
Received May 19, 2022, accepted May 27, 2022, date of publication June 2, 2022, date of current version June 8, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3179712

An Approach to Develop Collaborative
Virtual Labs in Modelica
CARLA MARTIN-VILLALBA AND ALFONSO URQUIA
Departamento de Informática y Automática, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain

Corresponding author: Carla Martin-Villalba (carla@dia.uned.es)

This work was supported in part by the Ministerio de Economía y Competitividad of Spain under Grant DPI2013-42941-R, and in part by
the Vicerrectorado de Investigación e Internacionalización of Universidad Nacional de Educación a Distancia (UNED) for Dissemination
of Research Results (Innovation in Education) under Project GID2016-04.

ABSTRACT Virtual labs are valuable educational resources in control education, and are widely used in
the process industry as tools for operator training and decision aid. In these application domains, virtual
labs typically rely on the interactive simulation of large-scale hybrid-DAE models with components of
different engineering domains, whose description can be greatly simplified by the use of the Modelica
language. Existing free and commercial Modelica libraries of different domains can be used to describe
these models. The Interactive Modelica library facilitates developing virtual labs based onModelica models,
using only Modelica. A new major release of the Interactive Modelica library is presented in this paper,
whose most relevant feature is to facilitate the implementation of collaborative virtual labs written using
only the Modelica language. This library can be used with the environment OpenModelica, facilitating
the implementation of cooperative virtual labs using only open software. This type of virtual lab, which
allows several students to interact cooperatively with the same model simulation run, is an effective
tool in the context of collaborative learning methods. The efficient communication among the graphical
user interfaces and the simulation model is a key issue. We developed a new communication protocol,
a synchronization algorithm, and redesigned the Modelica classes of the library to make the communication
completely transparent to virtual lab developers. The implementation of a collaborative virtual lab for
process control education, based on a simplified version of the Tennessee Eastman process, is discussed.
The Interactive Modelica library is freely distributed under Modelica License 2 and can be downloaded
from http://www.euclides.dia.uned.es/Interactive

INDEX TERMS Chemical engineering, control engineering education, cooperative virtual lab, educational
simulation, Modelica, object oriented modeling, process system engineering.

I. MOTIVATION AND SIGNIFICANCE
Collaborative virtual labs are effective pedagogical tools
in collaborative learning, or group learning, as they allow
students to co-operate, combining their efforts to find the
solution to a common problem. Provide collaborative features
to virtual labs is an active research field. Three different
approaches are found in the literature [1]: (1) inserting
the virtual lab in a Learning Management System (LMS),
(2) embedding the virtual lab into a Virtual World (VW), and
(3) supportingmultiple participants to handle the same virtual
lab by allowing the participants to interact simultaneously on
the same virtual lab.

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

Embedding the virtual lab in an LMS or a VW allows its
users to employ the collaboration tools, synchronous and/or
asynchronous, that the LMS or VW already has to share
ideas, information, and results concerning the virtual lab, etc.
Besides, users can share information while interacting with
the virtual lab if they use synchronous tools such as chats,
voice over IP, or videoconferences. LMS typically include
chats, videoconferences, whiteboards, forums, wikis, on-line
forums, discussion boards, and mailing lists and most VW
include instant messaging, 3D motion in the VW, and voice
over IP channels. On the other hand, we can share the same
experience by allowing several participants to handle the
same virtual lab. This is the approach that we have followed.
To this end, the virtual lab becomes the main source of
communication among participants through real-time and

58938 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-9809-4620
https://orcid.org/0000-0003-0124-3111
https://orcid.org/0000-0003-3264-185X


C. Martin-Villalba, A. Urquia: Approach to Develop Collaborative Virtual Labs in Modelica

synchronized communication among virtual labs. We have
developed a framework to implement collaborative virtual
labs which follow this third approach.

Process System Engineering (PSE) is part of the curricu-
lum in engineering studies such as aerospace, mechanical,
chemical, industrial and electrical. PSE covers a wide range
of topics, such as [2]: system modeling and simulation,
optimization, dynamics and control, and process and plant
design. To master these topics, it is important not only to
have a good theoretical background but also an engineer
ability, i.e. insight and intuition, usually obtained by means
of many hours of laboratory work, that can be reduced by
using virtual labs. Virtual labs have become widely used
in distance universities, where students don’t have so many
in-person practical lessons. There are many examples of
virtual labs for PSE education in literature [3]–[5], but there is
a lack of frameworks that facilitate the easy implementation
of collaborative virtual labs for PSE education based on
complex multi-domain models.

Virtual labs are essentially composed of three parts: the
simulation of a mathematical model; the interactive student-
to-model interface, called the virtual lab view; and a narrative
that typically describes the learning outcomes and activities.
Interactivity and visualization are interrelated in virtual
labs: students are allowed to change model variables by
manipulating the view graphic components and can observe
the model behavior by means of animated visualizations.
Visualization is an important aid to illustrate the complex
problems that arise in PSE [6]. Collaborative virtual labs have
several instances of the virtual lab view, which are typically
executed on different computers, and allow several students
cooperatively interact with the same model simulation run.

In this article, a new major release of the Interactive
Modelica library is presented. Its most relevant feature is
supporting the implementation of collaborative virtual labs,
with multiple instances of the same view that can be executed
on different computers, facilitating the interaction of several
students with the same simulated model. The communication
layer of the library has been completely changed to allow
efficient synchronization among the simulation model and
several views: every view has to reflect the same model
behavior at the same time, and interactive changes on the
model state are allowed by manipulating any of the views.
Additional visualization components are also provided. The
code of this new release, named Interactive 3.0, has been
developed to be fully compatible with OpenModelica and
Dymola, and it has been tested with Dymola 2021 and
OpenModelica 1.16 64 bits.

Interactive 3.0, that can be freely downloaded from [7],
is distributed as a Modelica library named Interactive, along
with two dynamic-link libraries (DLL) named TCPFunctions
and InteractiveLib. Interactive 3.0 is geared to Windows
systems because some of its files (VTK, TCPFunctions, Qt,
and InteractiveLib libraries) are specific for Windows 64 bits
operating systems. TCPFunctions uses the windows socket
library, so its code should be changed to be ported to Linux.

VTK, Qt, and InteractiveLib can easily be recompiled to a
Linux version. There exist Linux versions of the most popular
Modelica environments such as Dymola and OpenModelica,
that can be used to simulate any Modelica model.

The main contribution of this paper is to provide a free
framework for developing collaborative virtual labs using
only Modelica. To this end, a new synchronization algorithm
and a new communication layer have been developed and
included in the Interactive Modelica library. The communi-
cation architecture has a fundamental role in these virtual
labs, and will be explained in Section V. Additionally,
the Interactive Modelica library has been modified to be
compatible with the Open-source Modelica environment
OpenModelica, facilitating a free solution to collaborative
virtual lab implementation.

The structure of the paper is as follows. Firstly, the
related work is discussed in Section II, and the design
principles and implementation of the Interactive 3.0Modelica
library are discussed in Sections III to V. The software
architecture of the Interactive 3.0 Modelica library, focusing
on the classes that include the communication code and the
TCPFunctions DLL, is discussed in Section III, and the Inter-
activeLib DLL is described in Section IV. The most relevant
aspects of the communication framework are discussed in
Section V. Finally, the Interactive 3.0 Modelica library use
is illustrated in Section VI through the development of a
collaborative virtual lab based on the Tennessee Eastman
simplified model [8], [9], a well-known process in chemical
engineering. This virtual lab is used to get insight into the
behavior of this chemical process plant, and to apply different
multi-loop control and optimization strategies.

II. RELATED WORK
The object-oriented modeling language Modelica [10]
greatly facilitates the description of hybrid dynamic models,
non-causal models described by systems of differential-
algebraic equations (DAE) and events. Modelica provides
language constructs to describe time and state events, to
reinitialize state variables, to update discrete-time variables,
to declare object-oriented constructs, connectors to specify
the interaction between models, etc. Besides, there has
been an international effort to provide Modelica libraries in
different domains (hydraulic, thermal, chemical, mechanical,
etc.), some of them free, well documented, and ready to be
used. As this type of mathematical model (i.e, hybrid-DAE
system) is widely used in process modeling, Modelica is well
suited for implementing the type of models found in PSE and
process industry.

The Modelica modeling environment (e.g., Dymola [11]
and OpenModelica [12], [13]) makes the required manipula-
tion on the model (e.g., remove redundant equations, analyze
the computational causality, sort the equations, DAE index
reduction, symbolical manipulation of the linear systems
of simultaneous equations, tearing of nonlinear systems of
simultaneous equations), and generates the executable code
adding numeric solvers. These environments usually have

VOLUME 10, 2022 58939



C. Martin-Villalba, A. Urquia: Approach to Develop Collaborative Virtual Labs in Modelica

graphical model editors that allow composing the model
by simply dragging and dropping the components of the
Modelica model libraries.

Different research lines have been followed to facilitate
interactive simulation and visualization of Modelica models.
One approach is to provide Modelica modeling environments
with capabilities for interactive simulation. The OpenMod-
elica Connection Editor (OMEdit) provides an interface to
the interactive simulation module (OMI) in order to support
interactive changes in the model parameters during the
simulation run [14]. A web service communication layer for
OpenModelica [12], [13] was implemented, and employed
in [15], [16] to create interactive online simulations that allow
users to change model parameters during the simulation run.

Other approaches are based on cosimulation. Virtual labs
for control education were developed in [17] combining
Dymola and Ejs [18]; and Dymola and Sysquake [19].
Cosimulation and model exchange based on Functional
Mock-up Interface [20] is exploited in [21]–[23] to develop
interactive simulations of Modelica models.

The Modelica_DeviceDrivers library [24] allows setting
the value ofmodel input variables using external devices (e.g.,
keyboard, joystick, etc.). The MultiBody Modelica library
includes animated objects to visualize the simulation results.
TwoModelica libraries for visualization areModelica3D [25]
and Visualisation [26].

VirtualLabBuilder [17] and Interactive [27] are two free
Modelica libraries that facilitate composing the virtual lab
view; establishing the relationship between model variables
and the visual properties of the view; and linking the
HTML pages that constitute the virtual lab narrative. The
virtual lab view is described instantiating and connecting
the graphic elements provided in VirtualLabBuilder or
Interactive, forming a hierarchical tree that reflects the virtual
lab view layout. VirtualLabBuilder and Interactive graphic
elements (e.g., containers, animated 2D geometric shapes,
basic elements and interactive controls) are Java and C++
code generators, respectively. During the initialization stage
of the virtual lab simulation, the virtual lab view application
is automatically generated, and the bidirectional model-view
communication is established. This is accomplished by the
Modelica classes describing the graphic elements, which
contain in their initialization sections calls to functions
aimed to write this code. The virtual lab view generated
by VirtualLabBuilder is programmed in Java and doesn’t
contain 3D geometric shapes, whereas the view generated
by Interactive is programmed in C++ using the Qt, VTK,
and Qwt libraries, has better graphic quality and includes 3D
geometric components.

For a Modelica model to be employed in a virtual
lab implemented using VirtualLabBuilder or Interactive, it
needs to be adapted according to the methodology proposed
in [28]. All model quantities that will be allowed to change
interactively (the so-called interactive quantities) have to be
selected as state variables. In particular, model parameters
are transformed into interactive quantities by describing them

as state variables with zero time-derivative. As different
interactive actionsmay require different selections of the state
variables, this approachmay require executing in parallel sev-
eral simulation instances, with different selections of the state
variables. Modelica facilitates model developers to select the
model state variables, and supports the reinitialization of state
variables at events.

Previous versions of the VirtualLabBuilder and Interactive
Modelica libraries facilitate the development of single-user
virtual labs whose model and view run locally, on the
same computer. VirtualLabBuilder is only compatible with
Dymola, whereas the latest version of Interactive can
be used in combination with other Modelica modeling
environments. Interactive 3.0 has been tested with Dymola
and OpenModelica in Windows.

III. THE INTERACTIVE MODELICA LIBRARY
The Interactive 3.0 Modelica library is structured into four
packages (see Fig. 1). The VLabModels, ViewElements and
Examples packages contain the Modelica classes that the
virtual lab developer employs. The src package contains
partial classes and Modelica functions not intended to be
directly used by virtual lab developers.

The src.CServer package encapsulates the C functions
included in the TCPFunctions DLL. The TCPfunction DLL
includes functions written in C to create a server, to attend
requests from clients, and to send and receive TCP messages.
There are calls to these functions from the following
three partial classes of the Interactive Modelica library:
PartialView, Drawable and SendElement.

To perform these communication tasks, the TCPFunctions
DLL includes the following C functions:
– startNClientCserver: starts the server and waits until a

determined number of views have been connected. The
number of views is a parameter of the VirtualLab class.
This function returns a vector with the socket number of
each connected view, which is necessary to send/receive
data to/from these views.

– sendOutput: sends a string as a TCP message to a view.
The string contains the value of the model variables that
are visualized by the views.

– getVarValues: receives a TCP message containing a
string with the following information: number of
changes performed on the view, a reference to the
changed model variables, and their new value.

– sendChalk: sends a 1/0 value depending on whether the
changes performed on the view have been applied or not
to the model.

The VLabModels package includes the PartialView and
VirtualLab classes. The virtual lab is described as a Modelica
class that includes an object of the VirtualLab class, which
has two objects: Model and View. The classes of these two
objects, initialized to a null class, must be redeclared to the
classes describing the physical model and the view, making
use of the Modelica facility to redeclare the class of an
object [29]. The class describing the view must inherit from

58940 VOLUME 10, 2022



C. Martin-Villalba, A. Urquia: Approach to Develop Collaborative Virtual Labs in Modelica

FIGURE 1. The interactive 3.0 Modelica library.

the PartialView abstract class. The procedure to build the
virtual lab will be illustrated in Section VI by means of a case
study.

The PartialView class has been redesigned to include the
following code concerning the communication:

– Declaration of parameters and global variables related
to the server-clients communication, such as the array
of socket descriptors.

– Initial algorithm section, executed in the Modelica
environment before the simulation starts, includes a call
to the function startNClientCserver.

– When clause, whose code is executed at regular steps.
The code of this clause includes a call to the getVar-
Values function, and a sentence changing the value of a
global boolean variable named refreshView. The change
of the value of the refreshView variable, triggers an event
in the SendElement and Drawable partial classes
that causes the execution of their communication code.
We call the objects that inherit these two partial classes
interactive objects, and the number of interactive objects
existing in the view description nI.

The Container package includes Modelica classes describ-
ing windows, panels, the plot container (PlottingPanel class)
and the animation container (Canvas class). These classes
don’t include any communication code.

TheDrawables package includesModelica classes describ-
ing components that are hosted inside a PlottingPanel
model or a Canvas model. It can be selected by the
developer whether the variables of the objects of these
classes (such as radius, position, etc.) send or not their
value each communication interval to the view (i.e., are or
not interactive). The graphic components included in these
packages inherit from the Drawable class, which has been
modified to include the code to send the interactive variable
values to every view. The Drawable class is a partial
class that has two global variables: an array with the socket

descriptors corresponding to the views and the refreshView
variable. This class includes a when clause that is executed
only when there is a change of value in the refreshView
variable. This when clause includes calls to the sendOutput
function to send the interactive data associated to the graphic
component to every view. When it is detected that every TCP
connection is down, the simulation is terminated.

The InteractiveControls package includes Modelica
classes describing components such as numeric boxes that are
hosted inside a window or panel. These components inherit
from the ControlElement class, which includes code to
change the variable value associated with the component.
This variable is linked to amodel variable, allowing to change
the value of the model variables in a way transparent to the
user. Some of these components inherit additionally from
the SendElement class, which has the same communication
code that was included in the Drawable class.
The BasicElements package contains four classes: Label,

CheckBox, PauseButton, and Browser. Objects of
these classes can be included inside a window or panel.
PauseButton creates a button for pausing and resuming the
simulation. Browser creates a container of documentation in
HTML format.

IV. THE InteractiveLib DLL
The InteractiveLibDLL contains the C++ classes of the view
graphic elements and the code to communicate with a server.
The C++ source code generated from the Modelica view
description includes instantiations of InteractiveLib DLL
classes. The InteractiveLib DLL has been programmed in
C++ using Qt 5.12, Qwt 6.1, and VTK 7.1. libraries.

Qt [30] is an object-oriented cross-platform framework
aimed to develop applications that use C++ as a native
language and is available under the terms of GNU Lesser
General Public License. It was originally conceived to
facilitate the development of graphical user interfaces (GUIs)
using its Widgets module, but nowadays provides modules

VOLUME 10, 2022 58941



C. Martin-Villalba, A. Urquia: Approach to Develop Collaborative Virtual Labs in Modelica

for networking, databases, OpenGL, etc., and bindings for
different programming languages. A main feature of Qt
is its mechanism for communication between objects, the
signal slot mechanism. We have employed its capabilities for
networking, OpenGL, and the signal and slot mechanism in
the InteractiveLib implementation. The Qt library has been
used to develop the C++ code of the view corresponding
to the communication between the view and the model,
the containers and the interactive elements (i.e., sliders,
check-boxes, etc).

Qwt [31] is a set of widgets for technical applications
written in C++ and freely distributed as a set of files that
must be compiled and installed on the target system. Some of
its plots and trails are included in the InteractiveLib DLL.

VTK [32], [33] is an open-source toolkit for creating
leading-edge visualization and graphics applications that
manipulate and display scientific data, licensed under the
BSD license. Its core functionality is written in C++,
and runs on Linux, Windows, and Mac. VTK provides a
rendering abstraction layer over the underlying graphics
library (OpenGL for the most part), and tools for 3D
rendering, modeling, image processing, a suite of widgets
for 3D interaction, volume rendering, and extensive 2D
plotting capability. It supports a wide variety of visualization
algorithms and advanced modeling techniques, and it takes
advantage of both threaded and distributed memory parallel
processing for speed and scalability, respectively. There is
a special class included in VTK, named QVTKWidget, to
display a VTK window in a Qt window. VTK is used in
InteractiveLib DLL, in combination with Qt (by using the
QVTWidget class), to create the 3D animation elements such
as spheres, Halfpipe, ScalarBar, etc. and for the rendering and
the visualization.

The view code has two threads: a thread to handle the
graphical user interface and a thread exclusively dedicated to
communicate with the simulation model.

The communication thread connects to the server, sends
the new model variable values that have been modified
due to the user action on the interactive controls (e.g.,
sliders), gets a message from the server informing whether
or not the new values have been modified in the model, and
obtains the model variables values needed to refresh the view
(see Fig. 3).

The graphic components included in the Container, Draw-
ables, InteractiveControls and BasicElement packages of the
Interactive 3.0 Modelica library have an analogous class in
the InteractiveLib DLL. There is a MainWindow class
in Interactive, and a MainWindow class in InteractiveLib
implemented using Qt. This MainWindow class is in every
view description and includes the code to render the
animation and the graphs; and to close the view application.
The classes hosted inside a PlottingPanel and a Canvas
model have corresponding classes in the InteractiveLib DLL,
whose source code has been developed using Qwt and VTK
respectively. There is a special class included in VTK, named
QVTKWidget, to display a VTK window in a Qt window.

FIGURE 2. The centralized network of the collaborative system.

The corresponding class of the Interactive 3.0 Canvas class
inherits from QVTKWidget.

V. COMMUNICATION FRAMEWORK
The communication framework is based on the TCP protocol
and a multiple client server architecture. There is one model
simulation and multiple views, that are connected to the
model simulation using a peer to peer centralized network, as
is shown in Fig. 2. The communication engine is embedded in
each view and the model, which are always synchronized in
the same model state. The model simulation stops at regular
time steps to exchange TCP messages with each view, a
process explained below.

A. SERVER: MODEL SIMULATION
The virtual lab model is a Modelica class that has three
parameters to set up the model-views communication: the
port number where the views will be connected, number
of views to be connected with the simulation model
(nV), and time stamp between two successive model-view
communications (communication interval).

The Modelica class describing the virtual lab model
includes an object describing the Modelica model and an
object describing the view, and equations connecting the
model and the view variables. The procedure to build the
virtual lab will be illustrated in Section VI by means of a case
study.

Once the virtual lab model is executed, the model
simulation starts a TCP server that attends new TCP requests
from views in a fixed port, storing a connection handler for
each view connection in a global variable of the type array
declared in the PartialView class. The server waits until the
predefined number of views are connected to it, and then the
simulation begins.

The simulation is stopped at regular steps defined by the
communication interval using the sample built-in Modelica

58942 VOLUME 10, 2022



C. Martin-Villalba, A. Urquia: Approach to Develop Collaborative Virtual Labs in Modelica

FIGURE 3. UML activity diagram describing the exchange of information between the server and one of
the clients.

function. At these time instants, there is a synchronized and
bidirectional flow of messages between the model server and
each view client.

At these events, the following actions take place sequen-
tially (see Fig. 3).

1) The server waits for each view to send the number
of changes performed by the user and the new
values of the model variables (nV messages). The
server performs or not the changes from a determined
view.

2) The server sends a message to each view informing
whether the requested changes have been made, and
waits until every client acknowledges the message
reception (nV messages).

3) The value of the boolean variable refreshView is
changed.

4) This change triggers an event that causes every
interactive object (i.e., objects whose superclass is
Drawable or SendView) to send a message to each
view client. Thus, nImessages are sent to the nV clients
(nI · nV messages).

When the server detects that every client has been
disconnected, the simulation is terminated. If there are
simultaneously several views with a number of changes
greater than zero, the model has to select one of these views
and executes only the changes performed by manipulating
this view. The selection of this view can be implemented
in different ways. We have designed a simple selection

VOLUME 10, 2022 58943



C. Martin-Villalba, A. Urquia: Approach to Develop Collaborative Virtual Labs in Modelica

procedure to reduce the time to perform the selection and the
number of transmitted messages.

The selection procedure is as follows. During the connec-
tion of the view to the server, a priority is assigned to each
view, depending on the time instant that the view asked the
server to be a client. The first view is assigned the highest
priority, and the last view the lowest priority. When two or
more views send a number of changes different from zero,
the selected view is the one of them with the highest priority.
The model implements only the changes of this selected
view. As the selection procedure is known beforehand, the
instructor can use this information to prioritize a view with
respect to the rest.

The total number of messages in each communication
instant depends linearly on the number of views and
the number of interactive objects in each view. Thus,
the time involved in the communication increases linearly
with the number of views and the complexity of the
view.

B. CLIENTS: VIEW
The virtual lab view is a C++ application that contains
objects of classes included in the InteractiveLib DLL, that
are described in Section IV. This application has an object
called CommThread, a thread that handles the connection
to the model simulation through the TCP channel. This object
includes an array that contains pointers to each view object
whose properties are set to new values sent from the model
simulation (i.e., interactive object). Thus, the size of this array
is nI.

The CommThread object connects to the server, and then
starts a loop that repeats the following steps until the view is
closed.

1) It emits a signal to refresh every view window.
2) Then, sends the number of changes performed by the

user and the new model variable values that have
been modified due to the user action on the interactive
controls (e.g., sliders).

3) It gets a message from the server informing whether or
not the new values have been modified in the model.

4) It gets nI messages from the server, one message
from each interactive object with the new model
variables values needed to refresh the view (see
Fig. 3). The message includes a number to identify
the interactive object, which is required to obtain the
pointer to the corresponding object and update the
values accordingly.

VI. TENNESSEE EASTMAN SIMPLIFIED PROCESS
VIRTUAL LAB
The Tennessee Eastman Process model [34] describes a real
chemical process that contains a separator/reactor/recycle
arrangement, involving two simultaneous gas-liquid exother-
mic reactions. This non-linear dynamic model has been
employed as a benchmark for manufacturing process control,
statistical process monitoring, sensor fault detection, and

FIGURE 4. Diagram of the plant with the four PI controllers.

identification of data-driven network models. The Tennessee
Eastman Simplified Process (TES) model [8] is a simplifi-
cation of the Tennessee Eastman Process model. It considers
only one process unit, consisting of a combination of a reactor
and a separator.

The process unit of the TES model has 2 input flows
(named Feed 1 and Feed 2) and two output flows (named
Purge and Stream 4). Feed 1 contains the non-condensable
gases A and C, and trace amounts of an inert gas B.
Feed 2 only contains component A. The irreversible reaction
A + C −→ D occurs in the vapor phase under isothermal
operating conditions. The product D is a non-volatile liquid.
The process unit contains a vapor phase, composed of the A,
B, and C ideal gases, and a liquid phase composed of pure D.
Purge is a gas mixture flow composed of the A, B, and C ideal
gases. Stream 4 contains only the liquid D.

A. EDUCATIONAL GOALS
A collaborative virtual lab is designed to teach students the
dynamic behavior of the TES model, how to operate, control
and optimize this process unit, and the effect of disturbances.
The TES model is an example of a multi-input multi-output,
nonlinear, open-loop unstable system with fast and slow
dynamics. The control challenge is to maintain a specified
product rate by manipulating the Feed 1, Feed 2, and Purge
flows.

The multi-loop control strategy proposed in [8] is imple-
mented. A diagram of the controlled plant is shown in
Fig. 4. It consists of four PI controllers, PI_1 to PI_4, whose
pairs of controlled-manipulated variables are respectively: the
production rate (F4) and the valve position for Feed 1 (u1);
the reactor pressure (P) and the valve position for Purge (u3);
the concentration of component A in Purge (YA3) and the
valve position for Feed 2 (u2); and the reactor maximum
pressure (PMAX ) and the correction to the production rate
setpoint (F4SP). The operating pressure must be kept below
the shutdown limit of 3000 kPa. Students are asked to solve

58944 VOLUME 10, 2022



C. Martin-Villalba, A. Urquia: Approach to Develop Collaborative Virtual Labs in Modelica

FIGURE 5. The TESimplified Modelica library: a) structure; and b) diagram of the ReactorPID model.

the tasks working in a group, using the collaborative virtual
lab.

B. VIRTUAL LAB MODEL
A Modelica model of the TES process [8] was developed
in [9]. The methodology proposed in [28] has been applied:
the interactive quantities have been selected as state variables
using the Modelica facilities to set the state variables, and the
interactive parameters have been redefined as state variables
with zero time-derivative. The virtual lab view is composed
using Interactive 3.0. The complete virtual lab is distributed
in a library named TESimplified, written in Modelica 3.3 and
tested using Dymola 2021, and OpenModelica 1.16 64 bits
under Windows 2010.

The structure of the TESimplified Modelica library is
shown in Fig. 5a. The TES process unit is described in
the Reactor model. The PI controllers have limited output,
anti-windup compensation and setpoint weighting [35]. The
diagram of the controlled plant, described in the ReactorPID
model, is shown in Fig. 5b.
The parameters of the four PI controllers (i.e., proportional

gain, integral time constant, anti-windup compensation time
constant, setpoint weight, and upper and lower limits) are
interactive quantities of the virtual lab. The values of these
parameters given in [8] are taken as initial values for these
interactive quantities.

Other interactive quantities of the virtual lab are the
setpoints of the four PI controllers, the composition of Feed 1,
and the parameters of the reaction rate equation. The reaction
rate (RD) is assumed to depend only on the partial pressures
of A (PA) and C (PC ) as follows: RD = k0 · PαA · P

β
C . The

values of k0, α and β given in [8] are taken as initial values

FIGURE 6. Modelica model that describes the virtual lab view.

for these interactive quantities: k0 = 0.00117, α = 0.5,
β = 0.4, with RD expressed in kmol/h, and PA and PC
in kPa.

VOLUME 10, 2022 58945



C. Martin-Villalba, A. Urquia: Approach to Develop Collaborative Virtual Labs in Modelica

FIGURE 7. Virtual lab view automatically generated from the Modelica description.

C. VIRTUAL LAB VIEW
The virtual lab view is composed graphically by instantiating
and connecting elements of the Interactive 3.0 Modelica
library. The diagram of the Modelica model that describes
the virtual lab view is shown in Fig. 6. The virtual lab view
automatically generated from this description is shown in
Fig. 7.

The Modelica class that describes the view must, on the
one hand, be a subclass of the PartialView class, which is
included in the Interactive library and contains the code of
the model-view bidirectional communication. On the other
hand, it has to contain the components employed to define the
view, connected forming a tree structure. The PartialView
class contains an object named root. This object must be
connected to the rest of the view components following the
library connection rules. Thus, this component is the root of
the tree structure describing the view (see Fig. 6). As shown in
Fig. 6, six components are directly connected with root: the
mainWindow component of the MainFrame class, which
generates the window shown in Fig. 7, and five components
of the Dialog class.

Two containers are placed inside mainWindow: a
component of the Canvas class, placed in the center of
mainWindow, that contains the 3D animated diagram of the

TES model; and a component of the Panel class that hosts
interactive controls to pause and resume the simulation, and
check-boxes to show and hide dialog windows.

The 3D animated diagram of the TES model is composed
of drawable elements. The reactor is represented by compo-
nents of the Cylinder class. The valves are represented by
components of the File3DsImporter class, which imports
3D studio file into the view. The controllers are represented
by components of the Text and Line classes.

The interactive controls that allow pause/resume the simu-
lation and show/hide windows are described by components
of the PauseButton and CheckBox classes. The virtual lab
view contains six dialog windows that allow tuning the PI
controllers; to change the composition of Feed 1, the reaction
rate parameters and the setpoints of the PI controllers; to
display the time evolution of the Stream 4 flow rate, the
reactor pressure, the concentration of component A in the
purge, and the valve positions; and to show the HTML pages
that constitute the virtual lab narrative.

D. VIRTUAL LAB SET UP
The Modelica model that describes the complete virtual
lab must instantiate the VirtualLab class of the Interactive
3.0Modelica library, theModelica class describing the virtual

58946 VOLUME 10, 2022



C. Martin-Villalba, A. Urquia: Approach to Develop Collaborative Virtual Labs in Modelica

FIGURE 8. Parameters of the virtual lab Modelica model.

lab model, and the Modelica class describing the virtual lab
view. In addition, this model describing the complete virtual
lab has to contain the equations equaling the view variables to
the corresponding model variables. Finally, values have to be
assigned to the following parameters of the VirtualLab class:
the length of the model-to-view communication interval, the
names of theModelica classes that describe the model and the
view, the number of views, and the IP address of the computer
where the simulation model is running (see Fig. 8).

E. TRANSLATION TO EXECUTABLE CODE AND LAUNCH
The Modelica description of the complete virtual lab is
translated into executable code using a Modelica modeling
environment. The Interactive 3.0 Modelica library has been
tested using Dymola 2021 and OpenModelica 1.16. Then,
the generated executable code is launched in the server
computer, starting the simulation run. At the initialization
stage of the simulation, the C++ code of the view application
is automatically generated in the server computer, and the
simulation run waits for the clients (i.e., the virtual lab view
applications) to connect.

This C++ code of the view application, which has been
automatically generated in the server computer, needs to
be copied to the students’ computers and compiled. The
InteractiveLib, Qt, VTK, and Qwt DLL also need to be
copied to the students’ computers. Next, the compiled
copies of the view application are launched in the students’
computers. When the view application is launched in a

student’s computer, this application gets connected to the
server, and the model-view communication is automatically
established.

Once the specified number of views are connected (this
number is a VirtualLab class parameter), the simulation
initialization is completed in the server and the interactive
simulation proceeds. The code that needs to be copied to
the students’ computers doesn’t change between successive
runs of the virtual lab, so view installation only needs to be
done once. Neither Dymola nor OpenModelica needs to be
installed on the students’ computers.

F. VIRTUAL LAB USE
The virtual lab narrative is presented to the students through
HTML pages linked to the virtual lab view. This narrative
describes the virtual lab pedagogical goals, the TES process
and its multi-loop PI control system, and how to use the
virtual lab. Students are asked to read the narrative and to
experiment in groups with the collaborative virtual lab to
complete the proposed activities. One of these collaborative
activities consists in dividing the students into four groups,
and assign to each group the tuning of one of the four PI
controllers. Next, students are asked to describe and explain
the observed influence of the other three controllers’ tuning
on their own.

Some other collaborative activities proposed to the students
are listed below. Some of them are the scenarios for process
control discussed in [8].

VOLUME 10, 2022 58947



C. Martin-Villalba, A. Urquia: Approach to Develop Collaborative Virtual Labs in Modelica

1) Set to zero the value of the PI proportional constant,
which is equivalent to cancel the control action.
Observe the unstable dynamic of the process: the
reactor pressure increases until the shutdown limit is
met.

2) Observe the controlled system and describe its evolu-
tion. How long does it take to stabilize the system?

3) Change the control parameters. Analyze the limits for
controlling the plant.

4) Without touching other controls, comment on what
happens after modifying the product flow setpoint to
140 kmol/h.

5) Without touching other controls, comment on what
happens after reducing the maximum pressure in the
reactor to 2700 kPa. Is it possible to reach the following
product flow setpoint: 130 kmol/h?

6) Analyze the regulation during a disturbance in the feed
composition. Keep the production rate, while the molar
fraction of component A in Feed 1 changes step-wise
from the nominal 0.485 to 0.45.

7) Analyze the effect of a drift in the kinetic parameters.
Change the proportionality constant k0 of the reaction
rate equation (i.e., RD = k0 · PαA · P

β
C ) from 0.0017 to

0.001, while the exponent β drifts from 0.4 to 0.35.

VII. CONCLUSION
A new major release of the Interactive Modelica library
has been presented. Its most relevant feature is to facilitate
the implementation of collaborative virtual labs based
on Modelica models, using only the Modelica language.
Collaborative virtual labs are composed of several synchro-
nized views that interact with a common model simulation
run.

The main challenge has been to design an efficient com-
munication between the model and views that is transparent
to virtual lab developers. To this end, we analyzed the
minimum information needed to be transmitted, developed
a synchronization algorithm, and redesigned the Modelica
classes containing this code exploiting the advantages of
Modelica object orientation and creating partial classes so
that they could be easily extended to create new library
components.

The use of the Interactive 3.0 Modelica library has
been illustrated by discussing the implementation of a
collaborative virtual lab for control education, based on
the Tennessee Eastman Simplified Process. The Interactive
library facilitates easy definition of the virtual lab view and
the model-view connection. The obtained virtual lab has
good graphic quality and performance, and is a collaborative
learning tool that allows students to work in groups for
achieving their learning goals.

The Interactive 3.0 Modelica library is freely distributed
under Modelica License 2. The C++ code automatically
generated by the components of the Interactive Modelica
library uses the Qt, Qwt, and VTK libraries. This library is
compatible with OpenModelica and Dymola, having been

tested with Dymola 2021 and OpenModelica 1.16 64 bits.
As OpenModelica is an open-source tool, this compatibility
implies that we have a completely free framework to develop
virtual labs.

REFERENCES
[1] R. Heradio, L. Torre, D. Galan, F. Cabrerizo, E. Herrera-Viedma, and

S. Dormido, ‘‘Virtual and remote labs in education: A bibliometric
analysis,’’ Comput. Educ., vol. 98, pp. 312–313, Jul. 2016.

[2] I. T. Cameron, S. Engell, C. Georgakis, N. Asprion, D. Bonvin, F. Gao,
D. I. Gerogiorgis, I. E. Grossmann, S. Macchietto, H. A. Preisig, and
B. R. Young, ‘‘Education in process systems engineering: Why it matters
more than ever and how it can be structured,’’ Comput. Chem. Eng.,
vol. 126, pp. 102–112, Jul. 2019.

[3] M. Johansson, M. Gafvert, and K. J. Astrom, ‘‘Interactive tools for
education in automatic control,’’ IEEE Control Syst., vol. 18, no. 3,
pp. 33–40, Jun. 1998.

[4] L. Marin, H. Vargas, R. Heradio, L. Torre, J. Diaz, and S. Dormido,
‘‘Evidence-based control engineering education: Evaluating the LCSD
simulation tool,’’ IEEE Access, vol. 8, pp. 170183–170194, 2020.

[5] J. Diaz, R. Costa-Castello, and S. Dormido, ‘‘An interactive software tool
to learn/teach robust closed-loop shaping control systems design,’’ IEEE
Access, vol. 9, pp. 125805–125819, 2021.

[6] M. A. Rau, W. Keesler, Y. Zhang, and S. Wu, ‘‘Design tradeoffs of
interactive visualization tools for educational technologies,’’ IEEE Trans.
Learn. Technol., vol. 13, no. 2, pp. 326–339, Apr. 2020.

[7] A. Urquia, C. Martin-Villalba, M. A. Rubio, and V. Sanz. (2022).
Some Free Modelling & Simulation Resources. Accessed: May 17, 2022.
[Online]. Available: http://www.euclides.dia.uned.es/

[8] N. L. Ricker, ‘‘Model predictive control of a continuous, nonlinear,
two-phase reactor,’’ J. Process Control, vol. 3, no. 2, pp. 109–123,
May 1993.

[9] C. Martin-Villalba, A. Urquia, and G. Shao, ‘‘Implementations of the
Tennessee Eastman process in Modelica,’’ in Proc. 9th Vienna Int. Conf.
Math. Modeling (MATHMOD), 2018, pp. 619–624.

[10] Modelica Association. (2022). Modelica Association Website. Accessed:
May 17, 2022. [Online]. Available: https://www.modelica.org

[11] (2022). Dymola. Accessed: May 17, 2022. [Online]. Available:
https://www.3ds.com/products-services/catia/products/dymola

[12] OpenModelica Project. (2021). The OpenModelica Project Website.
Accessed: May 17, 2022. [Online]. Available: https://www.openmodelica.
org/

[13] P. Fritzson, A. Pop, K. Abdelhak, A. Asghar, B. Bachmann, W. Braun, and
D. Bouskela, ‘‘The OpenModelica integrated environment for modeling,
simulation, and model-based development,’’ Model., Identificat. Control,
vol. 41, no. 4, pp. 241–295, 2020.

[14] A. Asghar, S. Tariq, M. Torabzadeh-Tari, P. Fritzson, A. Pop, M. Sjölund,
P. Vasaiely, and W. Schamai, ‘‘An open source Modelica graphic editor
integrated with electronic notebooks and interactive simulation,’’ in Proc.
8th Int. Modelica Conf., vol. 2011, pp. 739–747.

[15] K. Zakova, ‘‘Online use of OpenModelica via web service,’’ in Proc. 12th
Int. Conf. Remote Eng. Virtual Instrum. (REV), Feb. 2015, pp. 152–156.

[16] K. Zakova andM. Cech, ‘‘Design of control education interactive examples
via web service for OpenModelica,’’ in Proc. 13th APCA Int. Conf. Autom.
Control Soft Comput. (CONTROLO), 2018, pp. 242–246.

[17] C. Martin-Villalba, A. Urquia, and S. Dormido, ‘‘Object-oriented mod-
elling of virtual-labs for education in chemical process control,’’ Comput.
Chem. Eng., vol. 32, no. 12, pp. 3176–3186, Dec. 2008.

[18] EJS. (2022). Easy Java Simulations (EJS) Website. Accessed:
May 17, 2022. [Online]. Available: http://fem.um.es/Ejs/

[19] Sysquake. (2022). Sysquake Website. Accessed: May 17, 2022. [Online].
Available: https://calerga.com/

[20] (2022). Functional Mock-up Interface. Accessed: May 17, 2022. [Online].
Available: https://fmi-standard.org/

[21] X. Pang, R. Dye, T. S. Nouidui, M. Wetter, and J. J. Deringer, ‘‘Linking
interactive Modelica simulations to HTML5 using the Functional Mockup
Interface for the LearnHPB platform,’’ in Proc. 13th IBPSA Conf., 2013,
pp. 2823–2829.

[22] V. Waurich and J. Weber, ‘‘Interactive FMU-based visualization for an
early design experience,’’ in Proc. 12th Int. Modelica Conf., vol. 2017,
pp. 879–885.

58948 VOLUME 10, 2022



C. Martin-Villalba, A. Urquia: Approach to Develop Collaborative Virtual Labs in Modelica

[23] V. Havard, B. Jeanne, M. Lacomblez, and D. Baudry, ‘‘Digital twin and
virtual reality: A co-simulation environment for design and assessment of
industrial workstations,’’ Prod. Manuf. Res., vol. 7, no. 1, pp. 472–489,
2019.

[24] B. Thiele, T. Beutlich, V.Waurich,M. Sjölund, and T. Bellmann, ‘‘Towards
a standard-conform, platform-generic and feature-rich Modelica Device
Drivers library,’’ in Proc. 12th Int. Modelica Conf., 2017, pp. 713–723.

[25] C. Höger, A. Mehlhase, C. Nytsch-Geusen, K. Isakovic, and R. Kubiak,
‘‘Modelica3D-platform independent simulation visualization,’’ in Proc.
9th Int. Modelica Conf., vol. 2012, pp. 485–494.

[26] DLR. (2022). DLR Visualization Library. [Online]. Available:
https://www.systemcontrolinnovationlab.de/the-dlr-visualization-library/

[27] C. Martin-Villalba, A. Urquia, and S. Dormido, ‘‘Development of virtual
labs for education in chemical process control using Modelica,’’ Comput.
Chem. Eng., vol. 39, pp. 170–180, Apr. 2012.

[28] C. Martin-Villalba, A. Urquia, and S. Dormido, ‘‘An approach to virtual
lab implementation using Modelica,’’ Math. Comput. Model. Dyn. Syst.,
vol. 14, no. 4, pp. 341–360, 2008.

[29] M. Association. (2017). Modelica Specification, Version 3.4. Accessed:
May 6, 2022. [Online]. Available: https://modelica.org/documents/
ModelicaSpec34.pdf

[30] G. Lazar and R. Penea, Mastering Qt 5: Create Stunning Cross-Platform
Applications Using C++ With Qt Widgets and QML With Qt Quick.
Birmingham, U.K.: Packt, 2018.

[31] QWT. (2022). The QWT User’s guide. Accessed: May 17, 2022. [Online].
Available: http://qwt.sourceforge.net

[32] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit an
Object-Oriented Approach To 3D Graphics Edition 4.1. Kitware, Clifton
Park, NY, USA, 2018.

[33] The Visualization Toolkit User’s Guide. Kitware, Clifton Park, NY, USA,
2010.

[34] J. J. Downs and E. F. Vogel, ‘‘A plant-wide industrial process control
problem,’’ Comput. Chem. Eng., vol. 17, no. 3, pp. 245–255, Mar. 1993.

[35] K. J. Åström and T. Hagglund, PID Controllers: Theory, Design and
Tuning. Research Triangle, NC, USA: ISA Press, 1995.

CARLA MARTIN-VILLALBA received the degree
in electronic engineering from the Universidad
Complutense de Madrid, Spain, in 2001, and
the Ph.D. degree in computer science from the
Universidad Nacional de Educación a Distancia
(UNED), Madrid, Spain, in 2007. She is currently
an Associate Professor with the Departamento de
Informática y Automática, UNED. Her research
interests include modeling and simulation, auto-
matic control, and distance learning.

ALFONSO URQUIA received the M.S. degree
in physics from the Universidad Complutense de
Madrid, in 1992, and the Ph.D. degree in physics
from the Universidad Nacional de Educación
a Distancia (UNED), Madrid, Spain, in 2000.
Since 2002, he has been working as an Associate
Professor with the Departamento de Informática y
Automática, UNED. His research interests include
mathematical modeling and computer simulation.

VOLUME 10, 2022 58949


