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ABSTRACT It is well-known that the delineated surface water paths (SWP) from a DEM image are
essential in hydrology. Both grid-based and contour-based algorithms were proposed in the literature to
improve the delineated SWP position’s accuracy. Compared to the grid-based algorithm, the contour-based
algorithms usually give more accurate results but require higher computation resources, especially in case
of the wide catchment. This paper introduces a new contour-based algorithm which is formulated with
the semi-analytical solution of Laplace’s partial differential equation with boundary element method. This
approach allows the algorithm to determine the SWP in any direction in order to keep the delineated SWP
smooth. The proposed algorithm was validated with the standard synthetic surfaces, where theoretical SWPs
are known for accuracy evaluation. The obtained SWPs are more accurate than that of the popular grid-based
algorithms. Moreover, the proposed algorithm requires less computation resources when considering very
long contour lines. In experimentation with a real DEM image, all delineated SWPs are absolute (no broken
part) when the contour interval is equal to or less than 20 meters, and the spacing between adjacent discrete
elevation data is 20 meters or narrower. This algorithm helps the hydrologists estimate the catchment area,
which is useful for water management in flood and drought prevention.

INDEX TERMS Flow direction algorithm, digital elevation model (DEM), surface water path (SWP),
boundary element method (BEM).

I. INTRODUCTION
Digital elevation model (DEM) is a digital representation
of a topographic map from remote sensing technology.
In some parts of the world, DEM is synonymous with
DTM (Digital Terrain Model). In the United States, DTM
is defined as a model representing the bare earth surface,
where all-natural and built features were removed [1]. Since
current data capture technologies such as field survey, pho-
togrammetry, remote sensing or Light Detection and Ranging
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(LiDAR) enable the high quality DTM, the DTM elevation
data is very engaging for land-use planning, geographical
modeling, hydrological modeling, and estimation of natu-
ral three-dimensional catchments [1], [2]. The size of the
catchment area is an essential parameter in the hydrological
model for estimating the water flow rate and evaluating the
flood risk level. With the concept of a physical-based model
(mechanistic or white box model), the size of the catchment
area can be physically observed from a catchment model that
is drawn by the surface water path (SWP). The catchment
model’s effectiveness depends on the algorithm that is used
to delineate the SWP from DTM. For the last few decades,
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there have been two main approaches to develop the SWP
delineation algorithm, namely i) processing the DEM eleva-
tion data in the raster form [3], [4] and ii) processing the data
in contour form [5]. To demonstrate that these algorithms
are able to identify the water flow path, the SWP position
error indicator is often used to measure the accuracy of these
SWP delineation algorithms. It calculates the error of the
SWP position relative to the theoretical SWPs or the real
position of the SWPs. The relation between the resolution
of DTM and the accuracy of SWP is not straightforward.
For example, increasing the resolution in simple terrain case
does not improve accuracy [4]. Therefore, a new algorithm
is needed to delineate the SWP from the very large DEM
image with adequate accuracy and affordable complexity. To
improve the accuracy, an algorithm should exploit the water
flow path model in addition to relying on raw data [6].

Numerous researchers give precedence to the macroscopic
SWP characteristic, which is the effect of gravitation; there-
fore, the algorithms are usually formulated with only the
streamline flow concept, not including the turbulent flow
concept. A streamline is a curve whose tangent at any point
gives the direction of the fluid velocity at that point and is
time-invariant. This concept is analogous to a line of force
in a static electric or magnetic field [7]. The papers [8]–[10]
initiated this concept and demonstrated that their algorithms
could generate the SWPs using the spatial distribution of
slopes in the DTM. These algorithms became the fundamen-
tal tools in the hydrological models, and their extensions were
grouped into three main approaches, namely the grid-based,
TIN-based and contour-based algorithms [11].

In the approach to delineate the SWP with the grid-based
algorithm, the D8 algorithm proposed by [12] was the pio-
neering work, followed by several papers that improve the
algorithm’s accuracy when the DEM image contains missing
pixels. The extensions of its algorithm are divided into two
main groups [13]: i) single flow direction (SFD) algorithms,
e.g. Rho4 [14], Rho8 and D8-LTD [15] and ii) multiple flow
direction (MFD) algorithms, e.g. FDFM [16], DEMON [17]
and D∞ [18]. The enhanced D8 algorithms are employed
widely in the hydrological model because the implementa-
tions are simple and require less computational resources.
However, the errors of the grid-based algorithms is sensi-
tive to the accuracy of the DTM [19]. The accuracy of a
DTM depends on the pixel size, slope and quantization level
[20]–[24]. They also found that the accuracy of the grid-based
algorithms is limited with the oversimplified assumptions on
the behavior of the water flow [10], [25], [26]. Later, [4]
evaluated the accuracy of the six popular algorithms, namely
D8, Rho8, D8-LTD, FDFM, MFD, and D∞. They compared
the results simulated by these algorithms with the theoretical
solutions of SWPs on natural watersheds. Unfortunately, they
found that the error of the SWP positions falls in the range of
46.0% to 161.4%. The maximum is gained by D8 or FDFM
algorithms, and the minimum by D8-LTD or D∞ approach.
In another approach, the algorithms delineate the SWP

from contour lines, which are extracted from a DTM. The [9]

initiated the contour-based algorithmwith the streamline flow
concept of [7], [27] to eliminate the spurious SWPs delin-
eated by the grid-based algorithms in the case of divergent
areas. With the algorithm’s efficacy, many hydrologists, who
need to estimate a sub-catchment area based on the SWP,
implemented this algorithm in the catchment model [23],
[28]–[32]. To further enhance this algorithm, a procedure
that increases the algorithm’s robustness while determin-
ing the SWP near the ridge is proposed in [29]. Later,
the [30] adopt that procedure for partitioning a catchment into
contour-based elements as simple and automated as possible.
Furthermore, [31], [33]–[35] extend this approach to solve
their problems in the hydrological model. However, [5], [32]
pointed out that the algorithms mentioned above were still
semi-automated and had some problems when delineating
the SWP on the complex terrains such as ridges, saddles,
and peaks. Finding a fully automated algorithm to deal with
complex terrains is one of the most significant research chal-
lenges. Then, [5], [32] proposed the modified algorithm by
using skeleton construction techniques, whereas [36] created
another algorithm that is formulated with Triangulated irreg-
ular networks (TINs) structure. TINs were proved to be useful
in many hydrological applications [37]–[41]. Unfortunately,
the existing algorithms require high computational resources,
especially for complex terrains, where the regions of high het-
erogeneity must be fitted with more data points. Although the
existing contour-based algorithms give accurate SWP results,
they are not attractive for a hydrological model because the
contour-based algorithms still cannot be implemented with
affordable computational resources [42].

Even until recently, the accuracy-complexity tradeoff of
SWP delineation is still an open problem [4], [42]. Each
application of SWP delineation requires a different level of
accuracy. Existing algorithms can delineate SWP with suf-
ficient accuracy for applications in geomatics, geographic
information systems (GIS), mapping, and surveying [43].
On the other hand, the rainfall-runoff model application,
which simulates the process to learn the water cycle for deci-
sion making and future prediction, requires higher accuracy,
which is not achieved by existing algorithms [44]. One of
the important applications is the sub-catchment area estima-
tion, which is the essential input parameter of all hydrolog-
ical models for studying hydrologic phenomena, hydrologic
cycle, the impact of climate change, and soil properties on
hydrology and water resources. This research aims to develop
an algorithm with reasonable complexity to delineate the
SWP with sufficient accuracy for sub-catchment area estima-
tion. Obviously, there are two possible approaches: i) improv-
ing the accuracy of the grid-based algorithm and ii) reducing
the complexity of the contour-based algorithm. Among the
existing algorithms, both grid-based and contour-based algo-
rithms delineate the SWPs by using elevation and slope data
over the whole region, which is discretized into hydraulically
connected elements such as grids or triangular elements. The
grid-based algorithm used to delineate the SWP ismore popu-
lar than the contour-based algorithm because of its simplicity
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and fewer computational resource requirements. However,
it selects the most appropriate pixel as the endpoint of the
SWP segment by observing only the surrounding eight pixels,
which causes a local error. The local inaccuracy propagates
to other pixels and accumulates into a serious error. With
the limited resolution of the DEM image, the accuracy at
each pixel cannot be improved, and hence the error issue of
the grid-based algorithm cannot be mitigated. On the other
hand, the contour-based algorithm gives high accuracy but
must solve three-dimensional unknown variables, where the
number of grid points between two adjacent contour lines
considerably increases with the required smoothness. Thus,
it is too complicated to implement a distributed hydrological
model [42].

Recently, it was pointed out that the existing algorithms
for delineating the SWP over DTM image do not meet
the required accuracy of hydrological model development
which is the important tool for understanding, predicting,
and managing water resources [4], [42]. Increasing the DEM
resolution in grid-based algorithms does not improve the
position accuracy (error floor) since these algorithms exploit
only neighboring pixels without extracting topographic infor-
mation from larger surrounding area [4]. This motivated
us to propose a new flow direction algorithm that exploits
topographic information to significantly improve the position
accuracy and reaches the error floor at higher DTM reso-
lution. Also, the new algorithm must not incur an exces-
sive computational time. The boundary element method
(BEM), which provides an outstanding accuracy but demands
high computational performance and large memory, becomes
more practical with modern computers because it solves
a 3-D problem with 2-D domain. For example, BEM was
successfully used to develop a theoretical flow model for
any potential function in [45]–[49]. Therefore, the practical
BEM-based algorithm is proposed to delineate SWP over
DEM image. The proposed algorithm is derived from numer-
ical solutions of the governing partial differential equations.

The paper’s central research objectives are as follows.
• The elevation function in the DEM image was known
as the contour lines obtained from image processing
technique [50]. The elevation function between adjacent
contour lines is unknown and can be described by
2-dimensional Laplace’s partial differential equation,
where the known contour lines serve as the bound-
ary values. Our first objective is to formulate the
semi-analytical solution of Laplace’s partial differen-
tial equation with BEM, which discretizes the problem
domain along the boundary into piecewise linear curves,
where the domain can be parameterized by one variable.
The semi-analytical solution includes the topographic
information, which improves the delineated SWP accu-
racy. Moreover, comparing to the TIN structure, the
problem domain is reduced from an area between con-
tour lines to contour lines. With the significant accuracy
improvement and practical computational complexity,
the semi-analytical solution makes a major contribution

to the urgent needs of hydrologists to cross the current
limit of hydrological modeling.

• The next step is to delineate every SWP, which is a
path starting from a source and ending at a sink, one
by one. All sources are the points on contour lines,
while all sinks are the points between contour lines. For
each SWP, we first determine the SWP direction at a
source and then iteratively determine the SWP direc-
tion until reaching a sink. In doing that, we propose
an algorithm that uses the previously obtained elevation
function as well as its first and second derivatives in
the polar coordinates to determine the SWP direction
at every iteration from the source to the sink. Note that
we can also delineate the SWP in the reverse direction
from the sink to the source because our algorithm basi-
cally finds the steepest downslope or steepest upslope
direction. Compared to other contour-based algorithms,
which delineate an SWP by connecting two points on
a pair of adjacent contour lines, our algorithm gives
greater continuity along the SWP. Compared to grid-
based algorithms, which limit the number of directions
to eight at every pixel, our algorithm gives a more exact
direction at every point along the SWP. The continuity
and smoothness of the proposed algorithm mitigate the
issue of grid-based algorithms that cease delineating
SWP when they reach a flat plane surface.

• In practice, the proposed algorithm is applied with real
terrain and must be able to cope with two causes of
complexity rising. First, the contour line encircling a
foothill can be very long. Second, DTM with high reso-
lution should be sampled at high sampling rate. Both of
them creates a great number of sampling points, which
incur a time-consuming computation. The third objec-
tive is to design the algorithm that can delineate SWPs
with incomplete contour lines, which have missing con-
tour segments and much less sampled points as shown
in Fig. 1. Therefore, the proposed algorithm requires
less computational resources than other contour-based
algorithms.

The remainder of this article is structured as follows.
Section II proposes the numerical solution of 2-dimensional
Laplace’s partial differential equation formulated with BEM.
This solution is the elevation function that gives the eleva-
tion at any coordinate and is defined by contour integrals,
where the elevations along the contours are known. Next,
in Section III, we present how to use the elevation data in a
DEM image to identify the gradient of the elevation along
the contour lines which are the unknown boundary value
functions. Both the elevation and the obtained gradient of the
elevation along the contour lines are used to interpolate the
elevation at any point between the adjacent contour lines in
Section IV. Next, Section V presents how to use the contour
integrals and the gradient terms for determining the SWP
direction at any point along the delineated SWP, and describes
the proposed algorithm for delineating the SWP from DEM
elevation. In Section VI, we demonstrate and discuss the
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FIGURE 1. Incomplete contour lines.

efficiency of the proposed algorithm on delineating SWPs
over both synthetic surfaces and the real terrain. The synthetic
surfaces are used to evaluate the position error of the delin-
eated SWPs. The real terrain with very long contour lines is
used to validate the proposed algorithm. Last, we conclude
the paper in Section VII.

II. PROPOSED FORMULATION OF LAPLACE’S
EQUATION WITH BEM
This section proposes the formulation of elevation function,
which is the essential function for analyzing the direc-
tions of SWPs at any coordinates between the DEM con-
tour lines. To improve the elevation interpolation in the
contour-based algorithm of SWP delineation, numerous
researchers pay attention to the elevation function formu-
lation with numerical techniques. Reference [42] discusses
the existing formulations of the elevation function in the
literature, namely the skeleton construction technique and
Triangulated Irregular Networks (TINs) technique, and points
out that these techniques are not attractive for implementing
the distributed hydrological model because of high com-
putational cost. These techniques generate the grid points
bounded by DEM contour lines, so they require a large mem-
ory size for collecting the values of the elevation functions
at all grid points, especially in case of high resolution and/or
large domain areas. Moreover, all unknown variables, which
are the elevation data at grid points, must be solved even
though only some of them are needed for delineating SWPs.
To tackle those issues, we propose the integral contour formu-
lation derived from the analytical solution of 2-dimensional
Laplace’s partial differential equation. In particular, BEM
is applied to reformulate the analytical solution for two-
fold benefits. First, the computational cost is greatly reduced
because the unknown variables are elevation gradients on
DEM contour lines. Second, not all unknown variables are
needed to be solved. If the unknown variables are elevation

FIGURE 2. Elevation function h(EP) identified by contour lines: HU ( EQ)
and HL( EQ).

gradients on a segment of DEM contour lines, and that seg-
ment is not close to SWPs, then they are not needed to be
solved.

A. ANALYTICAL SOLUTION OF LAPLACE’S PDE
A flow line is a path starting at a point on a contour line
and ending at a point on the adjacent contour line. With the
streamline flow concept, the flow line directions at starting
and ending points are perpendicular to their contour lines.
Hence, the flow line directions at starting and ending points
can be found by calculating the elevation gradients at these
points. However, the flow line directions at other points on
the path are unknown because the elevation data outside
contour lines are not available. There are several algorithms
that interpolate these elevation data [5], [9], [27], [29]–[32],
[34]. Different types of interpolation give different elevation
functions and different patterns of SWP. The most accurate
algorithm finds the analytical solution of Laplace’s partial
differential equation in the context of the conservative vector
fields. The solution is used to interpolate terrain surface from
the elevation data along the contour lines [51]. Laplace’s
partial differential equation is considered, because the bound-
ary value functions, including elevation data and their spatial
derivatives, are time-invariant. The solution is solved by the
boundary integral equation method. Because of its accuracy,
we apply this analytical solution of Laplace’s partial differen-
tial equation for interpolation. The interpolated elevation data
and spatial derivatives are then used to determine the direc-
tions at all points along the flow line as shown in Section V.

Fig. 2 presents the point EP in a 2-dimensional domain �,
covering the region, which is composed of a homogeneous
media. To interpolate the elevation data at the point EP, [51]
applied Laplace’s partial differential equation to formulate
the governing equation of the problem for the scalar elevation
function h(EP):

∇
2h(EP) =

(
∂2h
∂x2

)
+

(
∂2h
∂y2

)
= 0. (1)
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Many kind of techniques can be used to solve the Laplace’s
equation. In [51], they selected the boundary integral equation
method with Green’s theorem [52] to solve the analytical
solution of Laplace’s equation. The obtained particular solu-
tion can be written as

ψh(EP) =
∮
C
ln|EP− EQ|

(
∇H ( EQ) · n̂( EQ)

)
dsQ

−

∮
C

(
EP− EQ

|EP− EQ|2
· n̂( EQ)

)
H ( EQ) dsQ. (2)

The boundary C contains any point where the elevation is
known and that point is on any contour line. The boundary
C may contain points on several contour lines. For example,
the boundary C contains the points on both the lower contour
line HL( EQ) and the upper contour line HU ( EQ). The boundary
C is not only the domain of the known elevation function
H ( EQ) but also the domain of the potential gradient ∇H ( EQ).
The direction of the boundary C at the point Q is specified
with a unit normal vector n̂( EQ). The value of ψ is determined
by a point EP’s neighborhood, which is the part of a small
disc around a EP point inside the boundary C . For example,
considering a point EP on a contour line, the neighborhood of a
point EP is a half-disc, and soψ = π . If the point EP is between
the contour lines, then the neighborhood of a point EP is a full
disc, and so ψ = 2π .

The elevation function h(EP) in (2) can be used to model the
SWP accurately with an assumption that no contour line is
missing, when the domain � is bounded by the contour lines
Cj, where j is the index of a contour line. For example, con-
sidering two adjacent contour lines with different elevations,
the obtained SWP will be a path from the upper contour line
to the lower contour line. As another example, if a contour
line obstructs between two adjacent contour lines, the path
of SWP will make a detour around the obstructing contour
line. Moreover, this analytical approach can generate the
continuous SWP over the domain� and the characteristics of
the obtained SWP conform to the streamlined concept. The
obtained SWP represents the water flow from the upper to
the lower contour line. The flow is guaranteed not to be in a
reverse direction because the value of the elevation function
h(EP) is bounded between the local minima (the elevation
value of the contour line HL( EQ)) and the local maxima (the
elevation value of the contour line HU ( EQ)).

B. PROPOSED SOLUTION WITH BEM FOR
DEM CONTOUR LINES
The analytical solution mentioned in (2) can reproduce
the elevation function h(EP) from the known elevation
on the boundary H ( EQ). However, it cannot promptly interpo-
late the elevation data from DEM contour lines. Here, we aim
to take advantage of both the analytical solution and the DEM
image. There are two ways to do interpolation between the
contour lines for SWP delineation.

First, we must represent the DEM elevation data along
the contour lines into the elevation function in analytic form

or closed-form. Then, we calculate its gradient in the ana-
lytic form. The available elevation data may be employed
to approximate the function H ( EQ), but it is very compli-
cated to approximate the gradient function along the fixed
contour lines. In practice, the contour-based DEM elevation
data cannot be automatically described with an analytic func-
tion on the computer because the elevation is random and
vast. Hence, this paper proposes the second way, where we
approximate the DEM elevation data along a contour line
with many piecewise Lipshitz functions [53]. Then, we apply
these piecewise functions in the BEM process to obtain the
numerical solution by reformulating the analytical solution
in (2). In the mentioned analytical solution, a whole bound-
ary integral is replaced with the definite boundary integrals
on the piecewise intervals. The number of intervals equals
the number of piecewise elevation functions. The numerical
solution is formulated as follows.

Consider a boundary C . The boundary integral of (2) is
split into N definite integrals, each of which is indexed by
j = 1 . . .N . Each interval is denoted by Cj. Then, we obtain
the semi-analytical solution:

ψh(EP) =
N∑
j=1

∫
Cj
ln|EP− EQ|

(
∇H ( EQ) · n̂( EQ)

)
dsQ

−

N∑
j=1

∫
Cj


(
EP− EQ

)
· n̂( EQ)

|EP− EQ|2

 H ( EQ) dsQ. (3)

For example, we implement (3) for two adjacent contour
lines. In Fig. 3, the two contour lines from a DEM image
are the boundary which is surrounding the interior region �.
When we select N sample points along two contour lines, the
lower and upper contour lines contain NCL and NCU intervals,
respectively. Then, we obtain

ψh(EP) =

NCL+NCU∑
j=1

∫
Cj
ln|EP− EQ|

(
∇H ( EQ) · n̂( EQ)

)
dsQ

−

NCL+NCU∑
j=1

∫
Cj

(
EP− EQ

|EP− EQ|2
· n̂( EQ)

)
H ( EQ) dsQ

(4)

The boundary values defined in the semi-analytical solu-
tion comprise the elevation function H ( EQ) and the normal
component of the potential gradient ∇H ( EQ). The normal

component of ∇H ( EQ) is ∇H ( EQ) · n̂( EQ) and denoted by ∇Hn.
Both functions on a point in the interval Cj are approximated
with the polynomial functions of a dummy variable s:

Hj(s) = ζj
s

Lj
+ ξj, (5)

∇Hn,j(s) = αj
s3

L3j
+ βj

s2

L2j
+ γj

s

Lj
+ ηj, (6)

where ζj, ξj, αj, βj, γj and ηj are constants, and s is the distance
from themiddle of segmentCj, and Lj is the length of segment
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FIGURE 3. Contour lines that are used as boundary C and are split into N
small intervals.

Cj and is written as

−
Lj
2
≤ s ≤

Lj
2
. (7)

The accuracy of this approximation depends on two con-
ditions. First, the elevation function is smooth within each
interval, so that the potential gradient is continuous. Second,
the number of definite split integrals N is large enough that
the difference between the original and the approximated
contour line is small. Note that the larger number of split
definite integrals incurs a longer computational time. In fact,
increasing the polynomial orders of Hj(s) and ∇Hn,j(s) also
improves the approximation accuracy, but the computational
time sharply increases. Note that this approximation can be
applied with both complete and incomplete contour lines as
shown in Fig. 3 (a) and (b), respectively. This approximation
gives the polynomial coefficients that will be used to deter-
mine the boundary value function in the numerical solutions
in Section III-A.

With polynomial approximation, we substitute Hj(s) and

∇Hn,j(s), defined in (5) and (6), respectively, for H ( EQ) and

∇Hn( EQ) in (3). The semi-analytical solution in (3) becomes

ψ h(EP) =
N∑
j=1

(
αjFαj (EP, EQ)+ βjFβj (EP, EQ)

+ γjFγj (EP, EQ)+ ηjFηj (EP, EQ)
)

−

N∑
j=1

(
ζjFζj (EP, EQ)+ ξjFξj (EP, EQ)

)
(8)

where

Fαj (EP, EQ) =
∫
Cj

s3

L3j
ln|EP− EQ| ds (9)

Fβj (EP, EQ) =
∫
Cj

s2

L2j
ln|EP− EQ| ds (10)

Fγj (EP, EQ) =
∫
Cj

s

Lj
ln|EP− EQ| ds (11)

Fηj (EP, EQ) =
∫
Cj
ln|EP− EQ| ds (12)

CCLFζj (EP, EQ) =
∫
Cj

s

Lj

(
EP− EQ

|EP− EQ|2
· n̂( EQ)

)
ds (13)

Fξj (EP, EQ) =
∫
Cj

(
EP− EQ

|EP− EQ|2
· n̂( EQ)

)
ds, (14)

The Fαj , Fβj , Fγj , Fηj , Fζj and Fξj are geometric terms,
referred to as shape functions. They are the functions of the
boundary (contour line’s path) and the position of the point EP.
Both boundary and the point EP will be found in Section III.

III. ANALYSIS OF BOUNDARY VALUE FUNCTION
This section presents how to use the DEM contour line for
identifying the boundary value functions in (8). The DEM
contour line is a discrete sequence of referenced points
located along the contour line, and is available from both
grid-based DEM and contour-based DEM [54]. The dis-
crete sequence of points is used to calculate the elevation
function H ( EQ) along the boundary and the six shape func-
tions F∗j (EP, EQ) in Section III-A according to our numerical
solution formulation in (8). Then, the obtained H ( EQ) is used
to numerically compute the gradient of the elevation function
along the contour line as shown in Section III-B. The gradient
will be used to interpolate the elevation function between the
contour lines and to delineate the streamlines in Section V.

A. CALCULATION OF ELEVATION FUNCTION ON THE
CONTOUR LINES AND THE SHAPE FUNCTIONS
To implement the proposed numerical solution, we use the
information of the DEM contour lines which comprise the
coordinates of the 2D points along the DEM contour lines
and the elevations at those points. We use the position infor-
mation of the points along the boundaryCj for calculating the
integration of the shape functions as shown in (9) to (14), and
use the elevation levels at those points for approximating the
elevation functionHj( EQ) along subdomainCj as shown in (5).
In Fig. 3 (a), the DEM contour lines were systematically

sampled into points, whose coordinates define the points
EQ along the subdomain Cj. The DEM was also sampled into

points to define the points EP in the domain�. The coordinates
of both EQ and EP are used to calculate the integration of the
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shape functions, namely Fαj , Fβj , Fγj , Fηj , Fζj and Fξj . The
subdomain Cj comprises the points along the straight line

from point EQj to point EQj+1. Its direction is from EQj to EQj+1,

and is used to identify the unit normal vector n̂( EQ). Before
integrating the shape functions, we transform the coordinates

of EP and EQ into the local coordinates which are defined with
the variable s so that the line integration can be done in
closed-form.

After defining the coordinates of the point EQ on each
subdomain Cj, we use the elevation data at those points for
approximating the elevation function Hj( EQ). The elevation
levels at EQj and EQj+1 are used to calculate the coefficients
of the approximated functions in (5). Usually, DEM image
contains both ordinary contour lines and incomplete contour
lines. In case of ordinary contour lines, each contour has
the constant elevation data denoted H0, so the coefficients η
and ζ are zero and H0, respectively. In case of very long or
incomplete contour lines, the elevation levels over the gap of
the contour lines are not constant, and we approximate the
varying elevation levels on subdomain Cj by piecewise linear
function as shown in Fig. 3 (b). For example, the elevation
levels at the point EQj and the point EQj+1 are Hj and Hj+1,
respectively. The coefficients ηj and ζj are the slope and
Hj( EQ)-intercept, respectively.

B. ANALYSIS OF ELEVATION GRADIENT ON THE
CONTOUR LINES
To present the process to determine four unknown coeffi-
cients for any subdomain of the boundary integral, we divide
the whole boundary C into the N small boundary Cj, where
j = 1, . . . ,N . The process is structured as follows.

1) OBSERVING ALONG SUBDOMAIN Ci
In Section II-A, the function reproduced by the analytical
solution is the elevation function h(EP), where the point EP is
in either domain � or boundary C . In Section II-B, we put
the observed point EP in the domain �, and we employ the
reproduced function from the numerical solution for inter-
polation at the points between adjacent contour lines. Here,
we put the observed point EP along the boundary C and apply
the numerical solution for determining the gradient terms.
Now, we have the 4N unknown coefficients of the function
∇Hn( EQ); therefore, we will put the observed point EP at 4N
different positions along the boundary C .
To identify the gradient terms in the numerical solution,

we resolve the four unknown coefficients, which comprise αj,
βj, γj, and ηj, of the function ∇Hn( EQ) (defined in (6)) in each
boundary Cj by solving a set of linear equations. We formu-
late a set of four equations with all unknown coefficients by
selecting four different observed points EP along a subdomain
Ci, where Ci denotes the i-th subdomain of the boundary C
and is the location of four selected points. Along the boundary
Ci, we put the observed points EP at s

Li
∈ {−

1
2 ,−

1
4 , 0,

1
2 }. For

example, when putting EP at s = −1/2 on Ci, we obtain:

ψh
(
EP
(
−
1
2

))
=

N∑
j=1

(
αjFαj

(
EP
(
−
1
2

)
, EQ
)

+βjFβj

(
EP
(
−
1
2

)
, EQ
)
+ γjFγj

(
EP
(
−
1
2

)
, EQ
)

+ ηjFηj

(
EP
(
−
1
2

)
, EQ
))
−

N∑
j=1

(
ζjFζj

(
EP
(
−
1
2

)
, EQ
)

+ ξjFξj

(
EP
(
−
1
2

)
, EQ
))
, (15)

where h(EP
(
−

1
2

)
) can be determined with the elevation func-

tion Hi(s = − 1
2 ) in (5):

H
(
−
1
2

)
= −

1
2
ζi + ξi. (16)

The shape functions of ∇Hn( EQ) can be determined with the
integrations:

Fαj

(
EP
(
−
1
2

)
, EQ
)
=

∫
Cj

s3

L3j
ln

∣∣∣∣EP(−1
2

)
− EQ

∣∣∣∣ dsQ,
Fβj

(
EP
(
−
1
2

)
, EQ
)
=

∫
Cj

s2

L2j
ln

∣∣∣∣EP(−1
2

)
− EQ

∣∣∣∣ dsQ,
Fγj

(
EP
(
−
1
2

)
, EQ
)
=

∫
Cj

s

Lj
ln

∣∣∣∣EP(−1
2

)
− EQ

∣∣∣∣ dsQ,
Fηj

(
EP
(
−
1
2

)
, EQ
)
=

∫
Cj
ln

∣∣∣∣EP(−1
2

)
− EQ

∣∣∣∣ dsQ, (17)

and the shape functions of H ( EQ) can be determined with the
integrations:

Fζj

(
EP
(
−
1
2

)
, EQ
)
=

∫
Cj

s

Lj

EP
(
−

1
2

)
− EQ∣∣∣EP (− 1

2

)
− EQ

∣∣∣2 · n̂( EQ)dsQ
Fξj

(
EP
(
−
1
2

)
, EQ
)
=

∫
Cj

EP
(
−

1
2

)
− EQ∣∣∣EP (− 1

2

)
− EQ

∣∣∣2 · n̂( EQ)dsQ.
(18)

Similarly, when putting EP at s = −
1
4 , 0 and 1

4 on

Ci, h(EP
(
−

1
4

)
), h(EP(0)) and h(EP

(
1
4

)
) can be determined

with the elevation function Hi
(
s = − 1

4

)
, Hi(s = 0) and

Hi
(
s = 1

4

)
, respectively.

2) REWRITING WITH VECTOR EQUATION
Now, we obtain a set of four equations after setting EP at four
different positions on the subdomain Ci. Obviously, they are
vector equations and can be rewritten in an alternative form:

[ψψψ i][HHH i] = [FFF∇H ,ij][∇H∇H∇Hn,j]− [FFFH ,ij][HHH j] (19)
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where i = 1, · · · ,N is the index of each set of four EP
positions on the same subdomain Ci, and j = 1, · · · ,N is the
index of subdomain Cj, which serves as the j-th subdomain
of the boundary integration. [HHH i] is 2 × 1 boundary vector,
which contain two coefficients of a function H (EP) along Ci
and is defined as

[HHH i]T =
[
ζi ξi.

]
. (20)

[HHH j] is the concatenation of all [HHH i] and becomes 2N ×
1 boundary vector, which is written as

[HHH j]T =
[
ζ1 ξ1 · · · ζi ξi · · · ζN ξN

]
, (21)

[∇H∇H∇Hn,j] is a 4N × 1 boundary vector, which contains four
coefficients of a function ∇Hn( EQ) along Cj and is defined as

[∇H∇H∇Hn,j]T =
[
∗1 · · · αj βj γj ηj · · · ∗N .

]
, (22)

[ψψψ i] is a 4× 2N block diagonal matrix, which contains four
neighborhood factors of each set of four EP positions along Ci
and is defined as

[ψψψ i] =



0 · · · −
1
2
ψi(−

1
2
) ψi(−

1
2
) · · · 0

0 · · · −
1
4
ψi(−

1
4
) ψi(−

1
4
) · · · 0

0 · · · 0 ψi(0) · · · 0

0 · · ·
1
4
ψi(

1
4
) ψi(

1
4
) · · · 0


. (23)

[FFFH ,ij] is 4× 2N geometry matrix, which contains two inte-
grals of shape functions Fζj (EPi) and Fξj (EPi) at EP on Ci and at
EQ on Cj and is defined as

[FFFH ,ij] =



∗ · · · Fζj (−
1
2
) Fξj (−

1
2
) · · · ∗

∗ · · · Fζj (−
1
4
) Fξj (−

1
4
) · · · ∗

∗ · · · Fζj (0) Fξj (0) · · · ∗

∗ · · · Fζj (
1
4
) Fξj (

1
4
) · · · ∗


. (24)

[FFF∇H ,ij] is 4×4N geometry matrix, which contains four inte-
grals of shape functions Fαj (EPi), Fβj (EPi), Fγj (EPi) and Fηj (EPi)
at EP on Ci and at EQ on Cj and is defined as [FFF∇H ,ij], as shown
at the bottom of the next page.

3) SOLVING EQUATION SYSTEM
To create the equation system for determining the [∇H∇H∇Hn,j]
vector, we repeat the process of equation formulation
with (19) for all subdomains Ci, with i = 1 . . .N . Then,
we obtain N sets of four vector equations, which can be
written as a linear equation system:

ψψψ1
...

ψψψ i
...

ψψψN

[HHH i] =



FFF∇H ,1j
...

FFF∇H ,ij
...

FFF∇H ,Nj

[∇H∇H∇Hn,j]−



FFFH ,1j
...

FFFH ,ij
...

FFFH ,Nj

[HHH j].

(25)

Next, we obtain the gradient vector [∇H∇H∇Hn,j] by solving the
equation system:

[∇H∇H∇Hn,j] =



FFF∇H ,1j
...

FFF∇H ,ij
...

FFF∇H ,Nj



−1



ψψψ1
...

ψψψ i
...

ψψψN

+


FFFH ,1j
...

FFFH ,ij
...

FFFH ,Nj



 [HHH j].

(26)

IV. CALCULATION OF ELEVATION AND ITS GRADIENTS
BETWEEN THE CONTOUR LINES
The existing contour-based algorithm delineates SWP by
employing the interpolation techniques that must discretize
the problem domain, which is the interior area between
two adjacent contour lines. The unknown elevations over
the whole domain must be solved to do the interpolation.
This incurs high complexity in a process to delineate the
SWP. To reduce the computational resource requirements,
we propose the process to delineate the SWP by interpolating
only some points between the contour lines. The proposed
process focuses only the points which are used to delineate
the SWP, and interpolate the elevation data at those points
and their neighborhoods. We solve the elevation function,
representing the change of elevation levels at those points
and their neighborhoods by the proposed numerical solution
in (8) in Section II-B. The obtained elevation function will be
used to determine the direction of an SWP in Section V. The
elevation function comprises the elevation function h(EP) and
its derivatives at the point EP. Therefore, this section presents
how to interpolate the elevation at the points between the
contour lines and how to calculate the first and the second
derivatives of the elevation function.

A. INTERPOLATED ELEVATION FUNCTION OVER REGION
BETWEEN DEM CONTOUR LINES
Delineating SWP between DEM contour lines is to recur-
sively calculate the next EP, starting from a chosen point
between contour lines. The recursion will lead EP to the
contour line with lower elevation. The recursive algorithm
involves with the elevation function and its derivative.
The elevation function h(EP) is formulated with the pro-
posed numerical solution in (8) in Section II-B. Firstly,
we rewrite (8) in the vector form:

ψh(EP) =
[
GGG∇H ,j(EP)

] [
∇H∇H∇Hn,j

]
−
[
GGGH ,j(EP)

] [
HHH j
]
, (27)

where GGGH ,j(EP) is 1×2N geometry vector which contains two
integrals of shape functions: Fζj (EP) and Fξj (EP). The integra-
tion results are in (13) and (14) in Section II-B. Therefore,
GGGH ,j(EP) is defined as

[GGGH ,j(EP)] =
[
∗ · · · Fζj (EP) Fξj (EP) · · · ∗

]
,

[HHH j] is 2N × 1 boundary vector which contains two
coefficients of a function H ( EQ) along Cj. These coefficients
are equal to the components of boundary vector [HHH j] in (26)
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and are used in solving the boundary value function in
Section III-B. [GGG∇H ,j(EP)] is 1 × 4N geometry vector which
contains four integrals of shape functions: Fαj (EP), Fβj (EP),
Fγj (EP) andFηj (EP). The integration results are in (9), (10), (11),
and (12) in Section III-A. Therefore, [GGG∇H ,j(EP)] is defined
as

[GGG∇H ,j(EP)]

=
[
∗ · · · Fαj (EP) Fβj (EP) Fγj (EP) Fηj (EP) · · · ∗

]
, (28)

[∇H∇H∇Hn,j] is 4N × 1 boundary vector which contains four
coefficients of a function∇H∇H∇H ( EQ) alongCj. These coefficients
are solved with the equation system in (26) in Section III-B3.

B. GRADIENT OF INTERPOLATED ELEVATION FUNCTION
OVER REGION BETWEEN DEM CONTOUR LINES
There are several ways to find the derivative of elevation
function. The slope at a point is the essential information to
delineate SWP. Most methods calculate the slope at a des-
ignated point from the interpolated elevations of two points.
The interpolation in existing methods is done in several
directions, and only the one that gives the steepest slope is
chosen. In this section, we present a different approach, where
the slope can be immediately calculated from a closed-form
formula. Specifically, the closed-form formula is derived by
taking the derivation of the numerical solution in (3) at the
point EP. After obtaining the boundary value functions in
Section III, namely the elevation function and its gradient on
the contour lines, we use them to calculate the interpolated
elevation function and the slope at same point EP, mentioned
in Section IV-A. The slope ∇Ph(EP) at point EP comprises the
derivative of the elevation function h(EP) with respect to x (hx)
and the derivative of the elevation function h(EP) with respect
to y (hy). To obtain two derivatives at point EP, we determine

the gradient of a function h(EP) by applying the vector operator
∇ to the scalar function h(EP). The scalar function h(EP) is
reproduced from the proposed semi-analytical solution in (3).
The process to calculate the gradient of elevation function
h(EP) at the point between the DEM contour lines is structured
as follows.

1) FORMULATING THE GRADIENT OF PROPOSED SOLUTION
Again, we apply (3) in Section II-B to formulate the gradient
of semi-analytical solution at point EP. Taking the gradient

operator to (3) gives

ψ
[
∇Ph(EP)

]
=

N∑
j=1

∫
Cj
[∇P2]

(
∇H ( EQ) · n̂( EQ)

)
dsQ

−

N∑
j=1

∫
Cj
[∇P4]H ( EQ) dsQ, (29)

where ∇P2 and ∇P4 are gradient terms in brackets, and
can be calculated analytically. Then, we obtain the resulting
expression as

∇P2 =
EP− EQ

|EP− EQ|2
(30)

∇P4 =
1

|EP− EQ|2
n̂

− 2

(
EP− EQ

)
· n̂( EQ)

|EP− EQ|4

(
EP− EQ

)
(31)

2) APPROXIMATING THE BOUNDARY VALUE FUNCTION
To formulate the numerical solution of ∇P(h(EP)), we sub-
stitute the polynomial approximations of H ( EQ) and ∇Hn( EQ)
functions (which are defined in (5) and (6), respectively)
into (29). It is similar to obtaining the numerical solution of
h(EP) in Section II-B. Then, the semi-analytical solution
in (29) becomes the numerical solution in (47) inAppendixA.

3) REWRITING WITH VECTOR FORM
After obtaining the numerical solution of ∇P(h(EP)) in (47),
we can use it to determine the value of the gradient func-
tion ∇P(h(EP)) with the the boundary value functions, namely
H ( EQ) and ∇H ( EQ) · n̂( EQ). We substitute the coefficients of the
boundary value functions from the vector [HHH j] and [∇H∇H∇Hn,j]
in (26) into (47) and rewrite it in a vector form as

ψ∇P(h(EP))

=
[
G′G′G′∇H ,j(EP)

] [
∇H∇H∇Hn,j

]
−
[
G′G′G′H ,j(EP)

] [
HHH j
]
, (32)

where G′G′G′H ,j(EP) is 1 × 2N geometry vector, which contains
two integrals of shape functions: F ′ζj (

EP) and F ′ξj (
EP). Both

shape functions are of the point EP locating between contour
lines and of the point EQ locating on Cj, and are defined as

[G′G′G′H ,j(EP)] =
[
∗ · · · F ′ζj (

EP) F ′ξj (
EP) · · · ∗

]
. (33)

[FFF∇H ,ij] =



∗ · · · Fαj (−
1
2
) Fβj (−

1
2
) Fγj (−

1
2
) Fηj (−

1
2
) · · · ∗

∗ · · · Fαj (−
1
4
) Fβj (−

1
4
) Fγj (−

1
4
) Fηj (−

1
4
) · · · ∗

∗ · · · Fαj (0) Fβj (0) Fγj (0) Fηj (0) · · · ∗

∗ · · · Fαj (
1
4
) Fβj (

1
4
) Fγj (

1
4
) Fηj (

1
4
) · · · ∗


.
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[G′G′G′∇H ,j(EP)] is 1 × 4N geometry vector, which contains
four integrals of shape functions: F ′αj (

EP), F ′βj (
EP), F ′γj (

EP)

and F ′ηj (
EP). These four shape functions are of the point EP

locating between the contour lines and of the point EQ locating
on Cj, and are defined as

[G′G′G′∇H ,j(EP)]

=

[
∗ · · · F ′αj (

EP) F ′βj (
EP) F ′γj (

EP) F ′ηj (
EP) · · · ∗

]
. (34)

C. GRADIENT OF GRADIENT OF INTERPOLATED
ELEVATION FUNCTION OVER REGION
BETWEEN DEM CONTOUR LINES
In this paper, a second-order series expansion will be used
to determine the direction of the SWP over any point in the
catchment basin with the proposed algorithm in Section V.
The first derivative at any point EP was found in Section IV-B.
This section finds the gradient of the gradient of interpolated
elevation function, which is a tensor and can be written as

∇
2
Ph =

(
âx ây

) (hxx hxy
hyx hyy

)(
âx
ây

)
, (35)

where hxx = ∂hx/∂x, hxy = ∂hx/∂y, hyx = ∂hy/∂x and hyy =
∂hy/∂y. The vector function ∇Ph(EP) is reproduced from the
proposed semi-analytical solution as shown in (29) in Section
IV-B1. The process to calculate the gradient of gradient of the
elevation function h(EP) at the point between the DEM contour
lines is structured as follows.

1) FORMULATING GRADIENT OF GRADIENT
OF PROPOSED SOLUTION
From (29) in Section IV-B1, we formulate the gradient of

∇P(h(EP)) as

ψ
[
∇

2
Ph(EP)

]
= −

N∑
j=1

∫
Cj
[∇P3]H ( EQ) dsQ

+

N∑
j=1

∫
Cj

[
∇P9

(
EP, EQ

)] (
∇H ( EQ) · n̂( EQ)

)
dsQ (36)

where ∇P3 and ∇P9 are gradient terms, and can be calcu-
lated analytically as follow.

∇P3 =
−2

|EP− EQ|4
n̂
(
EP− EQ

)
+

−2
(
EP− EQ

)
· n̂

|EP− EQ|4
III

+

−2
(
EP− EQ

)
· n̂

|EP− EQ|5

(
EP− EQ

)
n̂

+

8
(
EP− EQ

)
· n̂

|EP− EQ|6

(
EP− EQ

)2
(37)

∇P9 =
III − 2

(
EP− EQ

)2
|EP− EQ|2

, (38)

and III is an identity tensor, which can be defined as

III =
(
âx ây

) (1 0
0 1

)(
âx
ây

)
, (39)

and
(
EP− EQ

)2
, n̂
(
EP− EQ

)
and

(
EP− EQ

)
n̂ are also tensors,

where

ER =
(
âx ây

) (Rx
Ry

)
ER2 =

(
âx ây

) ( R2x RxRy
RxRy R2y

)(
âx
ây

)
,

n̂ER =
(
âx ây

) (nxRx nxRy
nyRx nyRy

)(
âx
ây

)
,

ERn̂ =
(
âx ây

) (Rxnx Rynx
Rynx Ryny

)(
âx
ây

)
. (40)

2) APPROXIMATING THE BOUNDARY VALUE FUNCTION
To formulate the numerical solution of ∇2

P(h(EP)), we sub-
stitute the polynomial approximations of H ( EQ) and ∇Hn( EQ)
functions (which are defined in (5) and (6)) into (36). Similar
to obtaining the numerical solution of h(EP) in Section II-B,
the semi-analytical solution in (36) becomes the numerical
solution in (54) in Appendix B.

3) REWRITING WITH VECTOR FORM
After obtaining the numerical solution of ∇2

P(h(EP)) in (54),
we can use it to determine the value of the gradient of gradient
function ∇2

P(h(EP)) with the the boundary value functions,

namelyH ( EQ) and∇H ( EQ)·n̂( EQ).We substitute the coefficients
of the boundary value functions from the vector [HHH j] and
[∇H∇H∇Hn,j] in (26) into (54) and rewrite it in a vector form as

ψ∇2
P(h(EP))

=

[
G′′G′′G′′∇H ,j(EP)

] [
∇H∇H∇Hn,j

]
−

[
G′′G′′G′′H ,j(EP)

] [
HHH j
]
, (41)

where G′′G′′G′′H ,j(EP) is 1 × 2N geometry vector, which contains
two integrals of shape functions: F ′′ζj (

EP) and F ′′ξj (
EP). Both

shape functions are of the point EP locating between contour
lines and of the point EQ locating on Cj, respectively. They are
defined as

[G′′G′′G′′∇H ,j(EP)] =
[
∗ · · · F ′′ζj (

EP) F ′′ξj (
EP) · · · ∗

]
(42)

and [G′′G′′G′′∇H ,j(EP)] is 1 × 4N geometry vector, which contains
four integrals of shape functions: F ′′αj (

EP), F ′′βj (
EP), F ′′γj (

EP) and

F ′′ηj (
EP). These shape functions are of the point EP locating

between contour lines and the point EQ locating on the Cj.
They are defined as

[G′′G′′G′′∇H ,j(EP)]

=

[
∗ · · · F ′′αj (

EP) F ′′βj (
EP) F ′′γj (

EP) F ′′ηj (
EP) · · · ∗

]
(43)
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V. DELINEATION OF SURFACE WATER PATH
This section proposes an algorithm to delineate the SWP over
any point in the catchment basin. Unlike other algorithms, the
proposed algorithm can estimate the size of a sub-catchment
area, which is only a part of the whole area, because it
can generate the SWP without interpolation over all points
between the contour lines. This feature helps us reduce com-
putational time because generating the SWP requires only
the information in the area that the SWP is passing. The
proposed algorithm comprises three main steps. The first step
is to prepare the information to predict an endpoint of the
SWP segment after identifying the starting point on the sub-
catchment area. The starting point information comprises the
elevation and its gradients at that point. It can be calculated
with the numerical solution in Section IV. In the second
step, we predict the endpoint of the SWP segment based on
the approximated surface in polar coordinates. We solve a
second-order series expansion to approximate the elevation
of a neighborhood of the starting point by using the numer-
ical results obtained from the first step. The third step is to
predict the next SWP segment. We use the endpoint of the
SWP segment as the starting point of the next SWP segment.
Therefore, this section presents the second and third steps of
the algorithm.

A. DETERMINATION OF THE SWP SEGMENT
Before delineating the whole SWP from an upper contour
line to a lower contour line, we must determine the location
of each SWP segment. We choose a point between contour
lines as the starting point of the first segment and choose the
endpoint from a neighborhood of the starting point where the
endpoint has the maximum or minimum elevation. In doing
that, we approximate the elevation over the neighborhood of
the starting point by using the surface in polar coordinates.

1) CREATING SURFACE OVER THE NEIGHBORHOOD OF THE
STARTING POINT
In Section II, we use the solution of Laplace’s equation to
interpolate the elevation at any point along the SWP. Here,
we still solve its solution in a polar coordinate system, and
apply that solution for creating surface over the neighborhood
of the starting point of the SWP segment. Laplace’s equation
in a two-dimensional polar coordinate system is written as

∇
2h(r, θ) =

∂2h
∂r2
+

1
r2
∂2h
∂θ2
+

1
r
∂h
∂r
= 0, (44)

where r is the distance from the starting point of the SWP
segment to the endpoint, and θ is between 0 and 360 degrees.
We can obtain its solution in general form by using the
separation of variables. Then, the solution in a particular form
is obtained by fitting this application and can be written as

h(r, θ) = a0 +
∞∑
m=1

rm(am cosmθ + bm sinmθ ). (45)

Even though the series expansion in (45) is exact, it is
an infinite series. For computation efficiency, we substitute

FIGURE 4. Determining the direction of the SWP segment with the
approximated surface in polar coordinates h(r , θ) for r < r0.

am and bm for the finite number of terms. In doing this,
we keep the expansion area small (r < r0) to limit the
approximation error, where r0 denotes the length of the SWP
segment. Hence, SWP is a concatenation of several short
SWP segments, each of which has its own series expansion.
At the beginning, the surface over the neighborhood of the
starting point of SWP segment in (45) is approximated as (71)
in Appendix C. The direction over this surface will be chosen
to delineate the first segment of SWP in the next step.

2) DETERMINING SWP DIRECTION
The SWP direction is emanating from the starting point of
the SWP segment and toward the endpoint of that segment
or the starting point of the next SWP segment. Given that
the small disc around the starting point is contained in the
region between the contour lines, we select the endpoint
of the current SWP segment from the neighborhood of the
starting point. Otherwise, no endpoint is selected, and SWP
delineation finishes. When setting the length of the SWP
segment as r0, we consider the elevation at any point on the
boundary of the disc from the approximated surface in the
polar coordinates h(r, θ), which can be determined in (71).

Fig. 4 shows an example of approximated surface in the
polar coordinates h(r, θ) for r < r0.We select the path, which
starts from the point EP toward the endpoint that gives steepest
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descent. To do that, we find the endpoint, which minimizes
h(r, θ) on the circle with r = r0. In fact, another approach
is to select the path, which starts from the point EP toward
the endpoint with the steepest ascent. To do that, we find the
endpoint, which maximizes h(r, θ) on the circle with r = r0.
In this paper, we use the steepest descent approach. Therefore,
we identify the endpoint that minimizes h(r, θ) by finding
θmin, where dh(r, θ)/dθ = 0 on the circle r = r0, as shown in
Fig. 4 (b). An example of θmin findingwith standard technique
is given in Appendix D.

B. PROPOSED ALGORITHM
In this section, we propose a recursive algorithm for delin-
eating an SWP, which is the concatenation of several SWP
segments over a catchment area, in which the elevation is rep-
resented with contour lines in a DEM image. The algorithm
comprises five phases as follows.

1) ALLOCATING THE MEMORY ON A COMPUTER
To delineate the SWP over a large catchment area, the algo-
rithm should efficiently use computer memory to collect the
contour line data and the position of the delineated SWPs.
The memory management must allocate portions of memory
and free them for reuse when no longer needed. The input
data comprises the coordinates of the contour lines and a list
of zoning. To apply the contour lines for being the boundary
condition in the proposed algorithm, we regularly sample
some points along the original contour lines obtained from
a DTM and reconstruct the polylines (chain of line segments)
as the input data. The number of segments depends on the
sampling rate. A list of zoning is information describing the
boundary of each sub-area. Fig. 5 presents the elevation over
a catchment area, which is represented with N contour lines
and K zones. The zone z1 is bounded by the C1 and C2, and
the zone zK is bounded by the CN−1 and CN . The algorithm
collects each coordinate, denoted as EQCnj , of the contour line
Cn. The output data comprises the boundary values along
the contour lines Cn, namely the elevation functions and
the gradient of elevation function, denoted by H ( EQCnj ) and

∇H ( EQCnj ), respectively. These output data will be used to
interpolate the elevation at the points, which the SWP is
passing.

2) ITERATIVELY ASSIGNING SWP SEGMENTS
Fig. 4 presents the starting point and the endpoint of an SWP
segment, indexed by mth. The endpoint of the mth segment is
the starting point of the (m+1)th segment. This point is deter-
mined from the starting point of themth segment as explained
in Section V-A. The starting point and the endpoint of the
mth segment are denoted by EPm and EPm+1, respectively. The
starting point of the 1st segment EP1 is arbitrarily designated
from any point in the region lyingwithin two adjacent contour
lines (or any zone; e.g., z1, z2, . . . , or zK ). Notice that the
1st segment starts from the upper contour line, and the last
segment ends at the lower contour line.

FIGURE 5. K Zones and N Contour lines.

3) PREPARING INFORMATION AT EPm

Before the algorithm computes the endpoint of the current
SWP segment, it requires the elevation and its derivatives at
point EPm. In this phase, hence, the algorithm computes h(EPm)

and its derivatives (∇h(EPm), ∇2h(EPm)) with the numerical
solutions which are explained in Section IV. These com-
putations require a part of the input data collected in the
memory. For example, in Fig. 5, the point EPm is in the zone
z1, so the algorithm requires only the inputf data involving
the contour linesC1 andC2. The required input data comprise
the coordinates of points, i.e., the EQC1

j and EQC2
j , as well as the

elevation and gradient functions along the contour lines, i.e.,

H ( EQC1
j ), H ( EQC2

j ), ∇H ( EQC1
j ) and ∇H ( EQC2

j ). The calculations

of both H ( EQCnj ) and ∇H ( EQCnj ) are explained in Section III.

4) DETERMINING DIRECTION OF THE SWP SEGMENT
After the elevation and its derivatives at point EPm, namely
h(EPm), ∇h(EPm) and ∇2h(EPm) were obtained, this phase
employs those calculated results for determining θmin. The
calculation of θmin is explained in Section V-A. Then, the
algorithm uses the θmin to determine the endpoint of current
SWP segment. Note that the length of the SWP segment (r0)
can be adjusted, and this will give a different endpoint.

5) DETERMINING THE STARTING POINT OF THE
NEXT SWP SEGMENT
In the last phase, the algorithm collects the coordinates of
the endpoint of the current SWP segment into the memory
and starts to delineate the next SWP segment by using the
endpoint of the current SWP segment as the starting point
EPm+1. The algorithm repeats from the second phase until the
endpoint of the SWP segment is not located in the zone zN .

All five phases can be written as pseudocodes as shown in
Algorithm 1 and Algorithm 2, respectively.

To summarize, the computation is initiated by determining
the endpoint of the first SWP segment from the assigned
point with Algorithm 1. Then, Algorithm 1 is looped until
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Algorithm 1 An Algorithm to Delineate SWP
Input: list of the zone’s names in this catchment, list of

the contour line’s names in each zone, list of the EQ
point’s coordinates along the contour lines, coordinates
of the assigned point: EPa

Output: [EPm] list of coordinates of the SWP from the
assigned point: EPa to the ending point of the last
SWP segment: EPm+1
Initialisation : EPm← EP0; zk ← Zoning(EPm);
zPrevious←−1; FINISH← 0 ;
LOOP Process

1: While (FINISH==0) do
2: if zk 6= zPrevious then
3: compute [HHH ] with (21);
4: compute [∇H∇H∇Hn] with (26);
5: end if
6: compute h(EPm) with (27);
7: compute ∇h(EPm) with (32);
8: compute ∇2h(EPm) with (41);
9: zPrevious← zk
10: EPm+1← Next_SWP(EPm) in Algorithm 2;
11: zk ← Zoning(EPm+1);
12: if zk ∈ CATCHMENT then
13: EPm← EPm+1;
14: FINISH← 0;
15: else
16: FINISH← 1;
17: end if
18: End While

Algorithm 2 Next_SWP(EPm)

Input: EPm, h(EP), ∇Ph(EP), ∇2
Ph(EP), r0

Output: EPm+1
1: hx ← Find ∇h(EP) in x-component;
2: hy← Find ∇h(EP) in y-component;
3: hxx ← Find ∇2h(EP) in xx-component;
4: hxy← Find ∇2h(EP) in xy-component;
5: Solve root:{ θmin, θmax } from (76);
6: x_EPm+1← x_EPm + r0 cos θmin;
7: y_EPm+1← y_EPm + r0 sin θmin;

the endpoint of the SWP segment locates outside the catch-
ment area. Finally, each loop calls Function Next_SWP in
Algorithm 2 to determine the endpoint of the current SWP
segment, which is the starting point of the next SWP segment.

VI. RESULTS AND DISCUSSIONS
This section demonstrates how to delineate the SWP over
the synthetic and natural surfaces with the proposed algo-
rithm, and presents the validation of the extracted SWP. First,
we present the performance of the proposed algorithm when
there is no incomplete contour line. The comparisons are
made with the D8 algorithm [4] since the implementation

FIGURE 6. Spatial distributions of elevations.

TABLE 1. Formulas of synthetic surfaces and equations of
theoretical SWPs.

of the existing contour-based algorithm is not affordable in
distributed hydrological model [42]. Next, we analyze the
position accuracy of the delineated SWP by using the eleva-
tion data derived from the formulas of standard synthetic sur-
faces, namely ellipsoid surface (hill), inverted ellipsoid1 (pit),

1Inverted ellipsoid is referred to as inverse ellipsoid in [4].
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FIGURE 7. Ellipsoid: Positions of sampled points along contour lines and
positions of the SWPs including line 1, line 2 and line 3. The sampled
points are plotted by the black points. The theoretical and extracted SWPs
are plotted by the red lines and the blue triangular points.

and inclined plane (flat land). Then, the case that there are
incomplete contour lines is considered. We use the elevation
of natural terrain based on a DEM image, which comprises
the hill’s features, pit, and flat land. The SWPs delineated
from the incomplete contour lines are compared with the
SWPs delineated from complete contour lines to evaluate the
effectiveness of the proposed algorithm.

A. SYNTHETIC SURFACE
Reference [4] presented the method for measuring the posi-
tion error of extracted SWPs to systematically evaluate
the accuracy of various flow direction algorithms, namely
the D8 algorithm and its extensions. The position error
is the difference between the extracted SWP position and the
theoretical (true) SWP position derived from the formulas
of the standard synthetic surface. Furthermore, the results
in [4] reveal that the D8 algorithm and its extensions have
non-negligible error floors. Therefore, it is of interest to use
this evaluation method to also measure the position error of
our proposed algorithm, so that the comparisons can bemade.

1) THEORETICAL SWPS
We use the theoretical SWP positions as the references for
measuring the error of the extracted SWPs. The theoretical
SWP is the closed-form solution which is derived from the
formulas of the synthetic surface mentioned in [4]. Table 1
lists the formulas of three synthetic surfaces and the equa-
tions of theoretical SWPs. The 3-D graphics of the synthetic
surfaces are illustrated in Fig. 6.

The positions of theoretical SWPs in three cases, namely
ellipsoid, inverted ellipsoid, and inclined plane, are plotted
with red lines in Fig. 7, Fig. 8 and Fig. 9, respectively.

FIGURE 8. Inverted Ellipsoid: Positions of sampled points along contour
lines and positions of the SWPs including line 1, line 2 and line 3. The
sampled points are plotted by the black points. The theoretical and
extracted SWPs are plotted by the red lines and the blue triangular points.

FIGURE 9. Inclined Plane: Positions of sampled points along contour lines
and positions of the SWPs including line 1, line 2 and line 3. The sampled
points are plotted by the black points. The theoretical and extracted SWPs
are plotted by the red lines and the blue triangular points.

First, the ellipsoid that models a hill in Fig. 6 (a) gives the
theoretical SWP, radiating out from the top of the ellipsoid
as shown in Fig. 7. Second, the inverted ellipsoid that models
a pit in Fig. 6 (b) gives the theoretical SWP, sinking from
the border of the inverted ellipsoid to its center as shown
in Fig. 8. Last, the inclined plane that models flat plane in
Fig. 6 (c) gives the theoretical SWP, flowing in parallel with
the direction in Fig. 9.

2) EXTRACTED SWPS OVER ELLIPSOID
This work uses the formulas of the ellipsoid listed in Table 1
to generate the contour lines which are in a circle shape. The
ellipsoid comprises five contour lines, namely 2000, 1998,
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1964, 1854, and 1653 meters. Along a contour line, we select
a point at every θs degrees. For a fair comparison, θs is set at
10 degrees, so that the distance between adjacent points is not
shorter than that of D8 resolution (4.5 × 4.5 meters). Fig. 7
presents the sampled points (in black) which are generated
with θs = 10. Totally, a boundary C in the numerical solution
in (3) consists of 5× (360/θs) intervals (Cj).
The proposed algorithm delineates an extracted SWP over

a catchment area by dividing the catchment area into four
zones, where five contour lines with their elevations serve
as the boundary. Along the boundary, the algorithm needs
a memory size of 5 × (360/θs) for keeping the calculated
coordinates of EQ points.We set the length of an SWP segment
as r0 = 1.51m., and locate the starting point EP1 in the zone z1,
which is bounded by the contour lines with h = 2000m and
h = 1998m. To apply the method of [4], we put the starting
points very close to the position, used to evaluate the error
of the D8 algorithm. The distance between the starting points
and the ellipsoid center is set at 30 meters, so that the coor-
dinate of the starting points is close to the corner point of a
DEM pixel. We select three starting points along a circle with
a radius of 900meters to delineate three extracted SWPs in the
different directions, namely 135, 60, and 270 degrees, where
the extracted SWPs are labeled by ‘‘Line-1’’, ‘‘Line-2’’, and
‘‘Line-3’’, respectively and are plotted with blue markers
in Fig. 7.

To evaluate the accuracy of three extracted SWPs,
we determine the position error of the extracted SWP by using
the formula

E(%) =
|θmCal − θExact |

θExact
× 100, (46)

where θExact is the constant angle of the theoretical SWP, and
θmCal is the angle of the extracted SWP which is converted
from the coordinates of the ending point of themth segment of
extracted SWP. First, the positions of the ‘‘Line-1’’ extracted
SWP in Fig. 7 are compared with θExact = 135 degrees,
and the position error E(%) versus the distance of the SWP
flowing from the ellipsoid center are plotted in Fig. 10 (a).
Obviously, the value of E(%) is below 0.001 at all distances.
Second, the positions of the ‘‘Line-2’’ extracted SWP are
compared with θExact = 60 degrees, and the position error
E(%) versus the distance of the SWP flowing from the ellip-
soid center are plotted in Fig. 10 (b). The value of E(%)
is below 0.1 at all distances. In case that θs is increased to
20 degrees, the value of E(%) is below 0.2 at all distances.
Last, the positions of the ‘‘Line-3’’ extracted SWP are com-
pared with θExact = 270 degrees, and the position error E(%)
versus the distance of the SWP flowing from the ellipsoid
center are plotted in Fig. 10 (c). The value of E(%) is below
0.0002 at all distances.

3) EXTRACTED SWPS OVER INVERTED ELLIPSOID
This work uses the formulas of the inverted ellipsoid listed
in Table 1 to generate the contour lines, which are in a
circle shape. The inverted ellipsoid comprises five contour

FIGURE 10. Position error E(%) versus the distance of the SWP flowing
from the ellipsoid center.

lines, namely -2000, -1998, -1964, -1854 and -1653 meters,
respectively. Notice that the coordinates of contour lines
are the same as those in ellipsoid, but their elevations are
negative. They are plotted in Fig. 8. Totally, a boundary C
in the numerical solution in (3) consists of 5 × (360/θs)
intervals (Cj).
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FIGURE 11. Position error E(%) versus the distance of the SWP flowing
from the border of inverted ellipsoid to the center.

Since we generate the coordinates of the contour lines with
the same sampling rate, used in ellipsoid, an equal amount of
memory is required. We set the length of an SWP segment
at r0 = 1.51m and locate the starting point EP1 in zone z4,
which is bounded by the contour lines h = −1653m and

FIGURE 12. Position error E(%) versus the distance of the SWP flowing
over a inclined plane.

h = −1854m, so that the starting point is very close to
the position, used to evaluate the error of D8 algorithm [4].
The distance between the starting points and the inverted
ellipsoid center is set at 900 meters. We select three starting
points along a circle with a radius of 900 meters to delin-
eate three extracted SWPs in three directions, namely 135,
60, and 270 degrees, where the extracted SWPs are labeled
by ‘‘Line-1’’, ‘‘Line-2’’, and ‘‘Line-3’’, respectively and are
plotted with blue markers in Fig. 8.

Fig. 11 presents the position error E(%) versus the distance
of the SWP flowing from the border of inverted ellipsoid to
the center. The position error E(%) is calculated with (46).
First, the positions of the ‘‘Line-1’’ extracted SWP are com-
pared with θExact = 135 degrees, and their error E(%) are
below 0.1 and are plotted in Fig. 11 (a). Also, the positions of
the ‘‘Line-2’’ and ‘‘Line-3’’ extracted SWPs are compared
with θExact = 60 and θExact = 270 degrees, respectively,
and their error E(%) are below 0.0002 and 0.00015, and are
plotted in Fig. 11 (b) and (c), respectively.

4) EXTRACTED SWPS OVER INCLINED PLANE
Unlike ellipsoid and inverted ellipsoid, the formula of the
inclined plane listed in Table 1 is used to generate only one
incomplete contour line which is in a square shape with the
dimension 900m × 900m. The four corner points along the
incomplete contour have different elevation levels, namely 0,
270, 630 and 360 meters, respectively. The sampled points
are plotted in Fig. 9. Then, a boundary C in the numerical
solution in (3) consists of 4 intervals (Cj).

After collecting the information of the boundary into the
memory, we set the length of an SWP segment at r0 = 20.0m.
To apply the method of [4], we put the starting points very
close to the position, used to evaluate the error of the D8
algorithm. Hence, we put the starting points at the coordinates
(−360, 600), (240,−540) and (600, 150) to delineate the
‘‘Line-1’’, ‘‘Line-2’’ and ‘‘Line-3’’ extracted SWPs in the
same direction, i.e. 36.855 degrees. We plot three extracted
SWPs with blue triangular markers in Fig. 9.
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FIGURE 13. Contour lines for calculation.

TABLE 2. Comparison of average SWP position error (%) of the
delineated SWPs.

Fig. 12 presents the position error E(%) versus the distance
of the SWPflowing over the inclined plane. The position error
E(%) is calculated with (46). The positions of the ‘‘Line-1’’,
‘‘Line-2’’ and ‘‘Line-3’’ extracted SWPs are compared with
θExact = 36.855 degrees. The errors E(%) of all extracted
SWPs are below 0.0002.

5) COMPARISON TO OTHER ALGORITHMS
In previous section, the position errors of the delineated
SWPs compared to the theoretical SWPs are calculated by
using the evaluation method in [4], and found that each

surface shape requires different resolution to achieve small
position errors. For example, an ellipsoid and an inverted
ellipsoid require higher resolution than a inclined plane.
In this section, we present the accuracy comparison between
the proposed algorithm and existing algorithms, including
D8, Rho-8, D8-LTD, FDFM, FMD-md and D∞. For fair
comparison, the proposed algorithm is tested with the same
set of surface shapes available in [4], namely, ellipsoid,
inverted ellipsoid and plane. Table 2 shows the average of
position errors of the proposed algorithm in Fig. 10 to Fig. 12
and the average of position errors of the existing algorithms.

The proposed algorithm significantly outperforms all exist-
ing algorithms. In the ellipsoid case, the average position
error of the proposed algorithm is 0.120% whereas the best
existing algorithm (D8-LTD) obtains 47.5%. In the inverted
ellipsoid case, the average position error from the proposed
algorithm is 0.120% whereas the best existing algorithm
(D∞) obtains 88.8%. In the plane, the average position error
from the proposed algorithm is 0.001% whereas the best
existing algorithm (D8-LTD) obtains 48.6%. Furthermore,
while increasing the resolution of input data from 90 to
180 does not improve the existing algorithms [4], it helps the
proposed algorithm achieve much smaller average position
error in case of ellipsoid and inverted ellipsoid.

B. NATURAL TERRAIN
This work considers the real terrain, referred to as the
Bang Wad area (Phuket, Thailand). This area often lacks
the water supply for the tourism demand. Therefore the
water management system must be improved. The center
of the Bang Wad has latitude 7.88708◦N and longitude,
98.33433◦E. In this area, the geologic substratum is consti-
tuted of igneous rock. The topography can be described as
fairly complex as a result of surface water erosion and active
landslide. To make a quantitative analysis of the extracted
SWPs on real terrains, a 30 × 30 DEM matrix is chosen
and is downloaded from the Earth Science Data Systems
(ESDS) (https://earthdata.nasa.gov/learn/articles/new-aster-
gdem) with a horizontal resolution of 30 meters and a vertical
resolution of 1 meter. The elevation ranges from 515.0 to
45.0 meter amsl (above mean sea level). Fig. 13 presents a
considered area of 5000 × 10000 m2 in which elevations are
illustrated with contour lines from 500.0 to 100.0 meter amsl
(above mean sea level). Note that the gray contour lines are
at an elevation level of below 300 meters and are very long.

To validate that the proposed algorithm can delineate the
SWPs with the incomplete contour lines, we compare the
obtained results with the SWPs from the complete contour
lines. First, we select an area which has the SWPs flowing
down from a top hill to the Bang Wad Dam. The elevation
levels of this area are presented with contour lines from 500 to
340 meters. Second, we determine the contour lines’ reso-
lution that is appropriate for our proposed SWP delineation
algorithm. The appropriate resolution will make the delin-
eation fast and accurate. By trial-and-error, a contour line
should contain the discrete elevation data at every 20 meters,
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FIGURE 14. Comparison between the SWPs using the complete contour lines and using the type-1/type-2 incomplete contour liens.

and a contour interval between two adjacent contour lines
should be 20 meters or below. For the sake of computation

time and efficiency, we choose a contour line interval of
20 meters as depicted with green lines in Fig. 13. Third, some
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TABLE 3. Computation time.

contour lines are converted into incomplete contour lines. The
contour lines that are not crossed over by the SWPs flowing
down from the top hill to the Bang Wad Dam are converted
into incomplete contour lines.

Fig. 14 (a) presents the complete contour lines which are
the input data of the proposed algorithm depicted with the
green lines. To delineate the SWPs from these complete
contour lines, we employ Algorithm 1, which determines the
SWP direction in steepest descent with θmin, and let every
SWP segment have an equal length of r0 = 0.5 meter.
In Fig. 14 (b), we choose the extracted SWPs’ starting points
EP1, which are labeled on the red line between the contour
lines of 500 and 480 meters. Then, the proposed algorithm
delineates the continuous SWPs, some of which converge
(labeled with ‘‘C1’’ and ‘‘C2’’) while the others diverge
(labeled with ‘‘D’’).

Next, we convert the complete 20-m contour lines in
Fig. 14 (a) into the incomplete contour lines in two dif-
ferent types, namely type-1 and type-2 which are plotted
in Fig. 14 (c) and (e), respectively. Since we focus on the
SWPs located over the right-hand side of the hill, we do
not make any change to these contour lines and shorten the
length of the contour lines on the left-hand side of the hill.
The type-1 incomplete contour lines in Fig. 14 (c) com-
prise only two incomplete contour lines at the elevation of
360∗ and 340∗ meters. The type-2 incomplete contour lines
in Fig. 14 (e) comprise all incomplete contour lines at the
elevation between 500 and 340meters. Then, we use previous
configuration in Algorithm 1 to delineate the SWPs in cases
of the type-1 and type-2 incomplete contour lines, which are
shown in Fig. 14 (d) and (f), respectively. The obtained results
point out that the SWPs’ positions in Fig. 14 (d) are exactly
the same as the reference which are the extracted SWPs from
the complete contour lines in Fig. 14 (b).Moreover, the SWPs
are converging at the same points, which are labeled with
‘‘C1’’ and ‘‘C2’’, and are diverging at the same points, which
are labeled with ‘‘D’’. Likewise, in Fig. 14 (f) the converg-
ing SWPs (which are labeled with ‘‘C1’’ and ‘‘C2’’) and
diverging SWPs (which are labeled with ‘‘D’’) are exactly the
same as the delineated SWPs from the complete contour lines.
Therefore, the proposed algorithm maintains the accuracy of
the delineated SWPs even though the input contour lines are
incomplete.

To demonstrate the advantage of the proposed algorithm
in terms of computation time, we measure the computation
time of each mentioned case. The computation time depends
on i) the number of zones, ii) the number of the contour lines,

FIGURE 15. Delineating SWPs with θmax and the type-2 incomplete
contour lines.

iii) the number of the sampled points along a contour line,
and iv) the length of the SWP segment. To analyze the perfor-
mance of the proposed algorithm, we compare computation
times in three cases, namely complete contour lines, type-1
incomplete contour lines and type-2 incomplete contour lines,
which are shown in Fig. 14 (a), (c) and (e), respectively.
In each case, we designate a catchment area of nine zones
and a position as the starting point for all cases. The calcu-
lation is in the environment with Intel(R) Xeon(R) processor
(E3-1225 v5) 4-core 3.7GHz/8MB cache, 8GB memory, and
Fedora Linux (Workstation) version 35. The used compiler
is GCC 11.2.1 (Red Hat 11.2.1-9). In Table 3, the proposed
algorithm can reduce the total computation time from 21 to
3 minutes when using the type-2 incomplete contour
lines.

All along, the SWPs are delineated from upper contour
line to lower contour line. In fact, the proposed algorithm
can also delineate SWPs in the reverse direction, that is,
from lower contour line to upper contour line as shown
in the following example. First, the input data are chosen.
We choose the type-2 incomplete contour lines as the input
data to demonstrate the robustness of the proposed algorithm
as shown in Fig. 15. Second, we configure Algorithm 1 with
θmax instead of θmin to guide the SWP direction in steepest
ascent. Third, we put the starting points along the twelve sink
mouths which are depicted along the purple line in Fig. 15.
Executing the Algorithm 1, we obtain the SWPs which are
depicted with the blue lines in Fig. 15. Note that the sink
mouths depicted with ‘‘C1’’ and ‘‘C2’’ have the SWPs which
are surrounding wider area than the sink mouths labeled with
‘‘D’’. We obtain the same results when choosing the type-1
incomplete contour lines or the complete contour lines as
the input data. With all the obtained results, the proposed
algorithm can delineate valid reverse SWPs. The purpose
of delineating reverse SWPs is to identify the boundary of
the catchment area. The size of the catchment area is an
essential parameter in the hydrological model [42]. It is used
to calculate the water flow rate and evaluate the flood risk
level.
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VII. CONCLUSION
This paper introduces a new contour-based algorithm
for delineating the SWPs from a DEM image. Unlike
conventional contour-based algorithms, which demands
computation resources, the proposed algorithm requires less
computation resources while maintaining the position accu-
racy of the delineated SWPs. The semi-analytical solution of
Laplace’s partial differential equation is used to identify the
SWP direction in either the steepest downslope or steepest
upslope. With the formulated semi-analytical solution based
on BEM, the problem domain is discretized along the contour
lines instead of the area surrounding the contour lines. There-
fore, the domain is parameterized by one variable instead
of two variables. Also, the possible SWP direction ranges
from 0 to 360 degrees. To validate the proposed algorithm,
the method to measure the SWP position error, compared
with the theoretical SWPs, in [4] is used here. The standard
synthetic surfaces, where theoretical SWPs exist, namely
ellipsoid, inverse ellipsoid, and inclined plane, were used for
validation. The position error E(%) versus the distance of
the SWP over the ellipsoid, the inverse ellipsoid, and the
inclined plane are all below 0.0002, and are less than the error
of any grid-based algorithms, which are in the ranges from
16.3 to 75.2.

Moreover, the semi-analytical solution is robust to BEM
with incomplete contour lines, which demand even less com-
putation resources. The real terrain with dam and mountains,
where incomplete contour lines exist due to the very long
contour lines at foothills, were used to show the robustness.
In doing that, we compare the SWPs that are delineated from
incomplete contour lines, which are shortened differently.
All obtained SWPs are smooth all the way from the upper
contour line to the lower. Most importantly, they converge
identically when the length of the SWP segment is set
at or less than 0.5 meter, and the contour line interval is
20 meters or less, and the spacing between adjacent discrete
elevation data is 20 meters or narrower. Also, they diverge
identically.

One of the main practical advantages, the proposed algo-
rithm can also delineate SWPs from the lower contour line
to the upper. In other words, SWPs are delineated in the
reverse direction of water flow. The delineated SWPs can
be used to identify the catchment area’s boundary that is
beneficial for the catchment’s estimation in the hydrological
model to analyze the water flow rate. However, we found
that, in the phase of determining the direction of the SWP
segment, the criteria for choosing the direction of the steep-
est ascent is less accurate when the starting points of the
SWP segment are designated inside the inappropriate area;
for example, the center of the area where the spatial dis-
tance between adjacent contour lines exceeds 50 meters.
Therefore, we should be aware of this limitation when
applying the proposed algorithm to estimate the catchment
area.

APPENDIX A
APPROXIMATION OF GRADIENT
The numerical solution of ∇P(h(EP)) is

ψ ∇Ph(EP) =
N∑
j=1

(
αjF ′αj (EP, EQ)+ βjF

′
βj (EP, EQ)

+ γjF ′γj (EP, EQ)+ ηjF
′
ηj (EP, EQ)

)
−

N∑
j=1

(
ζjF ′ζj (EP, EQ)+ ξjF

′
ξj (EP, EQ)

)
(47)

where:

F ′αj (
EP, EQ) =

∫
Cj

s3

L3j

EP− EQ

|EP− EQ|2
dsQ (48)

F ′βj (
EP, EQ) =

∫
Cj

s2

L2j

EP− EQ

|EP− EQ|2
dsQ (49)

F ′γj (
EP, EQ) =

∫
Cj

s

Lj

EP− EQ

|EP− EQ|2
dsQ (50)

F ′ηj (
EP, EQ) =

∫
Cj

EP− EQ

|EP− EQ|2
dsQ (51)

F ′ζj (
EP, EQ) =

∫
Cj

s

Lj

(
1

|EP− EQ|2
n̂

− 2

(
EP− EQ

)
· n̂( EQ)

|EP− EQ|4

(
EP− EQ

) dsQ (52)

F ′ξj (
EP, EQ) =

∫
Cj

(
1

|EP− EQ|2
n̂

− 2

(
EP− EQ

)
· n̂( EQ)

|EP− EQ|4

(
EP− EQ

) dsQ (53)

The F ′αj , F
′
βj
, F ′γj , F

′
ηj
, F ′ζj and F ′ξj are geometric terms,

as known as shape function. Their values do not depend on the
elevation function and its gradient. They depend only on the
shape of the boundary and the position of the point EP, and can
be calculated after the boundary and point EP were specified.

APPENDIX B
APPROXIMATION OF GRADIENT
OF GRADIENT
The numerical solution of ∇2

P(h(EP)) is

ψ
[
∇

2
Ph(EP)

]
= −

N∑
j=1

(
ζjF ′′ζj (EP, EQ)+ ξjF

′′
ξj (EP, EQ)

)
+

N∑
j=1

(
αjF ′′αj (EP, EQ)+ βjF

′′
βj (EP, EQ)

+ γjF ′′γj (EP, EQ)+ ηjF
′′
ηj (EP, EQ)

)
, (54)
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where

F ′′ζj (
EP, EQ) =

∫
Cj

s

Lj

(
−2

|EP− EQ|4
n̂
(
EP− EQ

)

+

−2
(
EP− EQ

)
· n̂

|EP− EQ|4
III +

−2

|EP− EQ|4

(
EP− EQ

)
n̂

+

8
(
EP− EQ

)
· n̂

|EP− EQ|6

(
EP− EQ

)2 dsQ (55)

RLF ′′ξj (
EP, EQ) =

∫
Cj

(
−2

|EP− EQ|4
n̂
(
EP− EQ

)

+

−2
(
EP− EQ

)
· n̂

|EP− EQ|4
III +

−2

|EP− EQ|4

(
EP− EQ

)
n̂

+

8
(
EP− EQ

)
· n̂

|EP− EQ|6

(
EP− EQ

)2 dsQ. (56)

RLF ′′αj (
EP, EQ) =

∫
Cj

s3

L3j

(
1

|EP− EQ|2
III

− 2
1

|EP− EQ|2

(
EP− EQ

)2)
dsQ (57)

RLF ′′βj (
EP, EQ) =

∫
Cj

s2

L2j

(
1

|EP− EQ|2
III

− 2
1

|EP− EQ|2

(
EP− EQ

)2)
dsQ (58)

RLF ′′γj (
EP, EQ) =

∫
Cj

s

Lj

(
1

|EP− EQ|2
III

− 2
1

|EP− EQ|2

(
EP− EQ

)2)
dsQ0 (59)

RLF ′′ηj (
EP, EQ) =

∫
Cj

1

|EP− EQ|2
III

− 2
1

|EP− EQ|2

(
EP− EQ

)2
dsQ (60)

The F ′′αj , F
′′
βj
, F ′′γj , F

′′
ηj
, F ′′ζj and F ′′ξj are geometric terms,

as known as shape functions. Their values do not depend on
the elevation function nor its gradient. They depend only on
the shape of the boundary and the position of the point EP and
can be calculated once the boundary is specified and the point
EP is chosen.

APPENDIX C
APPROXIMATION OF SURFACE
If the length of the SWP segment is short enough, the accept-
able approximation can be obtained using only the constant,
linear, and quadratic terms:

h(r, θ) ≈ a0 + r(a1 cos θ + b1 sin θ )

+ r2(a2 cos 2θ + b2 sin 2θ); r < r0 (61)

Since the longest length of the SWP segment that still gives
an acceptable approximation depends on the shape of the
surface, r0 is chosen by trial-and-error.

To fit the quadratic approximation in (61), we select the
value of the coefficients a0, a1, a2, b1 and b2 for r < r0.
Usually, these coefficients are not unique since they depend
on the criterion that we adopt to measure the difference
between the surface and the approximation. Here, we adopt
the criterion, where the approximation error at r = 0 is zero.

Since the approximated surface h(0, θ) equals the elevation
h(x, y) at point EP and the series expansion has only a0 left
when r = 0, we obtain

h(0, θ) = a0 = h(EP(x, y)). (62)

where the polar coordinates r and θ can be converted to
the Cartesian coordinates x and y by using the trigonometric
functions, namely sine and cosine: x = r cos θ and y =
r sin θ , and h(EP) can be determined from (27).

Next, we get rid of the term with a0 to find coefficients
a1 and b1 by taking first derivative to (61), and get rid of the
term with a2 and b2 by substituting r = 0, we obtain

hr (0, θ) = hx(EP)xr + hy(EP)yr
a1 cos θ + b1 sin θ = hx(EP) cos θ + hy(EP) sin θ, (63)

where, ∂x/∂r = cos θ and ∂y/∂r = sin θ . When substituting
θ = 0 and θ = π/2 into (63), we obtain the coefficients
a1 and b1, respectively, that is

a1 = hx(EP) (64)

b1 = hy(EP), (65)

where the coefficient a1 and b1 are fit by some components of
the gradient of the elevation∇Ph(EP), which can be determined
from (32). Then, we take the second derivative to the elevation
h(x, y) at point EP with respect to r . We obtain

hrr (0, θ) = (hx(EP)xr + hy(EP)yr )r
= hxrxr + hxxrr + hyryr + hyyrr
= (hxxxr + hxyyr )xr + hxxrr
+ (hyxxr + hyyyr )yr + hyyrr

= hxx(xr )2 + 2hxyyrxr + hyy(yr )2

+ hxxrr + hyyrr (66)

When substituting ∂2x/∂r2 = ∂2y/∂r2 = 0, we obtain

hrr (0, θ) = hxx cos2 θ + hyy sin2 θ

+ 2hxy cos θ sin θ (67)

Since the second derivative of the approximated surface
in (61) equals hrr in (67), we obtain

2(a2 cos 2θ + b2 sin 2θ)

= hxx cos2 θ

+ hyy sin2 θ + 2 hxy cos θ sin θ. (68)
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When substituting θ = 0 and θ = π/4 into (68), we obtain
the coefficients a2 and b2, respectively, that is

a2 =
1
2
hxx(EP)

b2 =
1
4
hxx(EP)+

1
2
hxy(EP)+

1
4
hyy(EP) (69)

To satisfy (1), hxx(EP)+ hyy(EP) equals zero. Therefore,

a2 =
1
2
hxx(EP)

b2 =
1
2
hxy(EP), (70)

where the coefficient a2 and b2 are fit by some components
of the gradient of gradient of the elevation∇2

Ph(EP), which can
be determined from (41). Now, we obtain the approximated
surface over the neighborhood of the starting point of the
SWP segment

h(r, θ) ≈ h(EP)

+ r
[
hx(EP) cos θ + hy(EP) sin θ

]
; r < r0.

+ r2
[
1
2
hxx(EP) cos 2θ +

1
2
hxy(EP) sin 2θ

]
(71)

APPENDIX D
DETERMINATION OF THE STEEPEST DESCENT
To find the θmin, we differentiate the trace on the circle of the
approximated surface, that is

dh
dθ

(r0, θ) = r0
[
−hx sin θ + hy cos θ

]
+ r20

[
−hxx sin 2θ + hxy cos 2θ

]
. (72)

Then, we equate the derivative to zero, that is

hx sin θ + r0hxx sin 2θ = hy cos θ + r0hxy cos 2θ. (73)

To solve this equation, trigonometric identities are applied
to convert the equation into a fourth order (quartic) equa-
tion with either cos θ term or sin θ term. First, substituting
sin 2θ = 2 sin θ cos θ and cos 2θ = 2 cos2 θ − 1 into (73),
as well as replacing cos θ by ν and sin θ by ω, we obtain

(hx + 2 hxxr0ν) ω = hyν + hxyr0
(
2ν2 − 1

)
. (74)

Next, since ν2 + ω2
= 1, ω is replaced by

√
1− ν2, that is,

(hx + 2 hxxr0ν)
√
1− ν2

= hyν + hxyr0
(
2ν2 − 1

)
. (75)

Last, taking square to both sides of the equation to get rid of
the square root, we manipulate into

c4ν4 + c3ν3 + c2ν2 + c1ν + c0 = 0, (76)

where the coefficients ci equal

c4 = 4 r20
(
h2xy + h

2
xx

)
c3 = 4 r0

(
hxhxx + hyhxy

)

c2 = h2x + h
2
y − 4 r20

(
h2xx + h

2
xy

)
c1 = −2r0

(
hyhxy + 2 hxhxx

)
c0 = h2xyr

2
0 − h

2
x . (77)

The standard techniques can be used to solve the roots of
the quartic equation in (76), and the four (possible complex)
roots: ν1, ν2, ν3, ν4 are obtained. Next, substituting these roots
into (74) gives the four corresponding values: ω1, ω2, ω3, ω4.
Finally, θmin can be calculated using the ν,ω pairs and the arc-
tangent function. Note that θmin are real number when the ν,ω
pairs are real numbers with magnitudes ≤ 1. Pairs, which are
complex numbers or have magnitudes greater than 1, should
be discarded.
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