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ABSTRACT Insulator defect is one of the most important factors for the grid power transmission accidents.
However, up till now, traditional insulator defect identification methods cannot meet the requirements
of high-speed transmission and high pixel ratio aerial image processing. To solve this problem, in this
paper, we proposed a novel method based on CenterMask algorithm to achieve intelligent insulator defect
identification. First, the overall architecture of the proposed method that entirely relies on the deep learning
models is designed to map the relationship between inputs and outputs. Subsequently, the residual connection
and effective Squeeze-Excitation module are introduced to improve the original backbone network, thus
overcoming the problem of deep network saturation and channel information loss in the feature layer. Finally,
the SAG-Mask with spatial attention mechanism is performed to extract the insulator mask image, while the
defect identification and location is realized based on the anchor-free FCOS algorithm. At last, we verify
the performance of this proposed method by comparing with other benchmarks, including YOLOv4, SSD
and Faster RCNN, which shows high accuracy and good robustness of CenterMask-based insulator defect

identification algorithm.

INDEX TERMS Insulator defects, CenterMask algorithm, image processing, insulator mask image.

I. INTRODUCTION

As an essential part of equipment in power transmis-
sion systems, electrical insulator is widely used to provide
mechanical strength and insulation, which plays a key role in
electricity distribution from the power grid to the users. The
efficiency of insulators is mainly affected by the conditions
of field environment, device pollution, and hardware damage,
etc [1]. Occurrence of above situations causes serious prob-
lems of varying degrees, especially insulator damage, both
to the grid safety and power supply in the whole system.
Therefore, the infrastructures require more frequent inspec-
tion, repair and maintenance, so as to eliminate malfunctions
and insulator defects as much as possible [2]. As a digital
engine for the construction and development, intelligent sens-
ing technology effectively satisfies the perception require-
ments of information depth, breadth, frequency, density and
accuracy. Thus, it is more usual to acquire massive on-site
pictures of electrical equipment and transmission lines via
unmanned aerial vehicles (UAVs) [3] and intelligent robot
technology [4], so as to replace manual inspection in harsh
working environments [3].
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Efficient processing of intelligent perception data is the
top priority for the steady promotion and implementation
of energy interconnection [5]. The massive intellisense data,
including structured, semi-structured and unstructured data,
are mainly obtained by monitoring and collecting the status
of each part of power generation, transmission, distribution
system. These data can be used to evaluate the aging and
operation status of essential energy equipment along with
its accessories. Defect analysis, defect warning, position of
defect areas and components, can be achieved by processing
intellisense data with artificial intelligence (Al) algorithms,
thus help promote the service efficiency of equipment in all
links of the power system [6]. In this way, it can effectively
improve the intelligence of control decisions and enhance the
operation reliability of the interconnected system.

As one of the key equipment on the transmission side
of electric energy subsystem, insulators show the character-
istics of large usages, wide varieties and frequent failures.
Meanwhile, the operation performance of insulators directly
determines the stability and sustainability of the power grid
system, as well as other associated energy subsystems. The
mature application of aerial photography technology realizes
the digitization of insulator defect detection and location [7].
However, due to the large number and size of images taken
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by UAVs, more than 5 or even 10 minutes will be cost on
image label for each picture in manual, which presents a
phenomenon with heavy workload. In addition, the manual
process will inevitably lead to miss labeling and error label-
ing, which further bring security risks on the safe opera-
tion of the power grid. Therefore, it is necessary to conduct
researches on the intelligent identification of insulator defect
by processing and analyzing the massive perception image
data [8]-[12].

Up till now, there are dozens of different insulator defect
identification methods that have been used and documented.
In [13], an online diagnostics method is proposed to detect
insulator conditions and predict flashover occurrence. The
results show that different target range represent various insu-
lator conditions, thereby promote the accuracy of insulator
condition identification and prediction. As detailed in [14],
the proposed method is comprised of importing the image
with spots, detecting image spots, classifying pattern of each
image profile which is applied for each found laser spots
pair. Accuracy and recall indices of proposed method can
approach 96.101% and 96.317% respectively. Compared with
traditional methods, deep learning methods can automatically
extract features from images, and shows higher robustness
and accuracy [15]-[18]. Reference [19] utilizes the Gener-
ative Adversarial Network (GAN) algorithm to achieve insu-
lator defect identification. To further improve the sensitivity
of detecting insulator defects, foreground attribute learning
and structure attribute learning are incorporated. The preci-
sion of benchmarks are all below 0.75, while the proposed
method can approach 0.7647. In [20], a Faster R-CNN net-
work is utilized to locate key insulators components. The
classification score and anomaly score can be acquired by
deep multitask neural network, so as to judge the insulator
conditions by analyzing the two scores. The proposed method
shows satisfied identification performance compared with
other methods. Reference [6] presents a complete system
for automatic identification and the diagnosis of electrical
insulator strings, which utilizes one fully convolutional net-
work Up-Net as the segmentation component, one convolu-
tional neural network and one Siamese convolutional neural
network as the diagnosis component. The accuracy of the
proposed method is 99.25%. In [21], low-resolution images
are adopted to achieve insulator position detection, thus
reduce the time cost and network calculations during com-
puting process. While for fault classification, high-resolution
images are used, which help to improve the accuracy of
defect classification. The precision, recall, mAP and time
values of this proposed method are 94.10%, 92.88%, 93.46%,
231ms respectively. In [22], the Mask RCNN is proposed
to extract multiple insulators automatically in the infrared
images. Transfer learning, as well as the dynamic learning
rate algorithm, are also employed to train the Mask RCNN
with the annotated image data.

In summary, the application of deep learning and image
processing technology applied in insulator defect identifi-
cation has become a hotspot in current study. With the
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widespread popularity of 5G and edge computing technol-
ogy, the real-time transmission between UAVs and energy
equipment inspection data centers will be an inevitable trend.
However, most of the existing methods do not take into
account the requirements of intelligent perception technology
on the efficiency of the insulator defect identification process,
which show slightly low performance in the process of defect
identification.

To solve this problem, in this paper, we apply a new
method, CenterMask, which is proposed in recent years in the
computing field as an end-to-end learning based single stage
instance segmentation algorithm, to identify the insulator
defect among acquired images. It can realize three key tasks,
including object feature extraction, mask extraction and self-
explosion point detection. Instead of artificially dividing the
identification process into multiple subproblems, the novel
training model can directly fit the mapping between the orig-
inal aerial images and the identification results of insulator
defect, which effectively avoids the error and time waste
caused by the step detection and multi-time segmentation
by traditional divide-and-conquer methods. As a result, the
CenterMask used method can greatly improve the efficiency
and intelligence of the identification process, thus show more
important research significance and engineering application
value.

The rest of this paper is organized as follows. Section II
presents the framework of the proposed intelligent iden-
tification method. Section III presents the implementation
details. Comprehensive simulation results generated by var-
ious benchmarks and proposed method based on real data
are reported in Section IV. In Section V, performances of the
novel method and benchmarks are presented and concluded,
which show the proposed method can significantly improve
the accuracy and robustness of identification of insulator
defects.

Il. FRAMEWORK OF THE PROPOSED METHOD

In usual, the inspection environment of insulator defect
identification is generally harsh. Since energy equipment is
mostly scattered in the field with dangerous terrain, which
may lead to high risk and low efficiency of manual inspec-
tion [23]. With the development of technology in recent
years, aerial photography and artificial intelligence technol-
ogy make the inspection process turn from artificial to intel-
ligent, which bring convenience to the grid crews.

In this paper, the inspection efficiency of insulator defect
identification and the training complexity of high-quality
image identification models are comprehensively considered.
As aresult, the CenterMask algorithm based mask extraction
and self-explosion point detection method is proposed. Based
on the one-stage object detection algorithm, the proposed
method incorporates the image instance segmentation tech-
nology to obtain the mask image of insulators. In addition,
the mask extraction of insulator self-explosion point, is also
contained in the training process to facilitate the observa-
tion of the influence of graph complexity on the effect of
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FIGURE 1. The overall framework of the intelligent identification process for insulator defect based on improved CenterMask.

mask extraction. To achieve the insulator defect identifica-
tion, 4 tasks are further studied in this proposed method,
which contain object detection of insulator, mask extraction
of insulator, self-explosion point object detection of insulator,
and self-explosion point mask extraction of insulator.

According to the above 4 tasks, CenterMask, the anchor-
free instance segmentation algorithm based framework is
designed. It adopts the improved VoVNet as the back-
bone network and adds a spatial attention-guided mask
(SAG-Mask) module to the fully convolutional one-stage
object detection(FCOS) [24]. As illustrated in Fig. 1, the
framework mainly includes three parts.

Part I: Feature extraction using backbone network.

Part II: Self-explosion point detection using FCOS.

Part III: Mask extraction using SAG-Mask.

In addition, two optimization ideas are used in the proposed
framework to improve the efficiency and accuracy of the iden-
tification process. The details are described in Section III.

Ill. CENTERMASK BASED INTELLIGENT IDENTIFICATION
PROCESS FOR INSULATOR DEFECTS

The proposed intelligent identification process of insulator
defects aims to satisfy that the intelligent sensing data need
to be processed efficiently. Based on the famous one-stage
object detection algorithm FCOS, a novel instance segmen-
tation algorithm, namely CenterMask was first proposed by
Youngwan Lee and Jongyoul Park in 2019 [25]. Compared
with traditional algorithms, it improves the precision and
speed of instance segmentation by adding the SAG-Mask
module to the FCOS.

A. IMPROVED VOVNET BASED INSULATOR OBJECT
FEATURE EXTRACTION

Due to the different angles of aerial photography, the back-
ground of insulators in the images shows complexity and
diversity, which usually brings serious noise interference to
the identification of insulator defects. Therefore, the primary
task of insulator defect identification is to ensure the accuracy
of object feature extraction, which is realized by backbone
network of the model. Dense Block, the core module of the
mainstream object detection model DenseNet is shown in
Fig. 2. The dense connection of the previous layer will lead to
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FIGURE 2. The core module of DenseNet. F represents convolution layer
and @ indicates concatenation.

alinear increase in the input channel of each subsequent layer,
thus resulting in more computation overhead and energy con-
sumption. When handling high-quality aerial images of insu-
lators, the feature extraction process often consumes more
video memory and computing time.

The proposal of standard VoVNet effectively overcomes
the shortcoming of feature redundancy caused by dense con-
nection. As shown in Fig. 3, it adopts the One-Shot Aggre-
gation (OSA) module by aggregating all features only once
in the last feature maps, thus making input size constant and
enlarging the new output channel.

FIGURE 3. Core module of VoVNet.

The backbone network of the CenterMask algorithm uti-
lizes the improved VoVNet(VoVNet-V2), which solves the
problems of performance saturation, gradient and informa-
tion loss in standard VoVNet. Two significant improvements
are: 1) Connecting the input to the end of an OSA mod-
ule, which can backpropagate the gradients of every OSA
module in an end-to-end manner on each stage. It enables
the training of deeper networks so that can efficiently pro-
cess the aerial insulator images with a higher pixel ratio.
2) Inspired by the traditional Squeeze-Excitation widely
adopted in convolutional neural network (CNN) architec-
tures, an improved channel attention module, namely effec-
tive Squeeze-Excitation(eSE), is designed by using only one
fully-connected (FC) layer with C channels instead of two
FCs without channel dimension reduction. The eSE module is
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added to the final layer of the VoVNet to maintain the channel
information, thus further enhances the ability of object feature
extraction in aerial insulator images.

Fig. 4 shows the connection structure of OSA module
in VoVNet-V2, which greatly improves the computing effi-
ciency of graphics processing unit (GPU), thus meet the
requirements of intelligent identification and high-speed pro-
cessing of insulator defects.

One-Shot Aggregation

module (OSA)

Residual
connection

FIGURE 4. The connection structure of 0SA module in VoVNet-V2,
@ denotes element-wise addition.

B. MASK IMAGE EXTRACTION OF INSULATOR

BASED ON SAG-MASK

Reasons such as diverse backgrounds, overlapping insulator
images, etc., frequently appear in aerial images, which bring
difficulties on insulator defect identification. In addition, the
VoVNet-V2 based insulator feature extraction method can
merely box the position of the insulator in the original image,
whereas cannot achieve accurate image instance segmen-
tation of insulator strings. To solve this problem, Center-
Mask algorithm achieves this task efficiently by adding the
SAG-Mask module to the FCOS.

Compared with the famous instance segmentation algo-
rithm Mask R-CNN and derivation algorithms, or high speed
instance segmentation algorithm YOLACT [22], etc., the
spatial attention-guided mechanism proposed in Centermask
can forecast the mask for each boxed instance by utilizing
the spatial attention map of the input image, thus ensuring
the high accuracy of the mask extraction.

In this paper, the instance segmentation of insulators is
divided into two simple branches. Branch I aims to constrain
the local area of each insulator and naturally distinguish the
instance, so that a rough shape forecast can be conducted
around the center point of each insulator. Branch II aims to
accurately segment the insulator image while retaining the
spatial position of the segmentation results, thus the salient
pixel features of aerial images can be used in the forecasting
process. The core idea is to pay attention to the specific block
features in the feature map by using the attention mechanism.
Finally, the mask image of each insulator is constructed by
multiplying the outputs of the two branches. The instance
segmentation process of insulators is illustrated in Fig. 5.

The mathematical description of the instance segmentation
process in Fig. 5 is: Define the input insulator feature image
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FIGURE 5. The mask extraction flowchart of insulator based on
SAG-Mask.

as X; € RE*M*W and the features of X; obtained after
max-pooling and average pooling are Ppax, Pavg € RV,
respectively. Then, Py, and P,y are taken as the inputs of a
3 x 3 convolutional neural network.

Asag(xi) = 0 (F34x(Pmax Pavg)) (D

In branch 1II, salient pixel features are used to enhance the
input features of the original aerial insulator image. By mul-
tiplying the original input X; per-pixel, the mask extraction
result X4, can be obtained as follows.

Xsag = Asag(Xi) ® X; (2)

C. LOCATING DEFECTS OF INSULATOR BASED ON FCOS

The aims of insulator defect identification is to intelligently
locate various common defects of insulators, such as self-
explosion, thick pollution layer and aging cracks, etc. The
accurate mask extraction of insulator can merely provide the
identification and segmentation of the insulator location in
aerial image, while the detection of specific points of the
defect needs another trained model. The object detection
function of CenterMask is based on the anchor-free FCOS
algorithm. It is a fully convolutional one-stage object detec-
tion algorithm which realizes the object detection function in
the way of per-pixel forecasting. Based on the advantages of
the anchor-free process, FCOS avoids the super-parameters
setting and the complex calculation related to anchor, thus
greatly improving the identification efficiency of insulator
defects. The output of this model contains the following three
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FIGURE 6. The identification flowchart of insulator defects.

parts: regression forecasting pixel by pixel, multiscale feature
and Center-ness.

As shown in Fig. 6, the first part of the output is the
classification branch. Hx W represents the size of the feature
image, C represents the number of categories. Any specific
coordinate (m, n) in the aerial image can be mapped one by
one with the location on the feature image as follows,

h ~ | h
({2J+mh,{2J+nh) 3)
where h represents the scaling ratio between the feature image
and the aerial image.

The second part of the output is the Center-ness strategy.
For FCOS algorithm, it not only ensures the high efficiency
of anchor-free computation and the high recall of per-pixel
regression strategy, but also brings many low-quality fore-
casting bounding boxes that deviate too much from the center
point. This problem can be solved by utilizing Center-ness
strategy, which can calculate the distance between each point
and the center point, so as to suppress the forecasting bound-
ing boxes far away from the center point. It is worth noting
that the Center-ness strategy does not bring in any additional
super parameters.

As shown in Fig.6, the Center-ness strategy will add a
branch with the classification branch, which is equivalent to
adding a loss function to the network. In the process of model
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training, the forecasting bounding boxes are constrained to
be as close to the center as possible through the loss func-
tion. As a result, these low quality bounding boxes might be
filtered out by the final non-maximum suppression process
with high probability. The Center-ness target can be defined
as,

N min(/*, 7*)  min(z*, b*)
centerness” = X @)
max(/*, r*)  max(t*, b*)
I* =m—mg),t>'< =n—ng)
r* = m(li) —m, b* = n(li) —n 5)

where [x, r*, t+ and bx are the distances from the center
point to the left, right, top and below sides of the forecasting
bounding box, respectively. centerness* represents the value
of the loss function.

The third part of the output is the regression branch.
The distance to each side of the bounding box is taken
as the measurement standard while all points in the box
of insulator defect are regressed. It is the main difference
between the anchor-free algorithm and the anchor based
algorithm.

IV. CASE STUDY

The purpose of this paper is to provide the mask image of
insulator strings and the location of defects by training an
optimized identification model, so as to replace the traditional
high-risk manual inspection efficiently and accurately. The
data set of insulator aerial images is provided by a local
electric power company in China, which is utilized to evaluate
the effectiveness and robustness of the proposed intelligent
identification method.

A. EXPERIMENT SETTINGS
Table 1 illustrates the configuration of hardware resources
and the software operating environment.

TABLE 1. The experimental environment.

Type Configuration
Intel(R)Xeon(R)Gold5118 CPU @
CPU
Hard 2.30GHz
r:zox‘;r: GPU NVIDIA Quadro P5000
M 128G physical memory, 16G video
emory
memory
sys.platform win32
Python 3.7.6 [MSC v.1916 64 bit (AMD64)]
numpy 1.18.1
detectron2 0.1.1
Software CUDA 10.1
environment PyTorch 1.4.0
GPU 0 Quadro P5000
Pillow 7.0.0
torchvision 0.5.0
cv2 4.2.0
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B. INSULATOR MASK IMAGE EXTRACTION

In this section, the collected dataset of insulator aerial images
is divided into training set and testing set. Then, sample analy-
sis of training set, selection and optimization of model back-
bone network, design of training parameters and more than
200,000 times of training are carried out in the above exper-
imental environment. The intelligent identification model of
insulator defect is tested on the testing set.

As shown in Fig. 7, the collected dataset should be labeled
at the first step since the proposed method is based on
the supervised learning algorithm. Fig. 7(a) shows one of
the original aerial images. The manual annotation result of
Fig. 7(a) using the annotation tool ‘Labelme’ is shown in
Fig.7 (b). The normal insulators are labeled as “‘Insulator”
and the insulators with defects are labeled as ‘“‘Insulator
error”’. Then the image annotation is carried out after manual
annotation to construct the final model input as can be seen in
Fig. 7(c). Finally, the labeled data will be used for training and
adjusting parameters of the CenterMask algorithm. Testing
set is used to verify the effectiveness of mask extraction
branch in the trained CenterMask algorithm. Mask image
extraction result is shown as Fig. 8.

¥

L2

FIGURE 7. Data processing of the aerial images. (a) The original aerial
image; (b) The labeled image; (c) The verification image.
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FIGURE 8. Mask image extraction result.

C. INSULATOR DEFECT LOCATING

As illustrated in Section III, the self-explosion point detec-
tion branch is independent of the mask extraction branch.
In addition, the proposed method makes the input scale
expand and shrink randomly within a limited range by
setting model parameters, thus enriching the training
set.

The proposed method can not only achieve the location
identification of self-explosion point in a single image, but
also output the XML file storing the location label of self-
explosion point. In addition, the identification accuracy will
be visually displayed at the same time. Fig. 9 shows the visual
output of the identification results and the XML file output on
the testing set.

D. CASE INDEX EVALUATION

In this paper, the simulation data are composed with 3 groups
of insulator aerial images, which can be identified as insu-
lators in normal condition, insulators in slight defect condi-
tion, and insulators in severe defect condition. When there
is only one broken area in captured insulator string, the
insulator condition can be identified with slight defect; while
when the broken area is greater than one place, then the
insulator condition can be identified as severe defect. Each
test image sequence contains 50 aerial images. In order
to verify the practicability and effectiveness of the pro-
posed algorithm in insulator defect identification, we apply
3 benchmarks to make a contrast, such as YOLOv4 [26],
SSD and Faster RCNN [27]. To further all-sidedly tes-
tify the effectiveness of 4 methods, images with impulsive
noise are taken into consideration. Figure 10 shows the
identification results in each condition by using all above
methods.

From Fig. 10, confidence coefficients of insulator defects
are indicated beside red box. As for the normal condition,
all methods can figure out correctly, no matter whether there
exists pepper noise. As for slight defect condition, confidence
coefficient of YOLOvV4 is much lower than other 3 methods,
while the operating rate is much faster than Fast RCNN and
SSD. The reason is that the YOLOv4 algorithm will first
apply 1 x 1 convolution check to achieve dimensionality
reduction of feature, and then apply 3 x 3 convolution
kernel to add dimension. During the process of calcula-
tion, it enables to greatly reduce the number of parameters
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FIGURE 9. Identification and location of insulator defects.

and model size. In the case of severe insulator defects, not
all identification methods can figure out the whole defects
with high accuracy and speed. There are several missing
detection occurring in original methods: YOLOv4, SSD, and
Fast RCNN, especially in pepper noise case. Fuzzy images
increase the difficulty of insulator defect identification, which
reduces the values of evaluation indexes. Nevertheless, the
proposed method shows better performance in above cases
as shown in Fig. 10.

To further comprehensively and objectively make a
contrast between proposed methods and several bench-
marks, we apply the following indexes: Average Preci-
sion(AP), Average Recall(AR) under different intersection
over union(IoU), detected area and number of detections
(recorded as AREA and MaxDets, respectively), Frames Per
Second(FPS) for comprehensive evaluation. FPS refers to the
processed images in one second. The higher the FPS is, the
better the algorithm works.

N
AP = TP (6)
Nrp + Npp
N
AR = ——F 7
Nrp + Nrn

Here, N7p means the number of detected insulator defects
correctly; Nrpp means the number of erroneous detected insu-
lator defects; Npy means the number of missing detected
insulator defects.

IoU represents the area ratio of intersection to union
between the generated candidate box and the original box,
which is defined as follows,

Area of Overlap
oU= ———

®)

Area of Union
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where the value range of IoU is [0,1]. Ideally, IoU is equal
to 1.

Detection performances of different models are indicated
in Table 1 and Table 2. From the indexes mentioned above,
it is not hard to find that the network with improved Cen-
terMask performs better than other existing methods. For
example, in insulator severe defect condition, the AP, AR and
FPS indexes of proposed method are 2.7%, 3.7%, 6.29 higher
than those of the highest corresponding values of other bench-
marks by using normal aerial images. For Fast RCNN, for the
sake of its low speed, we can draw a simplified conclusion
that the requirements of real-time identification of insulator
defects is hard to meet. Compared with Fast RCNN, other
benchmarks show better effectiveness on processing time.

Except for the characteristics of various networks, some
other factors will also affect the identification accuracy. When
the captured images are oversize, the resolution of images
will be low, in this case, it may evoke identification accuracy
reduction and wasted time. What’s more, when the back-
ground is complex, for instance, the input image is full of
transmission line towers and natural scenes, especially the
color of natural scenes is similar to the insulators’, it will
also bring difficulties to the identification and inspection.
In the electric power system, most of the string dropping
defects are caused by self-explosion of insulators. In the case
of detecting slight string-dropping defects of insulators, var-
ious algorithms can accurately identify the string-dropping
areas of insulators in different extent. However, due to dif-
ferent viewing angles and flying positions of UAVs, there
is a high probability that string-dropping areas of insulators
are blocked, thus generating missing detection phenomenon.
Also, it is not conducive to the separation of sloping captured
insulators, and is more likely bring errors in sliding window.
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FIGURE 10. Results of insulator defect identification in different conditions by 4 methods.

Besides, exposure effect is also an essential part of accuracy-
affecting factors.

To better inquiry the effectiveness of CenterMask-based
insulator defect identification method, under the differ-
ent combinations of metrics which are shown in Table 4,
the performance of mask generation and self-explosion
point detection are given in Fig. 11 and Fig. 12, respec-
tively. It can be seen that, in Fig.11, when 0.5 is used
as the threshold of IoU for instance segmentation, the
identification accuracy of insulator defects can fetch up
to 94.1%.
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The results show that the proposed model can detect most
of the obvious self-explosion points of insulators and provide
more accurate coordinate information, which can meet the
requirements of intelligent identification and high-speed pro-
cessing of insulator defects.

The proposed method could achieve the best extraction
results of insulator mask in aerial images and the AR value
could achieve 95.2% when the threshold of IoU and AREA
is relatively abundant. The results show that the proposed
method can provide accurate and effective instance segmen-
tation of the insulator string. In addition, the processing speed
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TABLE 2. Detection performance of different models by using original aerial images.

Method Insulator condition Samples AP AR FPS
Normal 50 100% 100% 22.95

YOLOv4 Slight defect 50 90% 90% 20.74
Severe defect 50 88.2% 83.3% 19.68

Normal 50 100% 100% 19.18

SSD Slight defect 50 93.9% 92% 19.72
Severe defect 50 90.47% 86.1% 18.84

Normal 50 100% 100% 5.99

Fast RCNN Slight defect 50 95.8% 92% 5.47
Severe defect 50 93.6% 89.8% 5.44

Proposed 'Norrnal 50 100% 100% 28.15
method Slight defect 50 97.9% 96% 26.68
Severe defect 50 96.3% 93.5% 25.97

TABLE 3. Detection performance of different models by using aerial images with pepper noise.

Method Insulator condition Samples AP AR FPS
Normal 50 100% 100% 22.62
YOLOv4 Slight defect 50 87.8% 86% 21.37
Severe defect 50 85.7% 81.4% 20.42
Normal 50 100% 100% 19.76
SSD Slight defect 50 88% 88% 19.18
Severe defect 50 88.4% 85.2% 19.15
Normal 50 100% 100% 6.09
Fast RCNN Slight defect 50 93.8% 92% 5.86
Severe defect 50 91.2% 88.0% 6.04
Pronosed Normal 50 100% 100% 27.37
melihod Slight defect 50 95.9% 94% 27.61
Severe defect 50 94.2% 91.7% 26.05
TABLE 4. Combination of different evaluation metrics. 1 g 4
0o | i
0.8 | m------ n ;- L
Metrics IoU AREA MaxDets 07 } o ' , it
AP 0.50-0.95 all 100 L 06T . AN S
05 o kT S S
AP50 >(.50 all 100 < e P AN ‘s,
AP;s >0.75 all 100 ol e ,
AP, 0.50-0.95 small 100 ol Wog! - Maskgeneraton
AP, 0.50-0.95 medium 100 o1 | - SelFexplosion
AP, 0.50-0.95 large 100 0 : : : : PO Cotet
AR 0.50-0.95 all 1 ARml ARml10 ARm100 ARs ARm ARl
ARmio 0.50-0.95 all 10 Metrics
ARui00 0.50-0.95 all 100 . .
AR, 0.50-0.95 small 100 FIGURE 12. The AR curve under different metrics.
AR, 0.50-0.95 medium 100
ARI 0.50-0.95 large 100
V. CONCLUSION
In this paper, the CenterMask-based intelligent identifica-
0.; 1 tion method of insulator defects is proposed to meet the
0.8 need of intelligent perception technology on the identification
gjé efficiency. In order to overcome the error accumulation of
Zos multiple links in the conventional phased and step-by-step
0.4 . . ope .
03 —e— Mask generation insulator .defect identification mf?thod, the Proposed end-to-
0.2 —+— Selfexplosion end learning based one-stage object detection method Cen-
% . . . . point detection terMask can simultaneously achieve the three key tasks of
AP APS0 AP75 APs APm APl

Metrics

FIGURE 11. The AP curve under different metrics.

and algorithm network improvement will be further investi-
gated as a future work.
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object feature extraction, mask extraction and self-explosion
point detection. The actual aerial images and noise-processed
images of insulators are used to verify the effectiveness and
robustness of proposed method. In the end, simulations are
provided, the comprehensive performance of the proposed
method is verified to be better than YOLOv4, SSD, Fast
RCNNin AR, AP and FPS. It significantly prevents the waste
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of human resources and reduces the potential safety hazards
to personnel and power grid operation, thus promoting the
continuous development of intelligent inspection of overhead
transmission and distribution network in the power system.
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