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ABSTRACT AdvancedDriver Assistance Systems (ADAS) are a collection of intelligent solutions integrated
into next-generation vehicles to assist in safe driving. When building ADAS systems, the main goals are that
they are stable, flexible, easy to maintain, and allow for error tracing. If a driving assistance algorithm is
designed to be implemented on one machine or in one model, there is a potential disadvantage that if one
component fails, then the entire system would stop. We work on modularizing the ADAS system to be
flexible to accommodate any changes or improvements based on up-to-date requirements. Using advanced
current edge (or network) devices, we propose a Detection-based Driving Assistance algorithm, which can
collaborate or integrate with an existing system in a vehicle. The core of any process is to ensure that the
system has a predictable level of functionality and that any misbehavior can be easily traced to the root cause.
The proposed system shows fast, real-time performance on edge devices with limited computing power.

INDEX TERMS Advanced driver-assistance systems (ADAS), autonomous driving, scene understanding,
situational awareness, edge device.

I. INTRODUCTION
Advanced Driver Assistance Systems are intelligent systems
located inside a vehicle that assist the human driver in various
ways. These systems present essential information about traf-
fic, closures, congestion of the roads ahead, congestion levels,
and suggested routes that avoid congestion. These systems
can also assess driver fatigue and distraction, and then pro-
vide precautionary warnings or assess driving performance
or make related recommendations. Advanced Driver Assis-
tance Systems have become critical technologies studied in
intelligent vehicles.

Most autonomous vehicle (AV) industry efforts focus on
advanced driver assistance systems since they are the first
step for fully self-driving cars. The reports [1], [2] show
critical reasons for car accidents. They found that human
factors are the primary reason or contributory element in 94%
of car accidents. Vehicles, environmental factors, and other
unknown reasons are responsible for 2% of crashes each.

The associate editor coordinating the review of this manuscript and
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The three primary human factors most frequently cited in
the study are speeding, inattentiveness, and improper lookout.
Most of them can be avoided with ADAS. The role of ADAS
is to prevent deaths and injuries by reducing the number of car
accidents and reducing the severity of accidents that cannot be
avoided. Essential safety-critical ADAS applications include
pedestrian and vehicle detection/avoidance, lane departure
warnings/corrections, and traffic light and traffic sign recog-
nition. [3] shows that an ADAS system can have a crash
avoidance effectiveness ranging from 9.3% to 33.3% for light
vehicles [4], [5], while forward collision warnings (FCWs)
may be able to prevent 23% to 50% of light vehicle rear-end
crashes [6]. Moreover, [7] summarizes the effectiveness of
twenty ADAS technologies of both light vehicles and heavy
trucks. These lifesaving systems are vital to ensuring the
success of ADAS applications, incorporating the latest inter-
face standards, and running multiple vision-based algorithms
to support real-time multimedia, vision co-processing, and
sensor fusion subsystems.

These ADAS functions are usually based on one front
camera or a front stereo-vision camera. Sometimes the
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FIGURE 1. Structure of ADAS.

camera information is supplemented with information from
other sensors, like light detection and ranging (LIDAR) or
radio detection and ranging (RADAR). Against the front
windshield, ADAS cameras are typically located inside the
car behind the central rearview mirror. The ADAS camera
field of view is located in the wiper area to keep the glass in
front of the camera as clean as possible. Sometimes, RADAR
sensing, vision sensing, and data fusion are combined in a
single module.

This paper proposes ADAS using information obtained
from a mono color camera and cluster edge devices, as shown
in Fig. 1. The intelligent computation of ADAS is imple-
mented using Machine Learning (ML) software that makes
decisions based on critical observations of objects in sur-
roundings. The cluster of edge devices operates the model,
including traffic lights and signs, road markings and lanes,
vehicles and pedestrians, synchronization, and scenarios.
Then, the final caution appears on display.

We experimented with optimizing performance in the test-
ing stage using the Korean dataset provided by KATECH
(Korea Automotive Technology Institute) [8], [9] by showing
the time required for processing critical scenarios in ADAS.
There are several key contributions of this work:
• We implement a modularized system that can flexibly
implement any change and any improvement based on
up-to-date requirements.

• The proposed thread-based approach demonstrably
maintains stable operation because the crash or failure of
one thread-based module cannot affect the performance
of other parallel modules. This approach is adopted
because any process that affects human safetymust guar-
antee that the system has a predictable operational level,
and that any malfunctions can be effortlessly traced to
the root cause.

• The work shows very acceptable real-time performance
on edge devices with limited computational power.

In terms of the physical world’s specific design of both
machines and technology, Operation Technology (OT) is the
physical machines themselves and the systems that control,
monitor, and interface with them. In the OT, the Opera-
tional Level is the manufacturing operations management,
which manages production workflow. An autonomous car
must run continuously to capture any action outside the

TABLE 1. Hardware comparison of Jetson modules with Titan X.

vehicle. If the vehicle process included sending and receiv-
ing cautions from the server, it would be dependent on the
connection among many vehicles. Therefore, it would be
problematic if there is any problem with the connection.
We need the AI embedded and edge devices to isolable
process the signal from the sensors on the vehicle. It should
be emphasized that the satisfied requirements for real-world
processing are in high demand, especially on embedded com-
putational devices or edge device. Manufacturing companies
provide various application-specific integrated circuits, such
as field-programmable gate arrays (FPGAs), digital signal
processors (DSPs), or graphics processing units (GPUs).
In this study, the proposed method has been implemented and
tested on an NVIDIA GPU-based computer and on NVIDIA
embedded computing platforms of the Jetson TX2 [10], Jet-
son Xavier NX [11], and Jetson AGX Xavier [12]. The infor-
mation for Jetson devices is shown in Table. 1.
The structure of this paper is as follows. Section II presents

the related works. Section III presents the system archi-
tecture and describes each stage of the system. Next, the
experiments and results are presented in Section IV. Finally,
conclusions and directions for future work are discussed in
Section V.

II. RELATED WORKS
In this section, we review common approach ADAS solu-
tions and discuss their advantages and disadvantages. After
describing the current boundaries, we demonstrate our strat-
egy to improve these limitations.

A. DRIVING ASSISTANCE ON ONE MACHINE
The procedure mainly focuses on building a model
that can work with many tasks while maintaining high
accuracy. For further details, the model aims to learn
better representations through information shared among
multiple tasks. For illustration, A CNN-based multi-task
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TABLE 2. Definition of classes in system.

learning method mainly performs convolutional sharing of
the network structure. MultiNet [13] completes the three
scene perception tasks of scene classification, object detec-
tion, and segmentation of the driving area simultaneously
by sharing an encoder and three independent decoders.
DLT-Net [14] inherits the encoder-decoder structure and
contributively constructs context tensors between sub-task
decoders to share designated information among tasks. More-
over, [15] proposes one encoder for feature extraction and
three decoders to handle the specific tasks. Meanwhile,
it proposes a novel loss function to constrain the lane line
to the outer contour of the lane area so that they will overlap
geometrically. More importantly, the training paradigm of a
multi-task model also requires very careful consideration.
Reference [16] states that the joint training is appropriate
and beneficial only when all those tasks are indeed related;
otherwise, it is necessary to adopt alternating optimization
strategies.

However, in [17] and [18], the multi-task models have
many issues: they require significantly more computational
power to obtain higher performance and accuracy. Compared
with a single-task model, they achieve low accuracy because
many tasks using only one feature extractor. Broadly, it is
very difficult to simultaneously train many tasks and get a
better result, This may be because the tasks must be learned
at different rates or because one task may dominate the
learning leading to poor performance on other tasks. For
keeping good outcomes without losing the performance of
any process, one solution is to apply an individual model
for each task. The level of performance demanded by ADAS
platforms will require increasingly larger and more powerful
GPUs, thus impacting the manufacturing bills of materials for

autonomous vehicles. To mitigate this expense, platform ven-
dors have sought to increase the value and functionality of the
GPU by using it to performmultiple workloads in the vehicle.
Virtualized GPUs have obvious applicability for autonomous
vehicles and ADAS scenarios, as a single GPU can power
multiple applications, from the visualization of maps and
operations of entertainment consoles to the processing of
environmental sensor data to identify roadway obstacles.
However, enabling multiple virtual operations from a single
GPU in automotive applications is only safe and effective if
the GPU has rock-solid support for hardware-accelerated vir-
tualization. Virtualization software is most dependable when
hardware enforces entirely separate managed address spaces
for each virtual instance and enables the restart, or flushing,
of a single instance that is not operating correctly. This work-
load isolation is key to allowing the shared use of the GPU
while keeping critical software, such as driver-assistance sys-
tems, from being corrupted by any other process.

ADAS running on one shared machine has many issues.
First, processing many tasks on onemachine may lead to high
computation requirements. Also, when we upgrade each part
of ADAS, the whole system has to be updated. In a dangerous
scenario, if a single task fails, it may lead to the crash of
the whole system. Broadly speaking, it is hard to deploy a
model that does not affect other models running on the same
machine.

B. DEPLOYMENT ON EDGE COMPUTING
To keep satisfactory results without losing the performance of
any operation and processing with low computation require-
ments, we can use Jetson clusters. In [19], they mention the
embedded edge computing by deploying a deep model on
Jetson embedded boards. They compare the outcome with the
computer simulation and get a comparable result with high-
speed performance. For additional information, [20] notes
that the core benefits of deploying the trained machine learn-
ing (ML) model on edge devices include: (1) The edge hard-
ware is more energy-efficient since it requires fewer energy
resources than computer and server machines. (2) Edge-
based inference hardware costs considerably less than other
computational hardware such as field-programmable gate
arrays (FPGA) and GPUs. In our paper, we deploy and run
all modules of the ADAS on the Jetson cluster to keep the
benefit of edge computing while obtaining good outcomes.

III. PROPOSED METHOD
This section describes each module we use in the system,
including traffic lights and signs, road markings and lanes,
vehicles and pedestrians, synchronization, and scenarios.
Each module has a specific mission and provides impor-
tant information for driving assistance. For a more detailed
description of objects we consider in this system, Table. 2
shows a list of the considered objects from the parent to child
leaves.
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FIGURE 2. The framework of the system.

FIGURE 3. Different stages of traffic lights, with or without arrow.

A. PIPELINE OF SYSTEM
The overall details of the system pipeline are shown in Fig. 2.
In the Main process, five threads have the job of keeping the
system stable and running.

1) From the beginning, the frame from dashcam transfers
to the Jetson AGX and is responsible for the primary
process. The Signal thread’s task is to connect and
receive the buffer frame from a dashcam. After getting
the input frame, the synchronizing thread does the job
of cropping the image to a specific ratio, sending it to
the three threads for subsequent processing beforewait-
ing for the threads to finish. If the connection is down,
it will reconnect again to keep the system working.

2) The three threads, including the Upper Thread, Middle
Thread, and Lower Thread, correspond with the Light
and Sign module, Vehicle and Pedestrian module, and
Road marking and Lane modules, respectively. Each of
the three threads sends the suitably cropped frame to the
proper Jetson edge devices for processing and waits for
the information to return. If the information or result is
not sent back in time, the thread will be terminated, and
a new thread will be created to and the input signal is
resent.

FIGURE 4. Display of ADAS.

3) After all the threads successfully return, the Synchro-
nization Thread combines and sends all the information
with the same time frame to the scenarios module to
investigate the situation and show the assistance infor-
mation. Finally, all the assistance information appears
in the display of the dashboard in a vehicle.

B. TRAFFIC LIGHT AND SIGN MODULE
The signal module covers the detection work for traffic lights
and traffic signs. We only use a one-stage detector to make
sure it runs in real-time. We do not need a complex or large
model because the traffic light and traffic sign have a similar
sample inmost cases, and do not widely vary, like a pedestrian
or car. The model we use is Scaled-YOLOv4 [21]. Likewise,
we have used the TensorRT [22] inference optimizer and
runner for better optimization and further reduce the infer-
ence time. We converted the scaled-YOLOv4 for model sim-
plification and FP16 acceleration using TensorRT network
definition APIs, which are based on an up-to-date version
of the operating system of Jetson devices. For more detail,
the model is first implemented in PyTorch. We train and
export a weights file from the model. Afterward, we define
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FIGURE 5. Different types of traffic signs. The first row shows Traffic
Sign – Speed, the second to the seventh row show the Traffic sign – Else.

the network using TensorRT, load the extracted weights file,
and do inference tasks. The list of traffic lights and traffics
sign classes are shown in Fig. 3 and Fig. 5. The input frame
has the shape of

{
wf , hf , cf

}
which represent the width,

height, and number of channels, respectively. For thismodule,
we predefine three upper regions:

ROIu = {roil, roim, roir } (1)

with the corresponding factor ul, um, ur where ul + um +
ur = 1. Each region has a height that is equal to that of
the sent cropped image, and the width is calculated by wi =
ui ∗ wf . The priority of the region is defined by roim >

roir > roil , which means that the middle region is the most
important part, the second is on the right, and the final is on
the left. Each bounding box has a value that that matches that
of Pascal VOC [23] format bbox = {xmin, ymin, xmax , ymax}.
We use the three regions above to calculate the priority of
traffic lights and traffic signs. Using the priority, we ascertain
the leading traffic light or traffic sign for the assisted vehicle.
In Fig. 4, the red, green, and blue bounding boxes represent
the regions roil, roim, roir , respectively. Moreover, we notate
that the point p is inside the bounding box, represented by the
formula: p ∈ bbox

1) TRAFFIC LIGHT RECOGNITION
We only focus on non-occluded instances of traffic light
detection to reduce ambiguities. All occluded traffic lights are
removed from the training set and validation set to achieve
this goal. In some cases, the deep learning networks still
detect traffic lights on the boundaries of images. Our system
uses two policies to decide whether or not a considered traffic
light is irrelevant: In the case of the top boundary, more than
half of the traffic light bulbs must be visible. When candidate

signals are on the left or right edges of the images, all of the
bulbs must be visible.

While in an intersection or roundabout, many traffic lights
are detected and recognized with different stages. The issue
is which one provides a signal meant for our car. We address
this issue and increase recognition performance by adjusting
the positions of ROIs based on individual image analysis.
By simplifying [24], we identify the region-of-interest (ROI)
containing the traffic light in each frame using the vehicular
pose and a prior traffic light pose. As shown in Fig. 4, the
order of precedence is green, blue, and red. In each ROI, the
priority is above to below.

Bulight =
{
bboxulight,1, bbox

u
light,2, . . .

}
(2)

which have the center point
{
culight,1, c

u
light,2, . . .

}
with

culight,i =
{
xulight,c,i, y

u
light,c,i

}
. We find the top priority of

traffic light bounding box by these conditions: the bounding
box belongs to the upper region when culight,i ∈ bbox

u
roij and

roij ∈ {roil, roim, roir }.

bboxulight,i > bboxulight,j

{
roii > roij
yulight,i < yulight,j with roii = roij

(3)

Therefore, the top priority traffic light, which is considered
the current one for the vehicle, is:

bboxulight,top = argmax Bulight (4)

2) TRAFFIC SIGN RECOGNITION
Traffic signs have different structures and forms in different
countries, the essential types of traffic signs are prohibitory,
danger, mandatory, and text-based signs. The prohibitory,
dangerous, or mandatory signs often have standard shapes,
such as circles, triangles, and rectangles, and often have
standard colors, such as red, blue, and yellow. The text-based
signs usually do not have fixed shapes and contain informa-
tive text. Based on the KATECH dataset, we only consider
the Traffic Sign Else class (including danger class, mandatory
class, and prohibitory class) and the Traffic Sign Speed class:
• Traffic sign - Speed class: include the speed limited
in range. We take the localized sign from the detec-
tion result and recognize and classify it (as shown in
Fig. 5 - (a))

• Traffic sign - Else class: is designed to provide warnings
vividly and instantly, including prohibitory or manda-
tory restrictions (as shown in Fig. 5 - (b))

In the traffic sign part, we only consider the main traffic sign
speed for the vehicle because it is used for the post process
in The Scenario Module. After detection, we have the list of
bounding boxes

Buspeed =
{
bboxuspeed,1, bbox

u
speed,2, . . .

}
(5)

Buelse =
{
bboxuelse,1, bbox

u
else,2, . . .

}
(6)
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FIGURE 6. Visualization of lane detection.

which have the center point {cuspeed,1, c
u
speed,2, . . .} with

cuspeed,i = {x
u
speed,c,i, y

u
speed,c,i}. We find the top priority of the

traffic light bounding box by these conditions: the bounding
box belongs to the region if cuspeed,i in bbox

u
roij and roij ∈

{roim, roir }

bboxuspeed,i>bboxuspeed,j

{
roii>roij
yuspeed,i<yuspeed,j with roii=roij

(7)

Therefore, the top priority traffic sign - speed, which is con-
sidered as the current bounding speed of the vehicle, is:

bboxuspeed, top = argmax Buspeed (8)

Because traffic sign – speed contains only digits, we use
LPRNet [25] for fast Optical Character Recognition (OCR)
and get the main speed limit value from the traffic
sign – speed, which is

OCR
(
bboxuspeed, top

)
(9)

C. VEHICLE AND PEDESTRIAN MODULE
Automotive standards need to be followed for any system
to obtain enhanced stability, predictability, and reliability.
The most important priority is that the ADAS be safe and
secure. Since the misbehavior of systems in a vehicle may
result in hazardous situations to the passengers and other
vehicles or pedestrians on the road, care should be taken
to ensure system reliability. We use the TensorRT version
of scaled-YOLOv4 to detect pedestrians and vehicles in the
detection, which the same version as one in traffic light and
sign module. We simplify the model in the same process
as the method using in the Traffic Light and Sign module.
The processing takes on 2

3 of an image from the bottom
up. Based on [26], reducing the computational complexity
reduces the search space instead of limiting the window scale
and position. Let us suppose that unnecessary portions of
the image, including the image background and the areas of
the scene where objects of interest are not expected, can be
excluded from the search space. In that case, there will be
considerable savings in computational cost. After detection,
we get the set of bounding boxes: Bmcar , B

m
bus, B

m
truck , B

m
motor ,

Bmpedestrian, and B
m
bike.

D. ROAD SURFACE MARKING AND LANE MODULE
1) LANE DETECTION
Reference [27] indicates that the lane detection algorithm
must ensure good reliability, real-time operation, and robust-
ness to meet practical requirements. With the development of
autonomous driving technology, we need a lot of actual tests
on the road. At the same time, a considerable overhead of
resources will be consumed, and there are particular dangers
to slow or erroneous computation.

We only keep 1
2 image from below to extract the result, and

we use Ultra-Fast Structure-aware Deep Lane Detection [28]
to get the lane. We get the list of lanes

L = {l1, l2, . . .} (10)

in which li =
{
pi1, p

i
2, . . .

}
. We find the ego lane to determine

the main roadmarking in the post process. Ego-lane detection
detects the current lane and its boundary and ismainly applied
online so that autonomously driving cars can stay in the cur-
rent lane with the aid of lane departure detection. The white
segment is drawn in Fig. 6, and the purple cover is the regular
lane. To find the ego-lane, we find two lines nearest the screen
centerline (the orange line in Fig. 4) on the left and right. The
variable for the screen centerline:

lsc (x) = msc × x + csc (11)

The position of a point is

pospi = lsc (xi) =


< 0 on the left
0 on the cente
> 0 on the right

(12)

The number of points on the left is:

numpl =
n∑
i

pospi < 0 (13)

and on the right is:

numpr =
n∑
i

pospi > 0 (14)

To find whether the line is on the left or right of the screen
centerline, we use:

posli

{
left if numpl > numpr
right if numpl > numpr

(15)

To find the nearest distance, we use the Hausdorff distance:

dH (li, lsc)

= max
{
max
pi∈li

{
min
psc∈lsc

d
(
pi, psc

)}
, max
psc∈lsc

{
min
pi∈li

d
(
pi, psc

)}}
(16)

The nearest distance on the left is argmin dH
(
li,left , lsc

)
,

and the nearest distance on the right is argmin dH
(
li,right , lsc

)
.
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FIGURE 7. Different types of road marks.

The ego lane is

Lego =
{
largmin dH (li,left ,lsc), largmin dH (li,right ,lsc)

}
=
{
lleft,sc, lright,sc

}
(17)

2) ROAD MARKING RECOGNITION
Based on [29], to avoid the conflict of arrows in traffic
lights with information on the road, we only consider five
main directions of a traffic arrow, including Straight, Left,
Right, Straight Left, Straight Right (as shown in Fig. 8).
In addition, we add two more. These are U-turn and Else.
Traffic arrow – Else means that other directions are different
from the above arrows. Moreover, we consider the other
road mark, such as crosswalk, number, and character (as
shown in Fig. 7). The ‘‘Road mark - Number’’ shows the
speed limit of the current lane. Using the lane informa-
tion and the number given by OCR, the system can show
the speed needed for this lane. After getting the detection,
we get the detections: Bunumber , B

u
character , and Bucrosswalk

which have the center point
{
clnumber,1, c

l
number,2, . . .

}
with clnumber,i =

{
x lnumber,c,i, y

l
number,c,i

}
, and the

point
{
clcharacter,1, c

l
character,2, . . .

}
with clcharacter,i ={

x lcharacter,c,i, y
l
character,c,i

}
. We only consider the post-

process for Number and Character Road Markings. We filter
these bounding boxes and keep processes belonging to the
ego lane, Lego, by finding the center of the bounding box of
the polygon created by two lines of the ego lane. The list of
points of the polygon is:

Pego =
{
plleft,sc,1, p

l
left,sc,2, . . . , p

l
right,sc,1, p

l
eight,sc,1, . . .

}
(18)

The list of bounding boxes that remain after filtering are:

Blnumber,ego =
{
bboxunumber

∣∣∣clnumber ∈ Pego} (19)

Blcharacter,ego =
{
bboxucharacter

∣∣∣clcharacter ∈ Pego} (20)

We find the top priority of the Number and Character by these
conditions:

bbox lnumber,i > bbox lnumber,j
where ylnumber,c,i > ylnumber,c,j (21)

FIGURE 8. Different types of road mark arrows.

bbox lcharacter,i > bbox lcharacter,j
where ylcharacter,c,i > ylcharacter,c,j (22)

Therefore, the top priority is given by the pair:

bbox lnumber, top = max Blnumber,ego (23)

bbox lcharacter, top = max Blcharacter,ego (24)

We next consider the instruction from ‘‘Road mark - Charac-
ter.’’ The letters and words from each country are different,
so using the individual modules can help change, we choose
to show the closet Character on the panel.

E. SYNCHRONIZATION MODULE
Elaborating on the content of Fig. 2, we implement our
proposed solution from the video input in a multi-threaded
CPU-, GPU-utilizingmanner. As the fourmodulesmentioned
above are mostly independent of one another, we take advan-
tage of the current hardware development for Internet of
Things (IoT) devices with both multi-core CPU and CUDA-
compatible GPU support and propose a thread-level paral-
lelism framework [30]. Our approach best performs with at
least five threads and a GPU, where each thread processes
inputs continuously throughout the given frame sequence.
From the primary device (Jetson AGX), we deploy Synchro-
nization Threads for receiving and sending signals for all
necessary components of the solution (other Jetson devices)
and deploy the other four threads for continuous processing.
• Thread #1 (Signal Thread): This thread is responsible
for receiving the input frame. This thread has to make
sure that the connection with the camera is stable and
online. If there is an error in the connection or buffer
frame from the camera, this thread reconnects and waits
for the signal.
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• Thread #2 (Synchronization Thread): This thread is
responsible for sending and receiving the crop frame and
results from other threads. It is the most crucial thread
because it can terminate and create a new thread. The
thread must keep the time frame in order and the results
corresponding with this time frame. After receiving the
input frame, the thread crops it and sends it to the other
threads, and then it waits for the results. After getting a
result back, the thread packs it with the corresponding
time frame and sends it to the Scenarios module in the
Jetson TX2. If one of the modules does not send the
result on time, the thread calls the primary process to
terminate the non-responsive thread and creates a new
one.

• Thread #3 (Upper Thread): This thread is responsible
for sending and receiving the Light and Sign module
result from the Jetson NX. The edge device performs
the object detection for the traffic light and traffic sign
by running the traffic light and sign module (mentioned
above). Finally, the result is sent back to the edge device
primary process, and the upper thread handles it and
sends it to the Synchronization Thread.

• Thread #4 (Middle Thread): This thread is responsible
for sending and receiving the result from the Vehicle
and Pedestrian module from the Jetson AGX. The edge
device performs object detection for cars, buses, trucks,
and pedestrians by running the vehicle and pedestrian
module (mentioned above). Finally, the result is sent
back to the edge device primary process, and the middle
thread handles it and sends it to the Synchronization
Thread.

• Thread #5 (Lower Thread): This thread is responsi-
ble for sending and receiving the result of the Road
Marking and Lane module from the Jetson AGX. The
edge device performs both lane detection and road
marking detection. Finally, the result is sent back
to the edge device primary process, and the lower
thread handles it and sends it to the Synchronization
Thread.

In case of adding a newmodule in the future, a new thread can
be added to the current threads, and the Synchronize Thread
would handle it.

F. SCENARIOS MODULE
This section shows the work of the scenarios module on the
Jetson TX2. The module processes all the information and
displays it along with the information and the assistance sig-
nal [31], [32]. The scenarios can be updated and customized
according to the regulations of each country. From Fig. 4, the
display of ADAS has five components, and each of them has
the result from this module.
• Direction panel: The panel shows the current direction
of the lane based on the default or the road marking
arrow on the ego lane (shown in Fig. 8).

• Road marking character panel: The panel shows any
words or characters in the ego lane. If we have many of

them, it shows the lowest and closest word in the ego
lane.

• Traffic light panel: This panel shows the current traffic
light. The current light governing the vehicle is the result
of the traffic light module process.

• Speed limit panel: The panel shows the speed limit.
The default value is 60 kph, which is the speed limit for
vehicles on most city streets and rural two-lane roads in
Korea. The value is changed based on the Traffic Light
and Sign module and Road Marking and Lane module.
We show the speed limit with kilometer per hour (km/h)
units.

• Caution panel: The panel shows the assistance message
from the ADAS. There are three main caution mes-
sages: NORMAL, WARNING, DANGER. The NOR-
MAL indicator means that the driving condition is safe.
The WARNING indicator means that the driver must
consider slowing down and pay more attention to obsta-
cles or objects on the road. The DANGER indicator
means that the driver should be ready to brake, and
potential collisions and danger lie in front of the car. The
danger signal indicates danger for the driver, pedestri-
ans, or other drivers.

We prioritize caution: the first priority is to treat the pedes-
trian with caution and the second is to treat the vehicle with
caution. The traffic light and traffic sign serve as supporting
pieces of information that encourage driver caution.

1) PEDESTRIAN CAUTION
The scenarios module always initiates before the detection of
any case of a pedestrian. For many cases, the caution signal
regarding a pedestrian is stop. For example, such cases could
be the pedestrian in the crosswalk in front of the car, or the
pedestrian in any lane (especially, ego lane.). The way to
determine the pedestrian state is by using Intersection over
Union (IoU) for object detection. The equations to check the
pedestrian’s state in front of a car are

IoU
(
bboxmpedestrian,i, bbox

l
crosswalk,j

)
= bboxmpedestrian,i ∩ bbox

l
crosswalk,j (25)

IoU
(
bboxmbike,i, bbox

l
crosswalk,j

)
= bboxmbike,i ∩ bbox

l
crosswalk,j (26)

IoU
(
bboxmpedestrian,i,Lego

)
= bboxmpedestrian,i ∩ Lego (27)

IoU
(
bboxmbike,i,Lego

)
= bboxmbike,i ∩ Lego (28)

For example, in the case of Fig. 9 - (a)(b), the pedestrians go
over the crosswalk, (25) has a value greater than zero. In the
case of Fig. 9 - (c), the bike goes over the ego lane, and the
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FIGURE 9. Specific cases. (a)-(c) The pedestrians are in crosswalks. (d) The pedestrian is in the ego-lane. (e) A motorbike is in front of the
vehicle (f)-(h) Multiple and different types of traffic lights. (i) The motorbike is parked on the pavement. (k)-(l) The bus suddenly changes lanes.

value of (26) is greater than zero. In the case of Fig. 9 - (d),
the bike goes over the ego lane, and the value (27) is greater
than zero. If one of these IoUs has a value greater than zero,
the caution is DANGER. If the IoU with the lane (not ego-
lane, (29) and (30) are still zero):

IoU
(
bboxmpedestrian,i,L

)
= bboxmpedestrian,i ∩ L (29)

IoU
(
bboxmbike,i,L

)
= bboxmbike,i ∩ L (30)

If the case (29) has a value more than zero (as shown in
Fig. 9 - (j)), the caution is WARNING.

2) VEHICLE CAUTION
For vehicle caution, the top priority is motorbike, car, bus,
and the last is truck. We have a union of detection in vehicle
detection.

Bmvehicle = Bmmotor ∪ B
m
car ∪ B

m
bus ∪ B

m
truck (31)

The equation to check the position of the vehicle is:

posvehicle,i =
ymvehicle,i
hf

(32)

The caution is WARNING whenever any vehicle on the ego
lane in more than 1

2hf (Fig. 9 - (k)). And the caution is
DANGERwhenever any vehicle on the ego lane in more than
2
3hf (as shown in Fig. 9 - (l)).

IV. EXPERIMENT RESULT
In this section, we evaluate the performance in analyzing
some scenarios while driving to show the effectiveness of the
proposed ADAS. In addition to showing caution messages in
the display, we show the speed performance of the selected
model running on Jetson devices.

A. EXPERIMENTAL SETTING
The experiment using the KATECH dataset contains more
than 160,000 images for the training, validation, and test-
ing sets. The image resolutions in the dataset are 1280 ×
720 pixels, 1280×672 pixels (1280), or 1920× 1080 pixels.
The times of the captured images are daytime, dawn, and
nighttime. Moreover, the dataset includes sunny, overcast,
and rainy weather. We set up three Jetson AGX Xavier
devices, one Jetson Xavier NX device, and one Jetson TX2
device. The input resolutionwe usedwas 1280, and the output
is displayed at the end. We labeled 10000 images for the
scenario test case. The label is based on four panels in the
final display. Six direction types are labeled for the Direction
panel, including Straight, Left, Right, Straight-Left, Straight-
Right, andU-turn. For the Traffic Light panel, the varieties are
shown in Fig. 3, including Red, Yellow, Green, Red Arrow,
and Green Arrow. For the Speed Limit panel, we labeled it in
the range of 30 to 150 kph. For the Caution Message panel,
we labeled for Driving messages (including Safety, Warning,
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FIGURE 10. Visualization of scenarios in the series of frames.

Danger) and Icon message (including Vehicle, Cycle, and
Pedestrian).

B. CASE SCENARIOS
Fig. 10 shows some scenarios on the KATECH dataset that
we have highlighted:

In the case of Fig. 10 - (a), the pedestrian is crossing
the street without observation. The ADAS detects and alerts
the driver about the pedestrian in the crosswalk with the
WARNING signal. In the third image, the vehicle is near the
walker, so the ADAS alerts DANGER and asks the driver to
be ready to stop. In the last image, while the pedestrian is on
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TABLE 3. Accuracy of panels.

TABLE 4. Accuracy (mAP) comparison of traffic object detection.

the sidewalk, the caution panel returns toWARNING, and the
vehicle continues to drive without the alert DANGER.

In the case of Fig. 10 - (b), the vehicle can turn left with
a speed limit of 50 km/h. However, when the left turn is
ongoing, the ADAS detects pedestrians on the crosswalk in
front, the WARNING caution is displayed, and the vehicle
has to slow down. Then, with the crosswalk near the car, the
caution DANGER is displayed, and it waits for all pedestrians
to cross the street, then it turns to the NORMAL indicator.

In Fig. 10 - (c), the ADAS detects one motorbike near the
vehicle and in the ego-lane and the WARNING caution is
shown. Then, the NORMAL indicator is displayed when the
motorbike is at a safe distance from the vehicle.

In Fig. 10 - (d), theWARNING caution alerts the driver that
the red light is on, and that the vehicle must slow down and
stop. Nevertheless, the NORMAL indicator allows vehicle
to safely run while reaching the intersection when the green
light is on.

In Fig. 10 - (e), a dangerous situation is presented because
the bus changes lanes too fast to reach the bus stop. The
ADAS alerts DANGER for the driver to be ready to stop. The
caution indicator returns to NORMAL again after the bus is
at the bus stop.

TABLE 5. Speed performance of the system.

TABLE 6. Comparison of devices power consumption.

Finally, the system’s accuracy on the scenario case is
shown in Table. 3. Most of the number is higher than 90,
proving that the system runs well in most cases.

C. PERFORMANCE
Besides the accuracy in the case scenario, we measure the
accuracy in traffic object detection among our system with
the one multi-task model, as shown in Table. 4. As can be
seen, the DLT-Net and YOLOP have lower mAP than Ours
because both models have to share the feature extractor with
other tasks, and the training step for the multi-task model is
more complicated than the specialized model.

Because these algorithms run in independent modules on
hardware with limited power, the real-time performance of
the systemmust bemaintained.Wefind that the proposed sys-
tem satisfies real-time reactions to the outside environment.
Table. 5 shows the processing time of each casewhile using or
neglecting to use eachmodule in the system. In the meantime,
the Table. 6 shows the recommended system power for each
case. Therefore, in the case of running all modules in one
machine with one or three Titan X GPUs, the energy required
for it is higher than for the group of Jetson devices. Addition-
ally, the stack of models may demand more memory than one
Titan X’s available memory, which means we need more than
one GPU and more power consumption in one system.

V. CONCLUSION AND FUTUREWORK
This paper proposes a modular system that can flexibly
implement any changes or improvements based on updated
requirements. Herein, experiments show that the proposed
ADAS maintains stability and that a crash in one module
cannot affect the performance of others. The core tenet of
any process that affects human safety is to ensure that the
system has a predictable level of performance and that any
misbehavior can be easily traced to the root cause. The
work shows good execution speed with proper timing on
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edge devices. In the future, we will upgrade the module to
analyze more traffic rules and attempt to allow the ADAS to
transact with the physical driving system, by implementing
emergency braking, for instance, to improve the level of the
autonomous vehicle system.
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