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ABSTRACT Cybercrime affects companies worldwide, costing millions of dollars annually. The constant
increase of threats and vulnerabilities raises the need to handle vulnerabilities in a prioritized manner. This
prioritization can be achieved through Common Vulnerability Scoring System (CVSS), typically used to
assign a score to a vulnerability. However, there is a temporal mismatch between the vulnerability finding
and score assignment, which motivates the development of approaches to aid in this aspect. We explore
the use of Natural Language Processing (NLP) models in CVSS score prediction given vulnerability
descriptions. We start by creating a vulnerability dataset from the National Vulnerability Database (NVD).
Then, we combine text pre-processing and vocabulary addition to improve the model accuracy and interpret
its prediction reasoning by assessing word importance, via Shapley values. Experiments show that the
combination of Lemmatization and 5,000-word addition is optimal for DistilBERT, the outperforming model
in our experiments of the NLP methods, achieving state-of-the-art results. Furthermore, specific events (such
as an attack on a known software) tend to influence model prediction, which may hinder CVSS prediction.
Combining Lemmatization with vocabulary addition mitigates this effect, contributing to increased accuracy.
Finally, binary classes benefit the most from pre-processing techniques, particularly when one class is much
more prominent than the other. Our work demonstrates that DistilBERT is a state-of-the-art model for CVSS
prediction, demonstrating the applicability of deep learning approaches to aid in vulnerability handling. The
code and data are available at https://github.com/Joana-Cabral/CVSS_Prediction.

INDEX TERMS Common vulnerability scoring system, deep learning, interpretability, natural language
processing, security.

I. INTRODUCTION

Cyber threats force companies to increase their investments
in security, which resulted in a $170 billion security aspects
related market in 2015 [1]. These threats impact 556 million
people annually, costing $3 trillion worldwide, with an
expected increase to $10.5 trillion by 2025 [2]. Additionally,
there was an increase of vulnerability entries in VulDB, with
61 new daily entries, in 2021, relative to the 41 reported
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in 2016 [3]. This tendency provides a clear picture of the
increased risk of threats and cybercrime, raising concern
among Information Technology (IT) administrators, which
often lack the resources to handle all incoming threats [4].
Given this context, there is an inherent need to define which
vulnerabilities should be tackled first.

To aid in the prioritization of vulnerability handling,
experts typically use the Common Vulnerability Scoring
System (CVSS) [5], a de facto standard, to accurately
assign a score to a vulnerability. New vulnerability entries
are enumerated via Common Vulnerability Enumeration
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(CVE) [6], with a unique identifier, description, and CVSS
Base score metrics, the latter specified by the National
Vulnerability Database (NVD).

The score metric assignment is performed manually from
vulnerability description analysis, for which vendors do not
always provide enough detail [7] for experts to accurately
create these scores. Furthermore, some CVSS metrics are
subjective [8], heavily relying on the previous experience
at assigning CVSS metrics. The inherent problems of this
process are exacerbated by the temporal mismatch of CVSS
metric assignment and vulnerability finding: 19 days to
populate a vulnerability with the respective CVSS and six
days to find a new one [9]. Therefore, to reduce the time/cost
spent while also mitigating the subjective aspect of score
assignment, we explore the use of a deep learning approach
to predict the CVSS metrics based on the vulnerability
description.

We start by obtaining the vulnerabilities descriptions
and respective CVSS metrics using the NVD Application
Programming Interface (API). The collected data is processed
for the most recent version of CVSS (version 3) and
serves as input for the deep learning approach. We select
the DistilBERT for sequence classification given its out-
performance, in the created dataset, over other state-of-
the-art Natural Language Processing (NLP) models. Since
the vulnerability descriptions contain technical expressions
and have reduced length size, we assess the effect of
text pre-processing techniques and vocabulary addition. Our
results show that text pre-processing improves the baseline
model accuracy, exhibiting incremental performance with
vocabulary addition.

One drawback of using a deep learning approach is that
the reasoning behind their outputs is not easily disclosed.
To overcome this limitation, we use the Shapley value [10],
a game-theoretic approach to explain machine learning
outputs, to perceive the correlation between description
words and the predicted CVSS metric. This process allows
us to understand the importance of each word towards the
CVSS metric prediction, assessing their importance variance
with text pre-processing and vocabulary addition.

The main contributions of our work are summarized as
follows:

« We present a vulnerability dataset, derived from NVD

data, with vulnerability descriptions and CVSS (version
3) metrics;

o« We demonstrate the applicability of deep learning
approaches to predict CVSS metrics, in combina-
tion with text pre-processing and vocabulary addition,
achieving state-of-the-art results;

o« We confer interpretability to model prediction by
analyzing the importance of word descriptions, via
Shapley value.

The remainder of this paper is organized as follows:
Section II summarizes the most relevant CVSS-based works;
Section III describes the methodologies used; Section IV
describes the vulnerability dataset; and Section V discusses
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the results obtained. Finally, the main conclusions and future
work are presented in Section V1.

Il. RELATED WORK

A. CVSS APPLICABILITY

CVSS has been extensively analyzed and applied to multiple
domains to prioritize or estimate security risks. Younis and
Malaiya [11] compared the CVSS base metrics and the
Microsoft rating system, declaring that both measures have
a very high false-positive rate, with CVSS significantly
affected by the software type. Joh [12] concluded that most
vulnerabilities are compromised due to no authentication
required systems, by analyzing the CVSS base scores for
vulnerabilities of currently supported Windows operating
systems, suggesting the addition of an authentication process
in every system. CVSS base metrics have been used to assess
cybersecurity risks in IT systems [4], using the risk formula,
and calculating risk probability and impact. The same study
reported that an identification of security properties in the
early stages of development positively impacts the security
of the systems. In the same context, Wirtz and Heisel [13]
proposed a semi-automatic method to estimate security risks
in the early stages of software development, using CVSS
formulas to assess the threat severity. Since CVSS has already
demonstrated its validity in typical IT systems, it was also
adapted to calculate vulnerabilities regarding hybrid IT and
IoT systems [14], [15] accurately. Following this idea, Mishra
and Singh [16] proposed a taxonomy for Cloud-specific
vulnerabilities, using the CVSS score to represent each major
Cloud vulnerability severity. Finally, a guide for applying
CVSS to medical devices was also proposed [17], consisting
of questions that identify a value for a specific CVSS metric.

B. CVSS AND ARTIFICIAL INTELLIGENCE

The combination of Artificial Intelligence techniques and
CVSS scores of individual vulnerabilities has also been
reported. Sheehan et al. [18] proposed using Bayesian Net-
works to identify connected and autonomous vehicle
cyber risks, using CVSS scores to predict knowledge
gaps or potential new cyber vulnerabilities. Furthermore,
Frigault et al. [19] employed Bayesian Networks and Attack
Graphs to measure network security, using the CVSS scores
as probabilities and considering metric values of each
vulnerability to be independent. However, applying Bayesian
Networks to assess CVSS scores has limitations [20],
leading to the proposal of an approach that considers the
dependency relationships between the CVSS base metrics,
combining scores into three aspects: probability, effort, and
skill. Allouzi and Khan [21] proposed using the Markov
Chain to compute the probability distribution of Internet
of Medical Things security threats, using CVSS scores to
assign severity to the acknowledged vulnerabilities. One first
attempt to predict CVSS final scores was made through the
employment of fuzzy systems [22], outperforming Support
Vector Machine (SVM) and Random-Forest. In this context,

VOLUME 10, 2022



J. C. Costa et al.: Predicting CVSS Metric via Description Interpretation

IEEE Access

CVSS Dataset

Prediction Accuracy

Description Descriptions Categories Top n Description Words
- —— DistilBERT prediction [ 0 [ 1].. [ 0 |
"A SSRF issue was l A SSRF issue... l ! l 2 l l 0 I
discovered in ?oncrete l "A vulnerability.." l 0 l 4 [ l 1 I HTTP/2, PHP7 .1, ... Ground Truth !n
Text Pre-Rrocessing Text Pre-Processing Token and Category Correlation
) e a
'A SSRF issue be (™)

discover in Concrete

Tokenizer

Default Vocabulary

[ 1-local, 2-network, 3-remote, ...

1 Replace tokens by their ids

HTTP, PHP, ...

I[CLS]I A lSSRF issue| be l l[ssP]l4v> l 101 I1024 l11526l14582l10221l

o 3

T 5 £
Absolute SHAP Values

FIGURE 1. Overview of the methodology used to assess DistilBERT performance in vulnerability detection, using CVSS data descriptions and categories.
We evaluate the model performance by varying two key aspects: 1) text pre-processing approaches; and 2) vocabulary addition. Furthermore, we evaluate
the correlation of tokens and category, via Shapley value, to assess the tokens more influential towards each category prediction.

fuzzy CVSS [23] was used to calculate the final severity
score for vulnerabilities, employing fuzzy theory to reduce
the error rate. To predict CVSS values for base metrics,
Elbaz et al. [24] propose a linear regression model, using a
bag of words approach, with the removal of irrelevant words.

C. CVSS AND DEEP LEARNING

Deep learning is also known for its effectiveness in solving
complex problems, with the drawback of time-costly training.
Therefore, to resemble security experts decision-making [25],
the usage of Neural Networks was proposed, automatically
providing a vulnerability report through CVSS metrics.
Deep reinforcement learning was also used to assess the
cyber-physical security of electric power systems [26], which
adapted CVSS to estimate the complexity of attack path. As a
result, CVSS base metrics have been adopted as the guide for
identifying and prioritizing threats among multiple systems.
This indicates that correctly and swiftly predicting the metrics
for CVSS is a valuable effort.

Sahin and Tosun [27] concluded that Long Short Term
Memory (LSTM) was the most accurate model to predict
CVSS final scores, when compared with Convolutional
Neural Networks (CNN) and XGBoost. The two previously
presented approaches gathered data from Open Source
Vulnerability Database (OSVDB) and NVD, respectively,
to train their models. Alternatively, Twitter discussions [28],
with NVD as ground truth for CVSS scores, were fed to
a Graph Convolutional Network with Attention-based input
Embedding to predict the CVE severity scores. However,
predicting CVSS final scores does not provide any insight to
the experts about the values for the CVSS metrics.

D. VULNERABILITY INTERPRETABILITY

The analysis and interpretation of vulnerability descriptions
is also reported in the literature. An empirical study based
on the NVD vulnerability descriptions [29] concluded that
information about the asset, attack, and vulnerability type is
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relevant to increase vulnerability scoring accuracy. Another
work used the Local Interpretable Model-Agnostic (LIME)
framework to explain the vulnerability descriptions [30], pro-
viding relevant words for a small number of vulnerabilities.

To the best of our knowledge, the work presented herein
is the first to combine Deep Learning and NLP approaches
to extract information from vulnerability descriptions and
output CVSS metrics, while using interpretability to assess
model predictions.

lll. METHODOLOGY

The methodology used in our experiments is displayed in
Fig. 1. We start by creating a CVSS dataset, using information
from the NVD. Then, we vary two major performance-
related aspects: 1) text pre-processing; and 2) vocabulary
addition. Finally, we evaluate model accuracy and assess
token correlation with category prediction, using Shapley
value.

A. MODEL DETAILS AND EVALUATION METRICS
We used the following models in our experiments:
BERT [31], DistilBERT [32], RoBERTa [33], ALBERT [34],
and DeBERTa [35]. Our reasoning for model choice is linked
to the importance of BERT for the NLP area. It is one of
the most used models in NLP, in a variety of tasks, with
proven quality. Then, we opted to choose other variations of
BERT to assess what is the better model for CVSS metric
prediction. Specifically, we choose ALBERT and DistilBERT
for having fewer parameters than BERT and RoBERTa and
DeBERTa for having more parameters than BERT. The
chosen models belong to the BERT family while having
specific characteristics, such as the number of parameters.
As such, our work focused on finding the best performing
state-of-the-art NLP models for CVSS metrics prediction.
We finetune each model following the authors’ method-
ology: regarding the learning rate, ROBERTa was set to
1.5 x 107>, DistilBERT was set to 5 x 107>, while BERT,
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FIGURE 2. Bar plots of the eight categories analyzed of CVSS version 3, linked to vulnerability assessment, of the vulnerability dataset used. Each

category displays the associated classes and respective class prior.

ALBERT, and DeBERTa have all been set to 3 x 105 :
for the number of training epochs, RoBERTa was trained
for 2 epochs, DeBERTa for 10, and BERT, ALBERT, and
DistilBERT for 3; regarding batch size, we used 8 for
ALBERT and DistilBERT, and 4 for BERT, RoBERTa, and
DeBERTza; finally, RoBERTa has a weight decay of 0.01,
while the remaining models have the default value (0). We use
the default losses and architectures of each model, from
Hugging Face [36]. To obtain category classification, we use
a PyTorch Softmax layer [37] on the model output.

To compare the performance of each model, we use the
accuracy, F1 score, and balanced accuracy from the scikit-
learn library [38]. To compare our results with state-of-the-
art for CVSS metric inference, we use the accuracy metric.

B. TEXT PROCESSING AND VOCABULARY SELECTION

To assess the contribution of each word to the classification
of the considered categories (discussed in section IV),
we start by processing vulnerability descriptions. We use
two pre-processing methods, namely, Lemmatization and
Stemming. Finally, we tokenize the text to input to the
model, evaluating its accuracy based on the pre-processing
approach. Both text pre-processing approaches use Natural
Language Toolkit (NLTK) methods [39], while tokenization
is achieved using Transformers library, from Hugging
Face [36]. We choose Lemmatization and Stemming, given
their wide use as text pre-processing approaches in the NLP
area. By using Lemmatization and Stemming, we intend to
process text to maintain as much relevant data as possible
while ignoring noisy data. This is achieved by ignoring
variants of words that have the same “base’. In the case of
Stemming is the same stem, while in Lemmatization is the
same lemma.

In our experiments, we also evaluate the effect of
vocabulary addition. Moreover, we also assess this effect
in conjunction with the best performing text pre-processing
approach. We evaluate the accuracy of the used model
when adding 5,000, 10,000, and 25,000 words to the default
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vocabulary of the tokenizer. To select the added words,
we order them by frequency of appearance in the descriptions,
choosing the top n words. To avoid redundancy, we only
consider words that appear exclusively in the description and
not in the default vocabulary.

Given the existence of software versions and code snippets
in some data descriptions, we use regular expressions to
filter digits and special characters. This approach reduces
the “noise” of vocabulary addition, since this filtered data
is not relevant to category classification and could potentially
dissipate the importance of relevant added words.

C. SHAPLEY VALUE

Deep learning models have shown high performance in
multiple tasks while providing little to no explanation for
the reasoning for model prediction. To tackle this issue,
we use Shapley value, an interpretability technique that
allows us to interpret the reasoning of the model when
providing predictions. The Shapley value, coined by Shapley
in 1953 [40], is a cooperative game theory-based method
used for assigning payouts to players, depending on their
contribution towards the total payout. In the machine-learning
context, the Shapley value is used to evaluate how each
feature (player) of a given instance contributed (assigning
payout) towards the model prediction of the instance (total
payout).

The use of Shapley value in our experiments is linked to our
interest in analyzing how each word contributed to category
classification. For categories with more than n classes, and
n higher than 2, we perform n Shapley value analysis,
each considering a class versus the remaining classes of the
category. The considered class is given the value 1, with
the remaining receiving the value 0. If a word contributes
positively, it means that it influences the considered class. The
higher the absolute Shapley value is, the higher the feature
influence. We use the SHapley Additive exPlanations (SHAP)
framework [41] and the Explainer model, from a publicly
available implementation in [42].
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TABLE 1. Percentage of class prior of the eight vulnerability related
categories for all dataset, train, and test set. Class prior displays the
likelihood of an outcome in the dataset and each subset.

Category Class Prior (%)
Train Test [ Dataset

Attack Vector

Network 73.04 73.57 73.14

Adjacent 221 2.14 2.20

Local 23.62 23.18 23.53

Physical 1.13 1.11 1.13
Attack Complexity

High 8.03 7.74 7.97

Low 91.97 92.26 92.03
Privileges Required

High 6.70 6.32 6.62

Low 26.79 26.90 26.81

None 66.51 66.78 66.57
User Interaction

Required 35.80 35.37 35.71

None 64.20 64.63 64.29
Scope

Changed 16.72 16.36 16.65

Unchanged 83.28 83.64 83.35
Confidentiality

High 58.94 59.15 58.98

Low 19.37 18.65 19.23

None 21.69 22.20 21.79
Integrity

High 51.27 51.36 51.29

Low 17.52 17.32 17.48

None 31.21 31.32 31.23
Availability

High 58.49 58.85 58.56

Low 2.60 2.71 2.63

None 38.91 38.44 38.81

IV. VULNERABILITY DATASET

The vulnerability dataset is based on NVD information,
a United States government repository of standards-based
vulnerability management data. We obtain the information
through their API, starting from index 0 to 152,000, repre-
senting data collected until April 2021. Finally, we process
the collected data to retrieve vulnerability descriptions and
the classes for each of the eight categories analyzed: Attack
Vector, Attack Complexity, Privileges Required, User Interac-
tion, Scope, Confidentiality, Integrity, and Availability. Based
on the CVSS documentation, these classes are grouped into
Exploitability metrics (Attack Vector, Attack Complexity,
Privileges Required, and User Interaction), Scope, and Impact
metrics (Confidentiality, Integrity, and Availability). Tables
and Figures throughout this paper consider this grouping.
A visual representation of class proportions, for each
category, of our dataset is displayed in Fig. 2.

Though the collected data corresponds to 152,000 vul-
nerability descriptions and categories, we only consider
descriptions related to version 3 of CVSS in this work. For
this reason, the total number of instances in our dataset is
79,810. We divide them into train and test sets, composed of
63,848 and 15,962 instances, respectively, corresponding to
a 0.2 test ratio. The average description length is 43.85 and
44.55 words for train and test split, respectively. Each set
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follows a similar proportion of classes, exhibited in Fig 2,
whose analytical values are shown in Table 1. The dataset is
publicly available for repeatability purposes, and it serves as
a basis for other models to evaluate their performance and
compare with the proposed methodology.

V. EXPERIMENTS

A. MODEL COMPARISON

We start by comparing the performance of five different NLP
methods in the proposed dataset. The accuracy, F1 score,
and balanced accuracy for each of the eight categories are
presented in Table 2. The results suggest that DistilBERT
is the outperforming model for all the categories, in all the
considered metrics. The method with the worst performance
is ALBERT, which has the least number of parameters (11M),
while DeBERTa, BERT, and RoBERTa, with over 100M
parameters, also have worse performance than DistilBERT
(65M). Since we intend to assess the class inference, given
a vulnerability description, the number of parameters may
be linked to the performance variance. In this case, too few
parameters (ALBERT) are insufficient for the model to learn,
and too many leads to poorer fine-tuning. The similarity
of various accuracy values between BERT, ALBERT, and
DeBERTa, for different categories, can be explained by
dataset imbalance. In these cases, the values displayed
represent a scenario where the models opted to achieve higher
accuracy by outputting the same value in every instance.
Thus, in cases of dataset imbalance, the use of accuracy can be
deceptive, justifying the use of other metrics such as balanced
accuracy.

In this experiment, we use the default pretraining weights
(provided by HuggingFace [36]) and training parameters of
every model. The models used are typically applied/evaluated
in tasks where the association of two sentences is analyzed
(e.g., GLUE [43]) or the aim is finding answers in a
text, given a question (e.g., SQuUAD [44]). These types of
tasks differ from predicting a category given a vulnerability
description (the aim of this work), which may justify
the underperformance of state-of-the-art methods in our
experiments. Based on the obtained results, we selected
DistilBERT for continuing the experiments involving the
usage of Deep Learning.

B. TEXT PRE-PROCESSING

We assess the performance of DistilBERT, for all eight
considered categories, regarding different text pre-processing
approaches. We present our results, using balanced accuracy,
in Table 3, with Baseline referring to the condition where no
pre-processing approach is used.

When comparing category-related performance variance,
we observe that all categories benefit from pre-processing.
Regarding processing-related performance variance, Lemma-
tization promotes better results than Stemming, for all
categories. Stemming truncates words by chopping off letters
from the end until the stem is reached. This is a more
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TABLE 2. Model accuracy (Acc), F1 score, and Balanced Accuracy (BA) for each of the eight categories analyzed. The outperforming model for each metric

and category is shown in bold.

Category BERT RoBERTa ALBERT DeBERTa DistilBERT
Acc | F1 | BA | Acc | F1 | BA | Acc | F1 | BA | Acc | F1 | BA | Acc | F1 | BA

Attack Vector 73.57] 6237 [ 25.00 [ 90.55[ 90.18 [ 62.03 | 90.87 [ 90.60 [ 67.76 [ 80.86 | 78.99 | 37.17 | 91.04 | 90.85 | 70.60
Attack Complexity | 92.26 | 88.55| 50.00 | 92.26 | 88.55 | 50.00 | 92.26 | 88.55 | 50.00 | 92.26 | 88.55| 50.00 | 95.16 | 94.32 | 70.74
Privileges Required | 66.78 | 53.48 | 33.33 | 66.86 | 83.49 | 67.61 | 66.78 | 53.48 | 33.33 | 66.86 | 63.65 | 41.15| 86.21 | 85.91 | 75.09
User Interaction | 64.63 | 50.75 | 50.00 | 82.73 | 92.57 | 91.26 | 64.63 | 50.75 | 50.00 | 82.73 | 82.85 | 81.90 | 93.01 | 92.98 | 91.95
Scope 83.64 | 76.19 [ 50.00 | 96.02 [ 95.91 | 90.20 | 83.64 | 76.19 | 50.00 [ 83.64 | 76.19 [ 50.00 | 96.28 | 96.19 | 90.98
Confidentiality | 59.15| 43.97 | 3333 | 8620 | 85.90 | 81.08 | 86.18 | 85.98 | 81.74 | 86.20 | 86.05 | 82.37 | 86.29 | 86.16 | 82.67
Integrity 61.52| 50.10 | 55.84 | 86.93 | 86.85| 84.41 | 5136 | 34.85| 3333 | 51.37 | 34.87 | 33.34 | 87.46 | 87.42| 85.52
Availability 58.85 | 43.61 | 3333 | 83.50 | 87.89 | 67.49 | 58.85| 43.61 | 3333 | 83.50 | 8247 | 57.54 | 88.55| 88.00 | 67.51

TABLE 3. Category balanced accuracy of DistilBERT for baseline
conditions (Tokenization), and using text pre-processing approaches
(Lemmatization and Stemming). The outperforming approach for each
category is shown in bold.

Category Balanced Accuracy (%)
Baseline | Lemmatization [ Stemming

Attack Vector 70.60 71.03 68.40
Attack Complexity 70.74 71.45 64.50
Privileges Required 75.09 75.14 73.83
User Interaction 91.95 92.05 91.75
Scope 90.98 91.12 90.40
Confidentiality 82.67 83.12 82.44
Integrity 85.52 85.77 84.98
Availability 67.51 69.66 68.69

crude approach than Lemmatization, which justifies the
underperformance using this approach. Given the superiority
displayed by Lemmatization over Stemming, this is the chosen
pre-processing approach to use in the remaining experiments.

C. VOCABULARY ADDITION

We also evaluate the effect of vocabulary addition on pre-
diction accuracy. Furthermore, we compare the vocabulary
addition with its combination with a pre-processing approach.
We display our results in Table 4.

Relative to the baseline, most variations of vocabulary
addition translate into performance increase, for all cat-
egories. Regarding the vocabulary variations, 5,000-word
addition was the condition with better results overall. This
suggests that adding more words is beneficial to model
accuracy improvement. However, subsequent vocabulary
addition (10,000 and 25,000-word addition) does not promote
incremental performance increase. Given that vocabulary
addition is linked to word frequency in the description,
adding more words may disperse the model attention
towards less relevant words, hindering its performance.
This aspect is more noticeable when 25,000-word addition
has worse performance than baseline (e.g., Attack Vector,
Attack Complexity). For all categories, 25,000-word addition
does not generally translate into performance improvement
relative to 5,000-word addition, suggesting the existence of
word importance redundancy with this approach.
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Regarding the combination of vocabulary addition with
Lemmatization, we observe that this approach generally
improves the balanced accuracy, relative to vocabulary
addition alone, for most vocabulary variations. This suggests
that word importance may vary with processing approaches,
which corroborates the importance of text pre-processing,
even in the context of vocabulary addition. The results
suggest that 5,000-word addition with Lemmatization is the
best approach for overall category prediction, exhibiting the
importance of text processing and pertinent word addition in
description-based classification.

D. STATE-OF-THE-ART COMPARISON

We compare DistilBERT, and its combination with
pre-processing and vocabulary addition, with the state-of-
the-art. To the best of our knowledge, only Ebalz et al. [24]
evaluates class prediction accuracy in version 3 of CVSS.
To compare our results with them, we also display
the accuracy of Baseline and 5,000-word addition with
Lemmatization, whose balanced accuracy is presented in
Table 4. Since the authors presented their results in a bar plot,
not displaying the analytical values, we register the rounded
values observed in said plot. We display the state-of-the-art
comparison in Table 5.

Ebalz et al. use a bag of words approach, with the
removal of irrelevant words, to input a regression model.
Using DistilBERT, a deep learning approach, in conjunction
with text pre-processing and vocabulary addition, we obtain
substantial accuracy improvements in the majority of cate-
gories. The categories where Ebalz’s approach was closer to
ours were Attack Complexity, User Interaction, and Scope,
which could be linked to these categories being two-classed.
In these cases, the regression model used by Ebalz et al. can
compete with deep learning approaches. However, for the
remaining categories, with over two classes, the performance
disparity is substantially larger, with up to a 28% accuracy
increase. Furthermore, using the text pre-processing approach
and adding vocabulary promotes an accuracy increase of
DistilBERT, further enhancing its performance. The results
suggest that DistiIBERT is a state-of-the-art approach for
vulnerability category prediction, particularly for multi-class
categories.
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TABLE 4. Category balanced accuracy of DistilBERT for baseline conditions (Tokenization), and with different vocabulary addition, assessing the effect of
Lemmatization. Base, in each vocabulary column, refers to the vocabulary addition with Tokenization, without text pre-processing. The expression w/
Lemm refers to Lemmatization combination with vocabulary addition. The outperforming approach for each category is shown in bold.

Balanced Accuracy (%)
Category Baseline 5,000 Words 10,000 Words 25,000 Words
Base w/ Lemm Base [ w/ Lemm Base [ w/ Lemm
Attack Vector 70.60 70.79 71.26 71.05 71.19 68.66 69.83
Attack Complexity 70.74 71.42 72.92 68.73 68.78 65.59 68.06
Privileges Required 75.09 75.44 75.81 75.14 74.95 74.76 74.87
User Interaction 91.95 92.11 92.40 92.48 92.09 91.81 91.96
Scope 90.98 91.60 91.49 90.99 91.01 90.70 91.03
Confidentiality 82.67 82.89 83.18 82.82 82.66 82.73 82.38
Integrity 85.52 85.81 85.97 85.53 85.56 85.13 85.36
Availability 67.51 67.73 69.35 69.18 68.56 67.80 68.32
TABLE 5. Category accuracy of DistilBERT, DistilBERT-Enhanced Baseline Tocal]
(DistilBERT-E) and Ebalz’s work [24]. DistilBERT-Enhanced refers to TR protocois
DistilBERT using Lemmatization and 5,000-word addition. The T s
outperforming approach for each category is shown in bold. e LU
L’e’n?y%é(iz’a]ibh""""""""’"ﬁrﬁs}éﬁ;’v‘;‘;"( ”””””””””””””””””””””””
Accuracy (%) infrastructure | emera
Category DistilBERT | DisiIBERT-E | Ebalz [24] et water
Attack Vector 91.04 91.41 78.00 5k Vocabulary focal| man-in-the-middle
Attack Complexity 95.16 95.20 95.00 physical | libxaac
Privileges Required 86.21 86.42 79.00 network-adjacent | Mattermost
User Interaction 93.01 93.33 89.00 e ph'y";c“:l ]I :::::'5
Scope 96.28 96.40 96.00 Lemmatization el mannthemidle
Confidentiality 86.29 86.71 69.00 e e I
Integrity 87.46 87.61 63.00 logon | Mattermost
Availability 88.55 88.81 60.00 -4 -2 N 2 4 6

E. INTERPRETING CATEGORY CLASSIFICATION

We assess word importance in two distinct scenarios: 1) com-
paring the most relevant words, using different processing
techniques, for a given category; and 2) assessing the variance
of word importance towards/against binary and multi-class
category prediction, given different processing techniques.
In the first scenario, we compare word importance vari-
ance with text pre-processing and vocabulary addition in
DistilBERT. Given the overall superiority of Lemmatization
and 5,000-word addition (Table 4), these are the chosen
approaches. We consider the four stages for comparison:
1) Baseline; 2) Lemmatization; 3) 5,000-word addition;
and 4) 5,000-word addition with Lemmatization. For the
remaining experiments, we will refer to each word of a
description as a token to accurately represent the word
translated into the tokenizer vocabulary. We evaluate token
importance for the category Attack Vector, regarding the
Network class. In this case, Network has a value of 1,
and the remaining three classes have the value 0. Tokens
with positive Shapley value influence Network classification,
while negative ones are more relevant to the other three
classes.

The results show a variance in token importance with text
pre-processing and vocabulary addition. Starting in the Base-
line, with no processing or vocabulary addition, protocols,
Matter, and remote are tokens that, when in a description,
influence the classification of the category towards Network.
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FIGURE 3. Bar plots of the SHAP value for Baseline, Lemmatization,
5,000-word addition (5k Vocabulary), and 5,000-word addition with
Lemmatization (5k Vocabulary & Lemmatization) for the category Attack
Vector, regarding Network class.

There is some logic behind said importance, given that
remote and protocols are linked to network-related activities.
The influence of Martter is linked to Mattermost, an open-
source chat service, which was the target of multiple attacks.
This shows that token importance might be influenced by
specific network-related events. When we analyze tokens
more associated with other classes (negative Shapley value),
we observe that these are closely related to class defini-
tion (Local, Physical, and Adjacent) or associated with it
(infrastructure). Adding Lemmatization, we observe the
same tendency for tokens influential towards other classes
but with increased importance. Furthermore, tokens linked
to Network classification lose importance, aside from the
specific network-related event of baseline (Matter). This
suggests that token descriptions are more interpretably
linked in not classifying Network than towards it, which
could be due to class imbalance. Network is over 70% of
Attack Vector classes, making it harder to distinguish tokens
clearly associated with it, thus justifying the Lemmatization
results. The addition of vocabulary (Sk Vocabulary) heavily
influences category classification, with new tokens being
associated with Network classification: libxaac, Mattermost,
and man-in-the-middle. Libxaac is an Android library with
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FIGURE 4. Boxplots summarizing the effect of applying text pre-processing techniques (Lemmatization) and vocabulary addition (5,000-word addition)
for (a) binary class (Attack Complexity, User Interaction, and Scope) and (b) multiple class problems.

reported out-of-bound reading/writing errors, while man-
in-the-middle is a type of network attack. The importance
of these tokens is linked to specific network-related events
(attacks, errors), which was also observed in the baseline.
Protocols also increases in importance towards Network
classification, which could be linked to their association
with the added vocabulary. This shows that vocabulary
addition shifts the focus of token importance heavily towards
specific events, for Network classification. Network-adjacent
(added by vocabulary addition) also gains importance in
classifying other classes, given its relevance to dissociate Net-
work from Adjacent. Complementing vocabulary addition
with Lemmatization (Sk Vocabulary & Lemmatization)
diminishes the importance of tokens closely linked to
Network (positive Shapley value), resurging the tendency
observed with Lemmatization alone. The reduced importance
of specific network-related events also greatly decreased
token importance associated with it (protocols). Furthermore,
the influence of added vocabulary was enhanced in logon
(closely related to classes other than Network) and network-
adjacent, while keeping high importance of tokens associated
with other classes definition (physical and local). This result
suggests that Lemmatization is necessary to obtain more
coherent/explainable token importance, which ultimately
translates into better model performance (as shown in
Table 4).

The second considered scenario relates token importance
when considering binary (Attack Complexity, User Interac-
tion, and Scope) and multi-class categories, for the same
processing approaches of the first scenario. For all categories,
the highest proportion class per category was associated with
the value 1, with the remaining being associated with 0. Fig. 4
displays the boxplots for the two cases considered, showing
the data distribution (ignoring wildcard cases).

The analysis of binary boxplots indicates that using
Lemmatization and vocabulary addition promotes a decrease
in token importance variance in both towards (positive
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Shapley value) and against (negative Shapley value) the
highest class. However, combining vocabulary addition
with Lemmatization increases token importance variance,
particularly for negative values. This translates into increased
importance of tokens to categorize the least represented class.
If almost all descriptions relate to a specific class, it may
be more beneficial/discriminative to focus on tokens linked
to the underrepresented class, which is the approach of the
model in this case.

Analyzing multi-class boxplots shows that the variance of
negative Shapley value remains nearly constant throughout
the various text pre-processing methods. Comparatively to
the binary classes, negative Shapley value refers to various
classes and not simply one, which justifies the (low)
variance observed for these cases. Relative to positive
Shapley value, using vocabulary addition and its combination
with Lemmatization tends to reduce the variance of token
importance, achieving a similar variance to negative Shapley
value tokens. In multi-class prediction, even when one class
is more prevalent than others, the existence of tokens closely
linked to specific categories is not as likely as in binary class
prediction. For this reason, reducing the overall importance
towards specific token importance classification translates
into better results.

VI. CONCLUSION

The increasing number of threats and vulnerabilities in IT
systems surpass the capability of professionals to handle
them, potentially leading to company prejudice. This raises
the need to prioritize vulnerabilities, typically achieved
through CVSS metrics, via manual vulnerability description
analysis. In this paper, we present a vulnerability dataset,
from NVD data, and analyze the applicability of deep
learning approaches, namely NLP methods, to aid in CVSS
metric prediction via description interpretation. In our exper-
iments, we also assess the importance of text processing and
vocabulary addition in metric prediction while interpreting
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it via Shapley value. Our results show that DistilBERT is
a state-of-the-art model for CVSS metric prediction, with
increased performance when combined with Lemmatization
(text pre-processing) and 5,000 word-addition. Furthermore,
this combination mitigates the effect of specific events in
category prediction and leads to weighted word impor-
tance, particularly for binary categories, contributing to
increased model accuracy. The presented dataset and model
experiments serve as a comparable basis for future works
in CVSS metric prediction, applicable for vulnerability
handling/prioritization, which leads to increased usefulness
and accuracy of the metric, benefiting system security and
operational effectiveness.
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