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ABSTRACT Model nonlinearity, structured and unstructured uncertainties as well as external disturbances
are some of the most important challenges in controlling the wheel slip in moving vehicles. Based on the
interval type-2 fuzzy neural network, we construct an indirect exponential sliding-mode (ESM) controller
for improving the performance of vehicle antilock braking systems (VABSs) in the face of the uncertainties.
Lyapunov stability postulate is used to verify the stability of the closed-loop system and also to extract
the adaptation rules. In this scheme, the reaching law for the sliding surface is regulated based on an
exponential surface in order to eliminate the produced chattering. Selecting appropriate controller constants
and adaptation rules leads to quicker signal convergence and a better management of the control signal
restrictions. These constants are optimized by defining a cost function and employing the grasshopper
optimization algorithm (GOA) to search for an optimal solution. Thus, we provide an optimized robust
adaptive indirect ESM controller with GOA for VABS. The efficacy of the proposed method is verified by
analyzing the obtained results and comparing its performance with some other control schemes for various
road conditions and driving maneuvers. The results of this work affirm that the designed method makes a
significant improvement in the performance of VABS control.

INDEX TERMS Interval type-2 fuzzy, neural network, antilock braking system, grasshopper optimization,
sliding-mode.

I. INTRODUCTION
The existing faults and flaws in vehicle subsystems are con-
sidered to be an important cause of road accidents; and,
therefore, the researchers in the automobile industry have
focused their efforts on the prevention or mitigation of these
problems [1]. These research endeavors have led to the
development of various driver-assistance systems and active
safety mechanisms in vehicles. Normally, the active safety
systems are the type of mechanisms that either alert the
drivers of imminent dangers or directly interfere in vehicle
operations [2]. These systems help prevent or reduce the
severity of road accidents by using the data they receive
from the installed sensors and cameras [3]. The vehicle
antilock braking system (VABS) is one of the most effective
mechanisms of vehicle chassis control during hard brak-
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ing [4]. The development of vehicle chassis control systems
has attracted a great deal of attention in the research are-
nas and the automobile industry. Among these systems, the
VABS is used to directly control the longitudinal dynamics
of vehicles during braking. The main function of a VABS is
to prevent the locking of the wheels during braking and to
regulate the longitudinal wheel slip within its desired range
in order to produce the maximum amount of braking force.
A VABS can regulate the magnitude of the longitudinal force;
so it is used in the lower layer of a vehicle’s dynamic control
system [5], [6]. The locking of a car’s wheels during braking
leads to the loss of its maneuverability in the lateral direction;
as a result, the vehicle is no longer steerable and it becomes
vulnerable to potential accidents and crashes [6]. In this case,
a VABS uses the sensor data and checks for the locking of the
wheels by monitoring the longitudinal speed of the vehicle.
As soon as the tires lock, the VABS changes the braking force
applied to the wheels [7].
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This is exactly what a driver does in this situation by
repeatedly pressing and releasing the brake pedal. However,
a VABS does this at a much faster rate and is able to avoid
the locking of the wheels during braking [8]. In addition to
the prevention of wheels locking, another important goal of
a VABS is to provide enough traction and adhesion between
tires and road so that sufficient friction can be generated for
stopping a vehicle [9]. Thus, a VABS plays an important role
in preserving the stability and reducing the stopping distance
of a vehicle during hard braking [10].

The existing nonlinearities and the uncertainties in the
modeling of vehicle dynamics are twomajor problems afflict-
ing the design of VABSs [9]. Model uncertainties arise from
factors such as tire force saturation, variation of road surface
conditions and the changes of vehicle parameters such as
mass, center of gravity, etc. Also, the un-modeled or over-
looked dynamics during the modeling process as well as the
actual vehicle limitations are considered as the unstructured
uncertainties. An effective controller for VABS should be
able to successfully manage the existing uncertainties and
nonlinearities in the vehicle model. To these, we should
add external disturbances as well. Moreover, the control law
for VABS should be such that a computed control input
(e.g., brake pressure) can be easily tuned and kept to a
minimum. So there seems to be a need to design a robust
nonlinear VABS controller. Owing to the recent technological
advancements, the performance of a VABS can be greatly
enhanced [11]. Among the different control techniques devel-
oped so far, the sliding mode control (SMC) is considered
to be an effective method. This technique has been studied
extensively; and, due to its simplicity and robustness, it is
now used in many industrial applications [12]. An integral
SMC based wheel slip regulation has been proposed in [13] to
exploit the responsiveness of regenerative brakes during brak-
ing. Some other approaches that employ the SMC for VABS
control include the method of gray system modeling for
SMC [14], fractional order SMC [15], time-varied
SMC [16], and the adaptive fractional order SMC [17].
Some other VABS control methods include the nonlinear
solutions [18], data-driven approaches [19], adaptive non-
linear controllers [20], and the enhanced nonlinear predic-
tive strategy [21]. In addition to the techniques mentioned
here, there are intelligent VABS control methods such as
the fuzzy logic system (FLS) [22], neural networks (NNs)
[23] and fuzzy NNs (FNNs) [8]. FLSs and NNs are two
types of approximators with excellent performances. The
NN approximator and the T1-FLS approximator have been
used in [24], [25], respectively. The combination of FLSs and
NNs for the approximation of nonlinear functions has yielded
good results [26]. The performance of a NN approximator is
enhanced by adding the FLS. The combination of T1-FNN
and wavelet, as an approximator, has been used in [26], [27].

The introduction of the FLS theory helped enhance
the ability of different systems in confronting various
uncertainties [28]. There are two types of FLS: type-1 (T1)
FLS, and type-2 (T2) FLS [29]. In the T1-FLS, an uncertainty

is expressed by an exact number in the range of (0, 1) as
interpreted as a degree of membership function [30]. The
T2-FLS, which uses a T2 fuzzy set (FS), was proposed to
deal with the limitations of T1-FLS [31]. The T2-FLSs are
divided into two categories of interval T2 (IT2) FLSs and gen-
eral T2 (GT2) FLSs [32]. Nowadays, the T2-FLSs (whether
IT2-FLSs or GT2-FLSs) are employed in numerous areas
such as medical diagnosis [33], security monitoring and con-
trol [34], transportation applications [35], design of electronic
commerce services [36], and robot control [37]. Regarding
the use of FLS in VABS control, we can mention the fol-
lowing works. A T1-FLS for VABS control was presented
in [38], which estimates the tire-road friction coefficient and
vehicle speed by using the recursive least square approxi-
mation method. A proportional-integral-derivative controller
based on genetic T1-FLS was presented in [39]. To verify
the performance of an open-loop T1-FLS based method,
a software test was performed in [22]. In this approach, the
T1-FLS acts simultaneously as a controller and road sur-
face estimator. Considering the variations of road conditions,
a T1-FLS has been presented in [40], and to minimize the
number of simulations related to T1-FLS, an optimization
method based on genetic algorithm (GA) has been proposed
in this work. Besides the FLSs, the NNs constitute another
family of supervised learning models that mimic the human
central nervous system. Owing to their ability to learn from
input-output data, NNs are extensively employed in many
applications, including control engineering [41]–[46]. Based
on the capabilities of NNs, a predictive method for VABS
control is presented in [9] and an adaptive VABS controller is
devised in [23]. The manual tuning of the FLS parameters can
be a tedious and time-consuming task if we intend to achieve
the desired results. As a possible solution to this problem,
it has been suggested to combine the NNs with the FLSs.
These hybrid methods simultaneously benefit from the ability
of the FLSs in dealing with uncertainties and the learning
capability of the NNs. These combinations have led to the
development of hybrid methods such as T1-FNN [47] and
T2-FNN [37].

As was previously mentioned, although the SMC is a
simple and robust technique, it suffers from a chattering
problem [48], [49]. In order to reduce the amount of chat-
tering, we can approximate the sign function (SF) [44], [50].
However, the approximation of SF leads to error and ensures
only a uniformly ultimately bounded system stability in this
case [50]. To reduce the error caused by the approximation
of SF, the gain of the SF can be determined by using the
FLS [30], [51]. This method is employed in conjunction with
the T1-FLS for controlling the VABS [52], [53]. Although
using the FLS (either T1 or T2) to obtain the SMC gain
reduces the approximation error, mathematically, the problem
still remains.

Another problem about the works on SMC applications,
especially those on vehicle and VABS control, is that these
methods are not optimized. One solution is to use the evo-
lutionary algorithms for optimizing these techniques. The
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grasshopper optimization algorithm (GOA) [54] imitates the
natural searching behavior and the social interactions of
grasshoppers. Following its introduction, the GOA has been
employed in many different applications [55]. Therefore, we
can use the GOA as an appropriate algorithm for optimizing
the control methods. In view of the problems associated
with the use of the SMC technique on VABS, and also with
regards to the nonlinearities and uncertainties related to vehi-
cle dynamics, road condition variations, changes of vehicle
parameters, and external disturbances, a robust and adaptive
VABS method has been presented in this paper by employing
an exponential sliding-mode (ESM) and IT2-FNN. In this
approach, the IT2-FNN parameters are updated online and
the problems associated with the conventional SMC method
are alleviated by using an exponential reaching law. Not only
is the proposed controller stable, but also the size of the
generated control signals can be managed and they can be
made to converge faster by selecting proper constants for
the controller. The optimal values for these constants were
selected by defining an appropriate cost function and using
the GOA. In other words, a robust ESM-IT2 fuzzy adaptive
neural (FAN) method optimized by the GOA has been pre-
sented in this work for controlling the VABS. A review of
the literature shows that because of the system nonlinearity,
parametric uncertainties and the disturbances applied to a
vehicle, the subject of tire slip control in VABSs is still a
challenging issue.Moreover, only a few studies are conducted
on the adaptive robust fuzzy control of wheel slip in VABSs
by considering the parametric and un-modeled uncertainties.
These have been the motivations for proposing a fuzzy robust
adaptive controller in this paper. The innovations of the pro-
posed scheme and the contributions of the presented work are
as follows:
• The proposed scheme assumes that the system dynamics
are unknown and that they can get upset by random
disturbances such as varying road conditions and vehicle
parameters.

• The unidentified and disturbed dynamics of VABS
are approximated online by means of an IT2-FAN.
This reduces the volume of the computations and
enables the real-time implementation of the proposed
technique.

• The robustness of the proposedmethod against the exter-
nal disturbances and varying road surface conditions is
guaranteed.

• By using an exponential sliding manifold along with a
FAN, the global and un-chattered asymptotic conver-
gence of system dynamics in the control signal and the
approximation of the sign function are guaranteed.

• Heuristic algorithms are used to determine the constant
parameters of the IT2-FAN and ESM.

• By evaluating the proposed technique simultaneously
via the CarSim and Matlab, the simulation environment
is brought closer realistic conditions.

The rest of this paper has been organized as follows.
The formulation of the problem, including the mathematical

formulas of the car model, tires, and other parts, is presented
in Section 2. The IT2-FNN is briefly reviewed in Section 3.
The ESM-IT2-FAN method and its proof of stability are
presented in Section 4. The optimization of the devised
method by means of the GOA is carried out in Section 5.
Section 6 presents the optimization results and compares
the performances of the proposed technique with the other
methods in terms of controlling the vehicle’s motion under
different maneuvers and driving conditions. Finally, the con-
clusion of the work is presented in Section 7.

II. PROBLEM FORMULATION
The following vehicle model equations are used to develop
the wheel slip controller [23], [40], [53]:

Fx +Mt v̇x = 0 (1)

τb = RwFx + τd − Iwω̇ (2)

λ = 1−
Rwω
vx

(3)

Mt = 0.25mvs + mw (4)

where, vx is the vehicle longitudinal velocity, Fx is the longi-
tudinal braking force,ω is the angular velocity, Iwis the wheel
moment of inertia, Rw is the wheel radius, τb is the braking
torque, τd is disturbance, λis the wheel slip during braking,
mvs is the vehicle sprung mass andmw is the wheel mass. The
normal load of tire is expressed as

Fz = mtg−
mvshcg
2lw

ẍ (5)

where lw is the distance between two axles, g is the gravi-
tational acceleration, ẍ is the longitudinal acceleration and
hcg is the height of the vehicle sprung mass. The normal tire
load (Fz) is actually computed by measuring the longitudinal
acceleration ẍ; however, in simulation studies, Fz is calcu-
lated by inserting Eq. (1) into Eq. (5) and numerically solving
the resulting nonlinear equation. The modified Dugoff model
has been used for modeling the longitudinal braking force.
This model is expressed as follows [49], [56]:

Fx = cxλ0f ($) hx

Fy = cy0 tanαf ($) hy (6)

f ($) =

{
$ (2−$) $ ≤ 1
1 $ > 1

(7)

$ =
µFz

(
1− εrv

√
λ2 + tan (α)

)
20
√
c2xλ2 + c2y tan2 (α)

(8)

0 = (1− λ)−1 (9)

where, cx and cy indicate the tire stiffness, αdenotes the side
slip angle of tires, µ represents the road friction factor and
εr is the road adhesion reduction coefficient. Also, hx , hy and
µ (λ) are written as

hx = (1.15− 0.75µ) λ2 − (1.63− 0.75µ) λ+ 1.5 (10)
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hy = (µ− 1.6) tan (α)+ 1.5 (11)

µ = ϑ1 sin {ϑ2 arctan [ϑ3λ− ϑ4 (ϑ3λ− arctan (ϑ3λ))]}

(12)

In (12), ϑi, i = 1, . . . , 4 are the parameters of the friction
model, which depend on the road conditions. By differentiat-
ing (3) and substituting (1) and (2) into it, we will have

λ̇ = −
1
vx

(
Rw
Iw
Fx +

Fx
M
(1− λ)

)
︸ ︷︷ ︸

f (x)

+
Rw
Iwvx︸︷︷︸
g(x)

τb−
Rw
Iwvx

τd︸ ︷︷ ︸
Td

(13)

If we consider x = (vx , λ)T as a state vector, the dynamic
equation for the derivative of wheel slip during braking will
be obtained as

λ̇ = f (x)+ g (x) τb + Td (t) (14)

By assuming the external disturbance to be bounded
(i.e., |Td | ≤ ϒ1), then ϒ1 ∈ <+ will be the upper bound for
the external disturbance, where <+ is a set of real positive
numbers.

III. INTERVAL TYPE-2 FUZZY NEURAL NETWORK
An IT2-FNN is a nonlinear system with inputs χ =(
χ1, . . . , χNi

)
∈ <

Ni and outputs yo = f (χ) ∈ <No .
In general, an IT2-FNN includes Ni inputs and No out-
puts. The overall form of the rules for an IT2-FLS is as
follows [31], [37], [57]:

Rki : ifx1is1Ã
ki
j andx2is2Ã

ki
j · · · xNi isNi Ã

ki
j then Y ki

= W kiki = 1, 2, . . . ,Nr , j = 1, 2, ..,Nm (15)

The k thi rule has been presented in (15), in which Nr indi-
cates the number of rules, Nmis the number of membership
functions, and

{
1Ã

ki
j , 2Ã

ki
j , . . . , N1 Ã

ki
j

}
represent the IT2-FSs.

In the consequent section of the rules, Y ki designates a num-
ber in the interval W ki =

[
wki , w̄ki

]
. wki =

(
wki1 , . . . ,w

ki
No

)
and w̄ki =

(
w̄ki1 , . . . , w̄

ki
No

)
are the lower and upper bounds

of this interval, respectively. The structure of the proposed
IT2-FNN has 5 layers. In the first layer (input layer), there
are neurons whose number is equal to the number of inputs.
The fuzzifier is in the second layer. In this layer, the non-fuzzy
inputs are converted to fuzzy numbers by means of IT2-FSs.
Every IT2-FS has an upper and a lower bound, and the
distance between the upper and lower bounds is known as
the footprint of uncertainty. An IT2-FS is defines as [58]:

µ̄
kA

ki
j
=


1µ

kA
ki
j
, xi < 1

kb
ki
j

1, 1kb
ki
j ≤ xi ≤

2
kb

ki
j

2µ
kA

ki
j
, xi > 2

kb
ki
j

µ
kA

ki
j
=


2µ

kA
ki
j
, xi ≤ 0.5

(
1
kb

ki
j +

2
kb

ki
j

)
1µ

kA
ki
j
, xi > 0.5

(
1
kb

ki
j +

2
kb

ki
j

) (16)

In (16), xi is the ith input. Also, 1µ
kA

ki
j
and 2µ

kA
ki
j
indicate the

degrees of membership of two T1-FS. A T1-FS is expressed
as

1µ
kA

ki
j
= exp

−1
2

(
xi − 1

kb
ki
j

kσ
ki
j

)2 , 2µ
kA

ki
j

= exp

−1
2

(
xi − 2

kb
ki
j

kσ
ki
j

)2 (17)

where kσ
ki
j is the standard deviation (STD), and 1

kb
ki
j and

2
kb

ki
j are the centers of Gaussian functions. In the third layer,

which is the inference layer, the t-norm is used for inferenc-
ing. The output of this layer is defined as:[
zkil (χ) , z

ki
r (χ)

]
=

µ1A
ki
j
(x1) ∩ · · · ∩ µ

NiA
ki
j

(
xNi
)
,

µ̄
1A

ki
j
(x1) ∩ · · · ∩ µ̄

NiA
ki
j

(
xNi
) 

(18)

In (18), ∩ designates the sign of the t-norm. We use the mul-
tiplication t-norm for the inferencing process. In the fourth
layer, the Enhanced Karnik-Mendel (EKM) type-reducer is
employed to convert an IT2-FS into a T1-FS [59]. The outputs
of the fourth layer are as follows [37], [58], [60]:

ykor = =

∑R
ki=1 z

ki
l w̄

ki
k +

∑Nr
ki=R+1

zkir w̄
ki
k∑R

ki=1 z
ki
l +

∑Nr
j=R+1 z

ki
r

= w̄Tk ξ̄ (19)

ykol =

∑L
ki=1 z

ki
r w

ki
k +

∑Nr
ki=L+1

zkil w
ki
k∑L

ki=1 z
ki
r +

∑Nr
ki=L+1

zkil
= wTk ξ (20)

In the above equations, L and R are obtained by means of the
EKM algorithm. Also, ξ̄ and ξ are defined as

ξ̄ =
1∑R

ki=1 z
ki
l +

∑Nr
ki=R+1

zkir

(
z1l , . . . , z

R
l , z

R+1
r , . . . , zNrr

)T
ξ =

1∑L
ki=1 z

ki
r +

∑Nr
ki=L+1

zkil

(
z1r , . . . , z

L
l , z

L+1
l , . . . , zNrl

)T
(21)

The fifth layer of the proposed IT2-FNN is the output layer.
The k tho output of the IT2-FNN will be

yko = 0.5
(
ykor + y

ko
l

)
(22)

In vector form, the output of the IT2-FNN is obtained as

Y = 0.5 (Yl + Yr ) = wTξ (23)

where Yl = wTξ , Yr = w̄Tξ̄ and ξ = 0.5
(

ξT ξ̄
T
)T

. Also,
the matrixes w and w̄ are expressed as

w =

(
w1
1 w1

No
wNr1 wNrNo

)
, w̄ =

(
w̄1
1 w̄1

No
w̄Nr1 w̄NrNo

)
(24)

By considering the fuzzy systems approximation theory,
the IT2-FNN can be employed to approximate an unknown
function [61].
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IV. EXPONENTIAL SLIDING-MODE INTERVAL TYPE-2
FUZZY ADAPTIVE NEURAL CONTROLLER
Eq. (14) can be written as

λ̇ = f̄ (x)+ ḡ (x) τb + Td (t)+ H (25)

where H = 1f (x) + 1g (x) τb, f (x) = f̄ (x) + 1f (x) and
g (x) = ḡ (x) +1g (x). f̄ (x) and ḡ (x) respectively indicate
the values of f (x) and g (x) without the uncertainty. The
values of f̄ (x) and ḡ (x) are known, but H has an unknown
value. Suppose |H | ≤ ϒ2 and ϒ2 ∈ <+. The sliding surface
is defined as

s = e (t)+ β
∫
e
(
t ′
)
dt ′ (26)

where e (t) = λ − λd is the error, λd is the reference slip
which should be tracked by the wheel slip, and β ∈ <+ is a
constant parameter. We differentiate the sliding surface and
substitute (13) instead of λ̇.

ṡ = f̄ (x)+ ḡ (x) τb + Td (t)+ H − λ̇d + βe (27)

If ṡ is equated to zero, the equivalent control signal will be
obtained as

τb = (ḡ (x))−1
(
λ̇d − βe− f̄ (x)− Td (t)− H

)
(28)

The value of H is not actually available. The unknown func-
tionH is approximated by means of the IT2-FNN. Also, here,
any disturbance is bounded. The ideal parameters of 1Ĥ (x)
are expressed as

w∗H = argmin

[
sup
x∈Ux

∣∣∣Ĥ (x|wH )− H (x)
∣∣∣] (29)

In (29), Ĥ (x) is the approximation of H (x) and Ux indicates
the range of x. By applying the Taylor expansion, the differ-
ence between the value estimated by the IT2-FNN and the
optimal approximated function is obtained as follows:

Ĥ (x|wH )− Ĥ
(
x|w∗H

)
=
(
wH − w∗H

)T (∂Ĥ (x|wH )

∂wH

)
+ h.o.t

(∣∣wH − w∗H
∣∣2)
(30)

In (30), h.o.t
(∣∣wH − w∗H

∣∣2) signifies the higher-order terms.

Furthermore, the function approximated by the IT2-FNN can
be defined by the expression wT

H ξH (x) and by using the
approximation error of εH . If we assume εH to be bounded
(|εH | ≤ ϒ3), ϒ4 ∈ <+will be the upper bound for the
approximation error.

Ĥ (x|wH ) = wT
H ξH + εH (31)

In (31), ξH = ∂Ĥ (x|wH )
/
∂wH

. The difference between the
value of the optimized function and the value estimated by
the IT2-FNN is obtained as

Ĥ∗
(
x|w∗H

)
− Ĥ (x|wH ) =

(
w∗H − wH

)T
ξH + εH

= w̃T
H ξH + εH (32)

Due to the presence of approximation error and distur-
bance, a compensator (uc) is added to the control signal to
ensure the stability of the closed-loop system.

τb = τ̂eq + τc = (ḡ (x))−1
(
λ̇d − βe− f̄ (x)− Ĥ (x|wH )

)
︸ ︷︷ ︸

τ̂eq

+ (ḡ (x))−1 uc (33)

The control signal and the optimal approximated function are
inserted into the Eq. (27).

ṡ = w̃T
H ξH + εH + Td (t)+ uc (34)

A Lyapunov function is considered as

L = 0.5
(
s2 + γ−1H w̃T

H w̃H

)
(35)

where γH ∈ <+ denotes the adaptation rate. We take the
derivative of Eq. (35) and substitute (34) into this derivative.

L̇ = sṡ+ γ−1H w̃T
H ẇH

= sw̃T
H ξH + sεH + sTd + suc − γ

−1
H w̃T

H ẇH

= sεH + sTd + suc + w̃T
H

(
sξH − γ

−1
H ẇH

)
(36)

The adaptation rules for the IT2-FNN parameters are
designed as follows:

ẇH = γH sξH (37)

Thus, (36) is simplified as

L̇ = sεH + sTd + suc (38)

Parameter uc is defined as

uc = − (δ4 + (1− δ4) exp (−δ2 |s|))−1 (δ1sgn (s)+ δ3s)

(39)

where δi (i = 1, 2, 3) ∈ <+ and 0 < δ4 < 1 are constant
parameters and sgn (•) designates a SF. Now we substi-
tute (39) into (38).

L̇ = sεH + sTd
+s
(
−(δ4+(1− δ4) exp (−δ2 |s|))−1 (δ1sng (s)+ δ3s)

)
= sεH+sTd−(δ4+(1− δ4) exp (−δ2 |s|))−1

(
δ1|s|+δ3s2

)
≤ |s| |εH | + |s| |Td | − (δ4 + (1− δ4) exp (−δ2 |s|))−1

×

(
δ1 |s| + δ3s2

)
≤ |s|ϒ3 + |s|ϒ1 − (δ4 + (1− δ4) exp (−δ2 |s|))−1

×

(
δ1 |s| + δ3s2

)
(40)

The value of exp (−δ2 |s|) is between 0 and 1; which results
in the following equations:

δ4 ≤ δ4 + (1− δ4) exp (−δ2 |s|)

≤ δ4 + (1− δ4)

(δ4 + (1− δ4))−1 ≤ (δ4 + (1− δ4) exp (−δ2 |s|))−1 ≤ δ
−1
4

−δ−14 ≤−(δ4+(1− δ4) exp (−δ2 |s|))
−1

≤ − (δ4+(1− δ4))−1 (41)
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FIGURE 1. The structure of the ESM-IT2-FNN controller optimized by the GOA.

In view of (41), and ifϒ = ϒ1+ϒ3 < δ1 (δ4 + (1− δ4))−1,
the derivative of the Lyapunov function will be negative.

L̇ ≤ |s|ϒ − (δ4 + (1− δ4) exp (−δ2 |s|))−1
(
δ1 |s| + δ3s2

)
≤ |s|ϒ − (δ4 + (1− δ4))−1

(
δ1 |s| + δ3s2

)
= |s|ϒ−δ1 (δ4+(1− δ4))−1 |s|−δ3 (δ4+(1− δ4))−1 s2

= −

(
δ1 (δ4 + (1− δ4))−1 − ϒ

)
|s|

− δ3 (δ4 + (1− δ4))−1 s2 ≤ 0 (42)

So, w̃H will have finite values. If we define B as follows:

B =
∫ t

0

(
−

(
δ1 (δ4 + (1− δ4))−1 − ϒ

)
|s|

− δ3 (δ4 + (1− δ4))−1 s2
)
dt ′ (43)

B will satisfy the conditions of Barbalat’s lemma [50]. With
the elapse of time,Ḃ → 0 and, therefore, s will approach
zero as well. Thus, the closed-loop system will be stable.
Fig. 1 shows the structure of the ESM-IT2-FAN method
optimized by the GOA. This figure also displays the forces
applied to the car wheel. In the next section, we present the
GOA and describe how the proposed controller is optimized.

V. CONTROLLER OPTIMIZATION
An important aspect of designing a robust adaptive controller
is to identify appropriate constants for the adaptation rules
obtained. In addition to system stability, the faster conver-
gence of the algorithm and the restriction of the control signal
are also important issues, which are ignored in many of the
studies on robust and adaptive control techniques. To inves-
tigate this subject in the present work, the following cost
function has been considered so as to minimize the system

error as quickly as possible despite the saturation of control
inputs.

minFc (τb, e, t) =

 tf∫
0

(α1t |e| + α2 |1τb|) dt


Subjected to: |τb| ≤ τmax, δi (i = 1, . . . , 3) ∈ <+,

0 < δ4 < 1,

β, γH , kσ
ki
j ∈ <+, −1 <

1
kb

ki
j ,

2
kb

ki
j < 1

(44)

In (44), 1τb represents the variations of control signal and
τmax indicates the maximum control signal. α1, α2 ∈ <+ are
constant parameters, and tf is the simulation finish time. The
above optimization problem is solved by applying the GOA.
The behavior of a group of grasshoppers can be considered
as follows [54]:

Pgi (n+ 1)

= Sgi (n)+ G
g
i (n)+ w

g
i (n) i = 1, . . . ,Npop, n = 1, . . . , nM

(45)

In (45), Npop is the total number of grasshopper populations,
n is the number of iterations, nM is the maximum iteration,
Pgi (n) is the position of the i

th grasshopper, Sgi (n) is the social
interaction of the ith grasshopper,Ggi (n) is the force of gravity
on the ith grasshopper, and wgi (n) is the wind effect on the i

th

grasshopper. The social interaction between grasshoppers is
defined as

Sgi =
Npop∑

j=1(j6=i)

sp
(
dij
)Pgj − Pgi

dij
(46)
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where dij =
∣∣∣Pgj − Pgi ∣∣∣ is the Euclidean distance between the

ith and jth grasshoppers. sp (•) is a function that shows the
strength (intensity) of the social forces and is expressed as

sp
(
dij
)
= aI exp

(
−dij
aL

)
− exp

(
−dij

)
(47)

In (47), aI and aL respectively denote the attraction intensity
and the attraction length scale. Parameter sp (•) indicates the
effects of the social interactions (attraction and repulsion) of
grasshoppers.

The distance values (dij) in this function are mapped into
the interval [1, 4]. Eq. (45) is for modeling the behavior of
grasshoppers in the outdoors and it is not suitable for opti-
mization. To be able to use this modeling for optimization and
also to enable the algorithm to properly explore and exploit
the search space for a solution, this formula is modified as
follows [55]:

dPgi =η

 Npop∑
j=1(j6=i)

η
ubd−lbd

2
s
(∣∣∣dPgi −dPgj ∣∣∣) Pi−Pjdij

+d P̂B
(48)

In the modified formula, ubd and lbd are the upper and lower
bounds in the d th dimension, respectively, and d P̂B is the best
solution found (up to the iteration n) in the d th dimension. The
constant parameter η is used to both control the exploration
and exploitation activities in the search space and also toman-
age the areas of attraction, neutrality, and repulsion between
the grasshoppers [55]. Parameter η is considered as

η = ηmin +

(
1−

(
n
nM

)ρ)1/ρ

(ηmax − ηmin) (49)

ηmin and ηmax indicate the minimum and maximum values
of η (ηmin ≤ η ≤ ηmax), respectively, and ρ is a constant
parameter which should be tuned. At the start of the algo-
rithm execution, η has a large value (exploration receives a
large share), which gradually diminishes as the number of
iterations goes up. Here, the parameters associated with the
ESM-IT2-FAN are used to establish the grasshopper
population.

VI. RESEARCH FINDINGS
The numerical parameters used in the simulation are pre-
sented in Table 1. One of the problems associated with
designing a controller for the existing subsystems in
autonomous vehicles is the changes that occur in those
numerical parameters. These fluctuations have been consid-
ered as parametric uncertainties and incorporated into the
problem formulation according to Table 1. Controller design
and optimization is done based on the nominal parameters.
The simulations were performed on a PC with 12 GB of
RAM and Core i7 processor with 3.5 GHz frequency in the
MATLAB (v. 2018a).

A constant time step of 0.001 s was considered in the
Simulink. The velocity of the wheels during braking is almost

TABLE 1. The value of parameters.

zero; so, wheel slip approaches infinity. The simulation is
terminated when the car velocity is about 5 m/s. IT2-FNN
is used for the online detection of the nonlinear function
of H . The IT2-FNN inputs for the detection of these function
is (vx , λ).

A. OPTIMIZATION RESULTS
The optimization results obtained by using the GOA, parti-
cle swarm optimization (PSO) and GA have been reported
in Table 2. By varying the parameters of the optimization
algorithms, the performances of the GOA in an ESM-IT2-
FANVABS controller are evaluated and compared in Table 2.
The statistical analysis of the optimization results is also
performed in Table 2, as follows. In each row of this table,
the parameters of an optimization algorithm are randomly
changed within a specific range. The optimization process for
each of these parameters is repeated 10 times. In PSO, wI is
the weight inertia, ϕ1 is the personal learning coefficient and
ϕ2 is the global learning coefficient.
The mean and the STD values of the cost function for these

iterations are listed in Table 2 in the relevant columns.
This table also provides the mean NFE (number of

cost function evaluation) values, the average simulation
times (STs) and best cost function (BCF). Mean and STD
values have also been displayed graphically in Fig. 2 as
box plots. In the optimization procedures, the initial vehi-
cle velocity and wheel slip are considered as vx(0) =
(30+ 5rand)m/s and λ(0) = 0, respectively; where
‘‘rand’’ indicates a random number which causes a differ-
ent initial velocity to be used every time the simulation is
rerun.

To illustrate the effect of the GOA on the IT2-FSs, the
results obtained for these IT2-FSs in several iterations of the
GOA are plotted in Fig. 3. In order to have a graphical dis-
play and comparison of GOA convergence in addition to the
statistical analysis provided, the graphs of the cost function
versus the NFE values for several optimization algorithms are
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TABLE 2. The results of the ESM-IT2-FAN controller with different optimization algorithms.
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FIGURE 2. The statistical analysis results for different optimization algorithms.

FIGURE 3. The variations of IT2-FS in several iterations of the GOA.

presented in Fig. 4. The initial vehicle speed and wheel slip
in this case are vx(0) = 30m/s and λ(0) = 0, respectively.
In addition to Fig. 4, the convergence results of GOA are
presented in Fig. 5. This figure shows the graphs of cost
function values versus the number of iterations in different
conditions. As is observed, after several iterations, the cost
function converges to a fixed value.

Different factors determine the complexity and the volume
of computations of the GOA. The average run times for the
GOA had been previously presented in Table 2. For a deeper
evaluation of this factor, the graphs of the average execution
times for the GOA as well as the maximum iteration values
versus the numbers of grasshopper populations have been
plotted in Fig. 6. Also, by looking at the GOA, we can say
that NFE = Npop (nM + 1).

B. CONTROLLER RESULTS
The parameters of the proposed ESM-IT2-FAN controller
optimized by the GOA are listed in Table 3. To evaluate the
robustness and the performance of this controller, different
maneuvers were designed and analyzed. In the firstmaneuver,
in the absence of any disturbance, uncertainty and control
signal saturation, a moving vehicle brakes on a dry road
(ϑ1 = 0.9, ϑ2 = 2.1, ϑ3 = 5 and ϑ4 = 0.98).
Fig. 7, shows the vehicle speed, wheel slip error, and

control input (braking torque). According to this figure, the
wheel slip is able to successfully track the reference value and
the error approaches zero. Also, the control signal is devoid
of chattering.

In the second maneuver, the road surface changes dras-
tically during braking operations. These conditions are
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FIGURE 4. Cost function values versus NFE of various optimization algorithms.

FIGURE 5. Cost function values versus the number of iterations in different conditions.

reflected in the simulation by changing the value of the
friction model parameters. Changes in road conditions in

terms of braking distance are presented in Table 4. We show
the brake distance with dx . The results of this maneuver
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FIGURE 6. The average execution times for the GOA as well as the
maximum iteration values versus the numbers of grasshopper
populations.

are illustrated in Fig. 8. According to Fig. 8(a), despite the
severe changes of the road surface conditions, the wheel slip
error ha approached zero. For a visual comparison with other
methods, the results of an ESM-T1-FAN controller have also
been presented in Fig. 8.

In the third maneuver, we investigate the effects of para-
metric uncertainties in the modeling. In this case, besides the
severe changes of road surface conditions, some uncertainties
in vehicle parameters (according to Table 1) are also taken
into consideration. The results of the proposed ESM-IT2-
FAN controller and of the ESM-T1-FAN controller for the
third maneuver are presented simultaneously in Fig. 9.

In the fourth maneuver, in addition to the road surface
changes and the parametric uncertainties, an external distur-
bance is added to the system. In this maneuver, a maximum
saturation limit of τmax = 1200N.m is also considered for
the control signal. Fig. 10 shows the results of this maneuver,
including the wheel slip error and the braking torque. In addi-
tion to the results of the proposed ESM-IT2-FAN controller,
the results of the ESM-T1-FAN controller have also been
illustrated in Fig. 10.

The results of these maneuvers indicate that: firstly, the
control signals of both considered methods are without chat-
tering (Figs. 8(b), 9(b) and 10(b)); secondly, error conver-
gence to zero (in the presence of uncertainty, disturbance and
control signal saturation) (Figs. 8(a), 9(a) and 10(a)); thirdly,
the proposed ESM-IT2-FAN controller has a more desirable
performance both in terms of a lower wheel slip error and a
smaller control signal.

To test the method from a practical point of view, we used
Matlab and CarSim. Fig. 11 shows the results of the joint
simulation. The results confirm the practicality of the pro-
posed method. According to Fig. 11, the ESM-IT2-FAN has
a shorter braking distance and braking time and shows good
braking performance.

FIGURE 7. The results of the first maneuver; (a) vehicle angular velocity,
(b) wheel slip error, and (c) braking torque.

TABLE 3. The controller parameters.

TABLE 4. Changes in road conditions in terms of braking distance.

In order to compare the performance criteria quantitatively,
we consider themeasures of integral squared error (ISE), inte-
gral absolute error (IAE), integral time square error (ITSE),
and integral time absolute error (ITAE). These performance
criteria are defined as follows:

ISE =
∫ tf

0
e2 (t) dt (50)
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FIGURE 8. The results of the second maneuver; (a) wheel slip error, and (b) braking torque.

FIGURE 9. The results of the third maneuver; (a) wheel slip error, and (b) braking torque.
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FIGURE 10. The results of the fourth maneuver; (a) wheel slip error, and (b) braking torque.

FIGURE 11. The results of the ESM-IT2-FAN and ESM-T1-FAN; (a) speed, (b) wheel slip (c) braking torque, and (d) braking distance.
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TABLE 5. Quantitative comparison of controller performances in different
maneuvers.

IAE =
∫ tf

0
|e (t)| dt (51)

ITSE =
∫ tf

0

(
e2 (t) t

)
dt (52)

ITAE =
∫ tf

0
(|e (t)| t) dt (53)

The performance indexes for all the considered maneuvers
are presented in Table 5. In addition to these performance
criteria, the maximum braking torque values have also been
given in this table.

Table 5 confirms the results presented in Figs. 8-11.
Although both methods perform adequately, especially under
un-ideal conditions, in controlling the wheel slip, the adaptive
ESM-IT2-FAN controller achieves better results.

VII. CONCLUSION
In this paper, we have dealt with the problem of vehicle
antilock braking system (VABS) control from two perspec-
tives. First, by exploiting the capability of the interval type-2
(IT2) fuzzy neural networks, we have attempted to approxi-
mate the nonlinear functions and external disturbance online.
Second, by employing an exponential sliding-mode (ESM),
we have tried to compensate the effects of the approximation
errors and other disturbing factors. By using an exponential
reaching law, the problems associated with chattering and

the errors resulting from the approximation of sign func-
tion, which exist in the common sliding methods, could be
eliminated.
In this work, first we presented the mathematical formulas

for VABS along with the mathematical tire model. Then
a robust adaptive VABS controller was designed and the
stability of the proposed method was verified by means of
the Lyapunov approach. Besides the system stability, the
faster convergence of the grasshopper optimization algorithm
(GOA) and the restriction of the control signal are also impor-
tant issues. To incorporate these features into the designed
controller, a cost function was defined and the GOA was
employed to search for optimal constant parameters for the
controller. Eventually, a robust ESM-IT2 fuzzy adaptive neu-
ral (FAN) method optimized by the GOA was presented for
VABS control. Simulation results were compared with those
of the other methods developed based on the genetic algo-
rithm and the particle swarm optimization technique. Also,
a statistical analysis was performed and the computational
complexity of the GOA in optimizing the proposed robust
ESM-IT2-FAN controller was determined. The developed
controller was then tested for VABS control in various road
surface conditions and driving maneuvers. The results indi-
cated a more effective performance of the proposed controller
in different scenarios. The most important subject to consider
in future research is to incorporate the dynamics of the actu-
ators into the systems studied. Also, in the upcoming works,
we intend to implement the proposed scheme on an actual
system and to analyze realistic data.
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