is propagated from the retina to the LGN through
the optical nerve and then to the visual cortex.

cells will impose some form of pre-processing to the input
stimuli. At this stage, more than a dozen different types of
ganglion cells will split visual information into separate input
streams, representing unique low-level features of the visual
scene. Although not yet fully understood, it is supported
that these features entail, among others, luminance contrasts,
direction selectivity, edge selectivity, motion sensitivity, and
colour [34], [57]. Next, the axons of the retinal ganglion
cells form the optical nerve and project towards the Lateral
Geniculate Nucleus (LGN). From here, visual information
travels to the visual cortex. Figure 7b demonstrates the visual
pathway of the human brain.

As information propagates from the retina to LGN and
through the visual cortex, neurons’ RFs become more com-
plex, covering ever bigger regions [58]. More precisely, it was
suggested that these RFs are organized according to their
complexity. Neurons with simple RFs, respond to stimuli of
specific slit width, slant, orientation, and position. Complex
RFs on the other hand, cover a wider range of the visual scene
instead of a single position but equally respond to slit-shaped
stimuli. In turn, neurons with hypercomplex and higher-order
hypercomplex RFs require elaborate inputs to activate [59].
The visual cortex, located at the occipital lobe, is the pri-
mary unit responsible for combining the elementary features
incoming from the LGN so that we can build a complete

2Source: wikimedia commons. Visual System; Miquel Nieto
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representation and understanding of the visual scene. V1,
in the visual cortex, is understood as the first stage of cortical
processing. V1 neurons are, thus, categorized into simple,
complex, and hypercomplex cells. Simple cells are perceived
to compute linear combinations of incoming streams of infor-
mation, whilst complex cells perform operations on the out-
put of simple neurons [60]. Notably, simple neurons can
also be categorized into ON-centre and OFF-centre cells.
Complex neurons, on the other hand, will produce a sole
response. Furthermore, it is well established that neurons in
V1 are organized in a retinotopic manner, meaning neigh-
bouring neurons represent neighbouring positions in the
visual field and that its RFs completely represent the visual
scene.

Nonetheless, these neurons present some form of selec-
tivity for a panoply of characteristics, similarly to retina
ganglion cells. However, V1 neurons are more selective than
the former. Two of the major attributes of V1 neurons are
their selectivity to orientation and spatial frequency. More
precisely, V1 neurons operate at various scales, with little
contextual information, and the way it performs salient point
detection strikingly resembles 2D Gabor functions [61], [62].
2D Gabor functions are defined as complex sinusoids, mod-
elled by a Gaussian envelope. Equation 5 defines the general
case, for spatial coordinates:

_x%4y2y2 27
GX,Y)=e 22 cos (TX> ()]

With y the aspect ratio, A the wavelength of the sinusoid,
and o the effective width. Due to their nature, Gabor functions
are sensitive to edges, orientation, and texture, operating at
different frequencies and scales [63], just like V1 neurons’
computations. In this way, V1 neurons encode information in
a sparse basis set that represents the entire visual scene. This
encoding proves efficient and attractive for the development
of SNNs since a linear combination of a limited number of
neurons’ RFs can be used to reconstruct the whole visual
input. That is, only a few neurons are required to be active
at a time [64].

V1 output will then stimulate the extrastriate visual areas,
V2 and V4, and afterwards, visual information is sent to the
Infrotemporal (IT) cortex [39]. At each stage, neuron popu-
lations will combine stimuli from previous layers, therefore
forming progressively larger and more complex RFs. From
simple oriented bars and edges at V1 to moderately complex
features, like corners, in V2 and V4, to complex objects and
faces, at the IT cortex [65]. Another relevant property that
arises from the aforementioned visual processing pathway is
invariance to stimuli position and scale, as RFs become larger.
Figure 8 summarizes the progression of input stimuli from the
retina to the visual cortex.

Although CNNs are not biologically plausible, they are
indeed inspired by and present many similarities with biolog-
ical neural networks of the mammalian’s brain. For example,
CNNs can also present the properties of invariance to scale,
position and slight deformities of the input stimuli [66]-[70].
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Moreover, the first layers of CNNs trained on natural images
have been shown to present Gabor-like RFs [1]. Besides, most
CNNs are also organized hierarchically, with deeper layers
progressively encoding more abstract and complex features.

Similarly, some SNN architectures also simulate the
visual information processing of the ventral pathway. For
instance, [71] used a biologically plausible multilayer hier-
archical SNN to classify the benchmarking MNIST [11] and
CIFAR-10 [12] datasets. The proposed architecture consists
of 6 layers: an encoding layer to simulate the retina and 2 con-
volution layers that, together with 3 pooling layers, emulate
the visual cortex. Promisingly, their work incorporates many
known properties of the visual pathway. It includes shift-
invariance, edge-like filters at the first convolutional layer
(V1), and increasing RFs. In the same way, [33] suggest
an ensemble of hierarchical multilayer SNNs, where each
model is composed of several convolutional and pooling
layers, simulating the working mechanisms of the primate
brain. Other authors have proposed spiking convolutional
neural networks, inspired in V1 computations. Whereas sev-
eral works propose hand-crafted kernels of fixed parameters
[72]-[76] suggest a hierarchical unsupervised algorithm,
based on STDP and spike time coding to classify several
datasets. The network is comprised of an encoding layer fol-
lowed by a sequence of several convolutional and pooling lay-
ers. Besides the biologically inspired hierarchical structure,
the proposed solution is also translation invariant, due to pool-
ing operations. Furthermore, to mimic the retina ganglion
cells, the first layer uses DoGs filters, to detect contrasts.
These filters are then encoded in spike latency. In turn, [77],
despite using a shallow SNN, show that localized Gabor-
like receptive fields in conjunction with unsupervised STDP
offer a promising solution to increase the performance of
SNNs. Moreover, the authors argue that biologically plausible
DL demonstrates great potential to improve the performance
of SNNGs.

We have seen that SNNs are biologically plausible.
Nonetheless, their performance is behind that of CNNs, and
more work is needed to bridge the gap. Although exist-
ing SNNs might be inspired by some of the operating
principles and properties of the mammalian brain, more
mechanisms could be explored. Markedly, many of the pro-
posed algorithms are shallow and do not explore to the
full extent the bottom-up strategy characteristic of visual
processing in the mammalian brain. With this in mind,
we suggest that integrating more of known biological mech-
anisms into SNNs architectures could lead to performance
gains. In concrete, we identify that concepts such as neu-
ral circuits (e.g., dynamic inhibition/excitation, dimension-
ality expansion, etc.), and ON-center/OFF-center surround
RFs, or known properties of the visual processing pathway
(e.g., V1 Gabor-like selectivity, hierarchical structure, etc.)
need to be more extensively studied and integrated with
SNNs to allow the development of energy and data-efficient
DL and that can compete with state-of-the-art algorithms
like CNNSs.
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FIGURE 8. Summary of processing of visual information in the mammalian brain. Information travels from the retina to the
visual cortex through an intricate network of neural circuits forming, at each stage of the visual processing pathway, larger and
more complex RFs. V1 neurons are supported to present Gabor-like RFs.

IV. INFORMATION ENCODING

As mentioned previously, SNNs require the encoding of
information, which constitutes a considerable difference
compared to traditional ANNSs. In fact, in image-based tasks,
traditional ANNSs use pixel intensities to extract critical fea-
tures, while in SNNs, there is the need to map each pixel
intensity to a discrete spike domain before feature extraction.

The mammalians’ brain is extraordinarily efficient when
performing complex tasks, and the goal of SNN architec-
tures would be to mimic as close as possible that organ’s
properties, thus becoming resource-efficient and suitable for
applications with certain hardware constraints. Henceforth,
the employment of biologically plausible information encod-
ing methods has a crucial role in SNN-based architectures.
In fact, the mammalian brain is remarkable in the sense
that it performs task-specific encoding, suggesting that ML
practitioners could also select different encoding schemes,
depending on the application.

There are several encoding strategies, but broadly speak-
ing, these can be divided into two critical groups: rate and
temporal coding. As the names suggest, rate coding is based
on spikes’ firing rates to represent information whilst tempo-
ral coding considers the spike times, thus, in general, allowing
faster responses. Despite for many years being thought that
the mammalian brain exercised, essentially, rate coding, evi-
dence supports the idea that it must also rely upon temporal
encoding strategies.

Rate coding schemes are often categorized into count-,
density- or population rate methods (Figure 9), as suggested
by [78]. In count rate coding, also defined as frequency cod-
ing, the mean firing rate (v) is computed over a prespecified
time window (T), as formally defined by Equation 6.

Nspike
v=—, (6)
with Ngpige being the number of spikes in a stimulus time
window, T. This is the most common rate coding scheme,
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and it converts each pixel intensity to a spike train. Typically,
the probability of spike occurrence at a given time instant, t,
is modelled by a Poisson distribution in which the mean
event rate is proportional to the pixel intensity. Several studies
evidence the existence of biological rate coding. [79] per-
formed the first known experiment that allowed to verify
the existence of a biological rate coding. They submitted a
frog’s muscle to different weights and, through the measure-
ment of nerve action potentials using a capillary electrometer,
concluded that the firing rate was proportional to the force
exerted by the weights. [80] also describe the crucial role
that rate coding plays in human voluntary muscle contrac-
tion, mostly for intermediate and higher forces. Furthermore,
some experiments corroborated the Poisson-based coding
hypotheses through the analysis of biological recordings of
the medial temporal and primary visual cortices of macaque
monkeys [81].

Density rate coding, on the contrary, represents a non-
biologically plausible method that averages the neural activ-
ity over several simulations. The spike density, p(t), is
therefore defined as
(t) = Lvaike(t; t+ Ar) %)

PO="t K
where, first, the number of spikes, Nyjk., is averaged over a
specified time interval [t; t + At], that defines the duration
of the simulation and, second, the average firing rate is also
averaged over K simulations.This is also known as Post-
Stimulus Time Histogram (PSTH). The main problem with
this approach is that it is impossible for biological neural
networks. Input stimuli must be processed in a single run.
Nonetheless, averaging a neuron’s response over simulations
allows the smoothing of intrinsic and network-related noise
spikes that occur both in vivo and in simulated neurons [82].

Another way of using the mean firing rates to encode
information is through the population rate coding scheme,
which is in many ways similar to density coding, except that
it averages over several neurons instead of over simulations.
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FIGURE 9. Schematic representation of the discussed rate coding
methods, where the dotted window represents the stimulus. Source:
Adapted from [78].

In this technique, the firing rate A(t) is obtained by averaging
the number of spikes Njpize in the time interval [t; t + At]
over the number of neurons N and the duration At, as
described in 8.

iNspike(ﬂ t+ At)

A =3 N

®)

[83] assessed the N1 response through magnetoen-
cephalography by presenting two unique sounds coming from
different locations, referenced as adaptor and probe locations.
N1 attenuation reflects the degree of overlapping of the neu-
rons responding to the adaptor and the probe sounds. The
participants of the study were initially exposed to the adaptor
sound and, after some defined time interval, the probe sound
and the N1 attenuation were measured. It was verified that
the increase of the spatial separation between the adaptor and
the probe led to a decrease in attenuation, confirming the
existence of a population rate coding method in the human
auditory cortex. More recently, [84] tested the rate population
coding hypothesis against the labelled-line one to attempt
to explain how the sound direction is perceived and if it
depends on sound intensity. In this experiment, individuals
were submitted to various sound intensities, and interaural
time differences, and asked to indicate the perceived later-
ality. The labelled-line model states that each receptor only
responds to a certain stimulus, implying that the response
should be intensity invariant while in the population rate cod-
ing model each receptor responds to several stimuli, depend-
ing on the response of a population of neurons. The obtained
results validate the population rate coding hypothesis, since
it was verified a midline bias to the perceived laterality for
lower sound intensities. The authors point out that, since
human visual perception is also based on interocular dis-
parity, the brain may operate a similar coding method in
visual perception tasks. Some evidence shows the presence
of population rate coding in both macaque and mouse visual
systems [85], [86].
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Although rate coding methods are widely used in SNNGs,
the need to average over a certain time interval compro-
mises the responsiveness of the systems since it requires a
sufficiently large time window to increase its performance.
On the contrary, biological systems need to respond almost
instantly to stimuli, which is only possible through methods
that implement precise timing instead of mean firing rates.
Biological evidence of these methods was provided by [87]
that, through the measurement of event-related potentials,
concluded that the human brain needs less than 150 ms to
process a complex visual task. In the experiment, an image
was flashed for 20 ms where subjects had to decide the
presence or absence of an animal in the stimulus. This exper-
iment paved the way for the study of more temporally pre-
cise encoding strategies, with temporal coding being now
extensively studied for computer vision applications. From
the available techniques, we highlight Time-To-First-Spike
(TTFES), Rank Order Coding (ROC), phase coding, and burst
coding methods due to their wider adoption.

TTFS is the simplest case of temporal coding, and it con-
siders the precise time window between the beginning of a
stimulus and the first spike emitted by a neuron. With this
strategy, information is encoded such that signals with high
amplitude trigger an early response, while low amplitude
signals translate to late spikes or no spikes at all. [88] found
strong evidence of a correlation between the latency of the
first spike and stimulus contrast in the retinal pathway. It also
demonstrated that spike count affects the response to the said
stimulus. In the inferior visual cortex, experiments showed
that the first spike contains more information than the com-
bined spikes [89]. In turn, [90] demonstrated the importance
of first spikes in visual processing tasks. By submitting mice
to trivial discriminating visual tasks and silencing their pri-
mary visual cortex, in well-defined intervals, after stimulus
onset, they concluded that most neurons emitted as little as
one spike or no spikes at all. Besides, only 16% of the neurons
spiked more than twice.

Similarly to TTFS, rank order coding (ROC) considers
the relative timing of spikes, but across neuron populations.
Naturally, the amount of information that can be encoded is
constrained by the size of the neuronal population. Biological
evidence of this method was presented by [91]. Through
retinal recordings, using multielectrode arrays, they analyzed
the response of mice Retinal Ganglion Cells (RGCs) to sev-
eral stimuli. Their work concludes that a single pair of those
cells did not provide sufficient information, meaning a larger
population of RGCs would be necessary to encode all of
the information. In turn, phase coding considers a global
reference in the form of a periodic oscillatory signal, where
spike times are phase-locked in relation to that reference
oscillation (Figure 10). There is also biological evidence of
this encoding strategy. For instance, [92] recorded local field
potentials in macaques’ V1 while presenting a colourized
movie and demonstrated that both the spike count and low-
frequency local field potentials provided important informa-
tion regarding the film. A similar study [93] showed that
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Stimulus 1 Stimulus 2

FIGURE 10. Schematic representation of phase coding. In this case, it is
not possible to distinguish each stimuli through their spike count (since it
is the same for both) but rather through the timing of appearance
regarding the global oscillatory reference. Source: Adapted from [94].

phase coding plays a critical role in swift response for object
identification and categorization tasks.

Regarding burst coding, the information is encoded consid-
ering both the number of spikes and the inter-spike interval.
This allows controlling the precision in information trans-
mission, since longer bursts (i.e., with more spikes) can
carry more information. Burst spikes consist of low-duration,
high-frequency spike trains that allow systems to transfer
information more accurately. The presence of burst spike
trains is well established in biological systems. Their function
varies depending on the part of the brain we are consid-
ering. For example, in the hippocampus, these bursts play
a role in memory maintenance, while in the thalamus they
perform a “wake-up call” to prepare the neurons to receive a
stimulus [95].

In summary, the mammalian brain uses different informa-
tion encoding methods depending on the tasks considered.
Therefore, in SNN-based architectures, the same principle
applies. However, more work is needed since, on one side, the
exact mechanisms by which the biological neurons encode
information is not completely known. On the other side,
it remains to clarify in which situations each strategy is more
suitable. Rate-based coding is common in SNNs research,
mainly when the focus is not the information coding itself
but rather the study of a specific network module or train-
ing strategy, such as the learning rule. These methods are
not the most biologically plausible, but rather straightfor-
ward to implement. But temporal-based methods are also
frequently addressed due to biological plausibility and fast
inference response. For example, [96] propose a modified
TTFS encoding strategy (T2FSNN), having obtained an accu-
racy of 91.43% on the CIFAR-10 [12] dataset. On the other
hand, [97] hypothesized that using burst coding in deep SNN
networks is advantageous, as it increases energy efficiency
and reduces latency. Their work proposes a hybrid neural
coding scheme and a 2-layered network, with each layer pos-
sessing an independent neural coding strategy. The authors
observed that burst coding in the hidden layer decreased
the latency, regardless of the input layer neural coding. The
authors report a 91.41% accuracy on the CIFAR-10 [12]
dataset and 99.25% on MNIST [11]. These studies, however,
took advantage of ANN to SNN conversion methods, mean-
ing little work was done towards studying and integrating dif-
ferent encoding schemes with SNNs developed from scratch.
But, since SNNs are still in their infancy, the most effective
way to combine the encoding method with neuron model and
network architecture is yet to be discovered. Although this is
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of great importance since if not properly encoded, informa-
tion might be lost when being propagated through the network
layers.

V. LEARNING STRATEGIES

SNNSs aim to be a fault-tolerant, energy and data-efficient bio-
logically inspired solution, but despite its promising results,
there are some barriers to overcome. Namely, whilst it is
well established that biological neurons process and transmit
information in the form of spikes, the exact mechanisms
by which biological neural networks learn are nonetheless
an open research question. Inevitably, learning strategies in
SNNs are coupled with the various elements of a neural
network, including how information is encoded, the neuron
model, and the general architecture. Learning in SNNs is,
thus, a challenging task, and there is a need of finding an
optimum solution.

Much of the success of ANNs comes from the BP algo-
rithm [98]. In the 1990s, it was thought that learning useful
representations from raw data was not feasible but later,
in 2006, a team of researchers demonstrated that BP works
remarkably well to train deep ANNs for classification and
recognition tasks [99]-[102]. Since then, the interest in BP
grew exponentially, and, today, it is undoubtedly the most
widely used strategy to train DL algorithms [103]. However,
there are strong arguments defending that BP is not biolog-
ically plausible. On one hand, it is thought that biological
neurons perform both linear and nonlinear operations, whilst
BP consists of only linear mechanisms [104] (i.e., in each iter-
ation, a first-order Taylor approximation of the function to be
optimized is applied). In second, the FB path would possess
the symmetric weight of the forward propagation, which does
not occur in biological systems, the so-called weight transport
problem [105]. Also, BP would require bidirectional synapses
whereas biological presynaptic neurons connect unidirection-
ally to their postsynaptic equivalents and, besides, learning
in the brain occurs continuously, in a single step, whereas
BP is a 2-step algorithm. Further, BP would require neu-
rons to store the exact derivatives of the activation functions
but how these derivatives could be computed and stored by
neurons is currently unclear [104]. Adding to this, the acti-
vation functions of biological neuron models’ (e.g., LIF) is
non-differentiable, and BP is instantaneous. On the contrary,
neural networks, due to the nature of spike trains, perform
asynchronous computations, in a timely manner. Lastly,
despite some evidence confirming the existence of some form
of BP in the brain [106]-[109], the exact mechanisms by
which it occurs are poorly understood [110]. For these rea-
sons, it is challenging to train SNNs using BP, as is normally
done with state-of-the-art CNNs.

A. CONVERSION OF CONVENTIONAL ANNs TO SNNs

Broadly speaking, SNNs can be divided into 2 dominant
categories: Converted ANNs to SNNs and directly trained
SNNS. In the first case, conventional ANNs are fully trained,
using BP, before being converted to an equivalent model
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consisting of spiking neurons. This method is often referred to
as rate-based learning since, commonly, the analogue outputs
of the traditional ANNs are converted to spike trains through
rate encoding. Directly trained SNNs are trained resorting to
biologically plausible learning rules or use approximations to
allow BP, but in either case, they consider full advantage of
spiking neurons.

Naturally, converted ANNs to SNNs usually achieve per-
formances comparable to state-of-the-art ANNs. Nonethe-
less, their accuracy is still behind that of non-spiking ANNs
of approximate architecture [111]. Conversion could explain
said performance since it assumes that the firing rate of
SNNs is equal to the activation of ANNs, which is not
necessarily true and thus might be a source of error. Other
disadvantages of such a learning approach include: not being
biologically plausible, as well as the limited implementation
of many ANNSs operators that are crucial to improving the
performance of the networks, like max-pooling, batch nor-
malization, or softmax activation function [112]. This means
that converted ANNs to SNNs make many approximations
that reduce the generalizability of conversion methods [112].
Another disadvantage resides in rate-based coding, in which
computational costs increase linearly with the firing rate.
Ultimately, SNNs’ efficiency could be dampened, in very
deep architectures or in situations where many neurons acti-
vate or possess high firing rates [112]. To this end, work
has been done towards near-lossless conversion [111]-[116],
nonetheless, direct training of SNNs is often preferred,
so researchers can take full advantage of SNNs’ properties.
Concerning direct training of SNNs, ubiquitous ANNS train-
ing paradigms, like SL, reinforcement learning, and UL have
been explored [17].

B. UNSUPERVISED LEARNING

Initial works propose the use of STDP, a form of UL with
a local learning rule that is both biologically plausible and
adequate to deal with the non-differentiable discrete binary
spikes, characteristic of SNNs. As seen previously, STDP
arises from Hebbian learning theories, and it states that a
synaptic weight is potentiated or depressed, depending on
tight correlations between pre-and postsynaptic activations.
However, often, some variant of STDP is preferred to the
detriment of the formal definition (Equation 4). Predomi-
nantly, this is because it is challenging to assess the precise
timing of postsynaptic action potentials. On the other hand,
from a biological perspective, although STDP depends on
the precise timing of spikes, there exist other properties that
slightly change between distinctive types of synapses, mean-
ing there is a remarkable diversity of STDP rules [117].

One of the most frequently cited unsupervised STDP algo-
rithms is that of [45]. The authors suggest a fully unsuper-
vised, biologically plausible, shallow algorithm to perform
a classification task on the MNIST [11] handwritten digits
dataset. Inspired by the work of [118], they use a variant of
STDP that resorts to synaptic traces (Equation 9) to com-
pute weight dynamics, whilst arguing it improves simulation
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speed. Furthermore, they test the proposed architecture with
3 other learning rules. On one hand, they added an exponen-
tial weight dependence to the previous strategy of synaptic
traces [119], [120] (see Equation 10). Subsequently, they con-
sidered pre-and postsynaptic traces, with independent weight
updating for pre-and postsynaptic activity (Equation 11) and,
at last, they resorted to the triplet STDP [121] with divisive
weight normalization [45].

Aw =1 (xpre - xtar) Winax — W)t ©

AW = Npost (xpree_ﬂw - xtare_ﬂ(wmax_w)) (10)

(11)

Aw = _nprexpostwﬂ
Aw = npost (xpre - xtar) (Wiax — w)H

Notably, they added further biologically plausible mecha-
nisms, like inhibitory synapses, to achieve competitive learn-
ing, thus promoting separability of the classes and improving
the overall performance of their network. Likewise, the work
of [122] introduces the lattice map spiking neural networks
(LM-SNNs) where STDP is used in conjunction with the
Self Organizing Map (SOM) [123] algorithm. The pointed
architecture is, in many ways, similar to [45] but instead of
a fixed inhibition, it introduces the notion of relaxed inhi-
bition that increases with interneuron distance. The authors
argue this encourages neighbouring neurons to learn similar
filters, thus conferring the network the capacity to learn while
seeing limited examples. Remarkably, the network is trained
with a 2-level inhibition scheme, where after a set of pre-
defined samples, interneuron inhibition increases suddenly,
favouring competition and, consequently, augmenting model
performance.

But UL based on STDP and its variants limits the mod-
els to shallow architectures with limited expressive power
and that could not scale well in larger real-world problems
[75], [124], [125]. Therefore, proper strategies must be found
to permit unsupervised training of deep SNNs. A simple
yet powerful solution is to train unsupervised deep SNNs
in a layer-wise manner. For example, [126] train an unsu-
pervised 3 layered model based on this paradigm. Interest-
ingly, they combine a weight-dependent variant of STDP
with a simplified Bayesian neuron model to classify the
MNIST [11] handwritten digits dataset, yielding competitive
results. Likewise, [33], [127], [128] propose a greedy layer-
by-layer training scheme. To note that these works perform
classification of the extremely simple MNIST [11] handwrit-
ten digits dataset, meaning that, despite promising, there is no
guarantee that these models would work with more realistic
data. We argue there’s an unmet need of developing and vali-
dating SNN models on complex datasets like CIFAR-10 [12],
CIFAR-100 [12], or ImageNet [129].

C. SUPERVISED LEARNING

SL is an appealing learning scheme and demonstrated to be
efficacious for training traditional ANNs. However, due to
inherent incompatibilities with spiking neurons, researchers

60749



IEEE Access

J. D. Nunes et al.: Spiking Neural Networks: A Survey

must come up with proper strategies to apply BP to deep
SNNs. To this end, much work has been done, and some
strategies have proven successful. However, almost all the
solutions implement approximations for the activation func-
tions. Computations are thus performed with surrogate gra-
dients that inevitably present approximations, causing some
loss of performance. Another disadvantage of training SNNs
with BP is the lack of biological plausibility. Nonetheless, BP
has allowed unprecedented results of SNNs in various bench-
marking datasets. The work of [130] suggests an approximate
derivative algorithm that accounts for the leaky behaviour
of LIF neurons. Interestingly, they leverage the central ideas
behind well-known CNN architectures, like the dropout strat-
egy, and introduce them in their model. The proposed method
permits the training of deep multilayer SNNs, namely VGG
and Residual architectures, and the application of spike-based
BP. More specifically, the authors set the last layer neurons’
threshold to a high value so that the neurons do not fire. Then,
they define the output of the last layer as the accumulated
voltage divided by T time steps. With this strategy, they
compute a loss function, defined as the squared error over all
output neurons (Equation 13), where the error (Equation 12)
is computed as the difference between the target label and
the output. Next, to propagate the error to hidden layers, this
work approximates each output neuron activation function as
equivalent to the total input current received by the neuron
over T time steps (Equation 14).

Outputerror, €j = output; — label; (12)
1 I‘lL
_ 2
Loss, E = 3 Z € (13)
j=1
nt=1

Vi (T) 2 >~ (wigxi (T)) (output layer) — (14)
i=1

Regarding the hidden layers, they propose post-spike trains
as neuronal outputs, with a pseudo-derivative, assuming the
following approximations. In the first place, they estimate the
derivative of an Integrate and Fire (IF) neuron. Next, a leak
correctional term is estimated to compensate for the leaky
behaviour of the LIF neurons. Finally, they obtain the approx-
imate derivative of the LIF neuron activation function as the
combinations of the 2 previous estimations. With this strat-
egy, they can train deep multilayer SNNs and achieve compet-
itive performances. Notably, they compare their results with
ANNSs to SNNs methods, demonstrating that the considered
solution achieves comparable inference efficiency in terms
of spikes per inference. Their results underline that deep
SNNs (like VGGY9 and ResNetl1) are more efficient than
ANN-SNN converted networks. More important, their work
suggests that direct training of SNNSs, resorting to spike-
based BP, requires less computational energy when compared
to converted ANNs to SNNs. Furthermore, it highlights the

potential of SNNs for energy-efficient computations.
Another work revolves around SL based on temporal
coding [131]. To overcome the limitations of discrete rate
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encoding schemes, the authors resort to a temporal encoding
strategy, where information is encoded in the spike times,
thus a continuous representation that is favourable to apply
BP. Moreover, it is debated that this strategy is more efficient
than rate encoding since power consumption decreases with
smaller firing rates [116], [131]-[133]. They use non-leaky IF
neurons with synaptic current kernels, which means that the
current increases instantaneously, at the moment of arrival of
an input spike, but decays exponentially afterwards. To ensure
a single spike is emitted per neuron after firing, the neurons
are set to an infinitely long refractory period. To define a
neuron’s activation function, the authors establish the set
of spikes that triggered a firing as the Causal Set of Input
Spikes (C). Resorting to said set, they can subsequently deter-
mine a nonlinear relationship that maps input spike times to
the spike time of the firing neuron. This way, a differentiable
cost function can be imposed and the gradient, with respect to
the weights in the shallower layers, computed by backpropa-
gating the errors through the network.

[134] introduced Deep Continuous Local Learning
(DECOLLE), a learning approach focused on local error
functions. To compute the local errors, the authors use inter-
mediate classifiers with fixed random weights and auxiliary
random targets, y. The inputs to these classifiers consequently
represent the activations of the layer being trained. Moreover,
instead of minimizing a global objective function, the algo-
rithm minimizes many local objectives, yet, this approach
still allows the network to minimize the loss at the top layer.
In addition, it puts pressure on deeper layers to learn relevant
representations whilst leading the network to learn a stack
of useful hierarchical features [131]. To enforce locality,
DECOLLE sets to zero all non-local gradients. Errors are
propagated to only update the weights of the connections
incoming to the local spiking layer, but the overall approach
can be interpreted as a synthetic gradient without an outer
loop to mimic a full BP. They trained a fully connected
SNN with three convolutional layers and Poisson encoding,
reporting an error of 4.46 % on the DVS128-Gesture [135]
dataset.

In turn, [136] developed a SL strategy based on TTFS cod-
ing. This approach allows the authors to derive an analytical
expression for the time, T, at which the membrane voltage
will first cross the threshold. The expression, T, is thus dif-
ferentiable with respect to synaptic weights and presynaptic
spike times, meaning BP can be used. Plus, it allows the exact
computation of partial derivatives, and the fact that each neu-
ron only spikes once is extremely desirable from an efficiency
standpoint. Another work that takes advantage of temporal
coding for computing the exact derivatives of postsynaptic
with respect to presynaptic times for BP is that of [137].
The adopted neuron model was the Spike Response Model
(SRM), with an alpha function [138] to model the synaptic
conductance and consequently the membrane potential of the
postsynaptic neuron. This allows computing the spike time of
an output neuron with respect to the presynaptic spike times.
The desired behaviour to predict a class is that the neuron
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FIGURE 11. Difference between the neuron model for neuromorphic
hardware implementation and the layer response neuron model for
training. Source: [139].

of the correct class should be the first to spike. To get the
prediction error, the softmax function is computed on the
negative values of the output spike times, which minimises
the spike time of the target neuron while maximising the spike
time of the non-target neurons. Next, the cross-entropy loss
is calculated in the customary form.

A major drawback when applying BP to SNNs is the need
of computing the membrane voltage for each neuron, at each
time step, which is computationally prohibitive in current
hardware systems, despite it being efficient when implement-
ing SNNs in neuromorphic hardware. Additionally, there is
the problem of the non-diferentiable LIF neurons’ activation
function. To circumvent that need, the work of [139] suggests
an abstract layer response model of the neurons for training
deep networks, as illustrated in Figure 11.

Considering a single layer, 1, the algorithm starts by defin-
ing the layer response model input and output as, respectively,

1= el-LilT

and

a1 ="',

with #; ; the time to a neuron’s first and only spike as defined
by TTFS coding, and i/j the input/output neurons. Then, the
output of the L layered network, Z; is defined by a non-
linear mapping, f, and connection weights, W, that establish
Z;, = f(Zy, W). This allows to obtain the loss, £ for target
class, C, as:

Lz, C) = —log ———

-+ K ZZmax{O 6)
l;écZLt
YWY Yok a9

I=1 j,i

Finally, considering that the layer response model uses the
closed-form input-output response #; = f(#; wj;), it becomes
possible to apply BP as is traditionally done in ANNs. The
learned weights, w;; can then be transferred to IF neurons
for inference and hardware implementation. This algorithm
extends on the work of [131], but overcomes some of its
limitations. Namely, whereas [131] was limited to shallow
networks (2-3 fully connected layers), [139] propose a new
training scheme that improved computation speed and con-
vergence, allowing deep SNNss to scale.
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The work of [140], on the other hand, explores latency
learning to avoid the derivation of the thresholding activa-
tion function. It considers TTFS coding, with one spike per
neuron, and IF neurons. At the output layer, there is only
1 neuron per class, where the predicted class is that of the
first spiking neuron. This is a very sparse and energy-efficient
coding scheme. The network is trained with a temporal form
of BP, with surrogate gradients for the neuron firing time
with respect to its membrane potential, where the error is
computed considering the difference between the firing time
and target firing times. Interestingly, target firing times are
defined dynamically, they propose a relative method that
takes the actual firing times into account. Assuming an input
image of the " category, the minimum output firing time, 7,
is computed as T = min{tj"|l < j < C}. Then, the target
firing time is set as:

T if j =1,
)= t+y ifj#i& <t+y, (16)
0 ifj#i&t) >t+y

where y is a positive constant term penalizing output neurons
with firing time close to 7. In a special case where neurons
are silent during the entire simulation time, the target is
defined as:

e
=gt an
Tmax ifj#i

to promote the firing of the output neuron during the
simulation. Although a simple solution, the proposed strategy
was demonstrated to achieve competitive performance on the
MNIST [11] and CALTECH face/motorbike datasets. Given
the very sparse nature of this algorithm, the authors suggest it
could be particularly energy and memory efficient, specially
when combined with neuromorphic hardware. Also, it can
make accurate and quick predictions, as a decision can be
made before all neurons have fired, way earlier than the
entire stimulus presentation time, contrary to rate-based SNN
models.

Recently, [141] introduced EventProp, a novel, and
promising event-based method, that employs BP, but that
allows the computation of exact gradients. In essence, the
authors backpropagate errors at spike times to obtain the
exact gradient in an event-based, temporally, and spatially
sparse manner. More specifically, to compute the gradient
the algorithm starts by considering the LIF neuron model
as a dynamic system, where the partial derivative of a
state variable (V(¢)) with respect to a parameter, p (synap-
tic weight, w), jumps at discontinuities. Next, the adjoint
method [142] is combined with the partial derivative jumps of
the LIF neuron to derive the EventProp algorithm, which the
authors define as analogous to BP in ANNSs. Since EventProp
backpropagates errors at spike times, it only requires the stor-
age of variables at spike times. Therefore, it has low memory
requirements, thus favourable for neuromorphic computing.
In fact, contrary to the previous strategies that require the
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computation of gradients for every neuron at each time step,
EventProp only requires computations for spiking neurons,
thus possibly being more energy-efficient than other works.

In contrast with biological neurons that present dynamic
membrane properties(e.g., heterogeneous time constants,
adaptive thresholds), most existing learning algorithms
require manual tuning of membrane-related parameters and
assume that all neuron populations in a SNN present the
same values for those constants. Nonetheless, to achieve a
more biologically plausible algorithm, [143] introduced the
Parametric Leaky Integrate-and-Fire (PLIF) neurons, which
present learnable time constants, t. This work’s training
framework is supported on a BP strategy. Defining the neu-
rons’ output as O, and the target as Y, the loss function was
defined as the Mean Squared Error (MSE(O, Y)), considering
that the neuron that represents a given class should have
the maximum excitability, whereas the others should remain
silent. Then, the authors compute the gradients resorting to a
surrogate activation function, defined as % arctan(mrx) + %
The results were evaluated on neuromorphic datasets, like
CIFAR10-DVS [144] or DVS128-Gesture [135], and suggest
PLIF-based SNNs to learn faster and to achieve better perfor-
mances when compared to LIF-based SNNs.

In the same line of reasoning, [145] introduced an SNN
with direct input encoding and leakage and threshold opti-
mization (DIET-SNN). The proposed learning scheme resorts
to a hybrid strategy where an ANN is first converted to
SNN before being fine-tuned with surrogate gradient and
BPTT. Interestingly, weighted pixel values are directly fed
to the network’s first layer, at each time step, instead of being
converted to spikes. The first layer of the network thus works
as both feature extractor and spike generator. Moreover, the
underlying training strategy, supported on surrogate gradients
and BPTT, optimizes not only the network parameters (con-
nection weights), but also the LIF neuron parameters, namely,
firing threshold and membrane leak factor. The authors sug-
gest the neuron threshold to be an important parameter as
if too high, it prevents the neuron from firing (dead neuron
problem) and if too low, it affects the ability of the neuron
to distinguish between input patterns. On the contrary, the
optimized membrane leak makes the network firing response
less sensitive to irrelevant input and increases the sparseness
of convolutional and dense layers. DIET-SNN was tested on
the CIFAR-10 [12], CIFAR-100 [12], and ImageNet [129]
datasets and demonstrated to achieve better latency/accuracy
tradeoff with 20—500x less timesteps.

Importantly, BP has also permitted the training of very
deep ANNs. In conventional ANNS, deep residual networks,
which consist of many stacked ‘“Residual Units”, have
achieved top performance. Identity mapping is a central idea
in residual learning, where the output of layer (1), (X;+1),
is given by (F(X;, W) + X;), with X; the input feature
vector, and F(X;, W), the residual mapping to be learned.
The @D operator is realized by skip connections that simply
perform identity mapping. With this strategy, ResNet [3]
was presented as a robust and reliable solution to the
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FIGURE 12. Residual modules of, from left to right: ResNet, Spiking
ResNet, and SEW ResNet. Source: [148].

vanishing/exploding gradient problem in deep networks.
Similarly, converted ResNets to Spiking ResNets have
achieved competitive performance [146], [147], although
requiring longer time steps to achieve top results, as conver-
sion is based on rate coding. To overcome the limitations of
conversion strategies, [148] introduced Spike-Element-Wise
ResNet (SEW ResNet), a direct training strategy to allow
residual learning in SNNs. Much like Spiking ResNet [146],
SEW ResNet substitutes the ReLU activation for a Spiking
Neuron (SN), however, it also finds an element-wise func-
tion, g, to realize identity mapping. This strategy overcomes
the drawbacks of Spiking ResNet, namely the exploding/
vanishing gradient problem and the limited applicability
of Spiking ResNet to specific neuron models/dynamics.
Figure 12 illustrates the main differences between a ResNet,
Spiking ResNet, and SEW ResNet module. Combined with
spike-based BP this strategy has allowed, for the first time,
the training of very deep SNNs (with more than 100 layers)
and achieved competitive results.

The focus of this work is not that of reinforcement learning
problems, but the strategy has equally been used to train
SNNs [149], [150]. It comes from biological evidence sup-
porting that neuromodulators impact learning in the brain. For
example, it was demonstrated that dopamine acts as a reward
signal, affecting synaptic plasticity [151]-[153].

In summary, several strategies have been adopted to
train SNNs, with some more successful than others. For a
complementary and comprehensive overview of learning in
SNNs we refer the reader to the work of [17]. However,
we have seen that learning in SNNs is an open research
question that presents many challenges mainly due to the non-
differentiable nature of SNN activation functions, sparsity of
spike trains, and computations over time. Many of the pro-
posed solutions resort to approximations, yet this translates
to limited generalizability, meaning more effort is needed
from the research community towards a unified strategy for
training SNNs.

VI. RESULTS AND DISCUSSION
Many SNNs algorithms demonstrate good results on simple
datasets like the MNIST [11] handwritten digits dataset, yet,
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TABLE 1. Summary of reviewed algorithms.

Architecture Reference Learning Learning Method Encoding T Dataset Accuracy
CCVDNI1 [112] Sup. Converted CNN Rate - MNIST 99.40%
CCVDNI1 [112] Sup. Converted CNN Rate - CIFAR-10 90.80%
CCVDNI1 [112] Sup. Converted CNN Rate 550 ImageNet 70.60%
Conv. ResNet-20 [154] Sup. Converted CNN Rate 400-600 CIFAR-10 93.58%
Conv. VGG-16 [154] Sup. Converted CNN Rate 400-600 CIFAR-100 70.55%
Conv. VGG-16 [154] Sup. Converted CNN Rate 512 ImageNet 72.34%
Spiking ConvNet [111] Sup. Converted CNN Rate 500 MNIST 99.10%
HSNN [71] Unsup. STDP Rate 300 MNIST 96.30%
Ensemble HSNN [33] Unsup.  Variable Threshold + STDP Rate - MNIST 99.27%
Ensemble HSNN [33] Unsup.  Variable Threshold + STDP Rate - CIFAR-10 93.00%
Deep CSNN [76] Unsup.  Variable Threshold + STDP Temporal 30 Caltech 99.10%
Deep CSNN [76] Unsup.  Variable Threshold + STDP Temporal 30 ETH-80 82.80%
Deep CSNN [76] Unsup.  Variable Threshold + STDP Temporal 30 MNIST 98.40%
SNN-+Localized RFs [77] Unsup. STDP Rate 200 MNIST 98.90%
SNN+Localized RFs [77] Unsup. STDP Rate 200 CIFAR-10 55.60%
GLSNN [47] Sup. STDP+Global FB Temporal 10 MNIST 98.62%
GLSNN [47] Sup. STDP+Global FB Temporal 10 F-MNIST 89.05%
FB SNN [48] Sup. Implicit Differentiation Rate 30 MNIST 99.59%
FB SNN [48] Sup. Implicit Differentiation Rate 5 F-MNIST 90.25%
FB SNN [48] Sup. Implicit Differentiation - 30 N-MNIST 99.47%
FB SNN [48] Sup. Implicit Differentiation Rate 100 CIFAR-10 92.82%
FB SNN [48] Sup. Implicit Differentiation Rate 100 CIFAR-100 73.43%
LM-SNN [122] Unsup. STDP-SOM Rate 350 MNIST 94.07%
SNN w/ Stable STDP [116] Unsup.  Stable STDP Rate 25 MNIST 85.00%
Deep SNN+Adapt. Thresh. [127] Unsup. STDP Rate 100 MNIST 96.60%
Multilayer SCNN [128] Unsup. STDP Rate 20 MNIST 96.97%
SNN with spike-based BP  [130] Sup. BP w/ approx. derivative Rate 50 MNIST 99.59%
SNN with spike-based BP  [130] Sup. BP w/ approx. derivative - 100 N-MNIST 90.09%
SNN with spike-based BP  [130] Sup. BP w/ approx. derivative Rate 100 CIFAR-10 90.95%
Sup. SNN+Temp. Coding  [131] Sup. BP with causal input spikes Temporal - MNIST 97.14%
EventProp [141] Sup. Adjoint+partial deriv. jumps Temporal - MNIST 97.61%
BP-STDP [155] Sup. STDP-based BP Rate - MNIST 97.20%
BP-STDP [155] Sup. STDP-based BP Rate - IRIS 96.00%
PLIF-neuron SNN [143] Sup. Spike-based BP - 8 MNIST 99.72%
PLIF-neuron SNN [143] Sup. Spike-based BP - 8 F-MNIST 94.38%
PLIF-neuron SNN [143] Sup. Spike-based BP - 8 CIFAR-10 93.50%
PLIF-neuron SNN [143] Sup. Spike-based BP - 10 N-MNIST 99.61%
PLIF-neuron SNN [143] Sup. Spike-based BP - 20 CIFAR10-DVS 74.80%
PLIF-neuron SNN [143] Sup. Spike-based BP - 20 DVS128-Gest  97.57%
DIET-SNN [145] Sup. Hybrid - 5 CIFAR-10 92.70%
DIET-SNN [145] Sup. Hybrid - 5 CIFAR-100 69.67%
DIET-SNN [145] Sup. Hybrid - 5 ImageNet 69.00%
SEW-ResNet-34 [148] Sup. Spike-based BP - 4 ImageNet 67.04%
SEW-ResNet-50 [148] Sup. Spike-based BP - 4 ImageNet 67.78%
SEW-ResNet-101 [148] Sup. Spike-based BP - 4 ImageNet 68.76%
SEW-ResNet-152 [148] Sup. Spike-based BP - 4 ImageNet 69.26%
SEW-ResNet-ADD [148] Sup. Spike-based BP - 16 DVS128-Gest  97.92%
SEW-ResNet [148] Sup. Spike-based BP - 16 CIFAR-10-DVS 74.40%
Temporal-Coded Deep SNN [139] Sup. Direct Training w/ LRM Temporal - MNIST 99.33%
Temporal-Coded Deep SNN [139] Sup. Direct Training w/ LRM Temporal - CIFAR-10 92.68%
Temporal-Coded Deep SNN [139] Sup. Direct Training w/ LRM Temporal - ImageNet 68.80%
S4NN [140] Sup. Temporal BP Temporal 256 Caltech 99.20%
S4NN [140] Sup. Temporal BP Temporal 256 MNIST 97.40%
most papers do not address more complex data. On the other do not report the set of used hyperparameters, which hin-
hand, SNNs require extensive fine-tuning of hyperparame- ders the reproducibility of the methodology. Overall, there
ters, and this task can have a significant impact on learning is a need of understanding general practical considerations
and subsequent models’ accuracy. In addition, most papers when implementing SNN models. We argue this knowledge
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FIGURE 13. A: Neurons’ RFs (selected randomly and rearranged to the input images shape) of the best performing model on the training set. The RFs are
well defined. It is even possible to identify some classes (e.g. horse; car) B: The same neurons’ RFs after 1800 training iterations. We observe that after
several iterations the learned RFs are simple and non-interpretable. This could be explained by the high degree of variability in the CIFAR-10 dataset,
where averaging effects lead to neurons that respond to a wide range of prototypes.

-

could help researchers achieve better and faster results when
developing custom architectures. Henceforth, we here imple-
ment 2 learning algorithms: SL with surrogate gradients and
unsupervised STDP. For STDP, we replicate a widely cited
algorithm [45].In respect to SL, we resort to 3 network archi-
tectures with varying degrees of depth and complexity. The
goal is to provide the reader with some insights about practi-
cal considerations when implementing SNNs and to compare
supervised and unsupervised training strategies. We further
discuss the advantages and disadvantages of each strategy
while exploring the relevance of hyperparameter optimiza-
tion and model performance on different computer vision
datasets. In this case, we opted for the MNIST [11] and
CIFAR-10 [12] datasets.

Table 1 demonstrates some details and the reported per-
formance of the previously reviewed algorithms. We observe
that most works use the MNIST [11] handwritten digits
dataset. At the same time, performance usually decreases
in more complex data. Notably, [33] report a performance
of 93.00% on the CIFAR-10 [12] dataset resorting to an
UL strategy. In general, SL and converted ANNs to SNNs
demonstrate superior performance, but lack of biological
plausibility and limitations in the ability to generalize make
these strategies less attractive.

For replicating the work of [45], we opted for the
BindsNET [156] package. Moreover, we introduced the
dropout [157] strategy to assess how this regularization tech-
nique would impact learning. The choice of SNN simu-
lation software is critical when developing SNN models.
Several tools exist, but most of them are not ML oriented
or present steep learning curves for new users [156]. On the
other hand, many are biology-oriented, meaning they are
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TABLE 2. The impact of hyperparameters and the dropout strategy on the
performance of the SNN architecture proposed by [45].

Dataset Exc. Strength Inh. Strength N. Neurons Prob. of Drop. Accuracy

MNIST 22.50 17.50 100 - 51.80%
MNIST 22.50 17.50 400 - 67.74%
MNIST 22.50 17.50 800 - 75.03%
MNIST 22.50 120.00 100 - 72.00%
MNIST 22.50 120.00 400 - 90.28%
MNIST 22.50 120.00 800 - 91.41%
MNIST 64.00 32.00 100 - 61.76%
MNIST 64.00 32.00 400 - 76.80%
MNIST 64.00 32.00 800 - 81.43%
MNIST 22.50 120.00 400 0.10 90.63%
MNIST 22.50 120.00 400 0.20 90.73%
MNIST 22.50 120.00 800 0.10 90.91%
MNIST 22.50 120.00 800 0.20 91.31%
MNIST 64.00 32.00 400 0.10 76.60%
MNIST 64.00 32.00 400 0.20 80.20%
MNIST 64.00 32.00 800 0.10 83.00%
MNIST 64.00 32.00 800 0.20 83.80%
CIFAR-10 22.50 120.00 400 - 12.89%
CIFAR-10 64.00 32.00 400 - 10.00%
CIFAR-10 22.50 17.50 400 - 10.81%

computationally expensive to simulate and need extensive
hyperparameter tuning [156]. Thus, [156] have developed
BindsNET, an ML oriented library in Python, built on top
of PyTorch [158]. BindsNET contains a set of software
objects and methods to simulate diverse types of neurons
(bindsnet.network.nodes), as well as various types of connec-
tions between them (bindsnet.network.topology). The bind-
snet.network.Network object is responsible for combining
the different nodes and connections, whilst also coordinating
the simulation logic of all underlying components [156].
We opted for this package since it allows rapid prototyping
and permits GPU acceleration. On the other hand, BindsNET
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requires less hyperparameter fine-tuning in comparison with
the Brian [159] simulator.

For dropout regularization, instead of randomly dropping
connections, we randomly forced input pixel intensities to
zero, during training, with a probability given by pgop. The
subsequent postsynaptic neurons would not activate, and
consequently, the connection weight would not be updated.
This ensures the same units are dropped during the entire
duration of the example presentation and avoids averaging
effects [130]. Table 2 presents the obtained performances.
It allows the comparison between models trained with dif-
ferent hyperparameters and different datasets. Furthermore,
we observe the effects of dropout regularization in the train-
ing of SNNs.

Our results are consistent with the performances reported
by [45]. We observe the models with more neurons have
higher accuracy. Besides, introducing the dropout strategy
also produces significant performance increases. A challenge
with SNNs, and with this model, in particular, is the choice
of hyperparameters. To assess the impact of excitatory to
inhibitory and inhibitory to excitatory synaptic strengths in
model performance, we employed a random search algo-
rithm to identify the most proper set of values for excitatory
and inhibitory strengths. Interestingly, the obtained perfor-
mances are significantly lower than using the values pro-
vided by the BindsNET authors in their examples directory
(excitatory strength=22.50 and inhibitory strength=120),
but significantly better than the default parameters of the
BindsNET implementation of the [45] algorithm (excitatory
strength=22.50 and inhibitory strength=17.50). The subopti-
mal parameters detected by our algorithm could be explained
by the nature of random search, that despite being more
computationally efficient might not find the optimum set
of hyperparameters. Broadly speaking, random search [160]
translates to results as good or better than other strategies,
like manual search or grid search, but given the nature of
the addressed SNN architecture, these two hyperparame-
ters impact competition and neurons’ activation, meaning
it directly influences learning, thus being of great impor-
tance in training the model. This underlines the challenges of
hyperparameter optimization in SNNs. Plus, we observe that
the algorithms trained with dropout have, in general, better
performances than their no dropout counterparts, specifically
considering the model architectures with a smaller number of
neurons. We argue that, in this situation, the dropout regular-
ization prevents a limited subset of neurons from dominating
the others (due to competition), thus reducing overfitting.
Interestingly, due to the sparse nature of SNNs, a much
lower pgyop (0.2) is required when compared to conventional
ANNSs (usually around 0.5) [130]. Finally, we observe a
reduced performance (10% < accuracy < 12.89%) when
the model was trained on the CIFAR-10 [12] dataset. These
results underline the challenges of training SNN models in
complex datasets. Figure 13, indicates two different sets of
weights learned by the network trained on the CIFAR-10 [12]
dataset. In Figure 13-A, we observe a set of neurons’ RFs

VOLUME 10, 2022

Input

Output neuron RF
T T | s (8 |

- 1 B
S S

. a ‘.#_ |., fe -El; |
e, e
: I

FIGURE 14. Top: Input images of two distinct classes (dog; boat). Bottom:
corresponding learned RFs. It becomes clear that high intensity image
regions dominate the activation of the excitatory layer neurons, meaning
that if there is a high degree of overlap between a previously learned RF
and a high intensity region of a new image, that neuron has a high
probability of firing again, regardless of the input class. We observe that
the synaptic weights corresponding to high intensity regions (higher firing
rates) change the most when compared to smaller firing rate input
stimuli.

(weights selected randomly and rearranged to the shape of
the input image) of the model with the best training per-
formance (accuracy = 18.80%), and in Figure 13-B, the
same neurons’ RFs after 1800 training iterations (accuracy =
9.74 %). It clearly demonstrates that in datasets with a consid-
erable degree of variability, the averaging effect of this SNN
architecture leads to simple and non-interpretable receptive
fields, where a single neuron can respond to a wide range
of prototypes. This results in high confusion between classes
and poor model performance. To further illustrate the chal-
lenge of training complex data using shallow SNN models,
in Figure 14 we show there is an overlap of learned RFs
between 2 distinct classes. The weights corresponding to
high-intensity regions (higher firing rates) change the most
when compared to smaller firing rate input stimuli. In fact,
the most impressive performances reported in the literature
of models trained on complex datasets usually resort to SL
strategies like approximate BP or converted ANNs to SNN,
or use some form of CNNs, meaning there’s an unmet need
of finding the best strategies to train UL SNN models that can
compete with traditional ANNSs.

For the SL experiments, due to ease of use and sim-
ilarity with typical PyTorch workflows, we opted for the
snnTorch [161] Python package as it is particularly designed
for performing gradient-based learning with SNNs. snnTorch
can be intuitively used with PyTorch [158] and is agnostic to
typical neural network layers, such as fully-connected layers,
convolutional layers, or residual connections. Interestingly,
spiking neurons are designed in such a way that they can
be easily stacked on top of other neural network layers as
if they were yet another activation function. Furthermore,
membrane potentials are computed recursively, meaning the
gradient can be computed without storing membrane poten-
tial traces for all neurons in a system. Naturally, snnTorch is
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suitable for GPU-enabled training, which increases the speed
of computations.

Considering specifically the MNIST [11] handwritten dig-
its dataset, we opted for a 2-layered network, similar to [45].
We considered a fully connected hidden layer, with N neu-
rons, for feature extraction, and an output classification layer
with 10 neurons (1 per class). Then, we converted the static
images to spike trains, resorting to rate coding, where, at each
time step, the probability of an input spike was propor-
tional to the pixel intensity. Each batch of sample images
was presented to the network for 25 time steps. To allow
BP, we considered Cross Entropy (CE) and Mean Squared
Error (MSE) as loss functions, £, respectively established by
equations 18 and 19:

| N o Xt=0 Sy (1)

Lop == ) log (18)

-1 YT 8.0
Do e =0

1/ T T 2
(Z WOEDY Sn,,(r)) (19)
0

t=0 t=

n=
11 Mo
Luse = 7+ > .
n=1 j=0
With N the batch size; C the number of classes; T the
batch presentation time; Si(#) the predicted spike activity of
the LIF neurons (in Lcg, Sy represents the predicted spiking
activity of the correct class) and S(7) the target spiking activ-
ity. To calculate the losses, the spikes are first accumulated
over T time steps. The CE Count Loss, Lcg, promotes the
neuron of the correct class to spike at each time step, t, while
suppressing the activation of the incorrect classes neurons.
In turn, the MSE Count Loss, Lysk, encourages a spiking
activity target for the correct class (correct rate), and a target
for the incorrect classes (incorrect rate). But to make BP
possible we approximate a neuron’s activation function as
a Sigmoid, similar to [162], which then allows to compute
surrogate gradients:
N 1
T g W
3s ke kU
U (1+e Uy
Considering this training strategy, we assessed the impact
of different hyperparameters on network performance,
namely, the number of hidden neurons, the learning rate, n,
and the decay rate of the membrane potential, 5. Table 3
presents in detail the obtained performances for different val-
ues of the considered hyperparameters on the MNIST [142]
handwritten digits dataset. Overall, we observe better perfor-
mance with SL than with UL. Generally speaking, our results
indicate Ly;sg to be more suitable than Lcg, while the decay
rate, S, is also a very important hyperparameter. We obtained
a top performance of 98.53 % for 6400 hidden neurons,
trained with Lyssg (correct rate = 0.8, incorrect rate = 0.1),
of learning rate 7 = 5¢~* and decay rate 8 = 0.75. In turn,
comparing the performance of the 800 hidden neuron SL
network with the best results of our experiments on the Diehl
and Cook SNN [45], we observe an improvement of 6.12 %.

N (20)

2D

60756

We also ran the 2-layered shallow network on the
CIFAR-10 [12] dataset. The results are very consistent with
the performance of the Diehl and Cook [45] SNN on these
data, suggesting deeper networks would be necessary to
achieve competitive results. Therefore, we adopted 2 addi-
tional SNN architectures. The topology of the first network
(CSNN), consisted of 2 5 x 5 convolutional layers, for feature
extraction, with, respectively, 24 and 128 output channels,
interleaved by a 2 x 2 max pooling layer, followed by a LIF
neuron. On top of these 2 convolutional blocks, we added a
fully connected layer for input classification. Figure 15 illus-
trates the considered network architecture. We then trained
various models with different hyperparameters to assess their
impact on model performance. We considered both Lysg
and Lcg as loss functions and approximate the neuron’s
activation as a fast sigmoid [162] to compute the surrogate
gradients:

U
S~ ———
1+ k|U|

As an alternative approach, in line with the work of [130],
we considered a VGG9 SNN architecture (VGG9-C), com-
posed of 8 convolutional layers and a fully connected layer
for classification. We used 2 x 2 average pooling layers to
reduce the size of convolutional feature maps, as suggested
in [130], but where we considered a threshold of 0.5 for
the LIF layer. As a variant of this architecture, we substitute
the last convolution with a fully connected layer (VGG9-F).
Figure 16 illustrates both of these strategies. Regarding the
bipolar transform, we considered the 3 RGB channels. Then,
we follow the approach of [130] and scale pixel intensities
to the [—1, 1] range so that each channel presents mean = 0
and standard deviation = 1. This ensures we can take maxi-
mum advantage of the images’ informative content. At last,
we separate the positive and negative pixel intensities into
bipolar channels before rate encoding. For data augmentation,
we considered random horizontal flips and random resized
crops. We trained each model for 50 epochs, with a batch size
of 128, and Adam optimizer. Additionally, we considered a
correct rate of 0.8 and incorrect rate of 0.1 for Lysg. In gen-
eral, we opted for a fixed threshold of 0.75 for the LIF layers
but as a final experiment, we trained the VGG9-F architec-
ture with learnable threshold and decay rate (VGGGY-FH).
In table 4 we summarize the hyperparameters and corre-
sponding performances.

The results underline that SNNs trained with surrogate
gradients present by far the best performance when com-
pared with UL. The reported performances are inferior to
the literature top results, nonetheless, we mainly intended
to underline the advantages of BP with surrogate gradients,
so we did not perform any hyperparameter optimization.
Moreover, we apply the backward pass only once for each
simulation and did not experiment with other loss functions
and surrogate gradients, meaning further accuracy improve-
ments could be achieved. We also could have considered
dropout regularization as the technique is commonly used

(22)
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TABLE 3. Performance of SL SNNs on the MNIST [11] handwritten digits dataset. To allow direct comparison with [45], a similar 2-layered network was
used. Besides the hidden layer neurons for feature extraction, we added a classification layer composed of 10 neurons (1 per class).

N. Neurons Loss Corr. Rate Incorr. Rate Learn. Rate () Decay rate (5 ) Accuracy

0100 Lce - - 5e~ 1 0.10 82.16 %
0400 LcE - - 5e~4 0.10 88.53 %
0800 Lcr - - 5e~4 0.10 90.21 %
1000 Lok - - He~4 0.10 89.44 %
0800 LcE - - 5e~4 0.65 94.22 %
0800 Lok - - 5e~4 0.75 94.88 %
0800 Lok - - 5e 4 0.90 93.38 %
0800 Lok - - 5e~4 0.95 85.97 %
0800 Lok - - le 4 0.75 93.14 %
0800 LcE - - 2e™4 0.75 91.02 %
0800 Lcr - - 2e7° 0.75 91.37 %
3200 Lok - - He~4 0.75 95.97 %
6400 LcE - - 5e~4 0.75 96.53 %
6400 Luse  0.80 0.10 5e~4 0.75 97.23 %
6400  Lumse  0.70 0.30 5e 4 0.75 97.10 %
6400  Luyse  0.80 0.10 5e~4 0.75 98.53 %
0800 Lumse  0.80 0.10 He~4 0.75 97.53 %
0800 Lumse  0.80 0.20 5e4 0.75 95.87 %
0800 Lumse  0.90 0.10 5e~4 0.75 96.08 %

>

124 x14x 14

7 128x10x10

24 % 28 % 28 B 555 Convolution
Max Pooling
Fudly Connacted
Leaky Imegrate and Fing

FIGURE 15. Convolutional SNN (CSNN) for classification on the

CIFAR-10 [12] dataset. It consists of 2 blocks of convolutional and pooling
layers interleaved by LIF neurons, for feature extraction, and a fully
connected layer for classification.

in SNNs trained with surrogate gradients. However, the
reported results are fairly illustrative of the advantages and
disadvantages of using BP with surrogate gradients to train
SNNs. We experienced a significant performance increase
when the RGB input was directly encoded to spike trains
instead of first converting the images to grayscale. We also
demonstrate that data augmentation can be used in conjunc-
tion with SNNs trained with surrogate gradients and that it
leads to a significant improvement of the results. Moreover,
we demonstrate the importance of selecting the number of
time steps. If too low, the outputs of each neuron will be
close to each other and the network will not be able to discern
between inputs, leading to poor performance. On the contrary,
we also experience a drop in performance when we increase
the number of time steps. Ultimately, a trade-off must be
achieved between the desired performance and efficiency.
In our experiments, we observe the optimum accuracy with
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100 time steps. Although with 75 time steps, the models’ have
not achieved a significantly inferior performance, suggesting
this could be the adequate number of time steps to achieve the
optimum efficiency/accuracy trade-off.

In summary, our results highlight the performance gap
between UL and SL in SNNs. We observe that whereas unsu-
pervised local learning with STDP works quite well on simple
datasets, the strategy is not currently feasible on complex
data and more work is necessary towards achieving high
performing and biologically plausible UL algorithms. On the
contrary, SL with surrogate gradients offers a more opti-
mum efficiency/accuracy trade-off. Although, for the reasons
already discussed, BP is not biologically plausible, the solu-
tion can scale to more complex data. Moreover, SL requires
less simulation time steps (25-125 in our experiments) to
achieve competitive performance, whereas for STDP usually
hundreds of time steps are required (250 in this work). Con-
sidering the 2 Python packages used for this work, we observe
that SL with snnTorch is suitable for fast and efficient deep
network training. BindsNET, in turn, is clock-driven which
means the simulation takes longer as we increase the number
of time steps. Not only that, but simulation time also increases
with network size (number of layers, neurons, connections,
etc.) Nonetheless, although both packages are ML oriented,
each answers a different need. Whereas, much like the Brian
simulator, BindsNet defines an abstract representation of
biological neural networks with the notion of neurons and
synapses as a set of objects (“node’” and ““connection’) and is
adequate for unsupervised STDP and reinforcement learning,
snnTorch is more suitable for SL tasks and its implementation
of SNNs more closely mimics common PyTorch [158] work-
flows, where, typically, activation functions are replaced by
biological neuron models (e.g., LIF)
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FIGURE 16. VGG9 SNNs (VGG9-C/F) for classification on the CIFAR-10 [12] dataset. The main
difference between the top and bottom neural network architectures is that we replace the last

convolution with a fully connected layer.

TABLE 4. Performance of SL SNNs on the CIFAR-10 [12] dataset. We observe better performances with RGB inputs and Bipolar transform. Data

augmentation consisted of random horizontal flips and random resized crops.

Model Image Transforms Loss Time Steps Learn. Rate () Decay rate (5 ) Accuracy
CSNN Grayscale LcE 50 5e-3 0.50 40.79 %
CSNN Grayscale LcE 75 Se-3 0.50 41.38 %
CSNN Grayscale LrsE 50 5e-3 0.50 47.65 %
CSNN Grayscale Lrise 75 Se-3 0.50 47.24 %
CSNN Bipolar LrsE 75 Se-3 0.50 58.89 %
VGG9-C Grayscale Lyise 75 Se-4 0.75 66.28 %
VGGI-C Bipolar LrsE 75 Se-4 0.75 79.37 %
VGGY9-C Bipolar + Data Aug Lysk 75 Se-4 0.75 81.60 %
VGGI-C Bipolar + Data Aug Luvsk 100 Se-4 0.75 81.95 %
VGG9Y-C Bipolar + Data Aug Larse 125 Se-4 0.75 84.22 %
VGGY-F Grayscale LrsE 75 Se-4 0.75 66.87 %
VGGY-F Bipolar LyvsE 75 Se-4 0.75 79.40 %
VGGIY-F Bipolar + Data Aug Lyse 75 Se-4 0.75 84.11 %
VGGY-F Bipolar + Data Aug Lyrse 100 Se-4 0.75 85.27 %
VGGY-F Bipolar + Data Aug Lyse 125 Se-4 0.75 83.57 %
VGGY-F' Bipolar + Data Aug Luvsk 75 Se-4 - 82.73 %

On the other hand, considering that SNNs research is still
in its infancy, there are very few large scale practical appli-
cations [163], but Autonomous Driving (AD) is one of the
fields that could benefit the most from SNNs. On the one
side, the AD problem space is usually rich in events, suitable
for SNNs, on the other, it requires efficient networks for
energy-constrained systems. Therefore, some authors have
already explored the application of SNNs to AD. For instance,
CarSNN, proposed by [164], addresses the problem of car
classification from the background in an event-driven dataset
(N-CARS Dataset [165]). They resort to Spatio Temporal
Back-Propagation (STBP) to train the SOEL [166] system
in 3 hierarchical stages for varying sizes of input images.
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Significantly, the model was implemented on the Loihi Neu-
romorphic Chip, with a power consumption of only 350 mW,
suggesting the potential of SNNs to be deployed in real-
time, in resource-constrained systems. Furthermore, [167]
proposed a spiking convolutions SNN model with temporal
coding for object recognition in LiDAR temporal pulses data.

But more effort is required from the research community
to make SNNs a reality in AD. Explicitly, we observe that
most works address classification problems, whereas the AD
problem space is more complex, usually involving, among
other tasks, object detection, object classification, seman-
tic segmentation and panoptic segmentation. Notwithstand-
ing, a few works have already focused on that problem.
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[168] have proposed Spiking-YOLO, a converted ANN to
SNN that allows object detection with a performance com-
parable to traditional models. In turn, [169] introduced a
SNN strategy for single object localization. Based on the
DECOLLE [134] algorithm, a deep local learning scheme,
the authors propose an encoder-decoder strategy with 3 layers
in each part, to train a spiking convolutions SNN model
on the Oxford-IIIT-Pet dataset [170]. They report a mean
Intersection over Union (mloU) of 63.2 % on the test set.
However, we can see the limited applicability of these mod-
els in real-world scenarios. Moreover, these works resort to
convolutional-based strategies, meaning there is still the need
of developing fully neuromorphic SNNs that can deal with
this kind of complex problems, like AD where many resource
constraints are imposed on the models.

VIi. CONCLUSION

SNNs are a kind of biologically inspired ANNSs. Since infor-
mation is propagated in the form of spikes, SNNs are sup-
ported to be more efficient, particularly if combined with
neuromorphic hardware. In fact, most state-of-the-art solu-
tions evidence efficiency gains in SNNs when compared with
traditional ANNs. More specifically, directly trained SNNs
have demonstrated to be more efficient than converted ANNs
to SNNG, although both strategies seem to provide an effi-
cient alternative. However, due to lack of implementation of
most suggested SNNs on neuromorphic hardware, it becomes
difficult to compare these strategies in terms of efficiency
and suitability for such devices, meaning future work would
require further validation of some SNN algorithms on neuro-
morphic hardware.

UL with STDP is one of the most used learning techniques
and some models have achieved performance comparable to
traditional ANNs, particularly on simple datasets. This is a
biologically inspired, hence more efficient, learning method.
Notwithstanding, it limits the models to shallow architec-
tures, and it does not work effectively with complex datasets,
meaning there is the need to find proper training algorithms.
But one key observation from this survey is that it is still
not clear how biologically plausible UL could be used to
train multilayer SNN models. However, [171] suggest that
meta-learning could be helpful for rediscovering biologically
plausible synaptic plasticity rules. The authors were able to
derive several known local plasticity rules, requiring only the
definition of a loss function and the flexible parameterization
of the candidate plasticity rules. They argue such a meta-
learning approach could lead to novel methodologies for
training ANNSs. This “learning how to learn” strategy is also
biologically plausible as it happened during the millions of
years of evolution as well as, for short term survival reasons,
it is fundamental during an individual’s lifetime. We suggest
this could be more extensively studied for SNNs and hypothe-
sise it could help with the unsupervised training of multilayer
networks. On the other hand, since the activation functions of
SNNs are non-differentiable, proper strategies must be found
to allow the supervised training of SNNs. A typical approach
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is to use surrogate gradients. However, those approximations
limit the generalization of the proposed solutions.
Nonetheless, several developments have been made in the
last years in the field of SNNs, including learning meth-
ods, encoding strategies, connections, and network structures.
Many works are inspired by or mimic biological features such
as neural circuits of excitation and inhibition, On-Centre and
Off-Centre bipolar cells selectivity, expanding RFs, V1 selec-
tivity, etc. But we argue that these mechanisms are still poorly
developed in SNNs and more work is necessary towards a
unifying strategy to train SNNs and to explore the full extent
of known properties of biological neurons in SNNs. Not only
could this bring performance gains, but it could also permit

fault-tolerant, energy, and data-efficient SNNs.

LIST OF ACRONYMS
AD Autonomous Driving
ANN Artificial Neural Network
BN Batch Normalization
BP Backpropagation
BPTT Backpropagation Through Time
C Causal Set of Input Spikes
CNN Convolutional Neural Network
DECOLLE Deep Continuous Local Learning
DL Deep Learning
DNN Deep Neural Network
DoG Difference of Gaussian
DVS Dynamic Vision Sensor
FB Feedback
FF Feedforward
IF Integrate and Fire
IT Infrotemporal
LGN Lateral Geniculate Nucleus
LIF Leaky Integrate and Fire
LTD Long Term Depression
LTP Long Term Potentiation
mloU mean Intersection over Union
ML Machine Learning
MSE(O,Y) Mean Squared Error
MSE Mean Squared Error
CE Cross Entropy
RF Receptive Field
RGC Retinal Ganglion Cell
RNN Recurrent Neural Network
ROC Rank Order Coding
SL Supervised Learning
SNN Spiking Neural Network
SOM Self Organizing Map
SRM Spike Response Model
STDP Spike Timing Dependent Plasticity
RC Resistor-Capacitor
RL Reinforcement Learning
SNR Signal to Noise Ratio
STBP Spatio Temporal Back-Propagation
T time
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TTFS Time-To-First-Spike

UL Unsupervised Learning

W Synaptic Weight

Vi1 Primary Visual Area

PLIF Parametric Leaky Integrate-and-Fire

SEW ResNet  Spike-Element-Wise ResNet

SN Spiking Neuron

LSM Liquid State Machine

WTA Winner-Take-All
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